初中苏科八年级数学下册期末考试试卷百度文库

合集下载

新苏科八年级苏科初二数学下学期期末测试题及答案(共五套) 百度文库

新苏科八年级苏科初二数学下学期期末测试题及答案(共五套) 百度文库

新苏科八年级苏科初二数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .442.将下列分式中x ,y (xy ≠0)的值都扩大为原来的2倍后,分式的值一定不变的是( )A .312x y +B .232x yC .232x xyD .3232x y3.下列调查中,适宜采用普查方式的是( ) A .对全国中学生使用手机情况的调查B .对五一节期间来花果山游览的游客的满意度调查C .环保部门对长江水域水质情况的调查D .对本校某班学生阅读课外书籍情况的调查 4.已知反比例函3y x=-,下列结论中不正确的是( ) A .图像经过点(1,3)- B .图像在第二、四象限C .当1x >时,30y <<D .当0x <,y 随着x 的增大而减小 5.下列调查中,适宜采用普查方式的是( )A .一批电池的使用寿命B .全班同学的身高情况C .一批食品中防腐剂的含量D .全市中小学生最喜爱的数学家6.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数 100 200 300 400 500 正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( ) A .20 B .300C .500D .8007.一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为( ) A .20B .25C .30D .1008.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( )A.平均数B.中位数C.众数D.方差9.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为()A.13 B.15 C.18 D.13或1810.下列图标中,是中心对称图形的是()A.B.C.D.二、填空题11.如图,在平面直角坐标系中,一次函数y=2x﹣5的图象经过正方形OABC的顶点A和C,则正方形OABC的面积为_____.12.如图,在正方形ABCD中,△ABE为等边三角形,连接DE,CE,延长AE交CD于F 点,则∠DEF的度数为_____.13.如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度_____.14.如图是某市连续5天的天气情况,最大的日温差是________℃.15.如图,在菱形ABCD 中,若AC =24 cm ,BD =10 cm ,则菱形ABCD 的高为________cm .16.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x=-的图象上,则y 1,y 2的大小关系是y 1_____y 2.17.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.18.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.19.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC 的长为 .20.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于___.三、解答题21.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.22.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB 边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.23.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.(1)点B的坐标为,直线ON对应的函数表达式为;(2)当EF=3时,求H点的坐标;(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.24.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q 为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.25.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.26.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?27.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB ,A ,B 均为格点,按要求完成下列问题.(1)以AB 为对角线画一个面积最小的菱形AEBF ,且E ,F 为格点; (2)在(1)中该菱形的边长是 ,面积是 ;(3)以AB 为对角线画一个菱形AEBF ,且E ,F 为格点,则可画 个菱形.28.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3P m ⎛ ⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可. 【详解】解:∵AD ∥BE ,AC ∥DE , ∴四边形ACED 是平行四边形, ∴AC=DE=6,在RT △BCO 中,4=,即可得BD=8,又∵BE=BC+CE=BC+AD=10, ∴△BDE 是直角三角形,∴S △BDE =1242DE BD ⋅=. 故答案为B. 【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD 的长度,判断△BDE 是直角三角形,是解答本题的关键.2.C解析:C 【分析】根据分式的基本性质解答. 【详解】解:∵分式中x ,y (xy ≠0)的值都扩大为原来的2倍, ∴A.23161224x x y y⨯++=⨯,分式的值发生改变;B. 222332(2)4x xy y ⨯=⨯,分式的值发生改变;C. 223(2)32222x x x y xy ⨯=⨯⨯,分式的值一定不变;D.33223(2)32(2)x x y y⨯=⨯,分式的值发生改变; 故选:C . 【点睛】本题考查了分式的基本性质:分式的分子和分母都乘以或除以同一个不为0的数(或式子),分式的值不变.3.D解析:D 【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】解:A .对全国中学生使用手机情况的调查适合抽样调查; B .对五一节期间来花果山游览的游客的满意度调查适合抽样调查; C .环保部门对长江水域水质情况的调查适合抽样调查; D .对本校某班学生阅读课外书籍情况的调查适合普查; 故选:D . 【点睛】本题考查判别普查的方式,关键在于熟记抽样调查和普查的定义.4.D解析:D 【分析】根据反比例函数的性质对各选项进行逐一分析即可. 【详解】解:A 、∵()133-⨯=-,∴图象必经过点(1,3)-,故本选项正确;B 、∵30k =-<,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C 、∵1x =时,3y =-且y 随x 的增大而而增大,∴1x >时,30y -<<,故本选项正确;D 、函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误. 故选:D . 【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质进行解题.5.B解析:B 【分析】根据抽样调查和普查的特点分析即可. 【详解】解:A .调查一批电池的使用寿命适合抽样调查; B .调查全班同学的身高情况适合普查; C .调查一批食品中防腐剂的含量适合抽样调查; D .调查全市中小学生最喜爱的数学家适合抽样调查;【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.C解析:C 【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可. 【详解】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近, 所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近10000.5500⨯=次,故选C . 【点睛】本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.7.B解析:B 【分析】根据频率、频数的关系:频数=频率×数据总和,可得这一小组的频数. 【详解】解:∵容量是50的,某一组的频率是0.5, ∴样本数据在该组的频数0.55025⨯== . 故答案为B . 【点睛】本题考查频率、频数、总数的关系,属于基础题,比较简单,注意熟练掌握:频数=频率×数据总和.8.C解析:C 【解析】 【分析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数. 【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数. 故选(C) 【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;9.A【解析】试题解析:解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系.10.D解析:D【分析】根据中心对称图形的概念,中心对称图形绕着对称中心旋转180°与原来的图形重合求解即可.【详解】解:A、不是中心对称图形,本选项不合题意;B、不是中心对称图形,本选项不合题意要;C、不是中心对称图形,本选项不合题意;D、是中心对称图形,本选项符合题意.故选:D.【点睛】本题主要考查中心对称图形的判断选择的知识.记住中心对称图形绕着对称中心旋转180°与原来的图形重合的特点,是解答本题的关键.二、填空题11.10【分析】过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,易得△OCM≌△OAN;由CM=ON,OM=ON;设点C坐标(a,b),可求得A(2a﹣5,﹣a),则a=3,可求OC=,所以正方解析:10【分析】过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,易得△OCM≌△OAN;由CM=ON,OM=ON;设点C坐标(a,b),可求得A(2a﹣5,﹣a),则a=3,可求OC=,所以正方形面积是10.【详解】解:过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,∵∠COM+∠MOA=∠MOA+∠NOA=90°,∴∠NOA=∠COM,又因为OA=OC,∴Rt△OCM≌Rt△OAN(ASA),∴OM=ON,CM=AN,设点C(a,b),∵点A在函数y=2x﹣5的图象上,∴b=2a﹣5,∴CM=AN=2a﹣5,OM=ON=a,∴A(2a﹣5,﹣a),∴﹣a=2(2a﹣5)﹣5,∴a=3,∴A(1,﹣3),在直角三角形OCM中,由勾股定理可求得OA=10,∴正方形OABC的面积是10,故答案为:10.【点睛】本题考查了一次函数与正方形的综合,涉及全等三角形的证明,勾股定理的应用,函数的相关计算等,熟知以上知识是解题的关键.12.105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度解析:105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度数,再根据平角定义即可求得∠DEF的度数.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ABE 为等边三角形,∴AE=BE=AB ,∠EAB=60°,∴AE=AD ,∠EAD=∠BAD ﹣∠BAE=30°,∴∠AED=∠ADE=12(180°﹣30°)=75°, ∴∠DEF=180°﹣∠AED=180°﹣75°=105°.故答案为105°.【点睛】 本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.13.2【分析】连接并延长DM 交AB 于E ,证明△AME≌△CMD,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,解析:2【分析】连接并延长DM 交AB 于E ,证明△AME ≌△CMD ,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,∵AB ∥CD ,∴∠C =∠A ,在△AME 和△CMD 中,A C AM CMAME CMD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△CMD (ASA )∴AE =CD =3,DM =ME ,∴BE =AB ﹣AE =4,∵DM=ME,DN=NB,∴MN是△DEB的中位线,∴MN=12BE=2,故答案为:2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的解析:10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的实际应用,根据图象找出温差最大的一天是解题关键.15.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.16.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.17.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.18.或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角解析:103或5【分析】当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示.连结AC ,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB ′E=∠B=90°,而当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,所以点A 、B ′、C 共线,即ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,则EB=EB ′,AB=AB ′=5,可计算出CB ′=8,设BE=a ,则EB ′=a ,CE=12-a ,然后在Rt △CEB ′中运用勾股定理可计算出a .②当点B ′落在AD 边上时,如图2所示.此时ABEB ′为正方形.【详解】当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示,连结AC ,在Rt △ABC 中,AB=5,BC=12,∴AC=22512+=13,∵将ΔABE 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°,当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即将ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,设:BE a B'E ==,则CE 12a =-,AB AB'5==,B'C AC AB'1358=-=-=,由勾股定理得:()22212a a 8-=+,解得:10a 3=; ②当点B ′落在AD 边上时,如图2所示,此时ABEB ′为正方形,∴BE=AB=5,综上所述,BE 的长为103或5, 故答案为103或5. 【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.19.【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO解析:【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴223BC EC EB=-=【点睛】解题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.20.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH的长.【详解】∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH 的长.【详解】∵菱形ABCD的周长等于24,∴AB=244=6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=12AB=3.故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题21.(1)150人;(2)见解析;(3)192人【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;(3)总人数乘以样本中围棋的人数所占百分比即可.【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人).【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)483y x=-+;见解析;(2)()6,5D;见解析;(3)12或694,见解析.【分析】(1)利用矩形的性质,求出点A、C的坐标,再用待定系数法即可求解;(2)Rt△AED中,由勾股定理得:222AE DE AD+=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC 时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.23.(1)(3,2),12y x =;(2)H (16,11);(3)4415,证明见解析. 【分析】(1)先根据A 的坐标为(3,3),正方形ABCD 的边长为1求出C 点的坐标,利用待定系数法即可求出直线ON 的解析式.(2)点E 在直线OM 上,设点E 的坐标为(e ,e ),由题意F (e ,e ﹣3),G (e +5,e ﹣3),由点G 在直线ON 上,可得e ﹣3=12(e +5),解得e =11即可解决问题. (3)如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ),由点G 在直线y =12x 上,可得a ﹣3m =12(a +5m ),推出a =11m ,推出E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),求出S 1,S 2即可解决问题.【详解】解:(1)∵A 的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x ;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E在直线OM上,设点E的坐标为(e,e),∴F(e,e﹣3),G(e+5,e﹣3),∵点G在直线ON上,∴e﹣3=12(e+5),解得e=11,∴H(16,11).(3)s1:s2的值是一个常数,理由如下:如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),∵点G在直线y=12x上,∴a﹣3m=12(a+5m),∴a=11m,∴E(11m,11m),H(16m,11m),F(11m,8m),G(16m,8m)J(11m,0),K (16m,0),∴S△OEG=S△OEJ+S梯形EJKG﹣S△OKG=12×11m×11m+12(8m+11m)•5m•12﹣12×16m×8m=44m 2,S 矩形EFGH =EF •FG =15m 2, ∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型. 24.(1)15344t - ;(2)当t =52时,四边形MNQP 为平行四边形, 证明见解析;(3)AQ ⊥CQ ,证明见解析.【分析】 (1)由勾股定理可求BD =5,由三角形的面积公式和S △DPQ =12(S △BED ﹣S △BDP )可求解; (2)当t =52时,可得BP =52=12BE ,由中位线定理可得MN ∥BD ,MN =12BD =5,PQ ∥BD ,PQ =12BD =5,可得MN ∥PQ ,MN =PQ ,可得结论. (3)连接BQ ,由等腰三角形的性质可得∠AQD +∠BQA =90°,由直角三角形的性质可得DQ =CQ ,∠DCQ =∠CDQ ,由“SAS ”可证△ADQ ≌△BCQ ,可得∠AQD =∠BQC ,即可得结论.【详解】解:(1)∵四边形ABCD 是矩形,AB =3,BC =4,∴BC =4,CD =3,∴BD5,∴BD =BE =5,∵Q 为DE 的中点,∴S △DPQ =12S △DPE , ∴S △DPQ =12(S △BED ﹣S △BDP )=11135t 3222⎛⎫⨯⨯-⨯⨯ ⎪⎝⎭=15344t -. 故答案为:15344t -. (2)当t =52时,四边形MNQP 为平行四边形, 理由如下:∵M 、N 分别为AB 、AD 的中点, ∴MN ∥BD ,MN =12BD =52,∵t=52时,∴BP=52=12BE,且点Q是DE的中点,∴PQ∥BD,PQ=12BD=52,∴MN∥PQ,MN=PQ,∴四边形MNQP是平行四边形.(3)AQ⊥CQ.理由如下:如图,连接BQ,∵BD=BE,点Q是DE中点,∴BQ⊥DE,∴∠AQD+∠BQA=90°,∵在Rt△DCE中,点Q是DE中点,∴DQ=CQ,∴∠DCQ=∠CDQ,且∠ADC=∠BCD=90°,∴∠ADQ=∠BCQ,且BC=AD,DQ=CQ,∴△ADQ≌△BCQ(SAS),∴∠AQD=∠BQC,且∠AQD+∠BQA=90°,∴∠BQC+∠BQA=90°,∴∠AQC=90°,∴AQ⊥CQ.【点睛】本题考查平行四边形中的动点问题,关键在于熟练掌握矩形的性质,全等三角形的性质和判定.25.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.26.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.27.(1)见解析;(2,6;(3)3【分析】(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.(2)利用勾股定理,菱形的面积公式计算即可.(3)画出满足条件的菱形即可判断.【详解】解:(1)如图,菱形AEBF即为所求.(2)AE,菱形AEBF的面积=12×6×2=6,,6.(3)如图备用图可知:可以画3个菱形,故答案为3.【点睛】本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.28.(12332)存在.(0,23Q 或()32或(0,3-或3⎛ ⎝⎭;(2)PHOB S 梯形334m =,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形334m =,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 33=,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()(11,0,3A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:233a = 11223232233ABC S AC AB ∆∴==⨯=;()2存在设()0,Q a ,则()2224,3AB BQ a ==-,221AQ a =+,①当AB BQ =时,即22AB BQ =,()243a ∴=-,解得:123a =+或232a =-, ()()120,23,0,32Q Q ∴=+=-;②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =-或3a =(舍去,与B 重合),()30,3Q ∴-;③当BQ AQ =时,即22BQ AQ =, ()2231,232a a a ∴-=+=,解得:33a =, 430,3Q ⎛⎫∴= ⎪ ⎪⎝⎭,综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,2P m ⎛ ⎝⎭, (),0H m ∴,,12OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形,()12m =⨯⨯-⎭=,1113222AOB S OA OB ∆==⨯⨯=,()111222APH S AH PH m ∆==⨯-⨯)14m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)1m =-42=-, ABP ABC S S ∆∆=,24∴-+=, ∴112243m =-, 解得:56m =-,即S =梯形PHOB ,当56m =-时,ABC ABP S S ∆∆=. 【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.。

新苏科八年级苏科初二数学下册期末测试题及答案(共五套)

新苏科八年级苏科初二数学下册期末测试题及答案(共五套)

新苏科八年级苏科初二数学下册期末测试题及答案(共五套)一、选择题1.江苏移动掌上营业厅,推出“每日签到——抽奖活动”:每个手机号码每日只能签到1次,且只能抽奖1次,抽奖结果有流量红包、话费充值卷、惊喜大礼包、谢谢参与.小明的爸爸已经连续3天签到,且都抽到了流量红包,则“他第4天签到后,抽奖结果是流量红包”是()A.必然事件B.不可能事件C.随机事件D.必然事件或不可能事件2.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定3.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=04.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF5.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5B7+1C.5D.24 56.下列调查中,适宜采用普查方式的是()A.一批电池的使用寿命B.全班同学的身高情况C.一批食品中防腐剂的含量D.全市中小学生最喜爱的数学家7.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.9.在四边形中,能判定这个四边形是正方形的条件是()A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直 D.一组邻边相等,对角线互相平分10.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱二、填空题11.小明用a元钱去购买某种练习本.这种练习本原价每本b元(b>1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.12.计算326⨯的结果是_____.13.48与最简二次根式23a-是同类二次根式,则a=_____.14.当a<0时,化简|2a﹣2a|结果是_____.15.已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于_____.16.如图,点A是一次函数13y x=(0)x≥图像上一点,过点A作x轴的垂线l,点B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(0)x>的图像过点B、C,若OAB∆的面积为8,则ABC∆的面积是_________.17.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为800万元,则该商场全年的营业额为________万元.18.如图,在 ABCD中,若∠A=2∠B,则∠D=________°.19.在△ABC中,点D,E分别为BC,AC的中点,若DE=2,则AB的长为_____.20.如图,E、F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=1,则四边形BEDF的周长是_____.三、解答题21.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.22.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F 两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.23.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.24.一粒木质中国象棋子“帅”,它的正面雕刻一个“帅”字,它的反面是平滑的.将它从定高度下掷,落地反弹后可能是“帅”字面朝上,也可能是“帅”字面朝下.由于棋子的两面不均匀,为了估计“帅”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表:试验次数20406080100120140160“帅”字面朝上频数a18384752667888相应频率0.70.450.630.590.520.550.56b=;=;(2)画出“帅”字面朝上的频率分布折线图;(3)如图实验数据,实验继续进行下去,根据上表的这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?25.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?26.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.27.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?28.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且 ,连接PD,O为AC中点.PB PE(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,并说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:直接利用随机事件的定义进而得出答案.详解:∵有流量红包、话费充值卷、惊喜大礼包、谢谢参与四种等可能情况,∴他第4天签到后,抽奖结果是流量红包为随机事件.故选C.点睛:本题主要考查了随机事件,正确把握相关定义是解题的关键.2.D解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1<<③为随机事件.3.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.4.D解析:D【详解】解:∵EF垂直平分BC,∴BE=EC,BF=CF;∵CF=BE,∴BE=EC=CF=BF;∴四边形BECF是菱形.当BC=AC时,∠ACB=90°,∠A=45°,∴∠EBC=45°;∴∠EBF=2∠EBC=2×45°=90°.∴菱形BECF是正方形.故选项A不符合题意.当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B不符合题意.当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C不符合题意.当AC=BD时,无法得出菱形BECF是正方形,故选项D符合题意.故选D.5.D解析:D【解析】【分析】首先根据菱形的对角线性质得到DE+CE的最小值=CF,再利用菱形的面积列出等量关系即可解题.【详解】解:如下图,过点C作CF⊥OA与F,交OB于点E,过点E作ED⊥OC与D,∵四边形OABC是菱形,由菱形对角线互相垂直平分可知EF=ED,∴DE+CE的最小值=CF,∵A的坐标为(4,3),∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积),即24=CF×5,解得:CF= 24 5,即DE+CE的最小值=24 5,故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E的位置并熟悉菱形面积的求法是解题关键.6.B解析:B【分析】根据抽样调查和普查的特点分析即可.【详解】解:A.调查一批电池的使用寿命适合抽样调查;B.调查全班同学的身高情况适合普查;C.调查一批食品中防腐剂的含量适合抽样调查;D.调查全市中小学生最喜爱的数学家适合抽样调查;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C解析:C【解析】解:A.是轴对称图形,不是中心对称图形,故本选项错误;B.既不是轴对称图形,又不是中心对称图形,故本选项错误;C.既是轴对称图形又是中心对称图形,故本选项正确;D.不是轴对称图形,是中心对称图形,故本选项错误.故选C.点睛:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.A解析:A【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是中心对称图形,也是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.9.C解析:C【分析】根据所给条件逐一进行判断即可得.【详解】A选项中,根据“对边平行且相等和对角线相等”只能判定该四边形是矩形;B选项中,根据“一组对边平行,一组对角相等”只能判定该四边形是平行四边形;C选项中,根据“对角线互相平分且相等,对角线互相垂直”可判定该四边形是正方形;D选项中,根据“一组邻边相等,对角线互相平分”只能判定该四边形是菱形;故选C.10.D解析:D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,因此,A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D.二、填空题11.【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可. 【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为(本), 故答案为. 解析:1a b - 【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可. 【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为1ab -(本), 故答案为1ab -. 【点睛】本题考查的是列代数式,掌握列代数式的方法是解题的关键.12.【分析】直接利用二次根式的乘法运算法则计算得出答案. 【详解】 =2 =2×3 =6.故答案为:6. 【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键. 解析:【分析】直接利用二次根式的乘法运算法则计算得出答案. 【详解】===.故答案为:.此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.13.3【分析】首先化简二次根式,再根据同类二次根式定义可得2a﹣3=3,再解即可.【详解】,∵与最简二次根式是同类二次根式,∴2a﹣3=3,解得:a=3,故答案为:3.【点睛】此题主解析:3【分析】2a﹣3=3,再解即可.【详解】==,是同类二次根式,∴2a﹣3=3,解得:a=3,故答案为:3.【点睛】此题主要考查了同类二次根式,关键是掌握把二次根式化为最简二次根式后被开方数相同的二次根式称为同类二次根式.14.﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.此题主要考查了二次根解析:﹣3a【分析】首先利用a 的取值范围化简,进而去绝对值求出答案.【详解】∵a <0,∴2a |=|﹣a ﹣2a |=|﹣3a |=﹣3a .故答案为:﹣3a .【点睛】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.15.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.16.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形, 解析:163 【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上,∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =, ∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.17.000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-解析:000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-20%=20%,∴该商场全年的营业额为:800÷20%=4000(万元),故答案为:4000.【点睛】本题考查了扇形统计图,由统计图得到二季度所占的百分比是解题关键.18.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.19.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB =2DE ,∵DE =2,∴AB =4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质. 20.20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD⊥EF,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如解析:20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD ⊥EF ,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC ,∵AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF ,∴四边形BEDF 为菱形,∴DE =DF =BE =BF ,∵AC =BD =8,OE =OF =8232-=, 由勾股定理得:DE =2222435OD OE +=+=,∴四边形BEDF 的周长=4DE =4×5=20,故答案为:20.【点睛】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.三、解答题21.解:(1)200,144.(2)见解析;(3)120名【分析】(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出“艺术鉴赏”部分的圆心角.(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.【详解】解:(1)学生总数:50÷25%=200(名)“艺术鉴赏”部分的圆心角:80200×360°=144°故答案为:200,144.(2)数学思维的人数是:200-80-30-50=40(名),补图如下:(3)根据题意得:800×30200=120(名),答:其中有120名学生选修“科技制作”项目.22.(1)见解析(2)3cm【分析】1)先根据矩形的性质得出∠ABD=∠BDC,再由图形折叠的性质得出∠1=∠2,∠3=∠4,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH≌△DFG;(2)先根据勾股定理得出BD的长,进而得出BF的长,由图形翻折变换的性质得出CG=FG,设FG=x,则BG=8﹣x,再利用勾股定理即可求出x的值.【详解】(1)如图,ABCD四边形是矩形,AB CD ∴=,90A C ∠=∠=︒,ABD BDC ∠=∠.BEH ∆是BAH ∆翻折而成的,1=2∴∠∠,==90A HEB ∠∠︒,AB BE =.DGF DGC ∆∆是翻折而成的,3=4∴∠∠,90C DFG ∠=∠=︒,CD DF =,∴在BEH ∆和DFG ∆中,HEB DFG ∠=∠,BE DF =,2=3∠∠,BHE DGF ∴∆∆≌.(2)四边形ABCD 是矩形,6AB =,8BC =,6AB CD ∴==,8AD BC ==, 22=10BD BC CD ∴+=,又由(1)知,DF CD =,CG FG =,=1064BF ∴-=. 设FG x =,则8BG x =-,在Rt BGF ∆中,222BG BF FG =+,即()22284x x -=+,3x ∴=,即3FG =.【点睛】本题主要考查矩形的折叠问题,涉及知识点有全等三角形的证明与性质,勾股定理,折叠性质等知识点,解题关键在于能够灵活运用勾股定理23.(1)见解析;(2)15;见解析.【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求.(2)证明△ABE 的周长=AB +AD 即可.【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.24.(1)14,0.55;(2)图见解析;(3)0.55.【分析】(1)根据图中给出的数据和频数、频率与总数之间的关系分别求出a、b的值;(2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.【详解】(1)a=20×0.7=14;b=88160=0.55;故答案为:14,0.55;(2)根据图表给出的数据画折线统计图如下:(3)随着试验次数的增加“帅”字面朝上的频率逐渐稳定在0.55左右,利用这个频率来估计概率,得P(“帅”字朝上)=0.55.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.25.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.26.详见解析.【分析】先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DAC ,得出CD =AD =AB ,证出四边形ABCD 是平行四边形,再由AD =AB ,即可得出结论.【详解】证明:∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 平分∠BAD .∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB ,∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴四边形ABCD 是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大. 27.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭ 化简得2281920x x -+=,解得112x =,216x =又8860%x -<⨯12.8x ∴≤16x ∴=不合题意,舍去12x ∴=, ∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.28.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立【分析】(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;(3)根据题意作出图形,利用(2)中证明思路即可得出答案.【详解】(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,在△ABP 和△ADP 中,45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩===,∴△ABP ≌△ADP ,∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠,又∵PB PE =,∴CBP BEP ∠=∠,PE PD =,∴BEP CDP ∠=∠,∵180BEP CEP ∠+∠=︒,∴180CDP CEP ∠+∠=︒,∵正方形ABCD 中,90BCD ∠=︒,∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒,∴PE PD ⊥;(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,①当点E 与点C 重合时,PE PD ⊥;②当点E 在BC 的延长线上时,如图所示,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵12∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥,综上所述:PE PD ⊥.∴当点P 在线段OC 上时,(1)中的猜想成立;(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.∵四边形ABCD 是正方形,点P 在AC 的延长线上,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵DGC EGP ∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..。

苏科版八年级下数学期末考试试卷(有答案)

苏科版八年级下数学期末考试试卷(有答案)

苏科版八年级下数学期末考试试卷(有答案)初二数学第二学期期末教学质量调研测试本试卷满分130分,考试时间120分钟。

一、选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.用放大镜观察一个三角形时,不变的量是A.各条边的长度B.各个角的度数C.三角形的面积D.三角形的周长2.已知反比例函数 y=x/k 的图像经过点(-1,2),则这个函数的图像一定经过点A.(1,2)B.(2,1)C.(-1,-2)D.(-2,1)3.下列计算正确的是A.2+2=2B.3-3=0C.2×2=4D.(-3)²=94.下列各分式不能再化简的是A。

xy-y/m-a² B。

2²/2x-y-ma-b C。

x-2/2 D。

22xy1-ma-b/x-25.有三个事件,事件A:若a、b是实数,则a+b=b+a;事件B:打开电视正在播广告;事件C:同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是A.P(C)<P(A)<P(B) B.P(B)<P(C)<P(A)C.P(C)<P(B)<P(A) D.P(B)<P(A)<P(C)6.如图,点P在直线外,以点P为圆心,大于点P到直线的距离为半径画圆弧,交直线于点A、B;保持半径不变,分别以点A、B为圆心画弧,两弧交于点Q,则PQ垂直于直线AB。

上述尺规作图的依据是A.平行四边形的对边互相平行 B.垂直平分线上的点到线段两个端点的距离相等 C.矩形的邻边互相垂直 D.菱形的对角线互相垂直7.若A(x1,y1),B(x2,y2)是函数y=-x²的图像上的两个点,且x1<x2,则y1与y2的大小关系是A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定8.如图,点___在做选择题“如图,四边形ABCD中,∠A=45°,∠B=∠D=90°,AD=2,CD=1,则BC的长为多少”时遇到了困难。

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)一、解答题1.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.2.自2009年以来,“中国•兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如表:批次123456油菜籽粒数100400800100020005000发芽油菜籽粒数a31865279316044005发芽频率0.8500.7950.8150.793b0.801(1)分别求a和b的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1);(3)农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.3.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.4.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.5.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG . (1)求证: △ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.6.如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.7.已知:如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF 求证:AC 、EF 互相平分.8.已知:如图,AC 、BD 相交于点O ,且点O 是AC 、BD 的中点,点E 在四边形ABCD 的形外,且∠AEC =∠BED =90°.求证:四边形ABCD 是矩形.9.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF是平行四边形10.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.11.如图,在矩形ABCD中,AB=1,BC=3.(1)在图①中,P是BC上一点,EF垂直平分AP,分别交AD、BC边于点E、F,求证:四边形AFPE是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..标出菱形的边长.(保留作图痕迹,不写作法)12.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?13.阅读下列材料:已知:实数x 、y 满足22320.25x xy x x +=++(0.75)x ≠-,求y 的最大值. 解:将原等式转化成x 的方程,得21(3)(2)04y x y x y -+-+=①. 若3y =,代入①得0.75x =-,0.75x ≠-,3y ∴≠,因此①必为一元二次方程.21(2)4(3)404y y y y ∴∆=---⨯=-+≥,解得4y ≤,即y 的最大值为4. 根据材料给你的启示,解决下面问题:已知实数x 、y 满足223221x x y x x ++=++15x ⎛⎫≠- ⎪⎝⎭,求y 的最小值.14.如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PB PE =,连接PD ,O 为AC 中点.(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系,并说明理由;(2)如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P 在AC 的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.15.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)a =8,b =0.08;(2)作图见解析;(3)14. 【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可; (2)直接根据(1)中的结果补全频数分布直方图即可; (3)根据89.5~100.5这一组的人数及概率公式求解即可. 【详解】解:(1)由题意得a =50-2-20-16-4=8,b =1-0.04-0.16-0.40-0.32=0.08; (2)如图所示:(3)由题意得张明被选上的概率是14. 【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握. 2.(1)85a ,0.802b =;(2)0.8;(3)4800【分析】(1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值.(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率. (3)用油菜籽总数乘以发芽概率即可求得发芽粒数. 【详解】(1)1000.85085a =⨯=,16040.8022000b ==; (2)∵观察表格发现发芽频率逐渐稳定到0.8附近, ∴该品种油菜籽发芽概率的估计值为0.8; (3)60000.8=4800⨯,故估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800. 【点睛】本题考查统计与概率,解题关键在于信息筛选能力,对频率计算公式的理解,其次注意计算仔细即可.3.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析 【分析】(1)根据正方形的性质和三角形的内角和解答即可; (2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可. 【详解】解:(1)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°; (2)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =∠ADF =90°, ∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=, ∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α; (3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI . ∵四边形ABCD 是正方形, ∴AD =AB ,∠ADF =∠ABC =90°, ∴∠ABI =90°, 又∵BI =DF ,∴△DAF ≌△BAI (SAS ), ∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF , 又∵AE 是△EAI 与△EAF 的公共边, ∴△EAI ≌△EAF (SAS ), ∴∠BEA =∠FEA . 【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解. 4.(1)50;(2)8,5;(3)108°;(4)240人. 【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a 的值,进而从总人数中减去其他组的人数得到b 的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数. 【详解】(1)12÷24%=50人 故答案为50.(2)a =50×16%=8人, b =50﹣15﹣8﹣12﹣10=5人, 故答案为:8,5. (3)360°×1550=108° 答:“歌曲”所在扇形的圆心角的度数为108°; (4)1200×1050=240人 答:该校1200名学生中最喜爱“相声”的学生大约有240人. 【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.5.(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析. 【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论. 【详解】(1)证明:∵四边形ABCD 是平行四边形, ∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC , ∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴≅ABE CDF SAS()(2)当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.6.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明见解析.【分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【详解】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:如图,∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点睛】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF是平行四边形,并证明∠ECF是90°.7.证明见解析【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.8.见解析【分析】连接EO ,证四边形ABCD 是平行四边形,在Rt △AEC 中EO =12AC ,在Rt △EBD 中,EO =12BD ,得到AC =BD ,即可得出结论. 【详解】证明:连接EO ,如图所示:∵O 是AC 、BD 的中点,∴AO =CO ,BO =DO ,∴四边形ABCD 是平行四边形,在Rt △EBD 中,∵O 为BD 中点,∴EO =12BD , 在Rt △AEC 中,∵O 为AC 的中点, ∴EO =12AC , ∴AC =BD ,又∵四边形ABCD 是平行四边形,∴平行四边形ABCD 是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.9.(1)见解析;(2)见解析【解析】【分析】(1)证出△ABE ≌△CDF 即可求解;(2)证出AE 平行CF ,AE CF =即可/【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE ≌△CDF∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF 是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.10.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为k y x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3), ∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6, ∴反比例函数解析式为6y x =. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:①B ′D ′为对角线时,∵四边形B ′PD ′Q 为平行四边形,∴63162n m n ⎧-=⎪⎨⎪-=-⎩,解得:13232m n ⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关键.11.(1)见解析;(2)见解析【分析】(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.【详解】(1)证明:如图①∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵EF垂直平分AP,∴AF=PF,AE=PE,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=PF=AE=PE,∴四边形AFPE是菱形;(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD 内面积最大的菱形;此时设菱形边长为x ,则可得12+(3-x )2=x 2,解得x=53, 所以菱形的边长为53. 【点睛】 本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.12.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键. 13.2316【分析】类比阅读材料给出的方法,分类探讨得出函数的最小值即可.【详解】解:将原等式转化成关于x 的方程,得:2(3)(21)(2)0y x y x y -+-+-=①,若3y =,代入①得15x =-, ∵15x ≠-, ∴3y ≠,因此①必为一元二次方程.∵3a y =-,21b y =-,2c y =+,∴224(21)4(3)(2)0b ac y y y ∆=-=----≥, 解得:2316y ≥且3y ≠. ∴y 的最小值为2316. 【点睛】 本题考查了根的判别式的运用,把函数转化为关于x 的方程,根据系数的取值范围,结合根的判别式,分类探讨得出答案即可.14.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立【分析】(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;(3)根据题意作出图形,利用(2)中证明思路即可得出答案.【详解】(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,在△ABP 和△ADP 中,45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩===,∴△ABP ≌△ADP ,∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠,又∵PB PE =,∴CBP BEP ∠=∠,PE PD =,∴BEP CDP ∠=∠,∵180BEP CEP ∠+∠=︒,∴180CDP CEP ∠+∠=︒,∵正方形ABCD 中,90BCD ∠=︒,∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒,∴PE PD ⊥;(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,①当点E 与点C 重合时,PE PD ⊥;②当点E 在BC 的延长线上时,如图所示,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵12∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥,综上所述:PE PD ⊥.∴当点P 在线段OC 上时,(1)中的猜想成立;(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.∵四边形ABCD 是正方形,点P 在AC 的延长线上,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),又∵PB PE =,∴PE PD =,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵DGC EGP ∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..15.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s=或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s=或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=, ①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝⎭,解得3/a cm s =, ∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。

苏科八年级数学下学期期末测试题及答案(共五套) 百度文库

苏科八年级数学下学期期末测试题及答案(共五套) 百度文库

苏科八年级数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.下面的图形中,是中心对称图形的是( ) A .B .C .D .2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是( ) A .2016年泰兴市八年级学生是总体 B .每一名八年级学生是个体 C .500名八年级学生是总体的一个样本 D .样本容量是500 3.在菱形ABCD 中,12AC =,16BD =,则该菱形的面积是( )A .10B .40C .96D .1924.两个反比例函数3y x =,6y x=在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x=图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .4039 5.下列条件中,不能..判定平行四边形ABCD 为矩形的是( ) A .∠A =∠C B .∠A =∠BC .AC =BDD .AB ⊥BC6.若分式5x x-的值为0,则( ) A .x =0B .x =5C .x ≠0D .x ≠57.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数 100 200 300 400 500 正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8008.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为()A.13 B.15 C.18 D.13或189.要反应一周气温的变化情况,宜采用()A.统计表B.条形统计图C.扇形统计图D.折线统计图10.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ 平行于AB的次数是()A.2 B.3 C.4 D.5二、填空题11.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm2,则阴影部分的面积为_____cm2.12.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.13.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是.14.当a<0时,化简|2a﹣2a|结果是_____.15.如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度_____.16.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)17. 如图,在ABCD 中,已知8AD cm =,6AB cm =,DE 平分ADC ∠,交BC 边于点E ,则BE = ___________ cm .18.如图,在菱形ABCD 中,8AB =,60B ∠=︒,点G 是边CD 的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF ED +的最小值是_________.19.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____. 20.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AB 边中点,菱形ABCD 的周长为24,则OH 的长等于___.三、解答题21.如图,在ABCD 中,点O 为对角线BD 的中点,过点O 的直线EP 分别交AD ,BC 于E ,F 两点,连接BE ,DF .(1)求证:四边形BFDE 为平行四边形; (2)当∠DOE = °时,四边形BFDE 为菱形?22.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?23.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.24.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.25.计算:242933 x x xx x-----26.化简求值:221211x x xx x x x++⎛⎫-÷⎪--⎝⎭,其中31x=-27.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)28.如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合)连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据中心对称图形与轴对称图形的概念依次分析即可.【详解】解:A、B、C只是轴对称图形,D既是轴对称图形又是中心对称图形,故选D.【点睛】本题考查的是中心对称图形与轴对称图形,解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B 错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C 错误;D. 样本容量是500,故D 正确; 故选:D. 【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.3.C解析:C 【分析】根据菱形的面积等于对角线乘积的一半即可解决问题. 【详解】解:∵四边形ABCD 是菱形,12AC =,12BD =, ∴菱形ABCD 的面积1112169622AC BD =⋅⋅=⨯⨯=. 故选:C . 【点睛】本题考查菱形的性质,解题的关键是记住菱形的面积等于对角线乘积的一半,属于中考常考题型.4.A解析:A 【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出y 分别为1、3、5时x 的值,即可求出当2020y =时x 的值,再将其代入3y x=中即可求出2020y . 【详解】解:当1,3,52020y =⋅⋅⋅时,1x 、2x 、3x ...2020x 分别为6、2、65 (62020)将1x 、2x 、3x …2020x 代入3y x=, 得:1y 、2y 、3y …2020y202040392019.52y ==, 故选:A . 【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k ≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .5.A解析:A【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可.【详解】A、∠A=∠C不能判定这个平行四边形为矩形,故此项错误;B、∵∠A=∠B,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故此项正确;D、AB⊥BC,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确;故选:A.【点睛】本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.6.B解析:B【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案.【详解】解:∵分式5xx-的值为0,∴x﹣5=0且x≠0,解得:x=5.故选:B.【点睛】本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.7.C解析:C【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近10000.5500⨯=次,故选C.【点睛】本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.8.A解析:A【解析】试题解析:解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系.9.D解析:D【分析】反应一周气温的变化情况,即反应一周气温的升高、降低的变化情况,因此采取折线统计图较好.【详解】解:折线统计图能够直观反应出一组数据的增减变化情况,因此要反应一周的气温变化情况,采用折线统计图较好,故选:D.【点晴】本题考查了各种统计图表的特征及应用,掌握统计图表的特征是解题的关键.10.C解析:C【分析】当QP∥AB时,由AP∥BQ可得到ABQP为平行四边形,然后依据矩形的性质可得到AP=BQ,然后求得AP=BQ的次数即可.【详解】解:当QP∥AB时,∵在在矩形ABCD,AD∥BC,∴四边形ABQP为平行四边形,∴AP=BQ,∵点P运动的时间=12÷1=12秒,∴点Q运动的路程=4×12=48cm.∴点Q可在BC间往返4次.∴在这段时间内PQ与AB有4次平行.故选:C.【点睛】本题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.二、填空题11.10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH解析:10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的面积=12S菱形ABCD=12×20=10(cm2).故答案为:10.【点睛】本题考查了中心对称,菱形的性质,全等三角形的判定与性质等知识;熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.12.28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.14.﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点睛】此题主要考查了二次根解析:﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴2a2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a .【点睛】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.15.2【分析】连接并延长DM 交AB 于E ,证明△AME≌△CMD,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,解析:2【分析】连接并延长DM 交AB 于E ,证明△AME ≌△CMD ,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,∵AB ∥CD ,∴∠C =∠A ,在△AME 和△CMD 中,A C AM CMAME CMD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△CMD (ASA )∴AE =CD =3,DM =ME ,∴BE =AB ﹣AE =4,∵DM =ME ,DN =NB ,∴MN 是△DEB 的中位线,∴MN =12BE =2, 故答案为:2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质. 17.2【分析】由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.【详解】解:中,AD//BC ,平分故答案为2.【点睛】本题主要考查了平行四边形的性质,在平行四边形解析:2【分析】由ABCD 和DE 平分ADC ∠,可证DEC CDE ∠=∠,从而可知DCE ∆为等腰三角形,则CE CD =,由8AD BC cm ==,6AB CD cm ==,即可求出BE .【详解】解:ABCD 中,AD//BC ,ADE DEC ∴∠=∠ DE 平分ADC ∠ADE CDE ∴∠=∠DEC CDE ∠=∠∴CD CE ∴=6CD AB cm ==6CE cm ∴=8BC AD cm ==862BE BC EC cm ∴=-=-=故答案为2.【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.18.【分析】由题意,点D 与点C 关于AG 对称,连接EC ,FC ,再利用垂线段最短求值即可【详解】解:连接,,如图在菱形中,,∴是边长为8的等边三角形∵是的中点∴∴是的垂直平分线∴∵,解析:【分析】由题意,点D 与点C 关于AG 对称,连接EC ,FC ,再利用垂线段最短求值即可【详解】解:连接EC ,FC ,如图在菱形ABCD 中,60B ∠=︒,8AB =∴ACD ∆是边长为8的等边三角形∵G 是CD 的中点∴AG CD ⊥∴AG 是CD 的垂直平分线∴EC ED =∵EF EC FC +≥,CF AD ⊥时,CF 最小∴EF ED +的最小值是等边ACD ∆3843=故答案为:3【点睛】本题考查菱形的性质、垂线段最短、等边三角形的判定、勾股定理等知识,解决问题的关键是利用垂线段最短解决最小值问题,属于中考常考题型. 19.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC 中,点D ,E 分别为BC ,AC 的中点,∴DE 是△ABC 的中位线,∴AB=2DE ,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC 中,点D ,E 分别为BC ,AC 的中点,∴DE 是△ABC 的中位线,∴AB =2DE ,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.20.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH的长.【详解】∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH 的长.【详解】∵菱形ABCD的周长等于24,∴AB=244=6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=12AB=3.故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题21.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.22.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,依题意,得:1001201 0.8x x-=,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.23.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.24.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.25.3x -【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】 解:原式22242969(3)3333x x x x x x x x x x --+-+-====----; 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.26.11x +【分析】通分合并同类项,再约分,代入求值.【详解】 原式222111(1)x x x x x x -=⋅=+-+代入得原式== 【点睛】本题考查分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.27.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠,()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE =2.51 1.5EF DF BE ∴=-=-=.故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=,58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.28.(1)见解析;(2)32;(3)见解析【分析】(1)根据同角的余角相等得到∠GCB =∠FBA ,利用ASA 定理证明△ABF ≌△BCE ; (2)根据全等三角形的性质得到BF =CE =8,根据三角形的面积公式计算,得到答案; (3)作DH ⊥CE ,设AB =CD =BC =2a ,根据勾股定理用a 表示出CE ,根据三角形的面积公式求出BG ,根据勾股定理求出CG ,证明△CHD ≌△BGC ,得到CH =BG ,证明CH =GH ,根据线段垂直平分线的性质证明结论.【详解】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE =90°=∠A ,BC =AB ,∴∠FBA +∠CBG =90,∴∠GCB =∠FBA ,在△ABF 和△BCE 中,A CBE AB BCABF BCE ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△BCE (ASA );(2)解:∵△ABF ≌△BCE ,∴BF =CE =8,∴四边形BEFC 的面积=△BCE 的面积+△FCE 的面积 =12×CE ×FG +12×CE ×BG =12×CE ×(FG +BG ) =12×CE ×BF =12×8×8 =32;(3)证明:如图3,过点D 作DH ⊥CE 于H , 设AB =CD =BC =2a ,∵点E 是AB 的中点,∴EA =EB =12AB =a , ∴CE=,在Rt △CEB 中,12BG •CE =12CB •EB , ∴BG=5CB EB a CE ⋅=, ∴CG5a =, ∵∠DCE +∠BCE =90°,∠CBF +∠BCE =90°, ∴∠DCE =∠CBF ,∵CD =BC ,∠CHD =∠CGB =90°,∴△CHD ≌△BGC (AAS ),∴CH =BGa , ∴GH =CG ﹣CHa =CH , ∵CH =GH ,DH ⊥CE ,∴CD=GD;【点睛】本题通过正方形动点问题引入,考查了三角形全等、勾股定理和垂直平分线定理的应用.。

最新苏科八年级苏科初二数学下册期末测试题及答案(共五套)

最新苏科八年级苏科初二数学下册期末测试题及答案(共五套)

最新苏科八年级苏科初二数学下册期末测试题及答案(共五套)一、选择题1.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C 的对应点为点F,若BE=6cm,则CD=( )A.4cm B.6cm C.8cm D.10cm2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5003.某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( )A.13B.12C.1 D.04.下列调查中,适合普查方式的是()A.调查某市初中生的睡眠情况B.调查某班级学生的身高情况C.调查南京秦淮河的水质情况D.调查某品牌钢笔的使用寿命5.为了解某校八年级320名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是()A.320名学生的全体是总体B.80名学生是总体的一个样本C.每名学生的体重是个体D.80名学生是样本容量6.下列分式中,属于最简分式的是()A.62aB.2xxC.11xx--D.21xx+7.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.7 C.6 D.58.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为()A.13 B.15 C.18 D.13或189.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形D.有一个角是直角的平行四边形是正方形10.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是()A.15B.16C.19D.20二、填空题11.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”)12.如图,点D、E分别是△ABC的边AB、AC的中点,若BC=6,则DE= .13.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是.14.当a<0时,化简|2a﹣2a|结果是_____.15.如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度_____.16.如图,点A是一次函数13y x=(0)x≥图像上一点,过点A作x轴的垂线l,点B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(0)x>的图像过点B、C,若OAB∆的面积为8,则ABC∆的面积是_________.17.如图是某市连续5天的天气情况,最大的日温差是________℃.18.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为800万元,则该商场全年的营业额为________万元.19.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.20.如图,点E在▱ABCD内部,AF∥BE,DF∥CE,设▱ABCD的面积为S1,四边形AEDF的面积为S 2,则12S S 的值是_____.三、解答题21.如图1,矩形的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(6,8).D 是AB 边上一点(不与点A 、B 重合),将△BCD 沿直线CD 翻折,使点B 落在点E 处. (1)求直线AC 所表示的函数的表达式;(2)如图2,当点E 恰好落在矩形的对角线AC 上时,求点D 的坐标;(3)如图3,当以O 、E 、C 三点为顶点的三角形是等腰三角形时,求△OEA 的面积.22.如图,反比例函数k y x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数k y x =的图像上另一点(,2)C n -.(1)求反比例函数k y x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0k ax b x +-≥的解集为_________(4)若()11,D x y 在k y x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________. 23.在矩形纸片ABCD 中,AB=6,BC=8.(1)将矩形纸片沿BD 折叠,点A 落在点E 处(如图①),设DE 与BC 相交于点F ,求BF 的长;(2)将矩形纸片折叠,使点B 与点D 重合(如图②),求折痕GH 的长.24.如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点A(-6,0),D(-7,3),点B 、C 在第二象限内.(1)点B 的坐标 ;(2)将正方形ABCD 以每秒1个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t,使在第一象限内点B 、D 两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x 轴上的点P 和反比例函数图象上的点Q,使得以P 、Q 、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P 、Q 的坐标;若不存在,请说明理由.25.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.26.(发现)(1)如图1,在▱ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F.求证:△AOE≌△COF;(探究)(2)如图2,在菱形ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F,若AC=4,BD=8,求四边形ABFE的面积.(应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)27.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)28.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验:第一步:如图1在一张纸上画了一个平角∠AOB;第二步:如图2在平角∠AOB内画一条射线,沿着射线将平角∠AOB裁开;第三步:如图3将∠AO'C'放在∠COB内部,使两边分别与OB、OC相交,且O'A=O'C';第四步:连接OO',测量∠COB度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB.你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB的关系是;(2)线段O'A与O'C'的关系是.请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知:求证:证明:【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,∴四边形ECDF是正方形,∴DC=EC=BC-BE,∵四边形ABCD是矩形,∴BC=AD=10,∴DC=10-6=4(cm).故选A.2.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.3.A解析:A【分析】共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可.【详解】所有机会均等的可能共有3种,而选到月季花的机会有1种,因此选到月季花的概率是13,故选A.【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.4.B解析:B【分析】根据抽样调查和普查的特点作出判断即可.【详解】A、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;B 、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;C 、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;D 、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;故选:B .【点睛】本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.5.C解析:C【分析】根据总体、样本、样本容量及个体的定义对选项逐一判断即可得答案.【详解】A 、320名学生的体重情况是总体,故该选项错误;B 、80名学生的体重情况是样本,故该选项错误;C 、每个学生的体重情况是个体,故该选项正确;D 、样本容量是80,故该选项错误;故选:C .【点睛】本题考查总体、个体、样本、样本容量的定义,熟练掌握相关定义是解题关键.6.D解析:D【解析】【分析】根据最简分式的概念判断即可.【详解】解:A.62a 分子分母有公因式2,不是最简分式; B.2x x 的分子分母有公因式x ,不是最简分式; C.11x x --的分子分母有公因式1-x ,不是最简分式; D. 21x x +的分子分母没有公因式,是最简分式. 故选:D【点睛】本题考查的是最简分式,需要注意的公因式包括因数.7.D解析:D【分析】连接DN,根据三角形中位线定理得到EF=12DN,根据题意得到当点N与点B重合时,DN最大,根据勾股定理计算,得到答案.【详解】连接DN,∵点E,F分别为DM,MN的中点,∴EF是△MND的中位线,∴EF=12 DN,∵点M,N分别为线段BC,AB上的动点,∴当点N与点B重合时,DN最大,此时DN22AB AD10,∴EF长度的最大值为:12×10=5,故选:D.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.A解析:A【解析】试题解析:解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系.9.A解析:A【分析】利用特殊四边形的判定定理逐项判断即可.A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.10.A解析:A【解析】如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,∵S四边形ABCD=AE⋅BC=AF⋅CD,∴BC=CD,∴平行四边形ABCD是菱形.如图2,,设AB=BC=x,则BE=9−x,∵BC2=BE2+CE2,∴x2=(9−x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.二、填空题11.不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.解析:不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.12.3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=BC=3.故答案为3.考点:三角形的中解析:3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=12BC=3.故答案为3.考点:三角形的中位线定理.13.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.14.﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点睛】此题主要考查了二次根解析:﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴2a2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点睛】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.15.2【分析】连接并延长DM交AB于E,证明△AME≌△CMD,根据全等三角形的性质得到AE =CD=3,DM=ME,求出BE,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,解析:2【分析】连接并延长DM 交AB 于E ,证明△AME ≌△CMD ,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,∵AB ∥CD ,∴∠C =∠A ,在△AME 和△CMD 中,A C AM CMAME CMD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△CMD (ASA )∴AE =CD =3,DM =ME ,∴BE =AB ﹣AE =4,∵DM =ME ,DN =NB ,∴MN 是△DEB 的中位线,∴MN =12BE =2, 故答案为:2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形, 解析:163 【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===, 设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上,∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =,∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅=16 3故答案为:163.【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.17.10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的解析:10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的实际应用,根据图象找出温差最大的一天是解题关键.18.000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-解析:000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-20%=20%,∴该商场全年的营业额为:800÷20%=4000(万元),故答案为:4000.【点睛】本题考查了扇形统计图,由统计图得到二季度所占的百分比是解题关键.19.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.20.2【分析】首先由ASA可证明:△BCE≌△ADF;由平行四边形的性质可知:S△BEC+S△AED =S▱ABCD,进而可求出的值.【详解】∵四边形ABCD是平行四边形,∴AD=BC,AD∥B解析:2【分析】首先由ASA 可证明:△BCE ≌△ADF ;由平行四边形的性质可知:S △BEC +S △AED =12S ▱ABCD ,进而可求出12S S 的值. 【详解】∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ABC +∠BAD =180°,∵AF ∥BE ,∴∠EBA +∠BAF =180°,∴∠CBE =∠DAF ,同理得∠BCE =∠ADF ,在△BCE 和△ADF 中,CBE DAF BC ADBCE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BCE ≌△ADF (ASA ),∴S △BCE =S △ADF ,∵点E 在▱ABCD 内部,∴S △BEC +S △AED =12S ▱ABCD , ∴S 四边形AEDF =S △ADF +S △AED =S △BEC +S △AED =12S ▱ABCD , ∵▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2, ∴12S S =2, 故答案为:2.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.三、解答题21.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析. 【分析】(1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解;(2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.22.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数 (2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上,∴41k =-,解得4k =-, ∵反比例函数为4y x -=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b =-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0. 故答案为:43x ≥或x <0. 【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.23.(1)254 (2)152【分析】(1)根据折叠的性质可得∠ADB=∠EDB ,再根据两直线平行,内错角相等可得∠ADB=∠DBC ,然后求出∠FBD=∠FDB ,根据等角对等边可得BF=DF ,设BF=x ,表示出CF ,在Rt △CDF 中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH ,设BH=DH=x ,表示出CH ,然后在Rt △CDH 中,利用勾股定理列出方程求出x ,再连接BD 、BG ,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254(2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG ,∴BH=DH=DG=BG ,∴四边形BHDG 是菱形,在Rt △BCD 中,S 菱形BHDG =12BD ⋅GH=BH ⋅CD , 即12×10⋅GH=254×6,解得GH=152.故答案:152【点睛】 本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.24.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为k y x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3),∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6, ∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:①B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴63162nm n⎧-=⎪⎨⎪-=-⎩,解得:13232mn⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关键.25.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.26.(1)见解析 (2)8 (3)见解析【分析】(1)根据ASA 证明三角形全等即可.(2)证明S 四边形ABFE =S △ABC 可得结论.(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).【详解】(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,∴AO =OC ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ).(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF ,∴S △AOE =S △COF ,∴S 四边形ABFE =S △ABC ,∵四边形ABCD 是菱形,∴S △ABC =12S 菱形ABCD , ∵S 菱形ABCD =12•AC •BD =12×4×8=16, ∴S 四边形ABFE =12×16=8. (3)【应用】①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;②连接下面左边数第二个小正方形右上角和左下角的顶点;③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.如图3中,直线l 即为所求(答案不唯一).【点睛】本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.27.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠,()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE =2.51 1.5EF DF BE ∴=-=-=.故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△, ∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=, 故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.28.(1)互补;(2)相等;证明见解析【分析】根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .【详解】(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等. 已知:AO C ∠''+∠COB=180︒,O'A=O'C',求证:'OO 平分∠COB .证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),∴O C B OAO ∠=∠''',∵O'A=O'C',∴Rt △Rt AO D '≅△C O E '',∴O D O E '=',∵O D '⊥OC ,O E '⊥OB ,∴'OO 平分∠COB .【点睛】本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.。

苏科版八年级下学期数学《期末考试试题》含答案.百度文库

苏科版八年级下学期数学《期末考试试题》含答案.百度文库

苏科版八年级下学期数学《期末考试试题》含答案.百度文库一、选择题1.将下列分式中x,y(xy≠0)的值都扩大为原来的2倍后,分式的值一定不变的是()A.312xy+B.232xyC.232xxyD.3232xy2.平行四边形的一条边长为8,则它的两条对角线可以是()A.6和12 B.6和10 C.6和8 D.6和63.下列调查中,适合采用普查的是()A.了解一批电视机的使用寿命B.了解全省学生的家庭1周内丢弃塑料袋的数量C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查D.了解扬州市中学生的近视率4.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5B.7+1C.25D.24 55.如图,函数kyx=-与1y kx=+(0k≠)在同一平面直角坐标系中的图像大致()A.B.C.D.6.为了解某校八年级320名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是()A.320名学生的全体是总体B.80名学生是总体的一个样本C.每名学生的体重是个体D.80名学生是样本容量7.下列分式中,属于最简分式的是( ) A .62aB .2x xC .11xx -- D .21x x + 8.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( ) A .2000B .200C .20D .29.下面调查方式中,合适的是( )A .试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B .了解一批袋装食品是否含有防腐剂,选择普查方式C .为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D .调查某新型防火材料的防火性能,采用普查的方式 10.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A .必然事件B .随机事件C .确定事件D .不可能事件二、填空题11.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)一、解答题1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.2.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.3.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF 交BD于O.(1)求证:EO=FO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.4.如图,在平面直角坐标系中,点O为坐标原点,AB// OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.(1)在t=3时,M点坐标,N点坐标;(2)当t为何值时,四边形OAMN是矩形?(3)运动过程中,四边形MNCB 能否为菱形?若能,求出t 的值;若不能,说明理由.5.计算:(1)2354535⨯; (2)()22360,0x yxy x y ≥≥; (3)()48274153-+÷. 6.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,﹣1)、B (﹣1,0)、C (0,﹣3)(1)点A 关于坐标原点O 对称的点的坐标为 .(2)将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,A 1A 的长为 .7.已知:如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF求证:AC 、EF 互相平分.8.在Rt △AEB 中,∠AEB =90°,以斜边AB 为边向Rt △AEB 形外作正方形ABCD ,若正方形ABCD 的对角线交于点O (如图1).(1)求证:EO 平分∠AEB ;(2)猜想线段OE 与EB 、EA 之间的数量关系为 (直接写出结果,不要写出证明过程);(3)过点C 作CF ⊥EB 于F ,过点D 作DH ⊥EA 于H ,CF 和DH 的反向延长线交于点G (如图2),求证:四边形EFGH 为正方形.9.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形10.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD 中,若∠A =∠C =90°,则四边形ABCD 是“准矩形”;如图②,在四边形ABCD 中,若AB =AD ,BC =DC ,则四边形ABCD 是“准菱形”.(1)如图,在边长为1的正方形网格中,A 、B 、C 在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD 和“准菱形”ABCD′.(要求:D 、D′在格点上);(2)下列说法正确的有 ;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形; ③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC 中,∠ABC =90°,以AC 为一边向外作“准菱形”ACEF ,且AC =EC ,AF =EF ,AE 、CF 交于点D .①若∠ACE =∠AFE ,求证:“准菱形”ACEF 是菱形;②在①的条件下,连接BD ,若BD =,∠ACB =15°,∠ACD =30°,请直接写出四边形ACEF 的面积.11.如图,在平面直角坐标系中,△ABC 和△A 'B 'C '的顶点都在格点上.(1)将△ABC 绕点B 顺时针旋转90°后得到△A 1BC 1;(2)若△A 'B 'C '是由△ABC 绕某一点旋转某一角度得到,则旋转中心的坐标是 .12.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是 人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为 度;(4)在扇形统计图中表示观点E 的百分比是 .13.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .(1)求证:BD DF =;(2)求证:四边形BDFG 为菱形;(3)若13AG =,6CF =,求四边形BDFG 的周长.14.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE .①请找出图中与BE 相等的线段,并说明理由;②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.15.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.2.(1)见解析(2)3cm【分析】1)先根据矩形的性质得出∠ABD=∠BDC,再由图形折叠的性质得出∠1=∠2,∠3=∠4,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH ≌△DFG ;(2)先根据勾股定理得出BD 的长,进而得出BF 的长,由图形翻折变换的性质得出CG=FG ,设FG=x ,则BG=8﹣x ,再利用勾股定理即可求出x 的值.【详解】(1)如图,ABCD 四边形是矩形,AB CD ∴=,90A C ∠=∠=︒,ABD BDC ∠=∠.BEH ∆是BAH ∆翻折而成的,1=2∴∠∠,==90A HEB ∠∠︒,AB BE =.DGF DGC ∆∆是翻折而成的,3=4∴∠∠,90C DFG ∠=∠=︒,CD DF =,∴在BEH ∆和DFG ∆中,HEB DFG ∠=∠,BE DF =,2=3∠∠,BHE DGF ∴∆∆≌.(2)四边形ABCD 是矩形,6AB =,8BC =,6AB CD ∴==,8AD BC ==, 22=10BD BC CD ∴+=,又由(1)知,DF CD =,CG FG =,=1064BF ∴-=. 设FG x =,则8BG x =-,在Rt BGF ∆中,222BG BF FG =+,即()22284x x -=+,3x ∴=,即3FG =.【点睛】本题主要考查矩形的折叠问题,涉及知识点有全等三角形的证明与性质,勾股定理,折叠性质等知识点,解题关键在于能够灵活运用勾股定理3.(1)见解析;(2)AE =3.【分析】(1)由平行四边形的性质和AAS 证明△OBE ≌△ODF ,得出对应边相等即可; (2)先证出AE=GE ,再证明DG=DO ,得出OF=FG=1,即可得出结果.【详解】(1)∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠OBE =∠ODF .在△OBE 与△ODF 中,OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴EO =FO ;(2)∵EF ⊥AB ,AB ∥DC ,∴∠GEA =∠GFD =90°.∵∠A =45°,∴∠G =∠A =45°.∴AE =GE ,∵BD ⊥AD ,∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°.∴DG =DO ,∴OF =FG =1,由(1)可知,OE =OF =1,∴GE =OE +OF +FG =3,∴AE =3.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.4.(1)(3,8);(15,0);(2)t =7;(3)能,t =5.【分析】(1)根据点B 、C 的坐标求出AB 、OA 、OC,然后根据路程=速度×时间求出AM 、CN,再求出ON,然后写出点M 、N 的坐标即可;(2)根据有一个角是直角的平行四边形是矩形,当AM =ON 时,四边形OAMN 是矩形,然后列出方程求解即可;(3)先求出四边形MNCB 是平行四边形的t 值,并求出CN 的长度,然后过点B 作BC ⊥OC 于D,得到四边形OABD 是矩形,根据矩形的对边相等可得OD =AB,BD =OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.【详解】解:(1)∵B (15,8),C (21,0),∴AB =15,OA =8,OC =21,当t =3时,AM =1×3=3,CN =2×3=6,∴ON =OC-CN =21﹣6=15,∴点M (3,8),N (15,0);故答案为:(3,8);(15,0);(2)当四边形OAMN 是矩形时,AM =ON,∴t =21-2t,解得t =7秒,故t =7秒时,四边形OAMN 是矩形;(3)存在t =5秒时,四边形MNCB 能否为菱形.理由如下:四边形MNCB 是平行四边形时,BM =CN,∴15-t =2t,解得:t =5秒,此时CN =5×2=10,过点B 作BD ⊥OC 于D,则四边形OABD 是矩形,∴OD =AB =15,BD =OA =8,CD =OC-OD =21-15=6,在Rt △BCD 中,BC =22BD CD + =10,∴BC =CN,∴平行四边形MNCB 是菱形,故,存在t =5秒时,四边形MNCB 为菱形.【点睛】本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键.5.(1)6;(2)32xy ;(3)5【分析】(1)利用二次根式的乘法法则运算;(2)利用二次根式的乘法法则运算;(3)利用二次根式的除法法则运算.【详解】(12354535=23×35545⨯=6; (2()22360,0x yxy x y ≥≥ 2*236x y xy=3xy 2xy ; (3)()48274153-+÷ =4832734153÷-÷+÷=4﹣3+45=1+45.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(1)(3,1);(2)作图见解析;26.【分析】(1)根据对称性即可得点A 关于坐标原点O 对称的点的坐标;(2)根据旋转的性质即可将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,进而可得A 1A 的长.【详解】(1)∵A (﹣3,﹣1),∴点A 关于坐标原点O 对称的点的坐标为(3,1).故答案为:(3,1);(2)如图,△A 1B 1C 即为所求,A 1A 的长为:2215+=26.故答案为:26.【点睛】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质.7.证明见解析【分析】连接AE 、CF ,证明四边形AECF 为平行四边形即可得到AC 、EF 互相平分.【详解】解:连接AE 、CF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD ﹦BC ,又∵DF ﹦BE ,∴AF ﹦CE ,又∵AF ∥CE ,∴四边形AECF 为平行四边形,∴AC 、EF 互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.8.(1)求证见解析;(2)2OE =EB +EA ;(3)见解析.【分析】(1)延长EA 至点F ,使AF =BE ,连接OF ,由SAS 证得△OBE ≌△OAF ,得出OE =OF ,∠BEO =∠AFO ,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF 是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA 证得△ABE ≌△ADH ,△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,得出FG =EF =EH =HG ,再由∠F =∠H =∠AEB =90°,由此可得出结论.【详解】(1)证明:延长EA 至点F ,使AF =BE ,连接OF ,如图所示:∵四边形ABCD 是正方形,∴∠BOA =90°,OB =OA ,∵∠AEB =90°,∴∠OBE +∠OAE =360°﹣90°﹣90°=180°,∵∠OAE +∠OAF =180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAF (SAS ),∴OE =OF ,∠BEO =∠AFO ,∴∠AEO =∠AFO ,∴∠BEO =∠AEO ,∴EO 平分∠AEB ;(2OE =EB +EA ,理由如下:由(1)得:△OBE ≌△OAF ,∴OE =OF ,∠BOE =∠AOF ,∵∠BOE +∠AOE =90°,∴∠AOF +∠AOE =90°,∴∠EOF =90°,∴△EOF 是等腰直角三角形,∴2OE 2=EF 2,∵EF =EA +AF =EA +EB ,∴2OE 2=(EB +EA )2,OE =EB +EA ,OE =EB +EA ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.9.(1)见解析;(2)见解析【解析】【分析】(1)证出△ABE ≌△CDF 即可求解;(2)证出AE 平行CF ,AE CF =即可/【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE ≌△CDF∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF 是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.10.(1)见解析;(2)①②③④;(3)①证明见解析;②23【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF ≌△ECF ,再结合∠ACE =∠AFE 可推出AC ∥EF ,AF ∥CE ,则证明了准菱形ACEF 是平行四边形,又因为AC =EC 即可得出准菱形ACEF 是菱形;②取AC 的中点M ,连接BM 、DM ,根据四边形ACEF 是菱形可得A 、B 、C 、D 四点共圆,点M 是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC ,再根据∠ACD =30°即可求出AD ,CD 的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A =∠C =90°,结合一组对边平行可以判断四边形为矩形,故①正确; ②因为∠A =∠C =90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,∵∠ACB=15°,∴∠AMB=30°,∵∠ACD=30°,∴∠AMD=60°,∴∠BMD=90°,∴△BMD是等腰直角三角形,∴BM=DM=22BD=222=1,∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC×sin30°=1,CD=AC×cos30°3∴菱形ACEF的面积=12×13×4=3【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.11.(1)见解析 (2)(3,4)【分析】(1)根据网格结构找出点A 、C 绕点B 顺时针旋转90°后的对应点A 1、C 1的位置,然后顺次连接即可;(2)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),故答案为(3,4).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.12.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A 的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C 的人数,从而可以将条形统计图补充完整; (3)根据选B 的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B 的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E 的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C 的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为:360°×2505000=18°, 故答案为:18;(4)在扇形统计图中表示观点E 的百分比是:2005000×100%=4%, 故答案为:4%.【点睛】 本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.13.(1)详见解析;(2)详见解析;(3)20【分析】(1)先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD FD =;(2)由邻边相等可判断四边形BGFD 是菱形;(3)设GF x =,则13AF x =-,2AC x =,在Rt ACF ∆中利用勾股定理可求出x 的值.【详解】(1)证明:90ABC ∠=︒,BD 为AC 的中线,12BD AC ∴= //AG BD ,BD FG =,∴四边形BDFG 是平行四边形,CF BD ⊥CF AG ∴⊥ 又点D 是AC 的中点12DF AC ∴= BD DF ∴=.(2)证明:由(1)知四边形BDFG 是平行四边形又BD DF =BDFG ∴是菱形(3)解:设GF x =则13AF x =-,2AC x =,6CF =,在Rt ACF ∆中,222CF AF AC +=2226(13)(2)x x ∴+-=解得5x =4520BDFG C ∴=⨯=菱形.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD 是菱形.14.(1);BC a c -;(2)①BE DC =,证明见解析,②3;(3)AM最小为(6,P或(3.【分析】(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.【详解】解:()1AC BC AB a c ≥-=-当A 位于BC 线段上AO ,取到最小值a c -故答案为:;BC a c - ()2①ABO ∆和AEC ∆均为等腰直角三角形,1,AB AD AE AC ∴===,BAD EAC BD ∠=∠=BAE BAD EAD EAC EAD DAC ∴∠=∠-∠=∠-∠=∠∴在ABE ∆和ADC ∆中AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩()BAE DAC SAS ∴∆≅∆BE DC ∴=②而3DC BC BD ≥-=BE最小值为3,当且仅当D 在线段BC 上取到()3以AP 为边向右边作等边三角形APC ,连接BCAPC ∆为正三角形,2,60AC AP PC APC ︒∴===∠=又60MPB ︒∠=APM APC MPC ∴∠=∠-∠60MPC ︒=-∠MPB MPC =∠-∠CPB =∠∴在APM ∆和CPB ∆中AP CP APM CPB PM PB =⎧⎪∠=∠⎨⎪=⎩()APM CPB SAS ∴∆≅∆()10226AM BC AB AC ∴=≥-=--=AM ∴最小为6,此时C 在线段AB 上,P 的横坐标为1232AP +⨯= 纵坐标为222222322AP AP ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭((33,3P ∴-或.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.15.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s =或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s =或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM︒∴∠=2AQ AM ∴=,①当83t≤时,由题意有832382tt at-⎛⎫+=+⎪⎝⎭,解得3/a cm s=,②当83t≥时,由题意有382382tt at-⎛⎫-=+⎪⎝⎭,解得3/a cm s=,∴综上所述,存在3/a cm s=时,BPQ∆恒为以BP为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。

(苏科版)八年级(下)期末数学试卷+答案与解析

(苏科版)八年级(下)期末数学试卷+答案与解析

八年级(下)期末数学试卷一、选择题1.函数y=的图象与直线y=x没有交点,那么k的取值范围是( )A.k>1 B.k<1 C.k>﹣1 D.k<﹣12.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是( )A.B.C.D.3.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是( )A.﹣1<x<0 B.x<﹣1或0<x<1 C.x≤1或0<x≤1 D.﹣1<x<0或x≥1 4.如图,矩形AOBC中,顶点C的坐标(4,2),又反比例函数y=的图象经过矩形的对角线的交点P,则该反比例函数关系式是( )A.y=(x>0)B.y=(x>0)C.y=(x>0)D.y=(x>0)二、填空题(共9小题,每小题3分,满分27分)5.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为__________(保留根号).6.如图所示,P1(x1,y1)、P2(x2,y2),…,P n(x n,y n)在函数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n…都是等腰直角三角形,斜边OA1,A1A2,…,A n﹣1A n,都在x轴上,则y1+y2=__________,y1+y2+…+y n=__________.7.如图,已知双曲线)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k=__________.8.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为__________.9.已知n为正整数,是整数,则n的最小值是__________.10.若分式方程有增根,则m=__________.11.一个对角线长分别为6cm和8cm的菱形,顺次连接它的四边中点得到的四边形的面积是__________.12.如图,正方形ABCD的面积为36cm2,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为__________.13.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行__________次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是__________.二、解答题14.先化简,再求值:÷(a﹣1﹣),其中a是方程x2﹣x=2014的解.15.已知x是正整数,且满足y=+,求x+y的平方根.16.某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求户外活动时间为1.5小时的人数,并补全频数分布直方图(图1);(2)若该中学共有1000名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.17.如图,两个边长均为2的正方形ABCD和正方形CDEF,点B、C、F在同一直线上,一直角三角板的直角顶点放置在D点处,DP交AB于点M,DQ交BF于点N.(1)求证:△DBM≌△DFN;(2)延长正方形的边CB和EF,分别与直角三角板的两边DP、DQ(或它们的延长线)交于点G和点H,试探究下列问题:①线段BG与FH相等吗?说明理由;②当线段FN的长是方程x2+2x﹣3=0的一根时,试求出的值.18.如图,经过原点的两条直线l1、l2分别与双曲线y=(k≠0)相交于A、B、P、Q四点,其中A、P两点在第一象限,设A点坐标为(3,1).(1)求k值及B点坐标;(2)若P点坐标为(a,3),求a值及四边形APBQ的面积;(3)若P点坐标为(m,n),且∠APB=90°,求P点坐标.19.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图象,指出当x<﹣1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP=S△ABO?若存在,求出点P坐标;若不存在,请说明理由.20.如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形EFGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4.(1)点D坐标为__________,点E坐标为__________;(2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示,①当α=30°时,求点P的坐标;②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由.八年级(下)期末数学试卷一、选择题1.函数y=的图象与直线y=x没有交点,那么k的取值范围是( )A.k>1 B.k<1 C.k>﹣1 D.k<﹣1考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:根据正比例函数及反比例函数的性质作答.解答:解:直线y=x过一、三象限,要使两个函数没交点,那么函数y=的图象必须位于二、四象限,那么1﹣k<0,则k>1.故选A.点评:本题考查了反比例函数与一次函数的交点问题,结合函数图象解答较为简单.2.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是( )A.B.C.D.考点:反比例函数的图象;正比例函数的图象.专题:分类讨论.分析:根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b >0两方面分类讨论得出答案.解答:解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.点评:本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.3.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是( )A.﹣1<x<0 B.x<﹣1或0<x<1 C.x≤1或0<x≤1 D.﹣1<x<0或x≥1考点:反比例函数与一次函数的交点问题.分析:求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.解答:解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.点评:本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.4.如图,矩形AOBC中,顶点C的坐标(4,2),又反比例函数y=的图象经过矩形的对角线的交点P,则该反比例函数关系式是( )A.y=(x>0)B.y=(x>0)C.y=(x>0)D.y=(x>0)考点:反比例函数图象上点的坐标特征.分析:过P点作PE⊥x轴于E,PF⊥y轴于F,根据矩形的性质得S矩形OEPF=S矩形OACB=2,然后根据反比例函数的比例系数k的几何意义求得反比例函数关系式.解答:解:过P点作PE⊥x轴于E,PF⊥y轴于F,如图,∵四边形OACB为矩形,点P为对角线的交点,∴S矩形OEPF=S矩形OACB=×8=2.∴k=2.∴反比例函数关系式为y=(x>0),故选:B.点评:本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题(共9小题,每小题3分,满分27分)5.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△A OB的面积为1,则AC的长为(保留根号).考点:反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;勾股定理.专题:压轴题.分析:由于△AOB的面积为1,根据反比例函数的比例系数k的几何意义可知k=2,解由y=x+1与联立起来的方程组,得出A点坐标,又易求点C的坐标,从而利用勾股定理求出AC的长.解答:解:∵点A在反比例函数的图象上,AB⊥x轴于点B,△AOB的面积为1,∴k=2.解方程组,得,.∴A(1,2);在y=x+1中,令y=0,得x=﹣1.∴C(﹣1,0).∴AB=2,BC=2,∴AC==2.点评:本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.6.如图所示,P1(x1,y1)、P2(x2,y2),…,P n(x n,y n)在函数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n…都是等腰直角三角形,斜边OA1,A1A2,…,A n﹣1A n,都在x轴上,则y1+y2=3,y1+y2+…+y n=3.考点:反比例函数图象上点的坐标特征;等腰直角三角形.专题:计算题.分析:作P1B⊥x1轴于B,P2C⊥x轴于C,P3D⊥x轴于D,如图,根据等腰直角三角形的性质得x1=y1,根据反比例函数图象上点的坐标特征得到x1•y1=9,易得y1=3,则A1(6,0),于是有x 2=6+y2,再利用x2•y2=9解得y2=3﹣3,同理得到x3=6+y3,y n=3﹣3,所以y1+y2+…+y n=3.解答:解:作P1B⊥x1轴于B,P2C⊥x轴于C,P3D⊥x轴于D,如图,∵△OP1A1为等腰直角三角形,∴x1=y1,而x1•y1=9,∴y1=3,∴A1(6,0),∴x2=6+y2,∵x2•y2=9,∴(6+y2)•y2=9,解得y2=3﹣3,∴y1+y2=3;∴A1A2=6﹣6,∴OA2=6,∴x3=6+y3,而x3•y3=9,∴(6+y3)•y3=9,解得y3=3﹣3,∴y n=3﹣3,∴y 1+y2+…+y n=3++3﹣3+3﹣3+3﹣3=3.故答案为3,3.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.7.如图,已知双曲线)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k=2.考点:反比例函数系数k的几何意义.分析:如果设F(x,y),表示点B坐标,再根据四边形OEBF的面积为2,列出方程,从而求出k的值.解答:解:设F(x,y),E(a,b),那么B(x,2y),∵点E在反比例函数解析式上,∴S△COE=ab=k,∵点F在反比例函数解析式上,∴S△AOF=xy=k,∵S四边形OEBF=S矩形ABCO﹣S△COE﹣S△AOF,且S四边形OEBF=2,∴2xy﹣k﹣xy=2,∴2k﹣k﹣k=2,∴k=2.故答案为:2.点评:本题的难点是根据点F的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.8.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为﹣6.考点:反比例函数系数k的几何意义.分析:先由正方形ADEF的面积为4,得出边长为2,BF=2AF=4,AB=AF+BF=2+4=6.再设B点坐标为(t,6),则E点坐标(t﹣2,2),根据点B、E在反比例函数y=的图象上,利用根据反比例函数图象上点的坐标特征得k=6t=2(t﹣2),即可求出k=﹣6.解答:解:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.已知n为正整数,是整数,则n的最小值是21.考点:二次根式的定义.分析:如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.解答:解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故填:21.点评:本题考查了二次根式的意义,主要考查学生的理解能力和求值能力,题目比较典型,是一道比较好的题目.10.若分式方程有增根,则m=2.考点:分式方程的增根.专题:计算题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.解答:解:方程两边都乘(x﹣3),得m=2+(x﹣3),∵方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=2.故答案为2.点评:解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11.一个对角线长分别为6cm和8cm的菱形,顺次连接它的四边中点得到的四边形的面积是12cm2.考点:中点四边形.分析:根据顺次连接这个菱形各边中点所得的四边形是矩形,且矩形的边长分别是菱形对角线的一半,问题得解.解答:解:∵E、F、G、H分别为各边中点∴EF∥GH∥AC,EF=GH=AC,EH=FG=BD,EH∥FG∥BD∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形,∵EH=BD=3cm,EF=AC=4cm,∴矩形EFGH的面积=EH×EF=3×4=12cm2,故答案为:12cm2.点评:本题考查了菱形的性质,菱形的四边相等,对角线互相垂直,连接菱形各边的中点得到矩形,且矩形的边长是菱形对角线的一半.12.如图,正方形ABCD的面积为36cm2,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为6cm.考点:轴对称-最短路线问题;正方形的性质.分析:根据正方形的面积求出边长,根据正方形的性质,点B、D关于AC对称,再根据轴对称确定最短路线问题,BE与AC的交点即为所求的使PD+PE的和最小时的点P的位置,然后根据PD+PE=BE计算即可得解.解答:解:∵正方形ABCD的面积为36cm2,∴边长AB=6cm,∵△ABE是等边三角形,∴BE=AB=6cm,由正方形的对称性,点B、D关于AC对称,∴BE与AC的交点即为所求的使PD+PE的和最小时的点P的位置,∴PD+PE的和的最小值=BE=6cm.故答案为:6cm.点评:本题考查了轴对称确定最短路线问题,正方形的对称性,熟记性质以及最短路线的确定方法确定出PD+PE的和的最小值=BE是解题的关键.13.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行3次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是255.考点:估算无理数的大小.专题:压轴题;新定义.分析:①根据规律依次求出即可;②要想确定只需进行3次操作后变为1的所有正整数,关键是确定二次操作后数的大小不能大于4,二次操作时根号内的数必须小于16,而一次操作时正整数255却好满足这一条件,即最大的正整数为255.解答:解:①[]=9,[]=3,[]=1,故答案为:3;②最大的是255,[]=15,[]=3,[]=1,而[]=16,[]=4,[]=2,[]=1,即只需进行3次操作后变为1的所有正整数中,最大的正整数是255,故答案为:255.点评:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力.二、解答题14.先化简,再求值:÷(a﹣1﹣),其中a是方程x2﹣x=2014的解.考点:分式的化简求值;一元二次方程的解.分析:将括号内的部分通分,再将除法转化为乘法,因式分解后约分即可.解答:解:原式=÷[﹣]=÷=•==,∵a是方程x2﹣x=2014的解,∴a2﹣a=2014,∴原式=.点评:本题考查了分式的化简求值和一元二次方程的解,熟悉约分、通分和因式分解是解题的关键.15.已知x是正整数,且满足y=+,求x+y的平方根.考点:二次根式有意义的条件;平方根;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算求出x的值,再求出y的值,然后根据平方根的定义解答即可.解答:解:由题意得,2﹣x≥0且x﹣1≠0,解得x≤2且x≠1,∵x是正整数,∴x=2,∴y=4,x+y=2+4=6,x+y的平方根是±.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.16.某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求户外活动时间为1.5小时的人数,并补全频数分布直方图(图1);(2)若该中学共有1000名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.分析:(1)根据时间是0.5小时的有10人,占20%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是1.5小时的一组的人数,即可作出直方图;(2)先求出1小时的学生人数所占的百分比,再乘以总人数即可.解答:解:(1)根据题意得:10÷20%=50(人),1.5小时的人数是:50×24%=12(人),如图:(2)根据题意得:1000×=400(人),答:该校每天参加户外活动的时间为1小时的学生人数是400人.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17.如图,两个边长均为2的正方形ABCD和正方形CDEF,点B、C、F在同一直线上,一直角三角板的直角顶点放置在D点处,DP交AB于点M,DQ交BF于点N.(1)求证:△DBM≌△DFN;(2)延长正方形的边CB和EF,分别与直角三角板的两边DP、DQ(或它们的延长线)交于点G和点H,试探究下列问题:①线段BG与FH相等吗?说明理由;②当线段FN的长是方程x2+2x﹣3=0的一根时,试求出的值.考点:四边形综合题.分析:(1)如图1,根据正方形的性质就可得出BD=FD,∠ADB=∠CDF=∠ADB=∠CFD=45°,由直角三角形的性质就可以得出∠1=∠ADM,进而得出∠3=∠4,由ASA就可以得出结论;(2)①如图1,根据正方形的性质及直角三角形的性质就可以得出△GCD≌△HED就有CG=EH,由等式的性质就可以得出结论;②先解方程x2+2x﹣3=0就可以求出FN=1,得出CN=1,如图2,就可以得出△CND≌△FNH,得出CD=FH=2,就可以得出GB=2,GN=5,由勾股定理就可以求出NH 的值,进而得出结论.解答:解:(1)如图1,∵四边形ABCD和四边形CDEF是边长正方形,∴BC=FC,BD=FD,∠ABD=∠ADB=∠CDF=∠ADB=∠CFD=45°,∠DCB=∠DEF=∠E=∠HFN=∠ADC=90°.∴∠ADM+∠CDM=90°,∵∠PDQ=90°,∴∠CDM+∠CDN=90°.∴∠ADM=∠CDN.∴∠ADB﹣∠ADM=∠CDF﹣∠CDN,∴∠MDB=∠NDF.在△DBM和△DFN中,,∴△DBM≌△DFN(ASA);(2)①四边形ABCD和四边形CDEF是边长正方形,∴BC=FC=EF,BD=FD,∠ABD=∠ADB=∠CDF=∠ADB=∠CFD=45°,∠DCB=∠DEF=∠CDE=∠E=∠HFN=∠ADC=90°.∴∠EDH+∠1=90°,∵∠PDQ=90°,∴∠CDM+∠1=90°.∴∠CDM=∠EDH.在△CDG和△EDH中,,∴△CDG≌△EDH(ASA),∴CG=EH,∴CG﹣CB=EH﹣EF,∴BG=FH.②∵x2+2x﹣3=0,∴x1=1,x2=﹣3.∵FN的长是方程x2+2x﹣3=0的一根,∴FN=1.∴CN=1,∴CN=FN.在△CND和△FNH中,,∴△CND≌△FNH(ASA),∴CD=FH=2,∴GB=2,∴GN=5.在Rt△FNH中,由勾股定理,得NH=.∴==.点评:本题考查了正方形的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等式的性质的运用,解答时证明三角形全等灵活运用全等三角形的性质是关键.18.如图,经过原点的两条直线l1、l2分别与双曲线y=(k≠0)相交于A、B、P、Q四点,其中A、P两点在第一象限,设A点坐标为(3,1).(1)求k值及B点坐标;(2)若P点坐标为(a,3),求a值及四边形APBQ的面积;(3)若P点坐标为(m,n),且∠APB=90°,求P点坐标.考点:反比例函数综合题.专题:综合题.分析:(1)根据分别莲花山图象上点的坐标特征得到k=3×1=3,再根据正比例函数图象和反比例函数图象的性质得到点A与点B关于原点对称,则B点坐标为(﹣3,﹣1);(2)先根据反比例函数图象上点的坐标特征得到a=1,即P点坐标为(1,3),再根据正比例函数图象和反比例函数图象的性质得到点P与点Q关于原点对称,所以点Q的坐标为(﹣1,﹣3),由于OA=OB,OP=OQ,则根据平行四边形的判定得到四边形APBQ为平行四边形,然后根据两点间的距离公式计算出AB,PQ,可得到即AB=PQ,于是可判断四边形APBQ 为矩形,再计算出PA和PB,然后计算矩形APBQ的面积;(3)前面已经证明四边形APBQ为平行四边形,加上∠APB=90°,则可判断四边形APBQ 为矩形,则OP=OA,根据两点间的距离公式得到m2+n2=10,且mn=3,则利用完全平方公式得到(m+n)2﹣2mn=10,可得到m+n=4,根据根与系数的关系可把m、n看作方程x2﹣4x+3=0的两根,然后解方程可得到满足条件的P点坐标.解答:解:(1)把A(3,1)代入y=得k=3×1=3,∵经过原点的直线l1与双曲线y=(k≠0)相交于A、B、∴点A与点B关于原点对称,∴B点坐标为(﹣3,﹣1);(2)把P(a,3)代入y=得3a=3,解得a=1,∵P点坐标为(1,3),∵经过原点的直线l2与双曲线y=(k≠0)相交于P、Q点,∴点P与点Q关于原点对称,∴点Q的坐标为(﹣1,﹣3),∵OA=OB,OP=OQ,∴四边形APBQ为平行四边形,∵AB2=(3+3)2+(1+1)2=40,PQ2=(1+1)2+(3+3)2=40,∴AB=PQ,∴四边形APBQ为矩形,∵PB2=(1+3)2+(3+1)2=32,PQ2=(3﹣1)2+(1﹣3)2=8,∴PB=4,PQ=2,∴四边形APBQ的面积=PA•PB=2•4=16;(3)∵四边形APBQ为平行四边形,而∠APB=90°,∴四边形APBQ为矩形,∴OP=OA,∴m2+n2=32+12=10,而mn=3,∵(m+n)2﹣2mn=10,∴(m+n)2=16,解得m+n=4或m+n=﹣4(舍去),把m、n看作方程x2﹣4x+3=0的两根,解得m=1,n=3或m=3,n=1(舍去),∴P点坐标为(1,3).点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、正比例函数图象与反比例函数图象的性质、等腰三角形的性质、矩形的判定与性质;会利用两点间的距离公式计算线段的长;理解坐标与图形的性质.19.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图象,指出当x<﹣1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP=S△ABO?若存在,求出点P坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)作AM⊥x轴于点M,BN⊥x轴于点N,由相似三角形的判定定理得出△AOM∽△OBN,OA=2OB,再根据OA=2OB,点A的坐标为(4,2)可得出B点坐标,进而得出反比例函数的关系式;(2)由函数图象可直接得出结论;(3)根据AB两点的坐标可知AB∥x轴,S△ABP=S△ABO=5,再分当点P在AB的下方与当点P在x轴上方两种情况即可得出结论.解答:解:(1)作AM⊥x轴于点M,BN⊥x轴于点N,∵OB⊥OA,∠AMO=∠BNO=90°,∴∠BON+∠NBO=90°∵∠BOA=90°∴∠BON=∠AOM=90°∴∠AOM=∠NBO,∴△AOM∽△OBN.∵OA=2OB,∴==,∵点A的坐标为(4,2),∴BN=2,ON=1,∴B(﹣1,2).∴双曲线的函数关系式为y=﹣;(2)由函数图象可知,当x<﹣1时,0<y<2;(3)存在.∵y A=y B,∴AB∥x轴,∴S△ABP=S△ABO=5,∴当点P在AB的下方时,点P恰好在x轴上,不合题意舍去;当点P在x轴上方时,点P在第二象限,得AB•(y P﹣2)=5,即×5×(y P﹣2)=5,解得y P=4,∴点P坐标为(﹣,4).点评:本题考查的是反比例函数综合题,涉及到用待定系数法求反比例函数的解析式、三角形的面积及相似三角形的判定与性质等知识,难度适中.20.如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形EFGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4.(1)点D坐标为(2,0),点E坐标为(0,1);(2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示,①当α=30°时,求点P的坐标;②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由.考点:相似形综合题.分析:(1)由于∠BAD=120°,易知∠OAD=60°,通过解直角△AOD来求OD、OA的长度;然后利用相似比来求OE的长度;(2)由(1)和相似多边形的性质知,OA=2,OD=2,EF=2.①作PM⊥OA于点M,易求AM、PM的长度;②如果四边形AFEP是平行四边形,那么首要满足的条件是AP∥FE,由于∠FEO=60°,因此∠APO必为60°,此时△AOP中,∠APO=∠OAP=60°,因此△AOP是等边三角形,已知两菱形的位似比为2:1,因此EF=AD,也就是EF=AP,由此可得出当α=60°时,AP EF,即四边形APEF是平行四边形.解答:解:(1)如图①,∵∠BAD=120°,四边形ABCD是菱形,∴∠OAD=∠BAD=60°.又∵在直角△AOD中,AD=4,∴OA=AD•cos60°=4×=2,OD=AD•sin60°=4×=2.又菱形EFGH与菱形ABCD的相似比为1:2,∴OE:OA=1:2,∴OE=1,∴点D坐标为(2,0),点E坐标为(0,1).故答案是:(2,0),(0,1);(2)①由(1)知,OA=2,OD=2,∠OAD=60°.∵菱形EFGH与菱形ABCD的相似比为1:2,AD=4,∴EF=AB=AD=2.①当α=30°时,∠APO=90°,则AP=OA=1.如图②,作PM⊥OA于点M.则AM=AP=,PM=,∵OM=OA﹣AM=,∴点P的坐标是(,);②当α=60°时,四边形AFEP是平行四边形.理由如下:∵在旋转过程中,EF=2,∠FEO=60°,∠OAP=60°,当射线OE旋转角度α=60°时,得△AOP 是等边三角形,此时∠APO=60°,AP=2,∴AP=EF,∴∠APO=∠FEO,得AP∥EF,∴四边形AFEP是平行四边形,∴当α=60°时,四边形AFEP是平行四边形.点评:本题考查了菱形的性质、解直角三角形、图形的旋转变换以及相似多边形的性质等知识点,综合性强.在求线段OA和OD时,也可以利用“在直角三角形中,30度角所对的直角边是斜边的一半”和勾股定理进行解答.。

新苏科八年级数学下学期期末测试题及答案(共五套)

新苏科八年级数学下学期期末测试题及答案(共五套)

新苏科八年级数学下学期期末测试题及答案(共五套)一、选择题1.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是( ) A .2016年泰兴市八年级学生是总体 B .每一名八年级学生是个体 C .500名八年级学生是总体的一个样本D .样本容量是5002.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个3.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE ,延长AF 交CD 于点G ,已知CG =2,DG =1,则BC 的长是( )A .32B .26C .25D .234.已知关于x 的方程23x mx -=+的解是负数,则m 的取值范围为( ) A .6m >-且3m ≠- B .6m >-C .6m <-且3m ≠-D .6m <-5.下面图形中,既是中心对称图形又是轴对称图形的是( ) A .B .C .D .6.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近( ) A .1000B .1500C .2000D .25007.如图,四边形ABCD 中,∠A =90°,AB =8,AD =6,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A .8B .7C .6D .58.如图,是一组由菱形和矩形组成的图案,第1个图中菱形的面积为S (S 为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推…,则第2020个图中阴影部分的面积可以用含S 的代数式表示为( )(S ≥2且S 是正整数)A .20184S B .20194S C .20204S D .20214S9.一个事件的概率不可能是( ) A .32B .1C .23D .010.已知12x <≤ ,则23(2)x x -+-的值为( ) A .2 x - 5B .—2C .5 - 2 xD .2二、填空题11.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_____,使四边形ABCD 为矩形.12.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,∠OBC =30°,则∠OCD =_____°.13.如图,在□ABCD 中,AD=6,点E 、F 分别是BD 、CD 的中点,则EF=______.14.要使代数式5x -有意义,字母x 必须满足的条件是_____. 15.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)16. 如图,在ABCD 中,已知8AD cm =,6AB cm =,DE 平分ADC ∠,交BC 边于点E ,则BE = ___________ cm .17.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积()3mV 的反比例函数,其图像如图所示.则其函数解析式为_________.18.如图,在 ABCD 中,若∠A =2∠B ,则∠D =________°.19.如图,在平面直角坐标系中,四边形OBCD 是菱形,OB =OD =2,∠BOD =60°,将菱形OBCD 绕点O 旋转任意角度,得到菱形OB 1C 1D 1,则点C 1的纵坐标的最小值为_____.20.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.三、解答题21.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.22.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.23.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标. 24.如图,平行四边形ABCD 中,已知BC =10,CD =5.(1)试用无刻度的直尺和圆规在AD 边上找一点E ,使点E 到B 、D 两点的距离相等(不要求写作法,但要保留清晰的作图痕迹); (2)求△ABE 的周长.25.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCDE分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 26.正方形ABCD 中,点O 是对角线DB 的中点,点P 是DB 所在直线上的一个动点,PE ⊥BC 于E ,PF ⊥DC 于F .(1)当点P 与点O 重合时(如图①),猜测AP 与EF 的数量及位置关系,并证明你的结论;(2)当点P 在线段DB 上(不与点D 、O 、B 重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P 在DB 的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.27.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.28.先化简,再求代数式(1﹣32x+)÷212xx-+的值,其中x=4.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.2.C解析:C【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】第1个,即不是轴对称图形,也不是中心对称图形,故本选项错误;第2个,既是轴对称图形,也是中心对称图形,故本选项正确;第3个,既是轴对称图形,也是中心对称图形,故本选项正确; 第4个,既是轴对称图形,也是中心对称图形,故本选项正确. 故选:C . 【点睛】本题考查了轴对称图形与中心对称图形,掌握中心对称图形与轴对称图形的概念是解题关键.3.B解析:B 【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt △EGF ≌Rt △EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案. 【详解】 解:连接EG ,∵E 是BC 的中点, ∴BE =EC ,∵△ABE 沿AE 折叠后得到△AFE , ∴BE =EF , ∴EF =EC , ∵在矩形ABCD 中, ∴∠C =90°, ∴∠EFG =∠B =90°, ∵在Rt △EGF 和Rt △EGC 中,EF ECEG EG =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EGC (HL ), ∴FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3, ∴AF =AB =3, ∴AG =AF +FG =3+2=5,∴BC=AD=.故选:B . 【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.4.A解析:A 【分析】解分式方程,得到含有m 得方程的解,根据“方程的解是负数”,结合分式方程的分母不等于零,得到两个关于m 得不等式,解之即可. 【详解】解:方程两边同时乘以1x +得:3(1)x m x -=+, 解得:6=--x m , 又∵方程的解是负数, ∴60--<m , 解不等式得:6m >-, 综上可知:6m >-且3m ≠-, 故本题答案为:A. 【点睛】本题考查了分式方程的解;解一元一次不等式.解决本题的关键是熟练掌握分式方程的解法过程,注意分式方程分母不为0这一要求.5.D解析:D 【分析】根据轴对称图形的定义和中心对称图形的定义对每个选项进行判断即可. 【详解】A 项是轴对称图形,不是中心对称图形;B 项是中心对称图形,不是轴对称图形;C 项是中心对称图形,不是轴对称图形;D 项是中心对称图形,也是轴对称图形; 故选:D . 【点睛】本题考查了轴对称图形的定义和中心对称图形的定义,掌握知识点是解题关键.6.B解析:B 【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可. 【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次,故选:B.【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.7.D解析:D【分析】连接DN,根据三角形中位线定理得到EF=12DN,根据题意得到当点N与点B重合时,DN最大,根据勾股定理计算,得到答案.【详解】连接DN,∵点E,F分别为DM,MN的中点,∴EF是△MND的中位线,∴EF=12 DN,∵点M,N分别为线段BC,AB上的动点,∴当点N与点B重合时,DN最大,此时DN22AB AD10,∴EF长度的最大值为:12×10=5,故选:D.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.B解析:B【分析】观察图形发现第2个图形中的阴影部分的面积为S4,第3个阴影部分的面积为16S,依此类推,得到第n个图形的阴影部分的面积即可.【详解】解:观察图形发现:第2个图形中的阴影部分的面积为S 4, 第3个图形中的阴影部分的面积为16S , …第n 个图形中的阴影部分的面积为14n S-,故第2020个图中阴影部分的面积可以用含S 的代数式表示为20194S .故选:B .【点睛】 本题考查了图形的变化类问题,解题的关键是仔细的观察图形,找到规律用通项公式表示出来.9.A解析:A【分析】根据概率的意义知,一件事件的发生概率最大是1,所以只有A 项是错误的,即找到正确选项.【详解】∵必然事件的概率是1,不可能事件的概率为0,∴B、C 、D 选项的概率都有可能, ∵32>1, ∴A 不成立.故选:A .【点睛】本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.10.C解析:C【分析】结合1 < x ≤ 2 ,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1 < x ≤ 2 ,所以3x -+32x x -+-= 5 - 2 x.故选择C .【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.二、填空题11.∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.12.60【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可.【详解】解:∵菱形ABCD的对角线AC、BD相交于点O,∴AC⊥BD,∠DBC=∠BDC=30°,∴∠DOC=90°解析:60【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可.【详解】解:∵菱形ABCD的对角线AC、BD相交于点O,∴AC⊥BD,∠DBC=∠BDC=30°,∴∠DOC=90°,∴∠OCD=90°﹣30°=60°,故答案为:60.【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.13.3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,∵点E. F 分别是BD 、CD 的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.14.x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】∵代数式有意义,∴x ﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二解析:x ≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】∴x ﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.15.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y随x的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】解:6yx=的图象当0x<时,y随x的增大而减小,∵4-<-2,故12y y>,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质.16.2【分析】由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.【详解】解:中,AD//BC,平分故答案为2.【点睛】本题主要考查了平行四边形的性质,在平行四边形解析:2【分析】由ABCD 和DE 平分ADC ∠,可证DEC CDE ∠=∠,从而可知DCE ∆为等腰三角形,则CE CD =,由8AD BC cm ==,6AB CD cm ==,即可求出BE .【详解】解:ABCD 中,AD//BC ,ADE DEC ∴∠=∠ DE 平分ADC ∠ADE CDE ∴∠=∠DEC CDE ∠=∠∴CD CE ∴=6CD AB cm ==6CE cm ∴=8BC AD cm ==862BE BC EC cm ∴=-=-=故答案为2.【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V 和气压p 的函数解析式.【详解】设,那么点(1.6,60)在此函数解析式上,则k =1.6×60=96,∴.故答案为: 解析:96P V=【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V 和气压p 的函数解析式.【详解】设kPV=,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴96PV =.故答案为:96PV =.【点睛】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.18.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.19.【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=BC=1,CE =,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,解析:23-【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=12BC=1,CE=3,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,∵CE⊥OE,∴BE=12BC=1,CE=3,∴2223OC OE CE=+=,∴当点C1在y轴上时,点C1的纵坐标有最小值为23-,故答案为:23-.【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键. 20.【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO解析:【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC==【点睛】解题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.三、解答题21.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.22.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.23.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.24.(1)见解析;(2)15;见解析.【分析】(1)连接BD作线段BD的垂直平分线MN交AD于点E,点E即为所求.(2)证明△ABE的周长=AB+AD即可.【详解】解:(1)如图,点E即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.25.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B 的圆心角度数为115.2°;(4)每月零花钱的数额x 在30≤x <90范围的人数大约为720人.【解析】分析:(1)根据C 组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a 的值,m 的值;(2)根据a 的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a =50﹣4﹣20﹣8﹣2=16,A 组所占的百分比是450=8%,则m =8. 故答案为50,16,8; (2)补全频数分布直方图如图:(3)扇形统计图中扇形B 的圆心角度数是360°×1650=115.2°; (4)每月零花钱的数额x 在30≤x <90范围的人数是1000×162050+=720(人). 答:每月零花钱的数额x 在30≤x <90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.26.(1)AP=EF ,AP ⊥EF ,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS 证明△AMO ≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP ≌△FPE (SAS ),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF ,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF ,∴∠FPN+∠PFE=90°,即AP ⊥EF ,故AP=EF ,且AP ⊥EF .(3)题(1)(2)的结论仍然成立;如右图,延长AB 交PF 于H ,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.27.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.28.11x +;15【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可.【详解】 解:原式=()()232211x x x x x +-+⋅++- ()()12211x x x x x -+=⋅++-11x =+ 当x =4时,原式=15. 【点睛】 本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.。

苏科版八年级数学下册期末测试卷-带参考答案

苏科版八年级数学下册期末测试卷-带参考答案

苏科版八年级数学下册期末测试卷-带参考答案一、选择题(每题3分,共24分)1.下列语句所描述的事件是随机事件的是( )A .两点确定一条直线B .清明时节雨纷纷C .没有水分,种子发芽D .太阳从东方升起2.下列图形中,既是轴对称图形又是中心对称图形的是( )3.若式子x +3x -3+x +5x -4有意义,则x 满足的条件是( )A .x ≠3且x ≠-3B .x ≠3且x ≠4C .x ≠4且x ≠-5D .x ≠-3且x ≠-5 4.下列计算正确的是( )A .(-3)2=-3B .3×5=15C .(2)2=4D .14÷7=2 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O .若∠AOB =60°,则ABBC =( )A .12 B .3-12 C .32 D .336.(教材P132练习T2)点(-5,y 1),(-3,y 2),(3,y 3)都在反比例函数y =kx (k >0)的图像上,则( )A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 2>y 1>y 3D .y 1>y 3>y 2 7.代数式x -2x 2-4x +4÷1x +6的值为F ,则F 为整数值的个数有( )A .0个B .7个C .8个D .无数个8.如图,点E 是正方形ABCD 内的一个动点,且AD =EB =8,BF =2,则DE +CF的最小值为()A.10B.311C.7 2D.97二、填空题(每题3分,共30分)9.函数y=xx+3中,自变量x的取值范围是________.10.计算:(5+1)(5-1)=________.11.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x 轴正半轴上.若BC=3,则点A的坐标是________.12.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1 000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300 cm的“无絮杨”品种苗约有________棵.13.反比例函数y=kx(k≠0)在第一象限的图像如图所示,已知点A的坐标为(3,1),写出一个满足条件的k的值为________.14. 若关于x的分式方程3-mx+2=1的解为负数,则m的取值范围为________.15.当今大数据时代,“二维码”广泛应用于我们的日常生活中,某兴趣小组从某个二维码中截取部分开展数学实验活动.如图,在边长为3 cm 的正方形区域内通过计算机随机掷点,经过大量重复试验,发现点落在区域内黑色部分的频率稳定在0.7左右,据此可以估计这个区域内白色部分的总面积约为________.16.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段OB ,OA 上的点,若AE =BF ,AB =5,AF =1,BE =3,则BF 的长为________. 17.如图,Rt △OAB 与Rt △OBC 位于平面直角坐标系中,∠AOB =∠BOC =30°,BA ⊥OA ,CB ⊥OB ,若AB =3,反比例函数y =kx (k ≠0)的图像恰好经过点C ,则k =________.18.如图,∠BOD =45°,BO =DO ,点A 在OB 上,四边形ABCD 是矩形,连接AC ,BD 交于点E ,连接OE 交AD 于点F .下列四个判断:①OE 平分∠BOD ;②∠ADB =30°;③DF =2AF ;④若点G 是线段OF 的中点,则△AEG 为等腰直角三角形.其中,判断正确的是________(填序号). 三、解答题(19~26题每题6分,27~28题每题9分,共66分) 19.计算: (1)x xy 2÷⎝ ⎛⎭⎪⎫-23x y ×12x 4y ; (2)(3-2)2+12.20.解方程: (1)3x x -1-21-x =1; (2)x x -2-1=4x 2-4x +4.21.先化简,再求值:⎝ ⎛⎭⎪⎫1-x +1x ÷x 2-1x 2-x ,其中x =2-1.22.今年五一文旅消费强势爆发,旅游数据创新高,国家文旅部公布的5年来全国“五一”假期旅游数据见下表: 年份 接待游客(亿人次) 同比增长率 旅游收入(亿元)同比增长率 2019 1.95 13.70% 1 200.0 16.10% 2020 1.15 -41.03% 480.0 -60.00% 2021 a 100.00% 1 152.0 140.00% 2022 1.6 -30.43% 660.0 -42.71% 20232.7471.25%b125.00%知识链接:同比增长率=(当年发展水平-上一年同期水平)÷上一年同期水 平×100%,如2023年的接待游客同比增长率=(2.74-1.6)÷1.6×100%=71.25%,2020年的旅游收入同比增长率=(480-1 200)÷1 200×100%=-60.00%. (1)求表中的数据a ;(2)请补全如下的接待游客人数与年份的折线统计图;(3)小明说“在接待游客人数和旅游收入两个方面2023年全国‘五一’假期已全面超越2019年全国‘五一’假期”,你同意他的说法吗?请说明你的理由.23.随着2022年底城东快速路的全线通车,徐州主城区与东区之间的交通得以有效改善,某人乘车从徐州东站至戏马台景区,可沿甲路线或乙路线前往.已知甲、乙两条路线的长度均为12 km,甲路线的平均速度为乙路线的32倍,甲路线的行驶时间比乙路线少10 min,求甲路线的行驶时间.24.如图,已知四边形ABCD是平行四边形,其对角线相交于点O,OA=3,BD =8,AB=5.(1)△AOB是直角三角形吗?请说明理由;(2)求证:四边形ABCD是菱形.25.如图,在平面直角坐标系中,直线y1=k1x+b与双曲线y2=k2x相交于A(-2,3),B(m,-2)两点.(1)求y1,y2对应的函数表达式;(2)过点B作BP∥x轴交y轴于点P,求△ABP的面积;(3)根据函数图像,直接写出关于x的不等式k1x+b<k2x的解集.26.如图,已知在△ABC中,点D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠F AC=30°,∠B=45°,求四边形ABCF的周长.27.△ABC中,∠ACB=90°,AC=BC,点D为边AB的中点,点E在线段CD上,连接AE,将线段AE绕点A逆时针旋转90°得到线段AF,连接CF.(1)如图①,当点E与点D重合时,求证:CF=AE;(2)当点E在线段CD上(与点C,D不重合)时,依题意补全图②;用等式表示线段CF,ED,AD之间的数量关系,并证明.28.[概念认识]有一组对角都是直角的四边形叫做“对直角四边形”.[数学理解](1)下列有关“对直角四边形”的说法正确的是________(填写序号);①对直角四边形是轴对称图形;②对直角四边形的对角互补;③对直角四边形的一个外角等于与它相邻内角的对角;④对直角四边形的对角线互相垂直.(2)如图①,在四边形ABCD中,∠A=90°,AB=20,BC=24,CD=7,AD=15.求证:四边形ABCD是对直角四边形;[问题解决](3)如图②,在对直角四边形ABCD中,∠DAB=∠BCD=90°,若CA平分∠BCD.求证AB=AD.答案一、1.B 2.A 3.B 4.B5.D 【点拨】∵矩形ABCD 的对角线AC ,BD 相交于点O ∴∠ABC =90°,AO =BO .∵∠AOB =60°,∴△ABO 是等边三角形. ∴∠BAO =60°.∴∠ACB =30°.∴AC =2AB . ∴BC =3AB .∴AB BC =33. 6.B7.B 【点拨】x -2x 2-4x +4÷1x +6=x -2(x -2)2·(x +6)=x +6x -2=x -2+8x -2=1+8x -2.∵代数式x -2x 2-4x +4÷1x +6的值为F ,且F 为整数∴8x -2为整数,且x ≠2. ∴x -2的值为1,8,4,-1,-8,-2,-4,共7个 ∴F 为整数值的个数有7个.8.A 【点拨】如图,取BG =BF =2,连接EG ,CE .∵四边形ABCD 是正方形 ∴BC =CD =AD =8 ∴CG =BC -BG =6. ∵EB =8,BF =2 ∴EF =6.在△BGE 和△BFC 中⎩⎨⎧BG =BF ,∠EBG =∠CBF ,BE =BC =8,∴△BGE ≌△BFC (SAS).∴∠BEG=∠BCF,∠BGE=∠BFC.∴∠EGC=∠CFE.∵BE=BC=8,∴∠BEC=∠BCE,即∠FEC=∠GCE.∴∠FCE=∠GEC.又∵CG=EF=6,∠EGC=∠CFE,∴△GEC≌△FCE.∴EG=CF.∴DE+CF=DE+EG.∴当E,G,D三点共线时,DE+CF=DE+EG取得最小值,最小值为DG的长.在Rt△CDG中,DG=DC2+CG2=10,即DE+CF的最小值为10.二、9.x>-310.411.(3,0)12.28013.1(答案不唯一)14.m>1且m≠315.2.7 cm2【点拨】∵经过大量重复试验,发现点落在区域内黑色部分的频率稳定在0.7左右,∴估计点落在区域内白色部分的概率为1-0.7=0.3.∴估计区域内白色部分的总面积约为3×3×0.3=2.7(cm2).16.22 【点拨】如图,过A作AN⊥BD于N,过B作BM⊥AC于M∴∠ANO=∠ANB=∠BMA=90°.∵四边形ABCD是矩形∴OB=12BD,OA=12AC,AC=BD.∴OB=OA.∵S△AOB=12OB·AN=12OA·BM,∴AN=BM.∵AE=BF,∴Rt△ANE≌Rt△BMF(HL).∴FM=EN.∵AN=BM,AB=BA,∴Rt△ABN≌Rt△BAM(HL).∴BN=AM.设FM=EN=x.∵AF=1,BE=3,∴BN=3-x,AM=1+x.∴3-x=1+x.∴x=1.∴FM=1,AM=2.∵AB=5,∴BM=AB2-AM2=21.∴BF=FM2+BM2=1+21=22.17.4 3 【点拨】如图,过点C作CE⊥x轴,垂足为E.∵BA ⊥OA ,CB ⊥OB ,∴∠OAB =∠OBC =90°.∵∠AOB =∠BOC =30°,AB = 3 ∴OB =2AB =23,BC =12OC ,∠COE =90°-30°-30°=30°.在Rt △OBC 中,OB 2+BC 2=OC 2,∴12+14OC 2=OC 2.∴OC =4(负值已舍去).∴CE =12OC =2,∴OE =OC 2-CE 2=2 3.∴点C (23,2),∴k =23×2=4 3.18.①③④ 【点拨】①∵四边形ABCD 是矩形∴EB =ED .又∵BO =DO ,∴OE 平分∠BOD ,故①正确.②∵∠BOD =45°,BO =DO∴∠ABD =12×(180°-45°)=67.5°.∵四边形ABCD 是矩形,∴∠OAD =∠BAD =90°.∴∠ABD +∠ADB =90°.∴∠ADB =90°-67.5°=22.5°,故②错误.③易知OE ⊥BD ,∴∠OEB =90°.∴∠BOE +∠OBE =90°.∵∠BDA +∠OBE =90°,∴∠BOE =∠BDA .∵∠BOD =45°,∠OAD =90°,∴∠ADO =45°=∠BOD .∴AO =AD .∴△AOF ≌△ADB (ASA).∴AF =AB .连接BF ,∵∠BAD =90°,∴BF =2AF .∵BE =DE ,OE ⊥BD .∴DF =BF .∴DF =2AF ,故③正确.④根据题意作出图形,如图所示.∵G 是OF 的中点,∠OAF =90°∴AG =OG .∴∠AOG =∠OAG .∵∠AOD =45°,OE 平分∠AOD∴∠AOG =∠OAG =22.5°.∴∠F AG =67.5°.∵四边形ABCD 是矩形,∴EA =ED .∴∠EAD =∠EDA =22.5°.∴∠EAG =∠EAD +∠F AG =90°.∵∠AGE =∠AOG +∠OAG =45°∴∠AEG =45°=∠AGE .∴AE =AG .∴△AEG 为等腰直角三角形,故④正确.综上,判断正确的是①③④.三、19.【解】(1)原式=⎝⎛⎭⎪⎫-x ×32×12 xy 2·y x ·x 4y = -34x x 4y 4=-34x ·x 2y 2=-34x 3y 2;(2)原式=3-4 3+4+2 3=7-2 3.20.【解】(1)方程两边同乘x -1,得3x +2=x -1.解这个方程,得x =-32.检验:当x =-32时,x -1≠0∴x =-32是原方程的解.(2)方程两边同乘(x -2)2,得x (x -2)-(x -2)2=4.解这个方程,得x =4.检验:当x =4时,(x -2)2≠0∴x =4是原方程的解.21.【解】原式=x -(x +1)x ·x (x -1)(x +1)(x -1)=-1x ·x x +1=-1x +1当x =2-1时,原式=-12-1+1=-22. 22.【解】(1)a =1.15×(1+100%)=2.3.(2)补全折线统计图如图:(3)同意.理由如下:由题意知b =660.0×(1+125%)=1 485∵2.74>1.95,1 485>1 200∴2023年全国“五一”假期已全面超越2019年全国“五一”假期.23.【解】设甲路线的行驶时间为x min ,则乙路线的行驶时间为(x +10)min由题意得12x =32×12x +10,解得x =20 经检验,x =20是原方程的解,且符合题意.答:甲路线的行驶时间为20 min.24.(1)【解】△AOB 是直角三角形,理由如下:∵四边形ABCD 是平行四边形,BD =8∴OB =OD =12BD =4.∵OA =3,OB =4,AB =5,∴OA 2+OB 2=AB 2∴△AOB 是直角三角形,且∠AOB =90°.(2)【证明】由(1)可知,∠AOB =90°.∴AC ⊥BD∴平行四边形ABCD 是菱形.25.【解】(1)∵直线y 1=k 1x +b 与双曲线y 2=k 2x 相交于A (-2,3),B (m ,-2)两点∴3=k 2-2,解得k 2=-6. ∴双曲线y 2的表达式为y 2=-6x .把B (m ,-2)代入y 2=-6x ,得-2=-6m ,解得m =3∴B (3,-2).把点A (-2,3)和B (3,-2)的坐标代入y 1=k 1x +b ,得⎩⎨⎧-2k 1+b =3,3k 1+b =-2,解得⎩⎨⎧k 1=-1,b =1.∴直线y 1的表达式为y 1=-x +1.(2)过点A 作AD ⊥BP ,交BP 的延长线于点D .∵BP ∥x 轴,∴AD ⊥x 轴,BP ⊥y 轴.∵A (-2,3),B (3,-2)∴BP =3,AD =3-(-2)=5.∴S △ABP =12BP ·AD =12×3×5=152.(3)-2<x <0或x >3.26.(1)【证明】∵在△ABC 中,点D 是AC 的中点∴AD =DC .∵AF ∥BC ,∴∠F AD =∠ECD ,∠AFD =∠CED .∴△AFD ≌△CED (AAS).∴AF =EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵DE ⊥AC ,∴四边形AECF 是菱形.(2)【解】如图,过点A 作AG ⊥BC 于点G .由(1)知四边形AECF是菱形,∴AE=CE=AF=CF=2.∵∠F AC=30°∴∠F AE=2∠F AC=60°.∵AF∥BC,∴∠AEB=∠F AE=60°.∵AG⊥BC,∴∠AGB=∠AGE=90°.∴∠GAE=30°.∴GE=12AE=1,∴AG= 3.∵∠B=45°,∴∠BAG=90°-45°=45°=∠B.∴BG=AG= 3.∴BC=BG+GE+CE=3+1+2=3+3,AB= 6.∴四边形ABCF的周长=AB+BC+CF+AF=6+3+3+2+2=6+3+7.27.(1)【证明】∵∠ACB=90°,AC=BC,点D为边AB的中点∴CD⊥AD,AD=CD.∵将线段AE绕点A逆时针旋转90°得到线段AF∴AF=AE,∠F AE=90°.∵点E与点D重合,∴AF⊥AD,AF=AD.∴AF∥CD,且AF=CD.∴四边形AFCD为平行四边形.∴CF=AD,即CF=AE.(2)【解】依题意补全图形,如图所示.线段CF,ED,AD之间的数量关系为CF=ED+AD.证明:如图,过点F作FG⊥AB,交DA的延长线于点G,则∠FGA=90°. ∵∠ACB=90°,AC=BC,点D为边AB的中点∴CD⊥AB,AD=CD.∴∠FGA=∠ADE=90°.∴FG∥CD.∵将线段AE绕点A逆时针旋转90°得到线段AF∴AF=AE,∠F AE=90°.∴∠F AG+∠EAD=90°.∵∠F AG+∠GF A=90°∴∠GF A=∠EAD.∴△F AG≌△AED(AAS).∴AG=ED,FG=AD=CD.易证四边形FGDC为矩形∴CF=DG=AG+AD=ED+AD.28.(1)②③(2)【证明】如图①,连接BD.∵∠A=90°,AB=20,AD=15∴BD=AB2+AD2=202+152=25.在△BCD中,CD=7,BC=24∵CD2+BC2=72+242=252=BD2∴△BCD为直角三角形,且∠C=90°.∴四边形ABCD是对直角四边形.(3)【证明】如图②,过点A作AE⊥CD,AF⊥BC,分别交CD的延长线,BC于点E,F∴∠1=∠2=∠3=90°.又∵CA平分∠BCD,∴AE=AF.在四边形AFCE中,∠1=∠3=∠BCD=90°,∴∠EAF=90°.又∵∠BAD=90°,∴∠EAF-∠DAF=∠BAD-∠DAF.∴∠DAE=∠BAF.∴△DAE≌△BAF (ASA).∴AD=AB.。

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下学期期末测试题及答案(共五套)一、选择题1.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是()A.5 B.8 C.10 D.122.江苏移动掌上营业厅,推出“每日签到——抽奖活动”:每个手机号码每日只能签到1次,且只能抽奖1次,抽奖结果有流量红包、话费充值卷、惊喜大礼包、谢谢参与.小明的爸爸已经连续3天签到,且都抽到了流量红包,则“他第4天签到后,抽奖结果是流量红包”是()A.必然事件B.不可能事件C.随机事件D.必然事件或不可能事件3.下列式子为最简二次根式的是()A.22a bB.2a C.12a D.1 24.为了解某校八年级320名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是()A.320名学生的全体是总体B.80名学生是总体的一个样本C.每名学生的体重是个体D.80名学生是样本容量5.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.7.下面调查方式中,合适的是()A.试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B.了解一批袋装食品是否含有防腐剂,选择普查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.调查某新型防火材料的防火性能,采用普查的方式8.下列图形不是轴对称图形的是()A.等腰三角形B.平行四边形C.线段D.正方形9.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.485cm B.245cm C.125cm D.105cm10.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG,下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=12AD.其中正确的有( )A.①②B.①②④C.①③④D.①②③④二、填空题11.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”)12.不透明的袋子里装有3只相同的小球,给它们分别标上序号1、2、3后搅匀.事件“从中任意摸出1只小球,序号为4”是_____事件(填“必然”、“不可能”或“随机”).13.在英文单词tomato中,字母o出现的频数是_____.14.如图,在□ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=______.15.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是.16.在整数20200520中,数字“0”出现的频率是_________.17.如图,在菱形ABCD中,若AC=24 cm,BD=10 cm,则菱形ABCD的高为________cm.18.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.19.如图,在矩形ABCD 中,AB =5,BC =6,P 为AD 上一动点,把△ABP 沿BP 翻折,使点A 落在点F 处,连接CF ,若BF =CF ,则AP 的长为_____.20.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.三、解答题21.解下列方程:(1)9633x x=+- ; (2)241111x x x -+=-+ . 22.如图,四边形ABCD 是正方形,点E 是BC 边上的动点(不与点B 、C 重合),将射线AE 绕点A 按逆时针方向旋转45°后交CD 边于点F ,AE 、AF 分别交BD 于G 、H 两点. (1)当∠BEA =55°时,求∠HAD 的度数;(2)设∠BEA =α,试用含α的代数式表示∠DFA 的大小;(3)点E 运动的过程中,试探究∠BEA 与∠FEA 有怎样的数量关系,并说明理由.23.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.24.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.25.化简求值:221211x x xx x x x++⎛⎫-÷⎪--⎝⎭,其中31x=-26.如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE的形状,并说明理由.27.如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合)连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.28.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验:第一步:如图1在一张纸上画了一个平角∠AOB;第二步:如图2在平角∠AOB内画一条射线,沿着射线将平角∠AOB裁开;第三步:如图3将∠AO'C'放在∠COB内部,使两边分别与OB、OC相交,且O'A=O'C';第四步:连接OO',测量∠COB度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB.你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB的关系是;(2)线段O'A与O'C'的关系是.请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知:求证:证明:【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,易证得四边形CODE是菱形,又由AB=4,BC=3,可求得AC的长,继而求得OC的长,则可求得答案.【详解】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=OD,OC=OA,∠ABC=90°∴OC=OD,∴四边形CODE是菱形∵AB=4,BC=35AC∴=∴OC=5 2∴四边形CODE的周长=4×52=10故选:C.【点睛】本题考查菱形的判定,运用勾股定理解三角形,掌握特殊平行四边形的判定与性质是解题的关键.2.C解析:C【解析】分析:直接利用随机事件的定义进而得出答案.详解:∵有流量红包、话费充值卷、惊喜大礼包、谢谢参与四种等可能情况,∴他第4天签到后,抽奖结果是流量红包为随机事件.故选C.点睛:本题主要考查了随机事件,正确把握相关定义是解题的关键.3.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB|a|,可以化简,故不是最简二次根式;C==,可以化简,故不是最简二次根式;D2故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.C解析:C【分析】根据总体、样本、样本容量及个体的定义对选项逐一判断即可得答案.【详解】A、320名学生的体重情况是总体,故该选项错误;B、80名学生的体重情况是样本,故该选项错误;C、每个学生的体重情况是个体,故该选项正确;D、样本容量是80,故该选项错误;故选:C.【点睛】本题考查总体、个体、样本、样本容量的定义,熟练掌握相关定义是解题关键.5.C解析:C【解析】解:A.是轴对称图形,不是中心对称图形,故本选项错误;B.既不是轴对称图形,又不是中心对称图形,故本选项错误;C.既是轴对称图形又是中心对称图形,故本选项正确;D.不是轴对称图形,是中心对称图形,故本选项错误.故选C.点睛:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.A解析:A【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是中心对称图形,也是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C 、是中心对称图形,不是轴对称图形,故此选项不合题意;D 、不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A .【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.7.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;B 、了解一批袋装食品是否含有防腐剂,适合抽样调查;C 、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;D 、调査某新型防火材料的防火性能,适合抽样调查.故选:C .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.B解析:B【分析】根据轴对称图形的概念判断即可.【详解】等腰三角形是轴对称图形,故A 错误;平行四边形不是轴对称图形,故B 正确;线段是轴对称图形,故C 错误;正方形是轴对称图形,故D 错误;故答案为:B.【点睛】本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.9.B解析:B【解析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,,根据勾股定理,5AB cm ===,设菱形的高为h , 则菱形的面积12AB h AC BD =⋅=⋅, 即15862h =⨯⨯, 解得24.5h = 即菱形的高为245cm . 故选B .10.D解析:D【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=90°,∵点E 、F 、H 分别是AB 、BC 、CD 的中点,∴△BCE ≌△CDF ,∴∠ECB=∠CDF ,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE ⊥DF ,故①正确;在Rt △CGD 中,H 是CD 边的中点,∴HG=12CD=12AD ,故④正确; 连接AH ,同理可得:AH ⊥DF ,∵HG=HD=12CD , ∴DK=GK ,∴AH 垂直平分DG ,∴AG=AD ,故②正确;∴∠DAG=2∠DAH ,同理:△ADH ≌△DCF ,∴∠DAH=∠CDF ,∵GH=DH ,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选D.【点睛】运用了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.二、填空题11.不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.解析:不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.12.不可能【分析】根据三只小球中没有序号为4的小球进行判断即可求解.【详解】解:∵三只小球中没有序号为4的小球,∴事件“从中任意摸出1只小球,序号为4”是不可能事件,故答案为:不可能.【点解析:不可能【分析】根据三只小球中没有序号为4的小球进行判断即可求解.【详解】解:∵三只小球中没有序号为4的小球,∴事件“从中任意摸出1只小球,序号为4”是不可能事件,故答案为:不可能.【点睛】本题考查了事件发生的可能性.一定不可能发生的事件是不可能事件;一定会发生的事件是必然事件;有可能发生,也有可能不发生的事件是随机事件.13.2【分析】根据频数定义可得答案.【详解】解:字母o 出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.解析:2【分析】根据频数定义可得答案.【详解】解:字母o 出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.14.3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,∵点E. F 分别是BD 、CD 的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.15.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147.考点:概率公式.16.5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是.故答案为:.【点睛】此题主要考查了频率的求解析:5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.17.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.18.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.19.【分析】过点F作EN∥DC交BC于点N,交AD于点E,设AP=x,则PF=x,得出(3﹣x)2+12=x2,解方程即可得解.【详解】解:过点F作EN∥DC交BC于点N,交AD于点E,∵四解析:5 3【分析】过点F作EN∥DC交BC于点N,交AD于点E,设AP=x,则PF=x,得出(3﹣x)2+12=x2,解方程即可得解.【详解】解:过点F作EN∥DC交BC于点N,交AD于点E,∵四边形ABCD是矩形,∴∠A=∠D=∠DCB=90°,∴FN⊥BC,FE⊥AD,∵BF=CF,BC=6,∴CN=BN=3,由折叠的性质可知,AB=BF=5,AP=PF,∴224FN BF BN=-=,∴EF =EN ﹣FN =5﹣4=1,设AP =x ,则PF =x ,∵PE 2+EF 2=PF 2,∴(3﹣x )2+12=x 2, 解得,53x =, 故答案为:53. 【点睛】本题主要考查了折叠变换的性质、等腰三角形的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠变换的性质、勾股定理是关键. 20.或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC ,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角 解析:103或5 【分析】 当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示.连结AC ,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB ′E=∠B=90°,而当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,所以点A 、B ′、C 共线,即ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,则EB=EB ′,AB=AB ′=5,可计算出CB ′=8,设BE=a ,则EB ′=a ,CE=12-a ,然后在Rt △CEB ′中运用勾股定理可计算出a .②当点B ′落在AD 边上时,如图2所示.此时ABEB ′为正方形.【详解】当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示,连结AC ,在Rt △ABC 中,AB=5,BC=12,∴=13,∵将ΔABE 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°,当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即将ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,设:BE a B'E ==,则CE 12a =-,AB AB'5==,B'C AC AB'1358=-=-=,由勾股定理得:()22212a a 8-=+,解得:10a3 =;②当点B′落在AD边上时,如图2所示,此时ABEB′为正方形,∴BE=AB=5,综上所述,BE的长为103或5,故答案为103或5.【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题21.(1)35x=;(2)原方程无解【分析】(1)分式方程两边同乘以(3+x)(3﹣x)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即得结果.【详解】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=35,检验:当x=35时,(3+x)(3﹣x)≠0,∴x=35是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,∴x=﹣1是增根,原方程无解.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题的关键.22.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可;(2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.【详解】解:(1)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;(2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°,∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=,∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;(3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI .∵四边形ABCD 是正方形,∴AD =AB ,∠ADF =∠ABC =90°,∴∠ABI =90°,又∵BI =DF ,∴△DAF ≌△BAI (SAS ),∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF ,又∵AE 是△EAI 与△EAF 的公共边,∴△EAI ≌△EAF (SAS ),∴∠BEA =∠FEA .【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.23.(1)图见解析;(2)图见解析;(3)x 的值为6或7.【分析】(1)分别作出B、C的对应点B1,C1即可解决问题;(2)分别作出A、B、C的对应点A2、B2、C2即可解决问题;(3)观察图形即可解决问题.【详解】(1)作图如下:△AB1C1即为所求;(2)作图如下:△A2B2C2即为所求;(3)P点如图,x的值为6或7.【点睛】本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.24.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE 的周长为16cm ,AC 的长8cm ,∴BC =16﹣AB ,∵在Rt △ABC 中,∠ACB =90°,∴AB 2=BC 2+AC 2,即AB 2=(16﹣AB )2+82,解得:AB =10cm ,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.25.11x +;3【分析】通分合并同类项,再约分,代入求值.【详解】 原式222111(1)x x x x x x -=⋅=+-+代入得原式3==. 【点睛】本题考查分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.26.菱形,理由见解析【分析】根据平行四边形的判定得出四边形BDEF 是平行四边形,再利用平行四边形的性质和等腰三角形的判定得出DE =BD ,进而利用菱形的判定解答即可.【详解】四边形DBFE 是菱形,理由如下:∵DE ∥BC ,EF ∥AB ,∴四边形DBEF 是平行四边形,∴DE ∥BC ,∴∠DEB =∠EBF ,∵BE 平分∠ABC ,∴∠DBE =∠EBF ,∴∠DBE =∠DEB ,∴BD =DE ,∴平行四边形DBEF 是菱形.【点睛】此题考查菱形的判定,关键是根据平行四边形的判定得出四边形BDEF 是平行四边形解答.27.(1)见解析;(2)32;(3)见解析【分析】(1)根据同角的余角相等得到∠GCB =∠FBA ,利用ASA 定理证明△ABF ≌△BCE ; (2)根据全等三角形的性质得到BF =CE =8,根据三角形的面积公式计算,得到答案; (3)作DH ⊥CE ,设AB =CD =BC =2a ,根据勾股定理用a 表示出CE ,根据三角形的面积公式求出BG ,根据勾股定理求出CG ,证明△CHD ≌△BGC ,得到CH =BG ,证明CH =GH ,根据线段垂直平分线的性质证明结论.【详解】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE =90°=∠A ,BC =AB ,∴∠FBA +∠CBG =90,∴∠GCB =∠FBA ,在△ABF 和△BCE 中,A CBE AB BCABF BCE ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△BCE (ASA );(2)解:∵△ABF ≌△BCE ,∴BF =CE =8,∴四边形BEFC 的面积=△BCE 的面积+△FCE 的面积 =12×CE ×FG +12×CE ×BG =12×CE ×(FG +BG ) =12×CE ×BF =12×8×8 =32;(3)证明:如图3,过点D 作DH ⊥CE 于H ,设AB =CD =BC =2a ,∵点E 是AB 的中点,∴EA =EB =12AB =a , ∴CE=,在Rt △CEB 中,12BG •CE =12CB •EB , ∴BG =255CB EB a CE ⋅=, ∴CG =22455BC BG a -=, ∵∠DCE +∠BCE =90°,∠CBF +∠BCE =90°,∴∠DCE =∠CBF ,∵CD =BC ,∠CHD =∠CGB =90°,∴△CHD ≌△BGC (AAS ),∴CH =BG =25a , ∴GH =CG ﹣CH =25a =CH , ∵CH =GH ,DH ⊥CE ,∴CD =GD ;【点睛】本题通过正方形动点问题引入,考查了三角形全等、勾股定理和垂直平分线定理的应用.28.(1)互补;(2)相等;证明见解析【分析】根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .【详解】(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等.已知:AO C ∠''+∠COB=180︒,O'A=O'C',求证:'OO 平分∠COB .证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),∴O C B OAO ∠=∠''',∵O'A=O'C',∴Rt △Rt AO D '≅△C O E '',∴O D O E '=',∵O D '⊥OC ,O E '⊥OB ,∴'OO 平分∠COB .【点睛】本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.。

苏科八年级苏科初二数学下册期末测试题及答案(共五套)

苏科八年级苏科初二数学下册期末测试题及答案(共五套)

苏科八年级苏科初二数学下册期末测试题及答案(共五套)一、选择题1.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC 的度数为( )A .35°B .40°C .45°D .60°2.如图,▱ABCD 的周长为22m ,对角线AC 、BD 交于点O ,过点O 与AC 垂直的直线交边AD 于点E ,则△CDE 的周长为( )A .8cmB .9cmC .10cmD .11cm3.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意..四边形的面积为a ,则它的中点四边形面积为( ) A .12a B .23a C .34a D .45a 4.反比例函数3y x=-,下列说法不正确的是( ) A .图象经过点(1,-3)B .图象位于第二、四象限C .图象关于直线y=x 对称D .y 随x 的增大而增大5.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠6.如图所示,在矩形ABCD 中,E 为AD 上一点,EF CE ⊥交AB 于点F ,若2DE =,矩形ABCD 的周长为16,且CE EF =,求AE 的长( )A.2B.3C.4D.67.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是2.2 S=甲, 1.8S=乙, 3.3S=丙,S a=丁,a是整数,且使得关于x的方程2(2)410a x x-+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a的取值可以是()A.3B.2C.1D.1-8.要反应一周气温的变化情况,宜采用()A.统计表B.条形统计图C.扇形统计图D.折线统计图9.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A.9m B.12m C.8m D.10m10.如图,E是正方形ABCD边AB延长线上一点,且BD=BE,则∠E的大小为()A.15°B.22.5°C.30°D.45°二、填空题11.在英文单词tomato中,字母o出现的频数是_____.12.若分式x3x3--的值为零,则x=______.13.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.14.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.15.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是(填一种情况即可).16.如图,在菱形ABCD 中,8AB =,60B ∠=︒,点G 是边CD 的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF ED +的最小值是_________.17.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数ky x=(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.18.为了了解某校学生的视力情况,随机抽取了该校50名学生进行调查.整理样本数据如表:根据抽样调查结果,估计该校1200名初中学生视力不低于4.8的人数是_____. 19.x 千克橘子糖、y 千克椰子糖、z 千克榴莲糖混合成“什锦糖”.已知这三种糖的单价分别为30元/千克、32元/千克、40元/千克,则这种“什锦糖”的单价为_____元.(用含x 、y 、z 的代数式表示)20.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.三、解答题21.自2009年以来,“中国•兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如表:批次123456油菜籽粒100400800100020005000数发芽油菜a31865279316044005籽粒数发芽频率0.8500.7950.8150.793b0.801(1)分别求a和b的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1);(3)农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.22.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.23.如图,在平面直角坐标系中,点O为坐标原点,AB// OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.(1)在t=3时,M点坐标,N点坐标;(2)当t为何值时,四边形OAMN是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.24.已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF求证:AC、EF互相平分.25.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?26.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.27.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验:第一步:如图1在一张纸上画了一个平角∠AOB;第二步:如图2在平角∠AOB内画一条射线,沿着射线将平角∠AOB裁开;第三步:如图3将∠AO'C'放在∠COB内部,使两边分别与OB、OC相交,且O'A=O'C';第四步:连接OO',测量∠COB度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB.你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB的关系是;(2)线段O'A与O'C'的关系是.请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知: 求证: 证明:28.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=12(180°-∠BAC)=12(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=12BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故选:C.【点睛】此题考查等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解题的关键.2.D【解析】 【分析】由平行四边形的性质可得AB =CD ,AD =BC ,AO =CO ,可得AD+CD =11cm ,由线段垂直平分线的性质可得AE =CE ,即可求△CDE 的周长=CE+DE+CD =AE+DE+CD =AD+CD =11cm . 【详解】解:∵四边形ABCD 是平行四边形 ∴AB =CD ,AD =BC ,AO =CO , 又∵EO ⊥AC , ∴AE =CE ,∵▱ABCD 的周长为22cm , ∴2(AD+CD )=22cm ∴AD+CD =11cm∴△CDE 的周长=CE+DE+CD =AE+DE+CD =AD+CD =11cm 故选:D . 【点睛】本题考查了平行四边形的性质,线段垂直平分线的性质,熟练运用平行四边形的性质是本题的关键.3.A解析:A 【分析】由E 为AB 中点,且EF 平行于AC ,EH 平行于BD ,得到△BEK 与△ABM 相似,△AEN 与△ABM 相似,利用面积之比等于相似比的平方,得到△EBK 面积与△ABM 面积之比为1:4,且△AEN 与△EBK 面积相等,进而确定出四边形EKMN 面积为△ABM 的一半,同理得到四边形KFPM 面积为△BCM 面积的一半,四边形QGPM 面积为△DCM 面积的一半,四边形HQMN 面积为△DAM 面积的一半,四个四边形面积之和即为四个三角形面积之和的一半,即为四边形ABCD 面积的一半,即可得出答案. 【详解】解:如图,画任意四边形ABCD ,设AC 与EH ,FG 分别交于点N ,P ,BD 与EF ,HG 分别交于点K ,Q ,则四边形EFGH 即为它的中点四边形,∵E 是AB 的中点,EF//AC ,EH//BD , ∴△EBK ∽△ABM ,△AEN ∽△ABM ,∴EBK ABM S S ∆∆=14,S △AEN =S △EBK ,∴EKMN ABMS S ∆四边形=12, 同理可得:KFPM BCMS S ∆四边形=12,QGPM DCM S S ∆四边形=12,HQMN DAM S S ∆四边形=12, ∴EFGH ABCDS S 四边形四边形=12, ∵四边形ABCD 的面积为a , ∴四边形EFGH 的面积为12a , 故选:A . 【点睛】本题考查了三角形中位线的性质,相似三角形的判定和性质,掌握知识点是解题关键.4.D解析:D 【解析】 【分析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案. 【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x=-关于y x =对称是正确的,故C 也是正确的,由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的, 故选:D . 【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.5.D解析:D 【分析】利用旋转的性质得AC=CD ,BC=EC ,∠ACD=∠BCE ,所以选项A 、C 不一定正确 再根据等腰三角形的性质即可得出A EBC ∠=∠,所以选项D 正确;再根据∠EBC =∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可.【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆, ∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE2∠︒-, ∴选项A 、C 不一定正确 ∴∠A =∠EBC∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090, ∴选项B 不一定正确; 故选D . 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.6.B解析:B 【分析】易证△AEF ≌△ECD ,可得AE=CD ,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE 的长度. 【详解】∵四边形ABCD 为矩形, ∴∠A=∠D=90°, ∵EF ⊥CE , ∴∠CEF=90°, ∴∠CED+∠AEF=90°, ∵∠CED+∠DCE=90°, ∴∠DCE=∠AEF , 在△AEF 和△DCE 中,A D AEF DCE EF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DCE(AAS), ∴AE=DC ,由题意可知:2(AE+DE+CD)=16,DE=2, ∴2AE=6, ∴AE=3; 故选:B . 【点睛】本题考查了矩形的性质,全等三角形的性质和判定以及直角三角形的性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.7.C解析:C【分析】根据方程的根的情况得出a 的取值范围,结合乙同学的成绩最稳定且a 为整数即可得a 得取值.【详解】∵关于于x 的方程2(2)410a x x -+-=有两个不相等的实数根, ∴()=16+42>0,a ∆-且20.a -≠ 解得:>-2a 且 2.a ≠∵丁同学的成绩最稳定,∴<1.8a 且0a >.则a=1.故答案选:C.【点睛】本题主要考查了方差的意义理解,结合一元二次方程的根的判别式进行求解.8.D解析:D【分析】反应一周气温的变化情况,即反应一周气温的升高、降低的变化情况,因此采取折线统计图较好.【详解】解:折线统计图能够直观反应出一组数据的增减变化情况,因此要反应一周的气温变化情况,采用折线统计图较好,故选:D .【点晴】本题考查了各种统计图表的特征及应用,掌握统计图表的特征是解题的关键.9.A解析:A【分析】根据三角形的中位线定理解答即可.【详解】解:∵A 、B 分别是CD 、CE 的中点,DE =18m ,∴AB =12DE =9m , 故选:A .【点睛】本题考查了三角形的中位线定理:三角形的中位线平行于第三边并且等于第三边的一半.10.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.二、填空题11.2【分析】根据频数定义可得答案.【详解】解:字母o出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.解析:2【分析】根据频数定义可得答案.【详解】解:字母o出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.12.-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零解析:-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.14.28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.BE=DF(答案不唯一)【分析】根据平行四边形的判定添加条件即可.【详解】解:如图,连接AC交BD于点O,∵四边形ABCD为平行四边形,∴AO=CO,BO=DO,∴当BE=DF时,可得解析:BE=DF(答案不唯一)【分析】根据平行四边形的判定添加条件即可.【详解】解:如图,连接AC交BD于点O,∵四边形ABCD为平行四边形,∴AO=CO,BO=DO,∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形,∴可增加BE=DF,故答案为:BE=DF(答案不唯一).【点睛】本题考查了平行四边形的判定,是开放题,答案不唯一,熟练掌握判定定理是解题的关键.16.【分析】由题意,点D 与点C 关于AG 对称,连接EC ,FC ,再利用垂线段最短求值即可【详解】解:连接,,如图在菱形中,,∴是边长为8的等边三角形∵是的中点∴∴是的垂直平分线∴∵, 解析:43【分析】由题意,点D 与点C 关于AG 对称,连接EC ,FC ,再利用垂线段最短求值即可【详解】解:连接EC ,FC ,如图在菱形ABCD 中,60B ∠=︒,8AB =∴ACD ∆是边长为8的等边三角形∵G 是CD 的中点∴AG CD ⊥∴AG 是CD 的垂直平分线∴EC ED =∵EF EC FC +≥,CF AD ⊥时,CF 最小∴EF ED +的最小值是等边ACD ∆的高:38432⨯= 故答案为:43.【点睛】 本题考查菱形的性质、垂线段最短、等边三角形的判定、勾股定理等知识,解决问题的关键是利用垂线段最短解决最小值问题,属于中考常考题型.17.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形,解析:163【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上, ∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =, ∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.18.720【分析】先根据表格中的数据可得初中学生视力不低于4.8的人数占比,再乘以1200即可得.【详解】由表可知,初中学生视力不低于4.8的人数占比为则(人)即估计该校1200名初中学生视解析:720【分析】先根据表格中的数据可得初中学生视力不低于4.8的人数占比,再乘以1200即可得.【详解】由表可知,初中学生视力不低于4.8的人数占比为7914100%60%50++⨯= 则120060%720⨯=(人)即估计该校1200名初中学生视力不低于4.8的人数是720故答案为:720.【点睛】本题考查了利用样本所占百分比估计总体的数量,理解题意,掌握样本估计总体的方法是解题关键.19.【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:;故答案为:.【点睛】本题考查列代数式,解题的关键是读懂题意. 解析:303240x y z x y z++++ 【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】 解:根据题意知,这种什锦糖的单价为:303240x y z x y z++++; 故答案为:303240x y z x y z++++. 【点睛】 本题考查列代数式,解题的关键是读懂题意.20.【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a ,x11,x12,…,x30的平均数为b ,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求 解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b +故答案为:1(1020)30a b +. 【点睛】 本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.三、解答题21.(1)85a,0.802b =;(2)0.8;(3)4800 【分析】(1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值.(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率. (3)用油菜籽总数乘以发芽概率即可求得发芽粒数.【详解】(1)1000.85085a =⨯=,16040.8022000b ==; (2)∵观察表格发现发芽频率逐渐稳定到0.8附近,∴该品种油菜籽发芽概率的估计值为0.8;(3)60000.8=4800⨯,故估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800.【点睛】本题考查统计与概率,解题关键在于信息筛选能力,对频率计算公式的理解,其次注意计算仔细即可.22.(1)图见解析;(2)图见解析;(3)x 的值为6或7.【分析】(1)分别作出B 、C 的对应点B 1,C 1即可解决问题;(2)分别作出A 、B 、C 的对应点A 2、B 2、C 2即可解决问题;(3)观察图形即可解决问题.【详解】(1)作图如下:△AB 1C 1即为所求;(2)作图如下:△A 2B 2C 2即为所求;(3)P点如图,x的值为6或7.【点睛】本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.23.(1)(3,8);(15,0);(2)t=7;(3)能,t=5.【分析】(1)根据点B、C的坐标求出AB、OA、OC,然后根据路程=速度×时间求出AM、CN,再求出ON,然后写出点M、N的坐标即可;(2)根据有一个角是直角的平行四边形是矩形,当AM=ON时,四边形OAMN是矩形,然后列出方程求解即可;(3)先求出四边形MNCB是平行四边形的t值,并求出CN的长度,然后过点B作BC⊥OC于D,得到四边形OABD是矩形,根据矩形的对边相等可得OD=AB,BD=OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.【详解】解:(1)∵B(15,8),C(21,0),∴AB=15,OA=8,OC=21,当t=3时,AM=1×3=3,CN=2×3=6,∴ON=OC-CN=21﹣6=15,∴点M(3,8),N(15,0);故答案为:(3,8);(15,0);(2)当四边形OAMN是矩形时,AM=ON,∴t=21-2t,解得t=7秒,故t=7秒时,四边形OAMN是矩形;(3)存在t=5秒时,四边形MNCB能否为菱形.理由如下:四边形MNCB是平行四边形时,BM=CN,∴15-t=2t,解得:t=5秒,此时CN=5×2=10,过点B作BD⊥OC于D,则四边形OABD是矩形,∴OD=AB=15,BD=OA=8,CD=OC-OD=21-15=6,在Rt△BCD中,BC=22=10,BD CD∴BC=CN,∴平行四边形MNCB是菱形,故,存在t=5秒时,四边形MNCB为菱形.【点睛】本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键.24.证明见解析【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.25.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.26.(1)见解析(2)10 【分析】(1)根据平行四边形的性质得到AD =BC =3,AD ∥BC ,得到AD =CE ,推出四边形ACED 是平行四边形,由垂直的定义得到∠ACE =90°,于是得到结论;(2)根据三角形的中位线定理得到OC =12DE =12AC =1,由勾股定理即可得到结论. 【详解】 (1)证明:∵在平行四边形ABCD 中,AD =BC =3,AD ∥BC ,∵CE =3,∴AD =CE ,∴四边形ACED 是平行四边形,∵AC ⊥BC ,∴∠ACE =90°,∴四边形ACED 为矩形;(2)解:连接OE ,如图,∵BO =DO ,BC =CE ,∴OC =12DE =12AC =1, ∵∠ACE =90°,∴OE 22221310OC CE +=+=【点睛】本题主要考查了平行四边形的性质,结合三角形中位线定理和勾股定理进行求解.27.(1)互补;(2)相等;证明见解析【分析】根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .【详解】(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等.已知:AO C ∠''+∠COB=180︒,O'A=O'C',求证:'OO 平分∠COB .证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),∴O C B OAO ∠=∠''',∵O'A=O'C',∴Rt △Rt AO D '≅△C O E '',∴O D O E '=',∵O D '⊥OC ,O E '⊥OB ,∴'OO 平分∠COB .【点睛】本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.28.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s =或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s =或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=,①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝⎭,解得3/a cm s =,∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。

苏科初中苏科八年级数学下学期期末考试试卷

苏科初中苏科八年级数学下学期期末考试试卷

苏科初中苏科八年级数学下学期期末考试试卷一、解答题1.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.2.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.的顶点均4.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),ABC在格点上,请在所给的平面直角坐标系中解答下列问题:(1)作出ABC ∆绕点A 逆时针旋转90°后的111A B C ∆; (2)作出111A B C ∆关于原点O 成中心对称的222A B C ∆.5.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m _________,扇形D 所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人? 6.如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点A(-6,0),D(-7,3),点B 、C 在第二象限内.(1)点B 的坐标 ;(2)将正方形ABCD 以每秒1个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t,使在第一象限内点B 、D 两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x 轴上的点P 和反比例函数图象上的点Q,使得以P 、Q 、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P 、Q 的坐标;若不存在,请说明理由.7.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?8.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.9.先化简,再求代数式(1﹣32x+)÷212xx-+的值,其中x=4.10.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x <2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?11.如图,在平面直角坐标系中,△ABC和△A'B'C'的顶点都在格点上.(1)将△ABC绕点B顺时针旋转90°后得到△A1BC1;(2)若△A'B'C'是由△ABC绕某一点旋转某一角度得到,则旋转中心的坐标是.12.(发现)(1)如图1,在▱ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F.求证:△AOE≌△COF;(探究)(2)如图2,在菱形ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F,若AC=4,BD=8,求四边形ABFE的面积.(应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)13.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为 度; (4)在扇形统计图中表示观点E 的百分比是 .14.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .(1)求证:BD DF =; (2)求证:四边形BDFG 为菱形;(3)若13AG =,6CF =,求四边形BDFG 的周长.15.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)详见解析;(2)24 【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点 ∴AE =DE ∵AF ∥BC ∴∠AFE =∠DBE在△AEF 和△DEB 中AFE DBE DEB AEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△DEB (AAS ) ∴AF =DB ∵D 是BC 的中点 ∴BD=CD=AF∴四边形ADCF 是平行四边形 ∵∠BAC =90°, ∴AD =CD =12BC ∴四边形ADCF 是菱形;(2)解:设AF 到CD 的距离为h ,∵AF ∥BC ,AF =BD =CD ,∠BAC =90°,AC =6,AB =8 ∴S 菱形ADCF =CD•h =12BC•h =S △ABC =12AB•AC =168242⨯⨯=. 【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.2.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可; (2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可. 【详解】解:(1)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°; (2)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =∠ADF =90°, ∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=, ∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α; (3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI . ∵四边形ABCD 是正方形, ∴AD =AB ,∠ADF =∠ABC =90°, ∴∠ABI =90°, 又∵BI =DF ,∴△DAF ≌△BAI (SAS ), ∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF , 又∵AE 是△EAI 与△EAF 的公共边, ∴△EAI ≌△EAF (SAS ), ∴∠BEA =∠FEA . 【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解. 3.(1)见解析;(2)见解析. 【分析】(1)由“AAS”可证△AFE ≌△DBE ,从而得AF=BD(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF 是平行四边形,由直角三角形的性质的AD =DC ,即可证明四边形ADCF 是菱形. 【详解】 (1)∵AF ∥BC , ∴∠AFE=∠DBE∵△ABC 是直角三角形,AD 是BC 边上的中线,E 是AD 的中点, ∴AE=DE ,BD=CD 在△AFE 和△DBE 中,AFE DBE AEF BED AE DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AFE ≌△DBE (AAS )) ∴AF=BD(2)由(1)知,AF=BD ,且BD=CD , ∴AF=CD ,且AF ∥BC , ∴四边形ADCF 是平行四边形 ∵∠BAC=90°,D 是BC 的中点, ∴AD =12BC =DC ∴四边形ADCF 是菱形 【点睛】本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质.证明AD =DC 是解题的关键.4.(1)见解析 (2)见解析 【分析】(1)本题考查图形的旋转变换以及作图,根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°后的点1A 、1B 、1C 的位置,然后顺次连接即可.(2)本题考查中心对称图形的作图,找出点1A 、1B 、1C 关于原点O 成中心对称的点2A 、2B 、2C 的位置,然后顺次连接即可.【详解】【点睛】解答此类型题目首先要清楚旋转图形和中心对称图形的性质,按照图形定义进行作图,作图时先找点,继而由点连成线.5.(1)50;32;43.2 (2)见解析 (3)1120人 【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可. 【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2 (2)5040%20⨯=(人), 补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 6.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为ky x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论. 【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形, ∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°, ∴∠ADE=∠BAF . 在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△BAF (AAS ), ∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3), ∴DE=3,AE=1,∴点B的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k yx=,由题意得:点B′坐标为(-3+t,1),点D′坐标为(-7+t,3),∵点B′和D′在该比例函数图象上,∴33(7)k tk t=-+⎧⎨=⨯-+⎩,解得:t=9,k=6,∴反比例函数解析式为6yx=.(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,6n).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴63162nm n⎧-=⎪⎨⎪-=-⎩,解得:13232mn⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关键.7.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.8.(1)见解析;(2)①②③④;(3)①证明见解析;②【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,∵∠ACB=15°, ∴∠AMB=30°, ∵∠ACD=30°, ∴∠AMD=60°, ∴∠BMD=90°,∴△BMD 是等腰直角三角形,∴BM=DM=2BD=2=1, ∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC ×sin30°=1,CD=AC ×cos30°∴菱形ACEF 的面积=12×1×4= 【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键. 9.11x +;15【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可. 【详解】 解:原式=()()232211x x x x x +-+⋅++- ()()12211x x x x x -+=⋅++- 11x =+ 当x =4时,原式=15. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则. 10.(1)200;72° (2)见解析 (3)1300名 【分析】(1)由D 组人数及其所占百分比可得总人数;用360°乘以B 所占的百分比即可求出扇形B 的圆心角的度数;(2)根据各组人数之和等于总人数求出A 组人数,从而补全统计图;(3)用该校的总人数乘以每周阅读时间不少于4小时的学生所占的百分比即可. 【详解】解:(1)本次随机抽查的学生人数为:60÷30%=200(名), 扇形B 的圆心角的度数为:360°×40200=72°; 故答案为:200,72°;(2)A 组人数为:200﹣(40+70+60)=30(人),补全图形如下:(3)根据题意得: 2000×7060200=1300(名), 答:估计每周阅读时间不少于4小时的学生共有. 【点睛】本题考查了频数分布直方图,扇形图,用样本估计总体等知识,总体难度不大,根据直方图和扇形图提供的公共信息D 组信息得到样本容量是解题关键. 11.(1)见解析 (2)(3,4) 【分析】(1)根据网格结构找出点A 、C 绕点B 顺时针旋转90°后的对应点A 1、C 1的位置,然后顺次连接即可;(2)根据旋转的性质,确定出旋转中心即可. 【详解】解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4), 故答案为(3,4).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.12.(1)见解析 (2)8 (3)见解析 【分析】(1)根据ASA 证明三角形全等即可. (2)证明S 四边形ABFE =S △ABC 可得结论.(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一). 【详解】(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形, ∴AO =OC ,AD ∥BC , ∴∠EAO =∠FCO , 在△AOE 和△COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ).(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF , ∴S △AOE =S △COF , ∴S 四边形ABFE =S △ABC , ∵四边形ABCD 是菱形, ∴S △ABC =12S 菱形ABCD , ∵S 菱形ABCD =12•AC •BD =12×4×8=16, ∴S 四边形ABFE =12×16=8. (3)【应用】①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;②连接下面左边数第二个小正方形右上角和左下角的顶点;③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可. 如图3中,直线l 即为所求(答案不唯一).【点睛】本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.13.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C的人数,从而可以将条形统计图补充完整;(3)根据选B的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B的扇形的圆心角度数为:360°×2505000=18°,故答案为:18;(4)在扇形统计图中表示观点E的百分比是:2005000×100%=4%,故答案为:4%.【点睛】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.(1)详见解析;(2)详见解析;(3)20 【分析】(1)先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD FD =;(2)由邻边相等可判断四边形BGFD 是菱形;(3)设GF x =,则13AF x =-,2AC x =,在Rt ACF ∆中利用勾股定理可求出x 的值. 【详解】 (1)证明:90ABC ∠=︒,BD 为AC 的中线,12BD AC ∴=//AG BD ,BD FG =,∴四边形BDFG 是平行四边形,CF BD ⊥ CF AG ∴⊥又点D 是AC 的中点12DF AC ∴=BD DF ∴=.(2)证明:由(1)知四边形BDFG 是平行四边形 又BD DF =BDFG ∴是菱形(3)解:设GF x =则13AF x =-,2AC x =,6CF =,在Rt ACF ∆中,222CF AF AC +=2226(13)(2)x x ∴+-=解得5x =4520BDFG C ∴=⨯=菱形.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD 是菱形.15.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果. 【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s=或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s =②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s=或时,使得APQ ∆为直角三角形()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥ 12PM BM BP ∴==ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=,①当83t≤时,由题意有832382tt at-⎛⎫+=+⎪⎝⎭,解得3/a cm s=,②当83t≥时,由题意有382382tt at-⎛⎫-=+⎪⎝⎭,解得3/a cm s=,∴综上所述,存在3/a cm s=时,BPQ∆恒为以BP为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。

新苏科版初中苏科八年级数学下册第二学期期末考试试卷

新苏科版初中苏科八年级数学下册第二学期期末考试试卷

新苏科版初中苏科八年级数学下册第二学期期末考试试卷一、选择题1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个2.下列调查中,适合采用普查的是( )A .了解一批电视机的使用寿命B .了解全省学生的家庭1周内丢弃塑料袋的数量C .为保证某种新研发的战斗机试飞成功,对其零部件进行检查D .了解扬州市中学生的近视率3.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ’,若∠C =120°,∠A =26°,则∠A ′DB 的度数是( )A .120°B .112°C .110°D .100°4.已知反比例函3y x =-,下列结论中不正确的是( ) A .图像经过点(1,3)- B .图像在第二、四象限C .当1x >时,30y <<D .当0x <,y 随着x 的增大而减小5.下列条件中,不能..判定平行四边形ABCD 为矩形的是( ) A .∠A =∠C B .∠A =∠B C .AC =BD D .AB ⊥BC 6.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意..四边形的面积为a ,则它的中点四边形面积为( )A .12aB . 23a C .34a D .45a 7.下列说法正确的是( ) A .矩形的对角线相等垂直B .菱形的对角线相等C .正方形的对角线相等D .菱形的四个角都是直角8.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是2.2S =甲, 1.8S =乙, 3.3S =丙,S a =丁,a 是整数,且使得关于x 的方程2(2)410a x x -+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a 的取值可以是( )A .3B .2C .1D .1-9.如图,正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于G ,连接AG 、HG ,下列结论:①CE ⊥DF ;②AG=AD ;③∠CHG=∠DAG ;④HG=12AD .其中正确的有( )A .① ②B .① ② ④C .① ③ ④D .① ② ③ ④10.如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 平行于AB 的次数是( )A .2B .3C .4D .5二、填空题11.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________.12.如图,在菱形ABCD 中,8AB =,60B ∠=︒,点G 是边CD 的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF ED +的最小值是_________.13.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数k y x=(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.14.如图,在矩形ABCD中,AC、BD交于点O,DE⊥AC于点E,若∠AOD=110°,则∠CDE=________°.15.如图,将△ABC绕点A旋转到△AEF的位置,点E在BC边上,EF与AC交于点G.若∠B=70°,∠C=25°,则∠FGC=___°.16.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.17.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是 .18.如图,正方形ABCD的边长为a,对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F,正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积为_____(用含a的代数式表示)19.若关于x的分式方程233x ax x+--=2a无解,则a的值为_____.20.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.三、解答题21.先化简:22241a aa a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a的值代入求值.22.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB 边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.23.如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.24.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.25.计算:242933 x x xx x-----26.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.27.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.28.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知ABCS=160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】第1个,即不是轴对称图形,也不是中心对称图形,故本选项错误;第2个,既是轴对称图形,也是中心对称图形,故本选项正确;第3个,既是轴对称图形,也是中心对称图形,故本选项正确;第4个,既是轴对称图形,也是中心对称图形,故本选项正确.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,掌握中心对称图形与轴对称图形的概念是解题关键.2.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.3.B解析:B【分析】根据轴对称和平行线的性质,可得∠A 'DE =∠B ,又根据∠C =120°,∠A =26°可求出∠B 的值,继而求出答案.【详解】解:由题意得:DE ∥BC ,∴∠A 'DE =∠B =180°﹣120°﹣26°=34°,∴∠BDE =180°﹣∠B =146°,故∠A 'DB =∠BDE ﹣∠A 'DE =146°﹣34°=112°.故选:B .【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.4.D解析:D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】解:A 、∵()133-⨯=-,∴图象必经过点(1,3)-,故本选项正确;B 、∵30k =-<,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C 、∵1x =时,3y =-且y 随x 的增大而而增大,∴1x >时,30y -<<,故本选项正确;D 、函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误.故选:D .【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质进行解题.5.A解析:A【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可.【详解】A 、∠A=∠C 不能判定这个平行四边形为矩形,故此项错误;B 、∵∠A=∠B ,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确;C 、AC=BD ,对角线相等,可推出平行四边形ABCD 是矩形,故此项正确;D 、AB ⊥BC ,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确;故选:A .【点睛】本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.6.A解析:A【分析】由E 为AB 中点,且EF 平行于AC ,EH 平行于BD ,得到△BEK 与△ABM 相似,△AEN 与△ABM 相似,利用面积之比等于相似比的平方,得到△EBK 面积与△ABM 面积之比为1:4,且△AEN 与△EBK 面积相等,进而确定出四边形EKMN 面积为△ABM 的一半,同理得到四边形KFPM 面积为△BCM 面积的一半,四边形QGPM 面积为△DCM 面积的一半,四边形HQMN 面积为△DAM 面积的一半,四个四边形面积之和即为四个三角形面积之和的一半,即为四边形ABCD 面积的一半,即可得出答案.【详解】解:如图,画任意四边形ABCD ,设AC 与EH ,FG 分别交于点N ,P ,BD 与EF ,HG 分别交于点K ,Q ,则四边形EFGH 即为它的中点四边形,∵E 是AB 的中点,EF//AC ,EH//BD ,∴△EBK ∽△ABM ,△AEN ∽△ABM , ∴EBK ABM S S ∆∆=14,S △AEN =S △EBK , ∴EKMNABM S S ∆四边形=12, 同理可得:KFPMBCMS S ∆四边形=12,QGPM DCM S S ∆四边形=12,HQMN DAM S S ∆四边形=12, ∴EFGHABCD S S 四边形四边形=12, ∵四边形ABCD 的面积为a , ∴四边形EFGH 的面积为12a ,故选:A .【点睛】本题考查了三角形中位线的性质,相似三角形的判定和性质,掌握知识点是解题关键.7.C解析:C【分析】根据矩形、菱形的性质和正方形的性质判断即可.【详解】解:A 、矩形的对角线相等且平分,选项错误,不符合题意;B 、菱形的对角线垂直且平分,选项错误,不符合题意;C 、正方形的对角线相等,选项正确,符合题意;D 、矩形的四个角都是直角,而菱形的四个角不是直角,选项错误,不符合题意; 故选:C .【点睛】本题考查矩形、菱形和正方形的性质,正确区分矩形、菱形和正方形的性质是解题的关键.8.C解析:C【分析】根据方程的根的情况得出a 的取值范围,结合乙同学的成绩最稳定且a 为整数即可得a 得取值.【详解】∵关于于x 的方程2(2)410a x x -+-=有两个不相等的实数根, ∴()=16+42>0,a ∆-且20.a -≠ 解得:>-2a 且 2.a ≠∵丁同学的成绩最稳定,∴<1.8a 且0a >.则a=1.故答案选:C.【点睛】本题主要考查了方差的意义理解,结合一元二次方程的根的判别式进行求解.9.D解析:D【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=90°,∵点E 、F 、H 分别是AB 、BC 、CD 的中点,∴△BCE ≌△CDF ,∴∠ECB=∠CDF ,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=12CD=12AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=12CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选D.【点睛】运用了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.10.C解析:C【分析】当QP∥AB时,由AP∥BQ可得到ABQP为平行四边形,然后依据矩形的性质可得到AP=BQ,然后求得AP=BQ的次数即可.【详解】解:当QP∥AB时,∵在在矩形ABCD,AD∥BC,∴四边形ABQP为平行四边形,∴AP=BQ,∵点P运动的时间=12÷1=12秒,∴点Q运动的路程=4×12=48cm.∴点Q可在BC间往返4次.∴在这段时间内PQ与AB有4次平行.【点睛】本题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.二、填空题11.2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频解析:2【分析】根据一个事件频率总和等于1即可求出【详解】=---=解:第四组的频率10.10.30.40.2【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频率总和为1.12.【分析】由题意,点D与点C关于AG对称,连接EC,FC,再利用垂线段最短求值即可【详解】解:连接,,如图在菱形中,,∴是边长为8的等边三角形∵是的中点∴∴是的垂直平分线∴∵,解析:【分析】由题意,点D与点C关于AG对称,连接EC,FC,再利用垂线段最短求值即可解:连接EC ,FC ,如图在菱形ABCD 中,60B ∠=︒,8AB =∴ACD ∆是边长为8的等边三角形∵G 是CD 的中点∴AG CD ⊥∴AG 是CD 的垂直平分线∴EC ED =∵EF EC FC +≥,CF AD ⊥时,CF 最小∴EF ED +的最小值是等边ACD ∆的高:38432=故答案为:3【点睛】本题考查菱形的性质、垂线段最短、等边三角形的判定、勾股定理等知识,解决问题的关键是利用垂线段最短解决最小值问题,属于中考常考题型. 13.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形, 解析:163【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===, 设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上, ∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =, ∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.14.35先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是解析:35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE 的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=∠OCD=55°,又∵DE⊥AC,∴∠CDE=180°-∠OCD-∠DEC=180°-55°-90°=35°,故答案为:35.【点睛】本题考查了矩形的性质,三角形内角和,三角形外角的性质,掌握知识点是解题关键.15.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.16.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.17.6【分析】由菱形的性质可得AB=BC,再由∠ABC=60°得△ABC为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,则△ABC 为等边三角形,解析:6【分析】由菱形的性质可得AB=BC ,再由∠ABC=60°得△ABC 为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC 为等边三角形,则AC=AB=6,故答案为:6.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.18.a2.【分析】由题意得OA =OB ,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA 可证△AOE≌△BOF,由全等三角形的性 解析:14a 2. 【分析】 由题意得OA =OB ,∠OAB =∠OBC =45°又因为∠AOE +∠EOB =90°,∠BOF +∠EOB =90°可得∠AOE =∠BOF ,根据ASA 可证△AOE ≌△BOF ,由全等三角形的性质可得S △AOE =S △BOF ,可得重叠部分的面积为正方形面积的14,即可求解. 【详解】解:在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°,∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°,∴∠AOE =∠BOF . 在△AOE 和△BOF 中OAE OBF OA OBAOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOF (ASA ),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD S S a ===正方形,故答案为:14a2.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE≌△BOF 是本题的关键.19.5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x==3时,分式方程无解,则a =1.5 .【详解】解析:5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5 .【详解】解:2233x aax x+=--,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.【点睛】本题主要考查了当分式方程无意义时,求字母的值.值得引起注意的是,当分式方程化为整式方程(1﹣2a)x=﹣4a时,一定要分1-2a=0和1-2a≠0两种情况,来分别求m的值. 20.【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO解析:【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF 为菱形,∴∠FCO=∠ECO ,由折叠的性质可知,∠ECO=∠BCE ,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE ,AB=AE+EB=3,∴EB=1,EC=2,∴BC ==【点睛】解题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC 的长. 三、解答题21.1a 2--,当1a =-时,原式1=3【分析】 本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠,即当0a =、1、2、2-时原分式无意义,故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.22.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析. 【分析】(1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解;(2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.23.(1)见解析;(2)见解析【分析】(1)由AF ∥BC 得∠AFE =∠EBD ,继而结合∠AEF =∠DEB 、AE =DE 即可判定全等; (2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E 是AD 的中点,∴AE =DE ,∵AF ∥BC ,∴∠AFE =∠DBE ,∵∠AEF =∠DEB ,∴△AEF ≌△DEB ;(2)∵△AEF ≌△DEB ,∴AF =DB ,∵AD 是BC 边上的中线,∴DC =DB ,∴AF =DC ,∵AF ∥DC ,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.24.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.x25.3【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】解:原式22242969(3)3333x x x x x xxx x x--+-+-====----;【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.26.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.【详解】证明:∵BE∥DF,∴∠BEO=∠DFO,在△BEO与△DFO中,BEO DFO BO DOBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA),∴EO=FO,∵AE=CF,∴AE+EO=CF+FO,即AO=CO,∵BO=DO,∴四边形ABCD为平行四边形.【点睛】本题考查了平行四边形的判定定理,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.27.见解析【分析】由平行四边形的性质得AD∥BC,根据平行线的性质证明∠E=∠F,角边角证明△AFG≌△CEH,其性质得AG=CH,进而可证明BG=DH.【详解】BG=DH,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠A=∠C,AB=DC,∴∠E=∠F,又∵BE=DF,AF=AD+DF,CE=CB+BE,∴AF=CE,在△CEH和△AFG中,A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFG ≌△CEH (ASA ),∴AG =CH ,∴BG =DH .【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.28.(1)证明见详解;(2)①5或6;②9或10或496. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即4<t≤10时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴AB=AC ,∴△ABC 是等腰三角形;(2)解:由(1)知,AB=5x ,CD=4x ,∴S △ABC=12×5x×4x=160cm 2,而x >0, ∴x=4cm ,则BD=8cm ,AD=12cm ,CD=16cm ,AB=AC=20cm .由运动知,AM=20-2t ,AN=2t ,①当MN ∥BC 时,AM=AN ,即20-2t=2t ,∴t=5;当DN ∥BC 时,AD=AN ,∴12=2t ,得:t=6;∴若△DMN 的边与BC 平行时,t 值为5或6.②存在,理由:Ⅰ、当点M 在BD 上,即0≤t <4时,△MDE 为钝角三角形,但DM≠DE ;Ⅱ、当t=4时,点M 运动到点D ,不构成三角形Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=10当DE=DM,则2t-8=10,∴t=9;当ED=EM,则点M运动到点A,∴t=10;当MD=ME=2t-8,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=6,在Rt△AEF中,EF=8;∵BM=2t,BF=BD+DF=8+6=14,∴FM=2t-14在Rt△EFM中,(2t-8)2-(2t-14)2=82,∴t=496.综上所述,符合要求的t值为9或10或496.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.。

苏科版初中苏科八年级数学下册期末考试试卷

苏科版初中苏科八年级数学下册期末考试试卷

苏科版初中苏科八年级数学下册期末考试试卷一、解答题1.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.2.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF 交BD于O.(1)求证:EO=FO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.3.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.4.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.5.如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.6.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.7.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.8.在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1).(1)求证:EO平分∠AEB;(2)猜想线段OE与EB、EA之间的数量关系为(直接写出结果,不要写出证明过程);(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.9.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?10.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.11.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.12.某商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克.问第一次购进这种商品多少千克?13.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.14.阅读下列材料:已知:实数x 、y 满足22320.25x xy x x +=++(0.75)x ≠-,求y 的最大值. 解:将原等式转化成x 的方程,得21(3)(2)04y x y x y -+-+=①. 若3y =,代入①得0.75x =-,0.75x ≠-,3y ∴≠,因此①必为一元二次方程.21(2)4(3)404y y y y ∴∆=---⨯=-+≥,解得4y ≤,即y 的最大值为4. 根据材料给你的启示,解决下面问题:已知实数x 、y 满足223221x x y x x ++=++15x ⎛⎫≠- ⎪⎝⎭,求y 的最小值.15.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验: 第一步:如图1在一张纸上画了一个平角∠AOB ;第二步:如图2在平角∠AOB 内画一条射线,沿着射线将平角∠AOB 裁开;第三步:如图3将∠AO'C'放在∠COB 内部,使两边分别与OB 、OC 相交,且O'A =O'C'; 第四步:连接OO', 测量∠COB 度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB . 你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB 的关系是 ;(2)线段O'A 与O'C'的关系是 . 请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知:求证:证明:【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.2.(1)见解析;(2)AE=3.【分析】(1)由平行四边形的性质和AAS证明△OBE≌△ODF,得出对应边相等即可;(2)先证出AE=GE,再证明DG=DO,得出OF=FG=1,即可得出结果.【详解】(1)∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.在△OBE 与△ODF 中,OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OBE ≌△ODF (AAS ). ∴EO =FO ;(2)∵EF ⊥AB ,AB ∥DC , ∴∠GEA =∠GFD =90°. ∵∠A =45°, ∴∠G =∠A =45°. ∴AE =GE , ∵BD ⊥AD ,∴∠ADB =∠GDO =90°. ∴∠GOD =∠G =45°. ∴DG =DO , ∴OF =FG =1,由(1)可知,OE =OF =1, ∴GE =OE +OF +FG =3, ∴AE =3. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键. 3.(1)见解析;(2)15;见解析. 【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求. (2)证明△ABE 的周长=AB +AD 即可. 【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形 ∴AD =BC =10,AB =CD =5 又由(1)知BE =DE ∴15ABEAB AE BE AB AE ED AB CAD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.4.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.5.(1)见解析;(2)见解析【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.6.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.7.(1)k=1;(2)证明见解析.【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x =1代入方程x 2﹣(k +3)x +3k =0得1﹣(k ﹣3)+3k =0,1﹣k ﹣3+3k =0解得k =1;(2)证明:1,(3),3a b k c k ==-+=24b ac ∆=-∴ △=(k +3)2﹣4•3k =(k ﹣3)2≥0,所以不论k 取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.8.(1)求证见解析;(2)2OE =EB +EA ;(3)见解析.【分析】(1)延长EA 至点F ,使AF =BE ,连接OF ,由SAS 证得△OBE ≌△OAF ,得出OE =OF ,∠BEO =∠AFO ,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF 是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA 证得△ABE ≌△ADH ,△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,得出FG =EF =EH =HG ,再由∠F =∠H =∠AEB =90°,由此可得出结论.【详解】(1)证明:延长EA 至点F ,使AF =BE ,连接OF ,如图所示:∵四边形ABCD 是正方形,∴∠BOA =90°,OB =OA ,∵∠AEB =90°,∴∠OBE +∠OAE =360°﹣90°﹣90°=180°,∵∠OAE +∠OAF =180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAF (SAS ),∴OE =OF ,∠BEO =∠AFO ,∴∠AEO =∠AFO ,∴∠BEO =∠AEO ,∴EO 平分∠AEB ;(2OE =EB +EA ,理由如下:由(1)得:△OBE ≌△OAF ,∴OE =OF ,∠BOE =∠AOF ,∵∠BOE +∠AOE =90°,∴∠AOF +∠AOE =90°,∴∠EOF =90°,∴△EOF 是等腰直角三角形,∴2OE 2=EF 2,∵EF =EA +AF =EA +EB ,∴2OE 2=(EB +EA )2,OE =EB +EA ,OE =EB +EA ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.9.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.10.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.11.(1)见解析;(2)①②③④;(3)①证明见解析;②23【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,∵∠ACB=15°,∴∠AMB=30°,∵∠ACD=30°,∴∠AMD=60°,∴∠BMD=90°,∴△BMD是等腰直角三角形,∴BM=DM=22BD=222=1,∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC×sin30°=1,CD=AC×cos30°3∴菱形ACEF的面积=12×13×4=3【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.12.第一次购进这种商品10千克【分析】根据“商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克”列出分式方程求解即可.【详解】解:设第一次购进这种商品x千克,则第二次购进这种商品(x+5)千克,由题意,得5007505x x=+,解得x=10.经检验:x=10是所列方程的解.答:第一次购进这种商品10千克.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,注意得出分式方程的解之后要验根.13.(1)见解析(2)10 【分析】(1)根据平行四边形的性质得到AD =BC =3,AD ∥BC ,得到AD =CE ,推出四边形ACED 是平行四边形,由垂直的定义得到∠ACE =90°,于是得到结论;(2)根据三角形的中位线定理得到OC =12DE =12AC =1,由勾股定理即可得到结论. 【详解】 (1)证明:∵在平行四边形ABCD 中,AD =BC =3,AD ∥BC ,∵CE =3,∴AD =CE ,∴四边形ACED 是平行四边形,∵AC ⊥BC ,∴∠ACE =90°,∴四边形ACED 为矩形;(2)解:连接OE ,如图,∵BO =DO ,BC =CE ,∴OC =12DE =12AC =1, ∵∠ACE =90°,∴OE 22221310OC CE +=+=【点睛】本题主要考查了平行四边形的性质,结合三角形中位线定理和勾股定理进行求解.14.2316【分析】 类比阅读材料给出的方法,分类探讨得出函数的最小值即可.【详解】解:将原等式转化成关于x 的方程,得:2(3)(21)(2)0y x y x y -+-+-=①,若3y =,代入①得15x =-,∵15x ≠-, ∴3y ≠,因此①必为一元二次方程.∵3a y =-,21b y =-,2c y =+,∴224(21)4(3)(2)0b ac y y y ∆=-=----≥,解得:2316y ≥且3y ≠. ∴y 的最小值为2316. 【点睛】 本题考查了根的判别式的运用,把函数转化为关于x 的方程,根据系数的取值范围,结合根的判别式,分类探讨得出答案即可.15.(1)互补;(2)相等;证明见解析【分析】根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .【详解】(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等.已知:AO C ∠''+∠COB=180︒,O'A=O'C',求证:'OO 平分∠COB .证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),∴O C B OAO ∠=∠''',∵O'A=O'C',∴Rt △Rt AO D '≅△C O E '',∴O D O E '=',∵O D '⊥OC ,O E '⊥OB ,OO平分∠COB.∴'【点睛】本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.。

苏科八年级苏科初二下学期数学《期末考试试题》含答案.

苏科八年级苏科初二下学期数学《期末考试试题》含答案.

苏科八年级苏科初二下学期数学《期末考试试题》含答案.一、解答题1.如图,在四边形ABCD 中,∠B=∠D ,∠1=∠2,求证:四边形ABCD 是平行四边形.2.如图,在正方形网格中,△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)直接写出:以A 、B 、C 为顶点的平形四边形的第四个顶点D 的坐标 .3.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表组别 A B CD E 分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数;(4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数.4.计算:(1)2354535⨯; (2)()22360,0x yxy x y ≥≥; (3)()48274153-+÷. 5.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,﹣1)、B (﹣1,0)、C (0,﹣3)(1)点A 关于坐标原点O 对称的点的坐标为 .(2)将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,A 1A 的长为 .6.计算:242933x x x x x ----- 7.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?8.某种油菜籽在相同条件下的发芽实验结果如表:(1)a = ,b = ;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?9.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,BO =DO ,点E 、F 分别在AO ,CO 上,且BE ∥DF ,AE =CF .求证:四边形ABCD 为平行四边形.10.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?11.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.12.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且 ,连接PD,O为AC中点.PB PE(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,并说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.13.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;S=160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A (2)已知ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.14.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3,2P m ⎛⎫ ⎪ ⎪⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?15.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB=BC ,∠ABC =120゜,∠MBN=60゜,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),试猜想线段AE 、CF 、EF 之间存在的数量关系为 .(不需要证明);(2)当∠MBN 绕B 点旋转到AE ≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE 、CF 、EF 又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、解答题1.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.2.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)分类讨论:分别以AB、AC、BC为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D点的坐标.【详解】---,根据关于原点对称的点解:(1)如图,点A、B、C的坐标分别为(1,0),(4,1),(2,2)--,描点连线,的坐标特征,则点A、B、C关于原点对称的点分别为(1,0),(4,1),(2,2)△A1B1C1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:---,则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---.故答案为:(1,1),(5,3),(3,1)【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.3.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B的圆心角度数为115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x 在30≤x <90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.4.(1)6;(2)3;(3)【分析】(1)利用二次根式的乘法法则运算;(2)利用二次根式的乘法法则运算;(3)利用二次根式的除法法则运算.【详解】(1=23×35=6; (2()260,0yxy x y ≥≥=3(3)=4﹣=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(1)(3,1);(2.【分析】(1)根据对称性即可得点A 关于坐标原点O 对称的点的坐标;(2)根据旋转的性质即可将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,进而可得A 1A 的长.【详解】(1)∵A (﹣3,﹣1),∴点A 关于坐标原点O 对称的点的坐标为(3,1).故答案为:(3,1);(2)如图,△A 1B 1C 即为所求,A1A2215+26.26【点睛】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质.6.3x-【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】解:原式22242969(3)3333x x x x x xxx x x--+-+-====----;【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.7.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.8.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.9.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.【详解】证明:∵BE∥DF,∴∠BEO=∠DFO,在△BEO与△DFO中,BEO DFO BO DOBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA),∴EO=FO,∵AE=CF,∴AE+EO=CF+FO,即AO=CO,∵BO=DO,∴四边形ABCD为平行四边形.【点睛】本题考查了平行四边形的判定定理,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.10.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.11.(1)m≤14;(2)m =14. 【分析】 (1)若一元二次方程有两实数根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围;(2)由x 12-x 22=0得x 1+x 2=0或x 1-x 2=0;当x 1+x 2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m 的值.【详解】解:(1)由题意有△=(2m-1)2-4m 2≥0,解得m≤14, 即实数m 的取值范围是m≤14; (2)由两根关系,得根x 1+x 2=-(2m-1),x 1•x 2=m 2,由x 12-x 22=0得(x 1+x 2)(x 1-x 2)=0,若x 1+x 2=0,即-(2m-1)=0,解得m =12, ∵12>14, ∴m =12不合题意,舍去, 若x 1-x 2=0,即x 1=x 2 ∴△=0,由(1)知m =14, 故当x 12-x 22=0时,m =14. 【点睛】本题考查一元二次方程根的判别式,根与系数的关系,熟练掌握公式正确计算是本题的解题关键.12.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立【分析】(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;(3)根据题意作出图形,利用(2)中证明思路即可得出答案.【详解】(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,在△ABP 和△ADP 中,45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩===,∴△ABP ≌△ADP ,∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠,又∵PB PE =,∴CBP BEP ∠=∠,PE PD =,∴BEP CDP ∠=∠,∵180BEP CEP ∠+∠=︒,∴180CDP CEP ∠+∠=︒,∵正方形ABCD 中,90BCD ∠=︒,∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒,∴PE PD ⊥;(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,①当点E 与点C 重合时,PE PD ⊥;②当点E 在BC 的延长线上时,如图所示,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵12∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥,综上所述:PE PD ⊥.∴当点P 在线段OC 上时,(1)中的猜想成立;(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.∵四边形ABCD 是正方形,点P 在AC 的延长线上,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵DGC EGP ∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..13.(1)证明见详解;(2)①5或6;②9或10或496.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=160cm2,而x>0,∴x=4cm,则BD=8cm,AD=12cm,CD=16cm,AB=AC=20cm.由运动知,AM=20-2t,AN=2t,①当MN∥BC时,AM=AN,即20-2t=2t,∴t=5;当DN∥BC时,AD=AN,∴12=2t,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②存在,理由:Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=10当DE=DM,则2t-8=10,∴t=9;当ED=EM,则点M运动到点A,∴t=10;当MD=ME=2t-8,如图,过点E作EF垂直AB于F,∵ED=EA ,∴DF=AF=12AD=6, 在Rt △AEF 中,EF=8;∵BM=2t ,BF=BD+DF=8+6=14,∴FM=2t-14在Rt △EFM 中,(2t-8)2-(2t-14)2=82,∴t=496. 综上所述,符合要求的t 值为9或10或496. 【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.14.(12332)存在.(0,23Q 或()32或(0,3-或3⎛ ⎝⎭;(2)PHOB S 梯形334m =,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形334m =,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 33=,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()(11,0,3A B ,2AB ∴=,又90,30BAC ABC ︒︒∠=∠=,2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:233a =, 11223232233ABC S AC AB ∆∴==⨯⨯=; ()2存在设()0,Q a ,则(2224,3AB BQ a ==-,221AQ a =+,①当AB BQ =时,即22AB BQ =, (243a ∴=-,解得:123a =232a =, (()120,23,32Q Q ∴==;②当AB AQ =时,即22AB AQ =, 241a ∴=+ 解得:3a =3a =B 重合),(30,3Q ∴;③当BQ AQ =时,即22BQ AQ =, (2231,32a a a ∴=+=,解得:33a =, 430,3Q ⎛⎫∴= ⎪ ⎪⎝⎭,综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,2P m ⎛ ⎝⎭,(),0H m ∴,3,12OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形, ()1332m =⨯⨯-⎭ 334m =, 11313222AOB S OA OB ∆==⨯⨯=, ()1131222APH S AH PH m ∆==⨯-⨯ )314m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)333314m m =- 3342=-, ABP ABC S S ∆∆=,3323243∴-+=,∴112 243 m=-,解得:56 m=-,即S=梯形PHOB ,当56m=-时,ABC ABPS S∆∆=.【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.15.(1)AE+CF=EF;(2)如图2,(1)中结论成立,即AE+CF=EF;如图3,(1)中结论不成立,AE=EF+CF.【分析】(1)根据题意易得△ABE≌△CBF,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC到H,使CH=AE,连接BH,根据题意可得△BCH≌△BAE,则有BH=BE,∠CBH=∠ABE,进而可证△HBF≌△EBF,推出HF=EF,最后根据线段的等量关系可求解;如图3,在AE上截取AQ=CF,连接BQ,根据题意易得△BCF≌△BAQ,推出BF=BQ,∠CBF=∠ABQ,进而可证△FBE≌△QBE,推出EF=QE即可.【详解】解:(1)如图1,AE+CF=EF,理由如下:∵AB⊥AD,BC⊥CD,∴∠A=∠C=90°,∵AB=BC,AE=CF,∴△ABE≌△CBF(SAS),∴∠ABE=∠CBF,BE=BF,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴11,22AE BE CF BF==,∵∠MBN=60°,BE=BF,∴△BEF是等边三角形,∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。

【苏科版】初二数学下期末试卷(附答案)

【苏科版】初二数学下期末试卷(附答案)

一、选择题1.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,22 2.一组数据中有m 个a ,n 个b ,k 个c ,那么这组数据的平均数为( )A .3a b c ++B .3m n k ++C .3ma nb kc ++D .ma nb kc m n k++++ 3.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A .平均数B .众数C .中位数D .方差 4.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大5.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .56.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =7.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( ) A .-6 B .6 C .6或3 D .6或-6 8.关于函数(3)y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A .①②③B .①③④C .②③④D .①②③④ 9.当2a <3(2)a a - )A .(2)a a a -B .(2)a a a --C .(2)a a a -D .(2)a a a --10.下列说法正确的是( )A .有一个角是直角的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .有一组邻边相等的菱形是正方形D .各边都相等的四边形是正方形 11.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF =,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a 12.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .25二、填空题13.若一组数据4,a ,7,8,3的平均是5,则这组数据的方差是_______.14.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.15.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________. 16.如图,正方形ABCD 的边长为4,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若AF 平分DFE ∠,则k 的值为_________.17.已知5ab =,则b a a b a b+=__. 18.在长方形ABCD 中,52AB =,4BC =,CE CF =,CF 平分ECD ∠,则BE =_________.19.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.20.如图,点A 是∠MON=45°内部一点,且OA=4cm ,分别在边OM ,ON 上各取一点B ,C ,分别连接A ,B ,C 三点组成三角形,则△ABC 最小周长为 ________ .三、解答题21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):甲789710109101010乙10879810109109)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.23.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC和BD的函数关系式.(3)求学校和博物馆之间的距离.24.如图,已知四边形ABCD是平行四边形,E是AB延长线上一点且BE AB,连接CE,BD.(1)求证:四边形BECD是平行四边形(2)连接DE ,若4AB BD ==,22DE =,求BECD 的面积.25.计算(1)1220525-+; (2)21(32)4882+-+⨯ 26.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命器(填“真”或“假”)①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”. 命题①是_______命题,命题②是______命题;(2)如图2, Rt ABC .90︒∠=C ,30B ,3AC =Rt ABC 是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度:若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.2.D解析:D【分析】先求得这组数据的和和个数,再根据平均数的定义求解.【详解】∵一组数据中有m 个a ,n 个b ,k 个c ,∴这组数据的和=ma+nb+kc ,数据的个数=m+n+k ,∴这组数据的平均数为:ma nb kc m n k++++. 故选:D.【点睛】考查了加权平均数的计算,解题关键是计算出这组数据的和和个数. 3.D解析:D【分析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为3+4+4+5=44, 原数据的3,4,4,5的中位数为4+4=24, 原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5; 新数据3,4,4,4,5的平均数为3+4+4+4+5=45, 新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4, 新数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4; ∴添加一个数据4,方差发生变化,故选D .【点睛】 本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.4.D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.5.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A.【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.6.D解析:D【分析】本题通过右侧的图象可以判断出长方形的边长,然后选项计算,选项A、B、C都可证正确,选项D,面积为8时,对应x值不为10,所以错误.【详解】解:由图2可知,长方形MNPQ的边长,MN=9-4=5,NP=4,故选项A正确;选项B,长方形周长为2×(4+5)=18,正确;选项C,x=6时,点R在QP上,△MNR的面积y=12×5×4=10,正确;选项D ,y=8时,即1852x =⨯,解得 3.2x =, 或()185132x =⨯-,解得9.8x =, 所以,当y=8时,x=3.2或9.8,故选项D 错误;故选:D .【点睛】本题考查了动点问题分类讨论,对运动中的点R 的三种位置都设置了问题,是一道很好的动点问题,读懂函数图象是解题关键.7.B解析:B【分析】先用待定系数法求出直线AB 的解析式,然后将点C 的坐标代入即可确定a 的值.【详解】解:设点()2,3A -、()4,3B 所在的直线解析式为y=kx+b则3234k b k b -=+⎧⎨=+⎩,解得39k b =⎧⎨=-⎩ 则直线y=3x-9将点C 的坐标代入得:a=3×5-9=6.故选:B .【点睛】本题主要考查了一次函数的应用,确定直线AB 的解析式是解答本题的关键.8.D解析:D【分析】①根据一次函数定义即可求解;②根据(3)(1)3y k x k k x x =-+=+-即可求解;③图象经过二、三、四象限,则30k -<,0k <,即可求解;④函数图象与x 轴的交点始终在正半轴,则03k x k=>-,即可求解; 【详解】①根据一次函数定义:0k ≠函数为一次函数,故正确;②(3)(1)3y k x k k x x =-+=+-,故函数过(-1,3),故正确;③图象经过二、三、四象限,则30k -<,0k <,解得:0k <,故正确;④函数图象与x 轴的交点始终在正半轴,则03k x k =>-,解得:03k <<,故正确. 故选:D .【点睛】本题考查了一次函数图象上的点的坐标特征,解答此题的关键是熟知一次函数图象上点的坐标特点,确定函数与系数之间的关系,进而求解;9.B解析:B【分析】根据二次根式的性质即可化简.【详解】解:∵2a<∴a20-<∴-故选:B.【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.10.B解析:B【分析】根据正方形的判定:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角进行分析即可.【详解】解:A.有一个角是直角的平行四边形是正方形,说法错误,应是矩形,不符合题意;B.对角线互相垂直的矩形是正方形,说法正确,符合题意;C.一组邻边相等的矩形是正方形,说法错误,不合题意;D.各边都相等的四边形是菱形,不是正方形,不合题意.故选B.【点睛】本题主要考查了正方形的判定,关键是掌握正方形的判定方法.11.B解析:B【分析】由正方形OMNQ与ABCD得∠DOC=∠MOQ=90°可推出∠DOE=∠COF由AC,BD是正方形ABCD的对角线求得∠ODE=∠OCF=45°,可证△DOE≌△COF(AAS),利用面积和差S四边形FOEC= S△EOC+S△DOE=S△DOC=214a即可.【详解】∵正方形OMNQ与ABCD,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF,又AC,BD是正方形ABCD的对角线,∴∠ODE=∠OCF=45°,∵DE CF =,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.12.C解析:C【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P (x ,0),根据题意得,x 2+22=(5﹣x )2+52,解得:x =4.6,∴OP =4.6,故选:C .【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键.二、填空题13.【分析】根据平均数求出a 再根据方差的公式计算得到答案【详解】∵数据4783的平均是5∴∴这组数据的方差是=故答案为:【点睛】此题考查根据平均数求某一数据方差的计算公式熟记方差的计算公式是解题的关键 解析:225【分析】根据平均数求出a ,再根据方差的公式计算得到答案.【详解】∵数据4,a ,7,8,3的平均是5,∴5547833a =⨯----=,∴这组数据的方差是22221(45)2(35)(75)(85)5⎡⎤-+⨯-+-+-⎣⎦=225,故答案为:22 5.【点睛】此题考查根据平均数求某一数据,方差的计算公式,熟记方差的计算公式是解题的关键. 14.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点15.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元解析:43【分析】分别画出函数1y x=+,22y x=-+的图象,根据图象可知min{1,22}x x+-+在13x=时有最大值,求出此时的值即可.【详解】解:令函数1y x=+,22y x=-+,联立122y xy x=+⎧⎨=-+⎩得1343xy⎧=⎪⎪⎨⎪=⎪⎩,函数图象如下,根据函数图象可知, 当时13x =,min{x+1,-2x+2}的最大值为43, 故答案为:43. 【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键. 16.1或3【分析】分两种情况:①当点F 在DC 之间时作出辅助线求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值【详解】解:①如图作AG ⊥EF 交EF 于点G 连接AE ∵AF 平分∠D解析:1或3.【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE ,∵AF 平分∠DFE ,∴DA=AG=4,在RT △ADF 和RT △AGF 中,AD AG AF AF =⎧⎨=⎩, ∴RT △ADF ≌RT △AGF (HL ),∴DF=FG ,∵点E 是BC 边的中点,∴BE=CE=2,∴22AB BE +5 ∴22AE AG -,∴在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+2)2=(4-DF )2+22,解得DF=43,∴点F (43,4), 把点F 的坐标代入y=kx 得:4=43k ,解得k=3; ②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE ,∴F (4,4),把点F 的坐标代入y=kx 得:4=4k ,解得k=1.故答案为:1或3.【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k .17.【分析】先利用二次根式化简然后分和两种情况解答即可【详解】解:原式当时原式;当时原式;即故答案为【点睛】本题主要考查了二次根式的性质和绝对值的性质根据二次根式的性质化简所给的二次根式是解答本题的关键解析:±【分析】先利用二次根式化简,然后分0a >、0b >和0a <,0b <两种情况解答即可.【详解】解:原式=+a b =+,=5ab =,∴当0a >,0b >时,原式==当0a <,0b <时,原式=-=-即=±故答案为±【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据二次根式的性质化简所给的二次根式是解答本题的关键.18.【分析】延长CF 交EA 的延长线于点G 连接EF 过点F 作FH ⊥CE 于点H 过点E 作EM ⊥CF 于点M 由题意易得FH=FDFH=EMEC=EG 进而可得△CDF ≌△CME 然后可得CM=CD=由勾股定理可得BG= 解析:76【分析】延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,由题意易得FH=FD ,FH=EM ,EC=EG ,进而可得△CDF ≌△CME ,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x ,则有EC=EG=3+x ,最后利用勾股定理可求解.【详解】解:延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线,∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ),∴52CM DC ==,∴CG=5,∴在Rt △CBG 中,223BG CG CB=-=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =, ∴76BE =; 故答案为76. 【点睛】 本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.19.【分析】如详解图:作垂足为F 的延长线垂足为G 可证可得四边形AFOG 为正方形BF=CGAF=AG=进而可求得答案【详解】如图所示:作垂足为F 的延长线垂足为G 则四边形AFOG 为矩形四边形BCDE 是正方形解析:623-【分析】如详解图:作OF AB ⊥垂足为F ,OG AG ⊥的延长线,垂足为G ,可证OFB OGC △≌△,可得四边形AFOG 为正方形,BF=CG ,AF=AG=32,进而可求得答案.【详解】如图所示:作OF AB ⊥垂足为F ,OG AG ⊥的延长线,垂足为G ,则四边形AFOG 为矩形,四边形BCDE 是正方形,∴OB=OC ,90BOC ∠=°,9090COG COF BOF COF BOF COG∠+∠=︒∠+∠=︒∴∠=∠,,OFB OGC OB OC OFB OGCOF OG∠=∠=∴∴=△≌△ S ∴四边形AFDG 为正方形632332332332623AO AF AG AC CG AG AC BF CGAB AF BF AG CG =∴===∴=-=-=∴=+=+=-+=- 故答案为:623-.【点睛】本题考查了正方形的性质和判定,全等三角形的性质,关键是构造全等三角形证明. 20.4【分析】作A 关于OM 的对称点A´A 关于ON 的对称点A´´根据垂直平分线上的点到两端点的距离相等得AB=A´BAC=A´´COA=OA´=OA´´=4再由勾股定理求得A´A´´长由三角形周长公式结合解析:42【分析】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,根据垂直平分线上的点到两端点的距离相等得AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,再由勾股定理求得A´A´´长,由三角形周长公式结合等量代换即可求得答案.【详解】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,如图,∴AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,∵∠MON=45°∴∠AOA´´=90°∴A´A´´2244+2(cm )∴△ABC 周长=AB+AC+BC=A´B+A´´C+BC=A´A´´2(cm )即△ABC 的周长最小值为故答案为:【点睛】本题考查了轴对称、垂直平分线、勾股定理的知识;解题的关键是熟练掌握轴对称、垂直平分线、勾股定理的性质,从而完成求解.三、解答题21.(1)30元;(2)50元;(3)250.【分析】(1)根据众数的定义即可判判断;(2)根据中位数的定义即可判断;(3)先计算出样本中计划购买课外书花费50元的学生所占的比例,然后在乘以总人数即可;【详解】(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人. 22.(1)9.5,10;(2)9分,1分2;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ; (3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大. 23.(1)甲、乙的速度分别是80千米/小时,40千米/小时;(2)OC 的函数关系式为:80y x =,BD 的函数关系式为:4030y x =+;(3)140千米.【分析】(1)根据函数图像,甲0.75小时行驶60千米,计算得出甲的速度;结合题意,乙行驶60千米时,所用总时间为:(0.750.75)+小时,计算得出乙的速度.(2)观察函数图像,根据A 点坐标,计算得出OC 的函数解析式;根据题意得出A 、B 两点的坐标,用待定系数法求出BD 的函数解析式.(3)设甲行驶时间为x 小时,根据甲乙两人行驶路程相等,列出一元一次方程,计算得出行驶时间,根据“路程=速度×时间”计算得出学校和博物馆之间的距离.【详解】解:(1)甲的速度:600.7580÷=(千米/小时),从8:00到8:45经过0.75小时,乙的速度为:60(0.750.75)40÷+=(千米/小时),甲、乙的速度分别是80千米/小时,40千米/小时.(2)∵根据题意得:A 点坐标为(0.75,60),当乙运动了45分钟后即0.75小时,距离学校:400.7530⨯=(千米),∴B 点坐标为(0,30).∵设直线OC 的函数关系式为1y k x =,将点A 代入得:1600.75k =,解得:180k =,∴直线OC 的函数关系式为80y x =,∵设BD 的函数关系式为2y k x b =+,将A 、B 两点的坐标值代入得:220.7560030k b k b +=⎧⎨⨯+=⎩,解得:24030k b =⎧⎨=⎩, ∴直线BD 的函数关系式为:4030y x =+.(3)∵设甲的行驶时间为x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),列方程为:()8040 1.75x x =+ 解得:74x =, 7801404⨯=(千米). ∴学校和博物馆之间的距离是140千米.【点睛】本题考查一次函数的实际应用,从函数图像中获取相关信息是解题关键.24.(1)见解析;(2)47BECD S =菱形【分析】(1)根据四边形ABCD 是平行四边形,得到AB CD =,//AB CD ,再根据BE AB =,得到BE CD =,利用一组对边平行且相等的四边形BECD 是平行四边形去判定.(2)先利用已知条件证四边形BECD 是菱形,再在Rt BOE △中,利用勾股定理求BO ,进而求BC ,则可求菱形面积.【详解】 解:(1)∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形.(2)如图,连接DE ,交BC 于点O ,∵4AB BD ==,BE AB =,∴4BD BE ==,由(1)得四边形BECD 是平行四边形,∴BECD 是菱形,∴DE BC ⊥, ∵22DE =∴122OE DE ==, 在Rt BOE △中,22224(2)14BO BE OE =-=-= ∴2214BC BO ==∴11214224722BECD S BC DE =⋅=⨯=菱形 【点睛】 本题考查了平行四边形、菱形性质和判定的综合应用,熟练掌握相关知识是解答此题的关键.25.(117552)9. 【分析】(1)先将二次根式化简,再合并计算即可;(2)先利用完全平方公式,二次根式的性质化简,再合并计算即可.【详解】解:(1)1 220525-+=2 45555-+=175 5(2)21(32)4882+-+⨯=3434432=9.【点睛】本题考查二次根式的混合运算,完全平方公式,熟练运用二次根式的运算法则是解题的关键.26.(1)假,真;(2)2【分析】(1)根据“和谐分割线”的定义即可判断;(2)如图作∠CAB的平分线,只要证明线段AD是“和谐分割线”即可,并求AD的长;【详解】解:(1)①从等边三角形一个顶点出发,所分成的两个三角形必定不是等边三角形,不与原三角形的三个内角分别相等,故等边三角形不存在“和谐分割线”,是假命题;②如图,△ABC中,∠ACB=2∠ABC,CD平分∠ACB,则∠B=∠BCD=∠ACD,即△BCD是等腰三角形,在△ACD和△ABC中,∠A=∠A,∠ACD=∠B,∠ADC=∠ACB=2∠B,故△ABC必存在“和谐分割线”,正确,是真命题,故答案为:假,真;(2)Rt△ABC存在“和谐分割线”,理由是:如图作∠CAB的平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠B=30°,∴DA=DB,∴∠DAB=∠B=∠CAD=30°,又∠C=∠C,∠ADC=∠CAB=60°,∴△ADB是等腰三角形,且△ACD和△ABC三个内角相等,∴线段AD是△ABC的“和谐分割线”,∴3=2.【点睛】本题考查三角形综合题、等腰三角形的判定和性质、三角形内角和、“和谐分割线”的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。

苏科版八年级下册数学期末测试卷及含答案

苏科版八年级下册数学期末测试卷及含答案

苏科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、二次函数y1=x2﹣2x﹣1与反比例函数y2=﹣(x>0)的图象在如图所示的同一坐标系中,若y1>y2时,则x的取值范围()A.﹣1<x<1 或 x>2B.1<x<2C.x<1D.0<x<1或x>22、化简(﹣2)2002•(+2)2003的结果为()A.﹣1B. ﹣2C. +2D.﹣﹣23、化简=()A.﹣7B.7C.±7D.494、用反证法证明“在同一平面内,若a⊥b,a⊥c,则b∥c时,第一步应假设()A.b不平行cB.a不垂直cC.a不垂直bD.b∥c5、下列各组数中互为相反数的一组是( )。A.-2与B.-2与C.-2与D. 与26、顺次连接对角线互相垂直的四边形各边中点所得的四边形必定是()A.菱形B.矩形C.正方形D.平行四边形7、如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为( )A.60°B.75°C.85°D.95°8、如果反比例函数y=(k≠0)的图象经过点(2,-3),那么k的值为()A.-6B.6C.-D.9、下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180° C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上10、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.11、若代数式的值为常数2,则的范围为( ).A. ≥4B. ≤2C.2≤≤4D. =2或=412、下列事件中,属于随机事件的是()A.袋中只有5个黄球,摸出一个球是白球B.从分别写有2,4,6的三张卡片中随机抽出一张,卡片上的数字能被2整除C.用长度分别是2cm,3cm,6cm的细木条首尾相连组成一个三角形D.任意买一张电影票,座位号是偶数13、点A(﹣1,y1),B(﹣2,y2)在反比例函数y=的图象上,则y1, y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定14、若分式的值为0,则x的值为()A.0B.1C.D.15、已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.8B.8C.4D.2二、填空题(共10题,共计30分)16、以边长为4的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值为________.17、如果a=3b(a≠0),则的值为________.18、已知函数关系式:y= ,则自变量x的取值范围是________.19、如图,正方形ABCD的边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积为________.20、若代数式有意义,则实数x 的取值范围是________.21、已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是________22、含有4种花色36张扑g牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,•那么扑g牌花色是红心的大约有________张.23、如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过顶点B,则k的值为________.24、计算:=________ .25、如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O 2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1、P2在反比例函数(x>0)的图象上,则________.三、解答题(共5题,共计25分)26、计算:27、某市政工程队承担着1200米长的道路维修任务,为了减少对交通的影响,在维修了240米后通过增加人数和设备提高了工程进度,工作效率是原来的4倍,结果共用了6个小时就完成了任务.求原来每小时维修了多少米?28、解方程:.29、如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.30、小明家在“吾悦广场”购买了一间商铺,准备承包给甲、乙两家装修公司进行店面装修,经调查:甲公司单独完成该工程的时间是乙公司的2倍,已知甲、乙两家公司共同完成该工程建设需20天;若甲公司每天所需工作费用为650元,乙公司每天所需工作费用为1200元,若从节约资金的角度考虑,则应选择哪家公司更合算?参考答案一、单选题(共15题,共计45分)1、D3、B4、A5、B6、B7、D8、A9、B10、D11、C12、D13、C14、C15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

苏科版八年级苏科初二数学下册期末测试题及答案(共五套)

苏科版八年级苏科初二数学下册期末测试题及答案(共五套)

苏科版八年级苏科初二数学下册期末测试题及答案(共五套)一、解答题1.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.(1)求证:四边形BFDE为平行四边形;(2)当∠DOE= °时,四边形BFDE为菱形?2.已知:如图,在平行四边形ABCD中,点E、F在AD上,且AE=DF求证:四边形BECF是平行四边形.3.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.4.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q 为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.5.用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.6.在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1).(1)求证:EO平分∠AEB;(2)猜想线段OE与EB、EA之间的数量关系为(直接写出结果,不要写出证明过程);(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.7.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m_________,扇形D所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?8.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了名学生;(2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 ;(4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.9.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.10.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.11.如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.12.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.13.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?14.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且 ,连接PD,O为AC中点.PB PE(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,并说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.15.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;S=160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A (2)已知ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.2.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.3.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.4.(1)15344t-;(2)当t=52时,四边形MNQP为平行四边形,证明见解析;(3)AQ⊥CQ,证明见解析.【分析】(1)由勾股定理可求BD=5,由三角形的面积公式和S△DPQ=12(S△BED﹣S△BDP)可求解;(2)当t=52时,可得BP=52=12BE,由中位线定理可得MN∥BD,MN=12BD=5,PQ∥BD,PQ=12BD=5,可得MN∥PQ,MN=PQ,可得结论.(3)连接BQ,由等腰三角形的性质可得∠AQD+∠BQA=90°,由直角三角形的性质可得DQ=CQ,∠DCQ=∠CDQ,由“SAS”可证△ADQ≌△BCQ,可得∠AQD=∠BQC,即可得结论.【详解】解:(1)∵四边形ABCD是矩形,AB=3,BC=4,∴BC=4,CD=3,∴BD5,∴BD=BE=5,∵Q为DE的中点,∴S△DPQ=12S△DPE,∴S△DPQ=12(S△BED﹣S△BDP)=11135t3222⎛⎫⨯⨯-⨯⨯⎪⎝⎭=15344t-.故答案为:15344t-.(2)当t=52时,四边形MNQP为平行四边形,理由如下:∵M 、N 分别为AB 、AD 的中点,∴MN ∥BD ,MN =12BD =52, ∵t =52时, ∴BP =52=12BE ,且点Q 是DE 的中点, ∴PQ ∥BD ,PQ =12BD =52, ∴MN ∥PQ ,MN =PQ ,∴四边形MNQP 是平行四边形.(3)AQ ⊥CQ .理由如下:如图,连接BQ ,∵BD =BE ,点Q 是DE 中点,∴BQ ⊥DE ,∴∠AQD +∠BQA =90°,∵在Rt △DCE 中,点Q 是DE 中点,∴DQ =CQ ,∴∠DCQ =∠CDQ ,且∠ADC =∠BCD =90°,∴∠ADQ =∠BCQ ,且BC =AD ,DQ =CQ ,∴△ADQ ≌△BCQ (SAS ),∴∠AQD =∠BQC ,且∠AQD +∠BQA =90°,∴∠BQC +∠BQA =90°,∴∠AQC =90°,∴AQ ⊥CQ .【点睛】本题考查平行四边形中的动点问题,关键在于熟练掌握矩形的性质,全等三角形的性质和判定.5.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12317317x x +-== 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x2﹣4x﹣5=0,分解因式得:(x+1)(x﹣5)=0,则x+1=0或x﹣5=0,解得:x1=-1,x2=5.(2)y(y﹣7)=14﹣2y,移项得,y(y﹣7)-14+2y=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.(3)2x2﹣3x﹣1=0,∴a=2,b=﹣3,c=﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x1=317+,x2=317-.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.6.(1)求证见解析;(2)2OE=EB+EA;(3)见解析.【分析】(1)延长EA至点F,使AF=BE,连接OF,由SAS证得△OBE≌△OAF,得出OE=OF,∠BEO=∠AFO,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA证得△ABE≌△ADH,△ABE≌△BCF,△ADH≌△DCG,△DCG≌△CBF,得出FG=EF=EH=HG,再由∠F=∠H=∠AEB=90°,由此可得出结论.【详解】(1)证明:延长EA至点F,使AF=BE,连接OF,如图所示:∵四边形ABCD是正方形,∴∠BOA=90°,OB=OA,∵∠AEB=90°,∴∠OBE+∠OAE=360°﹣90°﹣90°=180°,∵∠OAE+∠OAF=180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAF (SAS ),∴OE =OF ,∠BEO =∠AFO ,∴∠AEO =∠AFO ,∴∠BEO =∠AEO ,∴EO 平分∠AEB ;(2OE =EB +EA ,理由如下:由(1)得:△OBE ≌△OAF ,∴OE =OF ,∠BOE =∠AOF ,∵∠BOE +∠AOE =90°,∴∠AOF +∠AOE =90°,∴∠EOF =90°,∴△EOF 是等腰直角三角形,∴2OE 2=EF 2,∵EF =EA +AF =EA +EB ,∴2OE 2=(EB +EA )2,OE =EB +EA ,OE =EB +EA ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°, ∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF , ∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF , ∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.7.(1)50;32;43.2 (2)见解析 (3)1120人【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2(2)5040%20⨯=(人),补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.8.(1)200;(2)图见解析;(3)144;(4)6 500人【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出;(4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可.【详解】(1)本次调查共随机抽取了:50÷25%=200(名);(2)课外阅读时长“2~4小时”的有:200×20%=40(人),课外阅读时长“4~6小时”的有:200-30-40-50=80(人),故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°; (4)10000×(1-20%-15%)=6500(人).【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键.9.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.10.见解析【分析】由平行四边形的性质得AD ∥BC ,根据平行线的性质证明∠E =∠F ,角边角证明△AFG ≌△CEH ,其性质得AG =CH ,进而可证明BG =DH .【详解】BG =DH ,理由如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C ,AB =DC ,∴∠E =∠F ,又∵BE =DF ,AF =AD +DF ,CE =CB +BE ,∴AF =CE ,在△CEH 和△AFG 中,A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFG ≌△CEH (ASA ),∴AG =CH ,∴BG =DH .【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.11.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE 为平行四边形,∴BF =AE ,即t =6﹣2t ,解得:t =2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.12.(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【分析】(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.【详解】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,故答案为1.5,1.5;(2)所有被调查学生阅读时间的平均数为:1100×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均阅读时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×40+18100=290(人). 故答案为(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【点睛】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.13.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭化简得2281920x x -+=,解得112x =,216x = 又8860%x -<⨯12.8x ∴≤ 16x ∴=不合题意,舍去12x ∴=,∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.14.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立【分析】(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;(3)根据题意作出图形,利用(2)中证明思路即可得出答案.【详解】(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,在△ABP 和△ADP 中,45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩===,∴△ABP ≌△ADP ,∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠,又∵PB PE =,∴CBP BEP ∠=∠,PE PD =,∴BEP CDP ∠=∠,∵180BEP CEP ∠+∠=︒,∴180CDP CEP ∠+∠=︒,∵正方形ABCD 中,90BCD ∠=︒,∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒,∴PE PD ⊥;(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),又∵PB PE =,∴PE PD =,①当点E 与点C 重合时,PE PD ⊥;②当点E 在BC 的延长线上时,如图所示,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵12∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥,综上所述:PE PD ⊥.∴当点P 在线段OC 上时,(1)中的猜想成立;(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.∵四边形ABCD 是正方形,点P 在AC 的延长线上,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵DGC EGP ∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..15.(1)证明见详解;(2)①5或6;②9或10或496. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即4<t≤10时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴AB=AC ,∴△ABC 是等腰三角形;(2)解:由(1)知,AB=5x ,CD=4x ,∴S △ABC=12×5x×4x=160cm 2,而x >0, ∴x=4cm ,则BD=8cm ,AD=12cm ,CD=16cm ,AB=AC=20cm .由运动知,AM=20-2t ,AN=2t ,①当MN ∥BC 时,AM=AN ,即20-2t=2t ,∴t=5;当DN ∥BC 时,AD=AN ,∴12=2t ,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②存在,理由:Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=10当DE=DM,则2t-8=10,∴t=9;当ED=EM,则点M运动到点A,∴t=10;当MD=ME=2t-8,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=6,在Rt△AEF中,EF=8;∵BM=2t,BF=BD+DF=8+6=14,∴FM=2t-14在Rt△EFM中,(2t-8)2-(2t-14)2=82,∴t=496.综上所述,符合要求的t值为9或10或496.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中苏科八年级数学下册期末考试试卷百度文库一、选择题1.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°2.下列分式中,属于最简分式的是()A.62aB.2xxC.11xx--D.21xx+3.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8004.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.下列说法正确的是()A.矩形的对角线相等垂直B.菱形的对角线相等C.正方形的对角线相等D.菱形的四个角都是直角6.下列调查中,最适宜采用全面调查方式的是()A.调查某市成年人的学历水平B.调查某批次日光灯的使用寿命C.调查市场上矿泉水的质量情况D.了解某个班级学生的视力情况7.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形D.有一个角是直角的平行四边形是正方形8.如果把分式aa b-中的a、b都扩大2倍,那么分式的值一定()A.是原来的2倍B.是原来的4倍C.是原来的12D.不变9.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC和BD相交于点O,OE⊥BD交AD于E,则ΔABE的周长为()A.4cm B.6cm C.8cm D.10cm10.如图,E是正方形ABCD边AB延长线上一点,且BD=BE,则∠E的大小为()A.15°B.22.5°C.30°D.45°二、填空题11.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m2.12.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.13.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.14.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是_______.15.如图,在正方形ABCD中,△ABE为等边三角形,连接DE,CE,延长AE交CD于F 点,则∠DEF的度数为_____.16.如图,点A是一次函数13y x=(0)x≥图像上一点,过点A作x轴的垂线l,点B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数ky x=(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.17.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =1,则四边形BEDF 的周长是_____.18.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.19.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______. 20.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AB 边中点,菱形ABCD 的周长为24,则OH 的长等于___.三、解答题21.如图,四边形ABCD 是正方形,点E 是BC 边上的动点(不与点B 、C 重合),将射线AE 绕点A 按逆时针方向旋转45°后交CD 边于点F ,AE 、AF 分别交BD 于G 、H 两点. (1)当∠BEA =55°时,求∠HAD 的度数;(2)设∠BEA =α,试用含α的代数式表示∠DFA 的大小;(3)点E 运动的过程中,试探究∠BEA 与∠FEA 有怎样的数量关系,并说明理由.22.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.(1)点B的坐标为,直线ON对应的函数表达式为;(2)当EF=3时,求H点的坐标;(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.23.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.24.用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.25.(发现)(1)如图1,在▱ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F.求证:△AOE≌△COF;(探究)(2)如图2,在菱形ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F,若AC=4,BD=8,求四边形ABFE的面积.(应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)26.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)27.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;(4)在扇形统计图中表示观点E的百分比是.28.如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵DE垂直平分AB,∴AE=BE , ∵BE ⊥AC ,∴△ABE 是等腰直角三角形, ∴∠BAE=∠ABE=45°, 又∵AB=AC ,∴∠ABC=12(180°-∠BAC )=12(180°-45°)=67.5°, ∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°, ∵AB=AC ,AF ⊥BC , ∴BF=CF ,∵EF=12BC (直角三角形斜边中线等于斜边的一半), ∴BF=EF=CF ,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°. 故选:C . 【点睛】此题考查等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE 是等腰直角三角形是解题的关键.2.D解析:D 【解析】 【分析】根据最简分式的概念判断即可. 【详解】 解:A. 62a分子分母有公因式2,不是最简分式; B. 2xx 的分子分母有公因式x ,不是最简分式; C.11xx --的分子分母有公因式1-x ,不是最简分式;D. 21xx +的分子分母没有公因式,是最简分式. 故选:D【点睛】本题考查的是最简分式,需要注意的公因式包括因数.3.C解析:C 【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可. 【详解】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近, 所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近10000.5500⨯=次,故选C . 【点睛】本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.4.A解析:A 【分析】直接利用轴对称图形和中心对称图形的概念求解. 【详解】解:A 、是中心对称图形,也是轴对称图形,故此选项符合题意; B 、不是中心对称图形,是轴对称图形,故此选项不合题意; C 、是中心对称图形,不是轴对称图形,故此选项不合题意; D 、不是中心对称图形,是轴对称图形,故此选项不合题意; 故选:A . 【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5.C解析:C 【分析】根据矩形、菱形的性质和正方形的性质判断即可. 【详解】解:A 、矩形的对角线相等且平分,选项错误,不符合题意; B 、菱形的对角线垂直且平分,选项错误,不符合题意; C 、正方形的对角线相等,选项正确,符合题意;D 、矩形的四个角都是直角,而菱形的四个角不是直角,选项错误,不符合题意; 故选:C . 【点睛】本题考查矩形、菱形和正方形的性质,正确区分矩形、菱形和正方形的性质是解题的关键.6.D解析:D 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可. 【详解】A. 调查某市成年人的学历水平工作量比较大,宜采用抽样调查;B. 调查某批次日光灯的使用寿命具有破坏性,宜采用抽样调查;C. 调查市场上矿泉水的质量情况具有破坏性,宜采用抽样调查;D. 了解某个班级学生的视力情况工作量比较小,宜采用全面调查. 故选D . 【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.A解析:A 【分析】利用特殊四边形的判定定理逐项判断即可. 【详解】A 、对角线互相垂直的平行四边形是菱形,此项正确B 、两组对边分别相等的四边形是平行四边形,此项错误C 、对角线相等的平行四边形是矩形,此项错误D 、有一个角是直角的平行四边形是矩形,此项错误 故选:A. 【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.8.D解析:D 【分析】把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论. 【详解】解:把2a 、2b 代入分式可得22222()a a aa b a b a b==---,由此可知分式的值没有改变,故选:D.【点睛】本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.9.D解析:D【解析】分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.详解:∵四边形ABCD是平行四边形,∴AC、BD互相平分,∴O是BD的中点.又∵OE⊥BD,∴OE为线段BD的中垂线,∴BE=DE.又∵△ABE的周长=AB+AE+BE,∴△ABE的周长=AB+AE+DE=AB+AD.又∵□ABCD的周长为20cm,∴AB+AD=10cm∴△ABE的周长=10cm.故选D.点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.请在此填写本题解析!10.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.二、填空题11.1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:112.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.13.28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-解析:5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率15.105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度解析:105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度数,再根据平角定义即可求得∠DEF的度数.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ABE为等边三角形,∴AE=BE=AB,∠EAB=60°,∴AE=AD ,∠EAD=∠BAD ﹣∠BAE=30°,∴∠AED=∠ADE=12(180°﹣30°)=75°, ∴∠DEF=180°﹣∠AED=180°﹣75°=105°.故答案为105°.【点睛】 本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.16.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形,解析:163【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===, 设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上, ∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =, ∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.17.20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD⊥EF,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如解析:20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD ⊥EF ,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC ,∵AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF ,∴四边形BEDF 为菱形,∴DE =DF =BE =BF ,∵AC =BD =8,OE =OF =8232-=, 由勾股定理得:DE =2222435OD OE +=+=,∴四边形BEDF 的周长=4DE =4×5=20,故答案为:20.【点睛】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.18.【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a ,x11,x12,…,x30的平均数为b ,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.19.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根, 0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 20.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB==6,∵四边形ABCD 是菱形,∴AC ⊥BD ,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB =244=6, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∵H 为AB 边中点,∴在Rt △AOB 中,OH 为斜边上的中线,∴OH =12AB =3. 故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题21.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可;(2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.【详解】解:(1)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;(2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°,∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=,∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;(3)∠BEA =∠FEA ,理由如下:延长CB至I,使BI=DF,连接AI.∵四边形ABCD是正方形,∴AD=AB,∠ADF=∠ABC=90°,∴∠ABI=90°,又∵BI=DF,∴△DAF≌△BAI(SAS),∴AF=AI,∠DAF=∠BAI,∴∠EAI=∠BAI+∠BAE=∠DAF+∠BAE=45°=∠EAF,又∵AE是△EAI与△EAF的公共边,∴△EAI≌△EAF(SAS),∴∠BEA=∠FEA.【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.22.(1)(3,2),12y x;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=1 2,∴直线ON的解析式为:y=12x;故答案是:(3,2),12y x;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E在直线OM上,设点E的坐标为(e,e),∴F(e,e﹣3),G(e+5,e﹣3),∵点G在直线ON上,∴e﹣3=12(e+5),解得e=11,∴H(16,11).(3)s1:s2的值是一个常数,理由如下:如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),∵点G在直线y=12x上,∴a﹣3m=12(a+5m),∴a=11m,∴E(11m,11m),H(16m,11m),F(11m,8m),G(16m,8m)J(11m,0),K (16m,0),∴S△OEG=S△OEJ+S梯形EJKG﹣S△OKG=12×11m×11m+12(8m+11m)•5m•12﹣12×16m×8m =44m2,S矩形EFGH=EF•FG=15m2,∴12SS=224415mm=4415.∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】 本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.23.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可; (2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11x+=0.25,解得x =3. 答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.24.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12x x == 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,移项得,y (y ﹣7)-14+2y =0,分解因式得:(y ﹣7)(y +2)=0,则y ﹣7=0或y +2=0,解得:y 1=7,y 2=﹣2.(3)2x 2﹣3x ﹣1=0,∴a =2,b =﹣3,c =﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x 1,x 2【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.25.(1)见解析 (2)8 (3)见解析【分析】(1)根据ASA 证明三角形全等即可.(2)证明S 四边形ABFE =S △ABC 可得结论.(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).【详解】(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,∴AO =OC ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ).(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF ,∴S △AOE =S △COF ,∴S 四边形ABFE =S △ABC ,∵四边形ABCD 是菱形,∴S △ABC =12S 菱形ABCD , ∵S 菱形ABCD =12•AC •BD =12×4×8=16, ∴S 四边形ABFE =12×16=8. (3)【应用】①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;②连接下面左边数第二个小正方形右上角和左下角的顶点;③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.如图3中,直线l 即为所求(答案不唯一).【点睛】本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.26.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠,()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE =2.51 1.5EF DF BE ∴=-=-=.故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.27.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A 的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C 的人数,从而可以将条形统计图补充完整; (3)根据选B 的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B 的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E 的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C 的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为:360°×2505000=18°, 故答案为:18;(4)在扇形统计图中表示观点E 的百分比是:2005000×100%=4%, 故答案为:4%.【点睛】 本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.28.菱形,理由见解析【分析】根据平行四边形的判定得出四边形BDEF是平行四边形,再利用平行四边形的性质和等腰三角形的判定得出DE=BD,进而利用菱形的判定解答即可.【详解】四边形DBFE是菱形,理由如下:∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∴DE∥BC,∴∠DEB=∠EBF,∵BE平分∠ABC,∴∠DBE=∠EBF,∴∠DBE=∠DEB,∴BD=DE,∴平行四边形DBEF是菱形.【点睛】此题考查菱形的判定,关键是根据平行四边形的判定得出四边形BDEF是平行四边形解答.。

相关文档
最新文档