第3讲 二元一次不等式(组)与简单的线性规划问题1

合集下载

第3讲二元一次不等式(组)与简单线性规划问题

第3讲二元一次不等式(组)与简单线性规划问题

第3讲 二元一次不等式(组)与简单线性规划问题★ 知 识 梳理 ★(一)二元一次不等式表示的区域对于直线0=++C By Ax (A>0)当B>0时, 0>++C By Ax 表示直线0=++C By Ax 上方区域; 0<++C By Ax 表示直线0=++c By Ax 的下方区域.当B<0时, 0>++C By Ax 表示直线0=++C By Ax 下方区域; 0<++C By Ax 表示直线0=++c By Ax 的上方区域.(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. 线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.(5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解.最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.★ 重 难 点 突 破 ★1.重点:灵活运用二元一次不等式(组)来表示的平面区域,掌握线性规划的图解法2.难点:如何确定不等式0(Ax By C ++>或<0)表示0Ax By C ++=的哪一侧区域,如何寻求线性规划问题的最优解.3.重难点:如何将实际问题转化为线性规划问题并准确求得线性规划问题的最优解 (1) 怎样画二元一次不等式(组)所表示的平面区域?问题1. 画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域点拨:(2)求线性规划的最优解问题2. 某人上午7时,乘摩托艇以匀速v 海里/时(4≤v ≤20)从A 港出发到距50海里的B 港去,然后乘汽车以w 千米/时(30≤w ≤100)自B 港向距300千米的C 市驶去,应该在同一天下午4至9点到达C 市.设汽车、摩托艇所需的时间分别是,x y 小时.(1)写出,x y 所满足的条件,并在所给的平面直角坐标系内,作出表示,x y 范围的图形; (2)如果已知所需的经费1003(5)2(8)p x y =+-+-(元),那么,v w 分别是多少时走得最经济?此时需花费多少元? 点拨:(1) 由题意得:v =y50,w =x 300,4≤v ≤20,30≤w ≤100,∴3≤x ≤10,25≤y ≤225.① 由于汽车、摩托艇所要的时间和x +y 应在9至14小时之间,即9≤x +y ≤14,②因此满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界).(2) 因为p =100+3(5-x )+2(8-y ),所以3x +2y =131-p ,设131-p =k ,那么当k 最大时,p 最小,在图中通过阴影部分区域且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当y =4时,p 最小,此时x =10,v =12.5,w =30,p 的最小值为93元.★ 热 点 考 点 题 型 探 析★考点1 二元一次不等式(组)与平面区域 题型1. 求约束条件及平面区域的面积例1 .双曲线4y x 22=-的两条渐近线与直线x=3围成一个三角形区域,表示该区域的不等式组是( )A. ⎪⎩⎪⎨⎧≤≤≥+≥-3x 00y x 0y xB. ⎪⎩⎪⎨⎧≤≤≤+≥-3x 00y x 0y xC. ⎪⎩⎪⎨⎧≤≤≤+≤-3x 00y x 0y xD. ⎪⎩⎪⎨⎧≤≤≥+≤-3x 00y x 0y x【解题思路】依据平面区域的画法求解.[解析]双曲线4y x 22=-的两条渐近线方程为x y ±=,两者与直线3x =围成一个三角形区域时有⎪⎩⎪⎨⎧≤≤≥+≥-3x 00y x 0y x ,故选A 。

二元一次不等式(组)与简单的线性规划问题1

二元一次不等式(组)与简单的线性规划问题1

高三一轮复习数学学案二元一次不等式(组)与简单的线性规划问题一、考纲要求及重难点: 1、 考纲要求:(1) 会从实际情境中抽象出二元一次不等式(组)。

(2) 了解二元一次不等式(组)的几何意义,能用平面区域表示二元一次不等式(组)。

(3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

2、 重难点:(1) 以考查线性目标函数的最值为重点,兼顾考查代数式的几何意义(如斜率、距离、面积)。

(2) 多在选择题、填空题中出现,有时也会在解答题中出现,常与实际问题相联系,列出线性约束条件,求出最优解。

二、课前自测:1、下列各点中,不在10x y +-≤表示的平面区域内的点是( ) A 、(0,0) B 、(1,1)- C 、(1,3)- D 、(2,3)-2、直线2x+y-10=0与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有( )A 、0个B 、1个C 、2个D 、无数个3.(2013山东)在平面直角坐标系xoy 中,M 为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .13-D .12-4.实数x ,y 满足不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,那么目标函数24z x y =+的最小值是( )A 、6B 、-6C 、-2D 、45.完成一项装修工程需要木工和瓦工共同完成。

请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x 人,瓦工y 人,请工人的约束条件是 。

三、知识梳理:1、二元一次不等式表示的平面区域 已知直线l :0Ax By C ++=(1)开半平面与闭半平面直线l 把坐标平面分成 部分,每个部分叫开半平面, 与 的并集叫做闭半平面。

(2)不等式表示的区域以不等式解 为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象。

高中数学第三章不等式3二元一次不等式组与简单的线性规划问题第1课时练习含解析人教版必修

高中数学第三章不等式3二元一次不等式组与简单的线性规划问题第1课时练习含解析人教版必修

第1课时一、选择题1.不在3x +2y <6表示的平面区域内的点是( ) A .(0,0) B .(1,1) C .(0,2) D .(2,0)[答案] D[解析] 将点的坐标代入不等式中检验可知,只有(2,0)点不满足3x +2y <6.2.不等式组⎩⎪⎨⎪⎧y <x x +y ≤1y ≥3,表示的区域为D ,点P 1(0,-2),点P 2(0,0),则( )A .P 1∉D ,P 2∉DB .P 1∉D ,P 2∈DC .P 1∈D ,P 2∉D D .P 1∈D ,P 2∈D[答案] A[解析] P 1点不满足y ≥3.P 2点不满足y <x .和y ≥3 ∴选A .3.已知点P (x 0,y 0)和点A (1,2)在直线l :3x +2y -8=0的异侧,则( ) A .3x 0+2y 0>0 B .3x 0+2y 0<0 C .3x 0+2y 0<8 D .3x 0+2y 0>8[答案] D[解析] ∵3×1+2×1-8=-3<0,P 与A 在直线l 异侧,∴3x 0+2y 0-8>0. 4.图中阴影部分表示的区域对应的二元一次不等式组为( )A .⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≥0B .⎩⎪⎨⎪⎧x +y -1≤0x -2y +2≤0C .⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≤0D .⎩⎪⎨⎪⎧x +y -1≤0x -2y +2≥0[答案] A[解析] 取原点O (0,0)检验满足x +y -1≤0,故异侧点应为x +y -1≥0,排除B 、D .O 点满足x -2y +2≥0,排除C .∴选A .5.不等式x 2-y 2≥0表示的平面区域是( )[答案] B[解析] 将(±1,0)代入均满足知选B .6.不等式组⎩⎪⎨⎪⎧x -y +5x +y ≥00≤x ≤3表示的平面区域是一个( ) A .三角形 B .直角梯形 C .梯形 D .矩形[答案] C[解析] 画出直线x -y +5=0及x +y =0,取点(0,1)代入(x -y +5)(x +y )=4>0,知点(0,1)在不等式(x -y +5)(x +y )≥0表示的对顶角形区域内,再画出直线x =0和x =3,则原不等式组表示的平面区域为图中阴影部分,它是一个梯形.二、填空题7.已知x ,y 为非负整数,则满足x +y ≤2的点(x ,y )共有________个. [答案] 6[解析] 符合条件的点有(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)共6个. 8.用三条直线x +2y =2,2x +y =2,x -y =3围成一个三角形,则三角形内部区域(不包括边界)可用不等式表示为________.[答案] ⎩⎪⎨⎪⎧x +2y <22x +y >2x -y <3三、解答题9.画出不等式组⎩⎪⎨⎪⎧x +y -6≥0x -y ≥0y ≤3x <5表示的平面区域.[解析] 不等式x +y -6≥0表示在直线x +y -6=0上及右上方的点的集合,x -y ≥0表示在直线x -y =0上及右下方的点的集合,y ≤3表示在直线y =3上及其下方的点的集合,x<5表示直线x =5左方的点的集合,所以不等式组⎩⎪⎨⎪⎧x +y -6≥0x -y ≥0y ≤3x <5表示的平面区域为如图阴影部分.10.经过点P (0,-1)作直线l ,若直线l 与连结A (1,-2)、B (2,1)的线段总有公共点,求直线l 的斜率k 的取值范围.[解析]由题意知直线l 斜率存在,设为k . 则可设直线l 的方程为kx -y -1=0,由题知:A 、B 两点在直线l 上或在直线l 的两侧,所以有: (k +1)(2k -2)≤0 ∴-1≤k ≤1.一、选择题1.在平面直角坐标系中,若点A (-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-1,+∞)D .(0,1)[答案] B[解析] 在直线方程x -2y +4=0中,令x =-2,则y =1,则点P (-2,1)在直线x -2y +4=0上,又点(-2,t )在直线x -2y +4=0的上方,如图知,t 的取值范围是t >1,故选B .2.不等式组⎩⎪⎨⎪⎧x -y +1x +y +1≥0-1≤x ≤4表示的平面区域是( )A .两个三角形B .一个三角形C .梯形D .等腰梯形[答案] B [解析] 如图∵(x -y +1)(x +y +1)≥0表示如图(1)所示的对顶角形区域.且两直线交于点A (-1,0).故添加条件-1≤x ≤4后表示的区域如图(2).3.不等式组⎩⎪⎨⎪⎧x -y +6≥0x +y ≥0x ≤3表示的平面区域的面积是( )A .18B .36C .72D .144[解析] 作出平面区域如图.交点A (-3,3)、B (3、9)、C (3,-3), ∴S △ABC =12[9-(-3)]×[3-(-3)]=36.4.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0x -1≤0ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3[答案] D[解析] 画出⎩⎪⎨⎪⎧x +y -1≥0x -1≤0表示的平面区域如图,直线l :y =ax +1过定点(0,1),由于ax -y +1≥0与⎩⎪⎨⎪⎧x +y -1≥0x -1≤0围成平面区域的面积为2,∴a >0,令x =1得y =a +1,∴12×(a +1)×1=2,∴a =3.5.点P (1,a )到直线x -2y +2=0的距离为355,且P 在3x +y -3>0表示的区域内,则a =________.[答案] 3[解析] 由条件知,|1-2a +2|5=355,∴a =0或3,又点P 在3x +y -3>0表示的区域内,∴3+a -3>0,∴a >0,∴a =3.6.不等式⎩⎪⎨⎪⎧x ≤1x -y +1≥02x +y +2≥0表示的平面区域的面积是________.[答案] 6[解析] 作出平面区域如图△ABC ,A (-1,0)、B (1,2)、C (1,-4),S △ABC =12·|BC |·d=12×6×2=6. (d 表示A 到直线BC 的距离.)三、解答题7.求由约束条件⎩⎪⎨⎪⎧x +y ≤52x +y ≤6x ≥0y ≥0确定的平面区域的面积S 和周长C .[解析] 可行域如图所示,其四个顶点为O (0,0),B (3,0),A (0,5),P (1,4).过点P 作y 轴的垂线,垂足为C ,则AC =1,PC =1,OC =4,OB =3,AP =2,PB =4-02+1-32=25,得周长C =AO +BO +AP +PB =8+2+2 5.∵S △ACP =12AC ·PC =12,S 梯形COBP =12(CP +OB )·OC =8,∴面积S =S △ACP +S 梯形COBP =172.8.画出不等式(x +2y +1)(x -y +4)<0表示的平面区域.[解析] (x +2y +1)(x -y +4)<0表示x +2y +1与x -y +4的符号相反,因此原不等式等价于两个不等式组⎩⎪⎨⎪⎧x +2y +1>0,x -y +4<0,与⎩⎪⎨⎪⎧x +2y +1<0,x -y +4>0,在同一直角坐标内作出两个不等式组表示的平面区域,就是原不等式表示的平面区域.在直角坐标系中画出直线x +2y +1=0与x -y +4=0,(画成虚线)取原点(0,0)可以判断. 不等式x +2y +1>0表示直线x +2y +1=0的右上方区域,x +2y +1<0表示直线x +2y +1=0的左下方区域;x -y +4<0表示直线x -y +4=0的左上方区域,x -y +4>0表示直线x -y +4=0的右下方区域.所以不等式组表示的平面区域,即原不等式表示的平面区域如图所示.。

第3讲 二元一次不等式(组)与简单的线性

第3讲  二元一次不等式(组)与简单的线性

二元一次不等式(组)与简单的线性规划问题一、选择题1. 设变量x ,y 满足10,020,015,x y x y y -⎧⎪≤+≤⎨⎪≤≤⎩则2x +3y 的最大值为( )A. 20B.35C. 45D. 55解析 画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D. 答案 D2.设实数x ,y 满足不等式组⎩⎨⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0.若x ,y 为整数,则3x +4y 的最小值是( ).A .14B .16C .17D .19解析 线性区域边界上的整点为(3,1),因此最符合条件的整点可能为(4,1)或(3,2),对于点(4,1),3x +4y =3×4+4×1=16;对于点(3,2),3x +4y =3×3+4×2=17,因此3x +4y 的最小值为16. 答案 B 3.若不等式组⎩⎨⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是 ( ).A .(-∞,5)B .[7,+∞)C .[5,7)D .(-∞,5)∪[7,+∞)解析 画出可行域,知当直线y =a 在x -y +5=0与y 轴的交点(0,5)和x -y +5=0与x =2的交点(2,7)之间移动时平面区域是三角形.故5≤a <7. 答案 C4.设实数x ,y 满足条件⎩⎨⎧4x -y -10≤0,x -2y +8≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为( ).A.256B.83C.113D .4解析 由可行域可得,当x =4,y =6时,目标函数z =ax +by 取得最大值,∴4a +6b =12,即a 3+b 2=1.∴2a +3b =⎝ ⎛⎭⎪⎫2a +3b ·⎝ ⎛⎭⎪⎫a 3+b 2=136+b a +a b ≥136+2=256.答案 A5.实数x ,y 满足⎩⎨⎧x ≥1,y ≤a (a >1),x -y ≤0,若目标函数z =x +y 取得最大值4,则实数a 的值为 ( ).A .4B .3C .2D.32解析 作出可行域,由题意可知可行域为△ABC 内部及边界,y =-x +z ,则z 的几何意义为直线在y 轴上的截距,将目标函数平移可知当直线经过点A 时,目标函数取得最大值4,此时A 点坐标为(a ,a ),代入得4=a +a =2a ,所以a =2.答案 C6.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ).A .1 800元B .2 400元C .2 800元D .3 100元解析 设某公司生产甲产品x 桶,生产乙产品y 桶,获利为z元,则x ,y 满足的线性约束条件为错误!目标函数z =300x +400y .作出可行域,如图中四边形OABC 的边界及其内部整点.作直线l 0:3x +4y =0,平移直线l 0经可行域内点B时,z 取最大值,由⎩⎨⎧2x +y =12,x +2y =12,得B (4,4),满足题意,所以z max =4×300+4×400=2 800.答案 C二、填空题7.若点P (m,3)到直线4x -3y +1=0的距离为4,且点P 在不等式2x +y <3表示的平面区域内,则m =________.解析由题意可得⎩⎨⎧|4m -9+1|5=4,2m +3<3,解得m =-3.答案 -38.若x ,y 满足约束条件⎝ ⎛x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析 记z =x -y ,则y =x -z ,所以z 为直线y =x -z 在y 轴上的截距的相反数,画出不等式组表示的可行域如图中△ABC 区域所示.结合图形可知,当直线经过点B (1,1)时,x -y 取得最大值0,当直线经过点C (0,3)时,x -y 取得最小值-3. 答案 [-3,0]9.设实数x 、y满足⎩⎨⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值是________.解析 不等式组确定的平面区域如图阴影部分. 设y x =t ,则y =tx ,求yx 的最大值,即求y =tx 的斜率的最大值.显然y =tx 过A 点时,t 最大. 由⎩⎨⎧x +2y -4=0,2y -3=0,解得A ⎝ ⎛⎭⎪⎫1,32.代入y =tx ,得t =32.所以y x 的最大值为32. 答案 3210.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:a b /万吨 c /百万元 A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________百万元.解析 可设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎨⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,作图可知当目标函数经过(1,2)点时目标函数取得最小值,最小值为z min =3×1+6×2=15(百万元).答案 15 三、解答题11.设集合A ={(x ,y )|x ,y,1-x -y 是三角形的三边长}.(1)求出x ,y 所满足的不等式; (2)画出点(x ,y )所在的平面区域.解 (1)已知条件即⎩⎨⎧x +y >1-x -y >0,x +1-x -y >y >0,y +1-x -y >x >0,化简即⎩⎪⎨⎪⎧-x +12<y <-x +1,0<y <12,0<x <12.(2)区域如下图.12.画出不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,并回答下列问题:(1)指出x 、y 的取值范围;(2)平面区域内有多少个整点?解 (1)不等式x -y +5≥0表示直线x -y +5=0上及其右下方的点的集合,x +y ≥0表示直线x +y =0上及其右上方的点的集合,x ≤3表示直线x =3上及其左方的点的集合.所以,不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域如图所示.结合图中可行域得x ∈⎣⎢⎡⎦⎥⎤-52,3,y ∈[-3,8].(2)由图形及不等式组知⎩⎪⎨⎪⎧-x ≤y ≤x +5,-52≤x ≤3,且x ∈Z ,当x =3时,-3≤y ≤8,有12个整点; 当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点;∴平面区域内的整点共有2+4+6+8+10+12=42(个).13.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值.(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y =0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围是(-4,2).14.某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP 甲+yP 乙最大,最大值是多少?项目用量 产品工人(名)资金(万元)甲 4 20 乙85解 (1)依题意得⎩⎨⎧P 甲-P 乙=0.25,1-P 甲=P 乙-0.05,解得⎩⎨⎧P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4. (2)依题意得x 、y 应满足的约束条件为⎩⎨⎧4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y .作出不等式组所表示的平面区域,如图阴影部分,即可行域.作直线l 0:0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,此时z 取得最大值.解方程组⎩⎨⎧x +2y =8,4x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5.所以,当x=2,y =3时,z 取最大值为 2.5.。

第六章 第三节 二元一次不等式(组)及简单的线性规划问题

第六章  第三节  二元一次不等式(组)及简单的线性规划问题

一、选择题1.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤1,2x +y ≤5,x ≥1,则z =3x +y 的最大值为( )A .4B .5C .6D .7解析:在坐标平面内画出题中的不等式组表示的平面区域及直线3x +y =0,平移该直线,当平移到经过该平面区域内的点B (2,1)时,相应直线在x 轴上的截距达到最大,此时z =3x +y 取得最大值,最大值是7.答案:D2.(2011·山东高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y+1的最大值为( )A .11B .10C .9D .8.5解析:作出不等式组表示的可行域,如图阴影部分所示. 又z =2x +3y +1可化为y =-23x +z 3-13,结合图形可知z =2x +3y +1在点A 处取得最大值.由⎩⎪⎨⎪⎧ x +2y -5=0,x -y -2=0,得⎩⎪⎨⎪⎧x =3,y =1,故A (3,1). 此时z =2×3+3×1+1=10. 答案:B3.若z =mx +y 在平面区域⎩⎪⎨⎪⎧y -2x ≤0,2y -x ≥0,x +y -3≤0上取得最小值时的最优解有无穷多个,则z的最小值是( )A .-1B .1C .0D .0或±1解析:画出平面区域,可以判断出z 的几何意义是直线mx +y -z =0在y 轴上的截距,只有直线mx +y -z =0与直线x -2y =0重合时,才符合题意,此时,相应z 的最小值为0.答案:C4.(2012·海淀模拟)P (2,t )在不等式组⎩⎪⎨⎪⎧x -y -4≤0,x +y -3≤0表示的平面区域内,则点P (2,t )到直线3x +4y +10=0距离的最大值为( )A .2B .4C .6D .8解析:如图所示,结合图形可知点A (2,1)到已知直线距离最大,则最大值为|3×2+4×1+10|32+42=4.答案:B5.(2012·郑州模拟)设双曲线4x 2-y 2=1的两条渐近线与直线x =2围成的三角形区域(包含边界)为D ,P (x ,y )为D 内的一个动点,则目标函数z =12x -y 的最小值为( )A .-2B .-322C .0D .-522解析:双曲线4x 2-y 2=1的两条渐近线方程为2x -y =0,2x +y =0,与直线x =2围成的三角形区域如图中的阴影部分所示,所以目标函数z =12x -y 在点P (2,22)处取得最小值为z =122-22=-322.答案:B 二、填空题6.如图,点(x ,y )在四边形ABCD 内部和边界上运动,那么2x -y 的最小值为________.解析:令b =2x -y ,则y =2x -b ,如图所示,作斜率为2的平行线y =2x -b ,当经过点A 时,直线在y 轴上的截距最大,为-b ,此时b =2x -y 取得最小值,为b =2×1-1=1.答案:17.(2012·西安模拟)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域内的面积等于2,则a 的值为________.解析:不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0表示的区域为图中阴影部分.又因为ax -y +1=0恒过定点(0,1), 当a =0时,不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0.所表示的平面区域的面积为12,不合题意;当a <0时,所围成的区域面积小于12,所以a >0,此时所围成的区域为三角形,其面积为S =12×1×(a +1)=2,解之得a =3.答案:3 三、解答题8.若点P 在区域⎩⎪⎨⎪⎧2y -1≥0,x +y -2≤0,2x -y +2≥0内,求点P 到直线3x -4y -12=0距离的最大值.解:不等式组⎩⎪⎨⎪⎧2y -1≥0,x +y -2≤0,2x -y +2≥0所表示的可行域如图所示,当目标函数z =3x -4y 所表示的平行直线系过点A (0,2)时,目标函数取得最小值,此时对应的直线方程为3x -4y +8=0,其与直线3x -4y -12=0的距离为d =8+1232+42=4,即得点P 到直线3x -4y -12=0距离的最大值为4.9.变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx ,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围.解:由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0.x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0 解得A (1,225). 由⎩⎪⎨⎪⎧x =1,x -4y +3=0解得C (1,1). 由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0解得B (5,2). (1)∵z =y x =y -0x -0.∴z 的值即是可行域中的点与原点O 连线的斜率. 观察图形可知z min =k OB =25.(2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29. ∴2≤z ≤29.10.(2012·泰安模拟)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元.那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解:设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54.即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.让目标函数表示的直线2.5x +4y =z 在可行域上平移, 由此可知z =2.5x +4y 在B (4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.。

二元一次不等式(组)与简单的线性规划问题课件-2023届高三数学(文)一轮总复习

二元一次不等式(组)与简单的线性规划问题课件-2023届高三数学(文)一轮总复习

解析:在平面直角坐标系内画出题中的不等式组表示的平面区域,其是以(2,
0),(0,2),(4,2)为顶点的三角形区(包含边界)(图略),易得当目标函数z1=2x
-y经过平面区域内的点(4,2)时,取得最大值2×4-2=6.z2=x2+y2表示平面区
域内的点到原点的距离的平方,易得原点到直线x+y=2的距离的平方为所求最
z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是可行域上的点到点(-3
,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,dmin=1
-(-3)=4,dmax= −3 − 5 2
所以z的取值范围为[16,64].
+ 2 − 2 2 =8.
y
2.(变问题)若例2中条件不变,将“z= ”改为“z=|x+y|”,如何
,B,设想培优小组A中,每1名学生需要配备2名理科教师和2名文科
教师做导师;设想培优小组B中,每1名学生需要配备3名理科教师和1
名文科教师做导师.若学校现有14名理科教师和9名文科教师积极支
5
持,则两培优小组能够成立的学生人数和最多是_____.
反思感悟
第三节 二元一次不等式(组)
与简单的线性规划问题
·考向预测·
考情分析:主要考查利用线性规划知识求目标函数的最值、取值范
围、参数的取值(范围)以及实际应用,目标函数大多是线性的,偶尔
也会出现斜率型和距离型的目标函数,此部分内容仍是高考的热点,
主要以选择题和填空题的形式出现.
学科素养:通过线性规划在求最值中的应用问题考查直观想象、数
最大值
最小值
最大值
在线性约束条件下求线性目标函数的________或

2020届高三数学一轮复习导学案教师讲义第7章第3讲 二元一次不等式(组)及简单的线性规划问题

2020届高三数学一轮复习导学案教师讲义第7章第3讲 二元一次不等式(组)及简单的线性规划问题

第3讲二元一次不等式(组)及简单的线性规划问题1.二元一次不等式(组)表示的平面区域不等式(组)表示区域Ax+By+C>0直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分2.二元一次不等式(组)的解集满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式(组)续表名称意义目标函数关于变量x,y的函数解析式,如z=x+2y 线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.()(2)线性目标函数的最优解可能是不唯一的.()(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.()(4)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.()答案:(1)×(2)√(3)√(4)×(教材习题改编)不等式x-2y+6<0表示的区域在直线x-2y+6=0的()A .右上方 B.右下方 C .左上方D .左下方解析:选C .画出x -2y +6<0的图象如图所示,可知该区域在直线x -2y +6=0的左上方.故选C .点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________.解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝⎛⎭⎫23,+∞约束条件⎩⎪⎨⎪⎧x +y ≤2,x -y ≥-2,y ≥0表示的平面区域的面积为________.解析:作出⎩⎪⎨⎪⎧x +y ≤2,x -y ≥-2,y ≥0所表示的平面区域如图中阴影部分所示.则A (0,2),B (-2,0),C (2,0),所以S 阴=S △ABC =12×4×2=4.答案:4已知A (2,5),B (4,1),若点P (x ,y )在线段AB 上,则2x -y 的最大值为________. 解析:依题意得k AB =5-12-4=-2,所以线段l AB :y -1=-2(x -4),x ∈[2,4],即y =-2x +9,x ∈[2,4],故2x -y =2x -(-2x +9)=4x -9,x ∈[2,4].设h (x )=4x -9,易知h (x )=4x -9在[2,4]上单调递增,故当x =4时,h (x )max =4×4-9=7.答案:7已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为________.解析:画出可行域,如图阴影部分所示.由z =2x +y ,知y =-2x +z ,当目标函数过点(2,-1)时直线在y 轴上的截距最大,最大值为3.答案: 3二元一次不等式(组)表示的平面区域 [学生用书P111][典例引领](1)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32B.23 C .43D .34(2)若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为________.(3)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是________.【解析】 (1)由题意得不等式组表示的平面区域如图阴影部分,A ⎝⎛⎭⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .(2)不等式组表示的平面区域如图阴影部分,则图中A 点纵坐标y A =1+m ,B 点纵坐标y B =2m +23,C 点横坐标x C =-2m ,所以S △ABD =S ACD -S △BCD =12×(2+2m )×(1+m )-12×(2+2m )×2m +23=(m +1)23=43, 所以m =1或m =-3,又因为当m =-3时,不满足题意,应舍去, 所以m =1.(3)不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝⎛⎭⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (1)C (2)1 (3)(0,1]∪⎣⎡⎭⎫43,+∞(1)确定二元一次不等式(组)表示的平面区域的方法①“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.②当不等式中带等号时,边界为实线,不带等号时,边界应画为虚线,特殊点常取原点.(2)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域.②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.[通关练习]1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)大致是( )解析:选C .(x -2y +1)(x +y -3)≤0,即⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,与选项C 符合.故选C .2.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.解析:不等式组表示的平面区域如图阴影部分所示:由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面阴影区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时, 52=k 2+43, 所以k =73.答案:73求目标函数的最值(高频考点) [学生用书P112]线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,且常与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透.主要命题角度有:(1)求线性目标函数的最值; (2)求非线性目标函数的最值; (3)求参数值或取值范围.[典例引领]角度一 求线性目标函数的最值(2017·高考全国卷Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.【解析】 画出不等式组⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的平面区域如图中阴影部分所示,由可行域知,当直线y =32x -z2过点A 时,在y 轴上的截距最大,此时z 最小,由⎩⎪⎨⎪⎧x +2y =1,2x +y =-1,解得⎩⎪⎨⎪⎧x =-1,y =1.所以z min =-5.【答案】 -5角度二 求非线性目标函数的最值 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 【解】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域, 如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx 的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2,所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5,所以z 的取值范围是[1,5].1.保持本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].2.保持本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值. 解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝ ⎛⎭⎪⎫|1-1+1|12+(-1)22=12, 所以z max =2+1=3,z min =12+1=32.角度三 求参数值或取值范围(1)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5 B.3 C .-5或3D .5或-3(2)已知实数x ,y 满足⎩⎪⎨⎪⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为________.【解析】 (1)联立方程组⎩⎪⎨⎪⎧x +y =ax -y =-1,解得⎩⎨⎧x =a -12y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7,故选B .(2)画出可行域,如图阴影部分所示.由b =x -2y 得,y =12x -b2.易知在点(a ,a )处b 取最小值,故a -2a =-2,可得a =2.在点(2,-4)处b 取最大值,于是b 的最大值为2+8=10.【答案】 (1)B (2)10(1)求目标函数的最值的三个步骤①作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线.②平移——将l 平行移动,以确定最优解的对应点的位置.③求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值. (2)常见的三类目标函数 ①截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.②距离型:形如z =(x -a )2+(y -b )2.表示点(x ,y )与(a ,b )的距离的平方. ③斜率型:形如z =y -bx -a.表示点(x ,y )与点(a ,b )连线的斜率.[通关练习]已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤0,2y -x +1≥0,x +y -4≥0,且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.解析:作出线性约束条件表示的平面区域,如图中阴影部分所示. 若m =0, 则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m >0,数形结合知使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时, 有无穷多个点(x ,y )在线段AB 上, 使目标函数z =x +my 取得最小值,即-1m =-1,则m =1.综上可知,m =1. 答案:1线性规划的实际应用问题[学生用书P113][典例引领](2017·高考天津卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟)广告播放 时长(分钟)收视 人次(万) 甲 70 5 60 乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【解】 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为图1中的阴影部分:(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z 25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.解线性规划应用问题的一般步骤(1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系.(2)设元:设问题中起关键作用(或关联较多)的量为未知量x ,y ,并列出相应的不等式组和目标函数.(3)作图:准确作出可行域,平移找点(最优解). (4)求解:代入目标函数求解(最大值或最小值). (5)检验:根据结果,检验反馈.[注意] 在实际应用问题中,变量x ,y 除受题目要求的条件制约外,可能还有一些隐含的制约条件,如在涉及以人数为变量的实际应用问题中,人数必须是自然数,在解题时不要忽略了这些隐含的制约条件.[通关练习]某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:由题意,设产品A 生产x 件,产品B 生产y 件, 利润z =2 100x +900y , 线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,作出不等式组表示的平面区域如图中阴影部分所示, 又由x ∈N ,y ∈N ,可知取得最大值时的最优解为(60,100), 所以z max =2 100×60+900×100=216 000(元). 答案:216 000求目标函数最值的方法(1)求二元一次目标函数z =ax +by (ab ≠0)的最值,将z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z 的最值.最优解在顶点或边界取得.(2)x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;(3)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. 由目标函数求最值的方法求解线性规划中含参问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.[学生用书P293(单独成册)]1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解析:选B .根据题意知(-9+2-a )·(12+12-a )<0. 即(a +7)(a -24)<0, 解得-7<a <24.2.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y -2≥0,x -y +2≥0,2x +y -2≥0,则z =3x -y 的最小值为( )A .-1 B.1 C .3 D .2解析:选C .如图,作出不等式组所表示的平面区域(阴影部分),显然目标函数z =3x -y 的几何意义是直线3x -y -z =0在y 轴上截距的相反数,故当直线在y 轴上截距取得最大值时,目标函数z 取得最小值.由图可知,目标函数对应直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧2x +y -2=0,2x -y -2=0,解得A (1,0). 故z 的最小值为3×1-0=3. 故选C .3.不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( )A .(0,3] B.[-1,1] C .(-∞,3]D .[3,+∞)解析:选D .直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).故选D .4.(2017·高考全国卷Ⅱ)设x 、y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15 B.-9 C .1D .9解析:选A .法一:作出不等式组⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0对应的可行域,如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15,选择A .法二:易求可行域顶点A (0,1),B (-6,-3),C (6,-3),分别代入目标函数,求出对应的z 的值依次为1,-15,9,故最小值为-15.5.实数x ,y 满足⎩⎪⎨⎪⎧x ≥a ,y ≥x ,x +y ≤2,(a <1)且z =2x +y 的最大值是最小值的4倍,则a 的值是( )A .211 B.14 C .12D .34解析:选B .在直角坐标系中作出不等式组所表示的可行域如图中阴影部分(包括边界)所示,当目标函数z =2x +y 经过可行域中的点B (1,1)时有最大值3,当目标函数z =2x +y 经过可行域中的点A (a ,a )时有最小值3a ,由3=4×3a ,得a =14.6.(2017·高考全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析:作出约束条件表示的可行域如图中阴影部分所示,作出直线l :3x -4y =0,平移直线l ,当直线z =3x -4y 经过点A (1,1)时,z 取得最小值,最小值为3-4=-1.答案:-17.若变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为________.解析:作出不等式组对应的平面区域如图阴影部分,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方, 由图知C 、D 间的距离最小,此时z 最小.由⎩⎪⎨⎪⎧y =1,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1), 此时z min =(x -2)2+y 2=4+1=5. 答案:58.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,则目标函数z =y +2x -5的最大值为________.解析:作出约束条件所表示的平面区域,其中A (0,1),B (1,0),C (3,4). 目标函数z =y +2x -5表示过点Q (5,-2)与点(x ,y )的直线的斜率,且点(x ,y )在△ABC 平面区域内.显然过B ,Q 两点的直线的斜率z 最大,最大值为0+21-5=-12.答案:-129.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围. 解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0, 解得-18<a <14.故a 的取值范围是(-18,14). 10.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1. 所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).1.若x ,y 满足⎩⎪⎨⎪⎧x +y ≥1,mx -y ≤0,3x -2y +2≥0且z =3x -y 的最大值为2,则实数m 的值为( )A .13 B.23 C .1D .2解析:选D .由选项得m >0,作出不等式组 ⎩⎪⎨⎪⎧x +y ≥1,mx -y ≤0(m >0),3x -2y +2≥0表示的平面区域,如图中阴影部分.因为z =3x -y ,所以y =3x -z ,当直线y =3x -z 经过点A 时,直线在y 轴上的截距-z 最小,即目标函数取得最大值2.由⎩⎪⎨⎪⎧3x -2y +2=0,3x -y =2,得A (2,4),代入直线mx -y =0得2m -4=0,所以m=2.2.若变量x ,y 满足⎩⎪⎨⎪⎧|x |+|y |≤1,xy ≥0,则2x +y 的取值范围为________.解析:作出满足不等式组的平面区域,如图中阴影部分所示,平移直线2x +y =0,经过点(1,0)时,2x +y 取得最大值2×1+0=2,经过点(-1,0)时,2x +y 取得最小值2×(-1)+0=-2,所以2x +y 的取值范围为[-2,2].答案:[-2,2]3.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.解析:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B 坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max =21.答案:214.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________.解析:法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.答案:-1或25.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎪⎨⎪⎧x ≤my +n x -3y ≥0y ≥0的外接圆的直径为20,求n 的值.解:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +nx -3y ≥0y ≥0表示的可行域如图中阴影部分所示. 设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =-3.又直线l 过点A (53,5),所以53=-3×5+n , 解得n =103.当α=π6时,同理可得m =3,n =0(舍去).综上,n =103.6.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料A B C 甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数. (1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.设二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24).所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.。

高考数学第一轮知识点 第3课时 二元一次不等式组与简单的线性规划问题课时复习课件 理

高考数学第一轮知识点 第3课时 二元一次不等式组与简单的线性规划问题课时复习课件 理
3x+5y≥27.
作出可行域如图,让目标函数表示的直线 2.5x+4y=z 在可行域上平移,由此可知 z =2.5x+4y 在 B(4,3)处取得最小值. 因此,应当为该儿童预订 4 个单位的午餐和
3 个单位的晚餐,就可满足要求.
【变式训练】 3.某家具厂有方木料 90 m3,五合 板 600 m2,准备加工成书桌和书橱出售.已知生 产每张书桌需要方木料 0.1 m3,五合板 2 m2,生 产每个书橱需要方木料 0.2 m3、五合板 1 m2,出 售一张书桌可获利润 80 元,出售一个书橱可获利 润 120 元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少?
.D
恰为
AC
的中点,直线
y=x+2
将△
ABC 的面积平分.故选 A.
答案: A
【变式训练】 1.(2011·吉林延边州一模)若不
x-y+5≥0,
等式组y≥a, 0≤x≤3
表示的平面区域是一
个三角形,则 a 的取值范围是( )
A.a<5
B.a≥8
C.a<5 或 a≥8
D.5≤a<8
解析: 作出如图所示的可行域,要使该平面 区域表示三角形,需满足 5≤a<8.
答案: D
求目标函数的最值 1.求目标函数的最值,必须先准确地作出线 性可行域再作出目标函数对应的直线,据题 意确定取得最优解的点,进而求出目标函数 的最值. 2.线性目标函数 z=ax+by 取最大值时的最 优解与 b 的正负有关,当 b>0 时,最优解是将 直线 ax+by=0 在 2y-1=0
得 D(1,0),
∴kCD=0,kCA=1212-+01=13,∴z 的范围是0,31;
(3)z=

第三讲 二元一次不等式组与简单的线性规划问题

第三讲 二元一次不等式组与简单的线性规划问题
y
4
y3
2
o
2
4
6
8
x
x 2y 8 0
x4
设甲、乙两种产品分别生产x、y件,由己知 条件可得二元一次不等式组:
x 2 y 8, 4 x 16, 4 y 12, x 0, y 0.
y
4
y3
2
o
2
4
6
8
x
x 2y 8 0
B (-1,-1)
1
(2,-1) A
例 2、
某工厂用A、B两种配件生产甲、乙两种产品,每生产一件 甲产品使用4个A配件耗时1h, 每生产一件乙产品使用4个B配 件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配 件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?
把有关数据列表表示如下: 甲产品 (1件) 乙产品 (1件) 0 4 2
y
o
x
x+y=0
y
(x。,y。)
x+y>0
o
x
(x , y)
0
x+y<0
x+y=0
点 的集合{(x,y)|x-y+1=0}表示 什么图形?
想 一 想 ?在平面直角坐+1=0
-1 (x,y)
o
x
(x。,y。) x0>x,y=y0 x0-y0+1> x-y+1
x4
若生产一件甲产品获利2万元,生产一件乙产品 获利3万元,采用哪种生产安排利润最大? 设生产甲产品 x 件,乙产品 y 件时,工厂获得 的利润为 z ,则 z 2 x 3 y.即 y 2 x z 3 3

第六章 第三节 二元一次不等式组与简单的线性规划问题

第六章  第三节  二元一次不等式组与简单的线性规划问题

答案:A
x+2y≤4, 2.(2010· 陕西高考)设 x,y 满足约束条件x-y≤1, x+2≥0, 目标函数 z=3x-y 的最大值为________.

x+2y≤4, 解析:如图,首先画出线性约束条件x-y≤1, x+2≥0
的可行
域,是一个三角形,然后在可行域内平行移动目标函数 z =3x-y, 当经过 x+2y=4 与 x-y=1 的交点(2,1)时, 目标 函数取得最大值 z=3×2-1=5.
4 线 y=kx+ 分为面积相等的两部分,则 k 的值是( 3 7 A. 3 4 C. 3 3 B. 7 3 D. 4
)
(2)如图,△ABC中,A(0,1),B(-2,2),C(2,6),写出
△ABC区域所表示的二元一次不等式组.
解析:(1)由图可知,线性规划区域为△ 4 4 ABC 边界及内部,y=kx+ 恰过 A(0, ), 3 3 4 y=kx+ 将区域平均分成面积相等 3 1 5 5 1 4 7 两部分,故过 BC 的中点 D( , ), =k× + ,k= . 2 2 2 2 3 3 (2)由两点式得直线 AB、BC、CA 的方程并化简为: 直线 AB:x+2y-2=0,
答案:5
x+y-3≥0, 3.已知实数 x,y 满足x-y+1≥0, x≤2, (1)若 z=2x+y,求 z 的最大值和最小值; y (2)若 z=x,求 z 的最大值和最小值.
x+y-3≥0, 解:不等式组x-y+1≥0, x≤2
所示. 中阴影部分即为可行域.
x+y-3=0, 由 x-y+1=0, x=1, 得 y=2,
1 1 y (2)∵kOA=2,kOB= ,∴ ≤x≤2, 2 2 1 所以 z 的最大值为 2,z 的最小值为 . 2

36_第三节 二元一次不等式(组)及简单的线性规划问题

36_第三节 二元一次不等式(组)及简单的线性规划问题
2x y 6 0,
1-1 不等式组x y 3 0, 表示的平面区域的面积为 ( B ) y 2
A.4 B.1 C.5 D.无穷大
考点突破 栏目索引
2x y 6 0,
答案 B 不等式组x y 3 0, 表示的平面区域如图所示(阴影部分),

3,解得

x y

3 4 3 2
,,即A 34 ,
3 2
,又点A也在直线y=-x+b上,即 32 =- 34 +b,
∴b= 9 .故选A.
4
考点突破 栏目索引
方法技巧 1.线性规划问题的解题步骤 (1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行 直线系中过原点的那一条直线; (2)平移——将直线平行移动,以确定最优解的对应点的位置; (3)求值——解方程组,求出对应点的坐标(即最优解),代入目标函数,即 可求出最值.
22
y 2x,
(2)作出约束条件2x y 2,表示的可行域如图中阴影部分所示,其中
x 1
A(1,2),B 12 ,1
, y
x3
表示的几何意义是可行域的点(x,y)与点(-3,0)连线
考点突破 栏目索引
的斜率,由图可知,当(x,y)=(1,2)时, y
x
3
教材研读 栏目索引
答案 C 由题意知,过点(-1,0)和(0,2)的直线方程为2x-y+2=0,将原点坐 标(0,0)代入2x-y+2,得2x-y+2=2>0,于是2x-y+2≥0所表示的平面区域在 直线2x-y+2=0的右下方,结合所给图形可知C正确.
教材研读 栏目索引

第三节 二元一次不等式(组)及简单的线性规划问题

第三节  二元一次不等式(组)及简单的线性规划问题
x=3, x-y+1=0, x=3, 得 y=4,
∴zmin=2×3-3×4=-6,故选 B. 答案:B 2.x+y-1>0
数学
首页
上一页
下一页
末页
第三节
二元一次不等式(组)及简单的线性规划
结束
[练一练] 解析:作出函数
xx≥0 y=|x|= -xx<0
数学
首页
上一页
下一页
末页
第三节
二元一次不等式(组)及简单的线性规划
结束
(2)解析:记 z=ax-y,注意到当 x=0 时,y=-z,即直线 z=ax-y 在 y 轴上的截距是-z.在坐标平面 内画出题中的不等式组表示的平面区域,结合图形 1 可知,满足题意的实数 a 的取值范围为 a<- . 2
1 答案:-∞,-2
数学
首页
上一页
下一页
末页
第三节
二元一次不等式(组)及简单的线性规划
结束
考点三
[典例] 解析:设租用 A 型车 x 辆,
B 型车 y 辆,目标函数为 z=1 600x+2 400y, 36x+60y≥900, y-x≤7, 则约束条件为 y+x≤21, x,y∈N, 作出可行域,如图中阴影部分所示, 可知目标函数过点(5,12)时,有最小值 zmin=36 800(元). 答案:C
第三节
二元一次不等式(组)及简单的线性规划
结束
第三节 备考基础· 查清 1.边界直线 析式 一次 [试一试]
二元一次不等式(组)及简单的线性规划 公共部分 最大值 2.不等式(组) 最小值 一次 解
边界直线 (x, y) 集合
最大值
最小值
1.解析:作出不等式组表示的可行域,如图(阴影部分). 易知直线 z=2x-3y 过点 C 时,z 取得最小值.由

(文)大一轮复习课件 第六章 不等式、推理与证明 第三节 二元一次不等式(组)及简单的线性规划问题

(文)大一轮复习课件 第六章 不等式、推理与证明 第三节 二元一次不等式(组)及简单的线性规划问题

解析:设旅行社租用A型客车x辆,B型客车y 辆,租金为z,则线性约束条件为
x+y≤21, y-x≤7, 36x+60y≥900, x,y∈N.
目标函数为z=1 600x
+2 400y.画出可行域如图中阴影部分所示, 可知目标函数过点N(5,12)时,有最小值zmin=36 800(元).答案:C
[演练冲关]
x-y+2≥0, 1.(2017·海口调研)已知实数x,y满足x+y-4≥0,
4x-y-4≤0.
则z=
3x-y的取值范围为
()
A.0,152 C.2,152
B.[0,2] D.2,83
解析:画出题中的不等式组表示的平面区域 (阴影部分)及直线3x-y=0,平移该直线, 平移到经过该平面区域内的点A(1,3)(该点是 直线x-y+2=0与x+y-4=0的交点)时,相 应直线在x轴上的截距达到最小,此时z=3x-y取得最小值 3×1-3=0;平移到经过该平面区域内的点B85,152(该点是直 线4x-y-4=0与x+y-4=0的交点)时,相应直线在x轴上的 截距达到最大,此时z=3x-y取得最大值3× 85 - 152 = 152 ,因此 z的取值范围是0,152,选A.答案:A
2.(易错题)若满足条件 xx+-yy-≥20≤,0, y≥a
的整点(x,y)恰有9个,其
中整点是指横、纵坐标都是整数的点,则整数a的值为 ( )
A.-3
B.-2
C.-1
解析:不等式组所表示的平面区域如图中
D.0
阴影部分,当a=0时,只有4个整点
(1,1),(0,0),(1,0),(2,0);当a=-1时,
数多个,也可能没有.
3.在通过求直线的截距
z b
的最值间接求出z的最值时,要注

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

返回
[解析] (1)作出满足约束条 件的可行域如图中阴影部分所 示.由 z=3x+2y,得 y=-32x+2z.
作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时, z 取最大值,zmax=3×2+2×0=6.
返回
(2)




x+1≤y, y≤2x,

x-y+1≤0, 2x-y≥0,
返回
[方法技巧]
解决求平面区域面积问题的方法步骤 (1)画出不等式组表示的平面区域; (2)判断平面区域的形状,并求得直线的交点坐标、图形 的边长、相关线段的长(三角形的高、四边形的高)等,若为规 则图形则利用图形的面积公式求解;若为不规则图形则利用 割补法求解. [提醒] 求面积时应考虑圆、平行四边形等图形的对称性.
x<2y 选项 B 所表示的区域,故选 B. 答案:B
返回
3x+y-6≥0, 2.(2019·河南豫北联考)关于 x,y 的不等式组x-y-2≤0,
x+y-4≤0
表示的平面区域的面积为
()
A.3
B.52
C.2
D.32
解析:平面区域为一个直角三角形 ABC,其中 A(3,1),
B(2,0),C(1,3),所以面积为12|AB|·|AC|=12× 2× 8=2,
-dc,-ba连线的斜率的ac倍的取值范围、最值等
返回
对形如 z=|Ax+By+C|型的目标函数,可先 点到直线 变形为 z= A2+B2·|Ax+A2B+y+B2C|的形式,将 距离型 问题化为求可行域内的点(x,y)到直线 Ax+
By+C=0 的距离的 A2+B2倍的最值
返回
考法三 线性规划中的参数问题

中学数学第三节 二元一次不等式(组)与简单的线性规划问题

中学数学第三节 二元一次不等式(组)与简单的线性规划问题

第三节二元一次不等式(组)与简单的线性规划问题【最新考纲】 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.1.二元一次不等式(组)表示的平面区域2.线性规划相关概念(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.()(2)任何一个二元一次不等式组都表示平面上的一个区域.()(3)线性目标函数的最优解可能不唯一.()(4)目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.()答案:(1)×(2)×(3)√(4)×2.下列各点中,不在x+y-1≤0表示的平面区域内的是() A.(0,0)B.(-1,1)C.(-1,3) D.(2,-3)解析:∵-1+3-1>0,∴点(-1,3)不在x+y-1≤0表示的平面区域内.答案:C4.(2017·保定调研)在平面直角坐标系xOy 中,若点P(m ,1)到直线4x -3y -1=0的距离为4,且点P(m ,1)在不等式2x +y ≥3表示的平面区域内,则m =________.解析:由题意得|4m -3-1|5=4及2m +1≥3,解得m =6. 答案:65.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤0,x -y -4≤0表示的平面区域的面积是________.解析:不等式组表示的区域如图中的阴影部分所示,由⎩⎪⎨⎪⎧x =1x +y =0得A(1,-1) 由⎩⎪⎨⎪⎧x =1x -y -4=0得B(1,-3) 由⎩⎪⎨⎪⎧x +y =0x -y -4=0得C(2,-2) ∴|AB|=2,∴S △ABC =12×2×1=1.答案:1一种方法确定二元一次不等式表示的平面区域的方法是“直线定界,特殊点定域”.1.直线定界:即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线.2.特殊点定域:当C ≠0时,常把原点作为测试点;当C =0时,常选点(1,0)或者(0,1)作为测试点.一个程序利用线性规划求最值的步骤是: 1.在平面直角坐标系内作出可行域;2.考虑目标函数的几何意义,将目标函数进行变形; 3.确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;4.求最值:将最优解代入目标函数求最值.两个防范1.画平面区域避免失误的重要方法就是首先使二元一次不等式标准化.2.求二元一次函数z=ax+by(ab≠0)的最值,利用其几何意义,通过求y=-ab x+zb的截距zb的最值间接求出z的最值,要注意:当b>0时,截距zb取最大值时,z也取最大值;截距zb取最小值时,z也取最小值.当b<0时,结论与b>0的情形恰好相反.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x-2y-a=0的两侧,则a的取值范围为()A.(-24,7)B.(-7,24)C.(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞)解析:根据题意知(-9+2-a)·(12+12-a)<0. 即(a +7)(a -24)<0,解得-7<a<24. 答案:B3.不等式组⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则k 的值为( )A .0B .1C .2D .3解析:画出平面区域如图所示:直线y =kx 一定垂直x +y -4=0,即k =1,只有这样才可使围成的区域为直角三角形,且面积为1.答案:B4.(2016·郑州模拟)实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≤a (a>1),x -y ≤0,若函数z =x+y 的最大值为4,则实数a 的值为( )A .2B .3C .4 D.32解析:由约束条件⎩⎪⎨⎪⎧x ≥1,y ≤a (a>1),x -y ≤0作出可行域,如图所示的阴影部分,当z =x +y 过y =x 和y =a 的交点A(a ,a)时,z 取得最大值,即z max =a +a =4,所以a =2.答案:A5.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12 C .2或1 D .2或-1解析:如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.答案:D 二、填空题6.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积为________.解析:作出可行域为△ABC(如图),则S △ABC =4.答案:48.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解析:画出可行域如图所示:作直线l 0:y =-2x ,平移直线l 0,当过点A(k ,k)时,使得z 最小,由最小值为-6,可得3k =-6,解得k =-2.答案:-2三、解答题9.若直线x +my +m =0与以P(-1,-1)、Q(2,3)为端点的线段不相交,求m 的取值范围.解:直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,则点P 、Q 在同一区域内,于是,⎩⎪⎨⎪⎧-1-m +m>0,2+3m +m>0,或⎩⎪⎨⎪⎧-1-m +m<0,2+3m +m<0, 所以,m 的取值范围是m<-12. 10.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?解:(1)依题意每天生产的伞兵个数为100-x -y ,所以利润ω=5x +6y +3(100-x -y)=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ≥0,y ≥0,x 、y ∈N.整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x 、y ∈N.目标函数为ω=2x +3y +300,作出可行域,如图所示,作初始直线l 0:2x +3y =0,平移l 0,当l 0经过点A 时,ω有最大值,由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50. ∴最优解为A(50,50),此时ωmax =550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.1、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。

3 第3讲 二元一次不等式(组)及简单的线性规划问题

3 第3讲 二元一次不等式(组)及简单的线性规划问题

第3讲二元一次不等式(组)及简单的线性规划问题1.二元一次不等式(组)表示的平面区域不等式(组)表示区域Ax+By+C>0(<0) 直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0(≤0)包括边界直线不等式组各个不等式所表示平面区域的公共部分满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式(组) 目标函数关于x,y的函数解析式,如z=x+2y线性目标函数关于x,y的一次函数解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题常用知识拓展1.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.2.最优解和可行解的关系最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.判断正误(正确的打“√”,错误的打“×”)(1)任何一个二元一次不等式组都表示平面上的一个区域.( ) (2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)×(教材习题改编)不等式x -2y +6<0表示的区域在直线x -2y +6=0的( ) A .右上方 B .右下方 C .左上方D .左下方解析:选C.画出x -2y +6<0的图象如图所示,可知该区域在直线x -2y +6=0的左上方.故选C.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y ≥3,y ≤x ,2x -y ≤8,则目标函数z =3x -y 的最大值为( )A .2B .11C .16D .18解析:选C.作出可行域如图中阴影部分所示,其中A (1,1),B (8,8),C ⎝⎛⎭⎫114,-52.分析知z =3x -y 在点B (8,8)处取得最大值,即z max =3×8-8=16,故选C.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________.解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝⎛⎭⎫23,+∞(2018·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.解析:画出可行域,如图中阴影部分所示.作出直线3x +2y =0并平移,结合图象可知,当平移后的直线经过点B (2,0)时,直线z =3x +2y 在y 轴上的截距最大,z 取得最大值,即当⎩⎪⎨⎪⎧x =2,y =0时,z max =3×2+0=6.答案:6二元一次不等式(组)表示的平面区域(典例迁移)(1)(2019·浙江嘉兴第一中学模拟)若不等式组⎩⎪⎨⎪⎧x -y >0,3x +y <3,x +y >a表示的平面区域是一个三角形区域(不包括边界),则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,34B.⎝⎛⎭⎫34,+∞ C.⎝⎛⎭⎫-∞,32 D.⎝⎛⎭⎫32,+∞ (2)设不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M 内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)【解析】 (1)作出不等式组表示的可行域如图中阴影部分所示,要使可行域为三角形区域(不包括边界),则需点A 在直线x +y =a 的右上方.由⎩⎪⎨⎪⎧x -y =0,3x +y =3可得A ⎝⎛⎭⎫34,34,所以34+34>a ,则a <32.故选C.(2)作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].【答案】 (1)C (2)C[迁移探究] (变问法)本例(2)中条件不变,求平面区域M 的面积,结果如何? 解:可知平面区域M 为等腰直角三角形,可求出B (1,3)和C (2,2),所以|BC |=2,所以S =12×2×2=1.二元一次不等式(组)表示的平面区域的确定方法(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.(2)当不等式中带等号时,边界为实线,不带等号时,边界应画为虚线,特殊点常取原点.1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)大致是( )解析:选C.(x -2y +1)(x +y -3)≤0,即⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,与选项C 符合.故选C.2.若不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是一个直角三角形,则该直角三角形的面积是( )A.15 B.14 C.12D.15或14解析:选D.有两种情形:(1)如图(1),由直线y =2x 与kx -y +1=0垂直,得k =-12,此时三角形的三个顶点为(0,0),(0,1),⎝⎛⎭⎫25,45,故三角形的面积S =12×1×25=15;(2)如图(2),由直线x =0与kx -y +1=0垂直,得k =0,此时三角形的三个顶点为(0,0),(0,1),⎝⎛⎭⎫12,1,故三角形的面积S =12×1×12=14.综上所述,该直角三角形的面积为15或14.故选D.求线性目标函数的最值(范围)(多维探究)角度一 求线性目标函数的最值(范围)(2018·高考全国卷Ⅲ)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y +3≥0x -2y +4≥0x -2≤0,则z =x +13y 的最大值是________.【解析】 法一:作出不等式组表示的平面区域如图中阴影部分所示,画出直线y =-3x ,平移该直线,由图可知当平移后的直线经过直线x =2与直线x -2y +4=0的交点(2,3)时,z =x +13y 取得最大值,即z max =2+13×3=3.法二:易知z =x +13y 在可行域的顶点处取得最大值,由⎩⎪⎨⎪⎧2x +y +3=0,x -2y +4=0,解得⎩⎪⎨⎪⎧x =-2,y =1,代入z =x +13y ,可得z =-53;由⎩⎪⎨⎪⎧2x +y +3=0,x -2=0,解得⎩⎪⎨⎪⎧x =2,y =-7,代入z =x +13y ,可得z =-13;由⎩⎪⎨⎪⎧x -2y +4=0,x -2=0,解得⎩⎪⎨⎪⎧x =2,y =3,代入z =x +13y ,可得z =3.比较可知,z 的最大值为3.【答案】 3角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 【解】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域, 如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx 的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2,所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5,所以z 的取值范围是[1,5].[迁移探究1] (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围. 解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].[迁移探究2] (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值. 解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝ ⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max=2+1=3,z min=12+1=32.角度三求参数值或取值范围(2019·湖北八校联考)已知x,y满足约束条件⎩⎪⎨⎪⎧x-y+4≥0,x≤2,x+y+k≥0,且z=x+3y的最小值为2,则常数k=________.【解析】作出不等式组⎝⎛x-y+4≥0,x≤2,x+y+k≥0所表示的平面区域,如图中阴影部分所示,由z=x+3y得y=-13x+z3,结合图形可知当直线y=-13x+z3过点A时,z最小,联立方程,得⎩⎪⎨⎪⎧x=2,x+y+k=0,得A(2,-2-k),此时z min=2+3(-2-k)=2,解得k=-2.【答案】-2(1)求目标函数的最值的三个步骤①作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;②平移——将l平行移动,以确定最优解的对应点的位置;③求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.(2)常见的三类目标函数①截距型:形如z=ax+by.求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-ab x+zb,通过求直线的截距zb的最值间接求出z的最值;②距离型:形如z=(x-a)2+(y-b)2.表示点(x,y)与(a,b)的距离的平方;③斜率型:形如z=y-bx-a.表示点(x,y)与点(a,b)连线的斜率.1.(2018·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( )A .6B .19C .21D .45解析:选C.作出可行域如图中阴影部分所示,作出直线3x +5y =0,平移该直线,可知当平移后的直线过点A (2,3)时,z 取得最大值,此时z max =21.故选C.2.(2019·郑州市第二次质量预测)已知实数x ,y 满足条件⎩⎪⎨⎪⎧y ≤2x ,2x +y ≥2,x ≤1,则yx +3的最大值为________.解析:作出约束条件⎩⎨⎧y ≤2x ,2x +y ≥2,x ≤1表示的可行域如图中阴影部分所示,其中A (1,2),B ⎝⎛⎭⎫12,1,y x +3表示的几何意义是可行域的点(x ,y )与点(-3,0)连线的斜率,由图可知,当(x ,y )=(1,2)时,yx +3取得最大值,且⎝ ⎛⎭⎪⎫y x +3max =21+3=12.答案:123.(2019·益阳市、湘潭市调研试卷)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x+y 的最大值是a ,则a =________.解析:如图所示,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z 取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:3线性规划的实际应用问题(师生共研)(2019·武汉市部分学校调研)某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A 原料2千克,B 原料3千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在每天消耗A ,B 原料都不超过12千克的条件下,生产这两种产品可获得的最大利润为( ) A .1 800元 B .2 100元 C .2 400元D .2 700元【解析】 设生产甲产品x 桶,生产乙产品y 桶,每天的利润为z 元.根据题意,有⎩⎪⎨⎪⎧2x +2y ≤12,3x +y ≤12,x ≥0,x ∈N *,y ≥0,y ∈N *,z =300x +400y .作出⎩⎪⎨⎪⎧2x +2y ≤12,3x +y ≤12,x ≥0,y ≥0所表示的可行域,如图中阴影部分所示,作出直线3x +4y =0并平移,当直线经过点A (0,6)时,z 有最大值,z max =400×6=2 400,故选C.【答案】C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:选C.设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36800(元).[基础题组练]1.不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )解析:选C.用特殊点代入,比如(0,0),容易判断为C.2.(2019·开封市高三定位考试)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝⎛⎭⎫12x -2y的最大值是( )A.132 B.116 C .32D .64解析:选C.作出不等式组表示的平面区域,如图中阴影部分所示,设u =x -2y ,由图知,当u =x -2y 经过点A (1,3)时取得最小值,即u min =1-2×3=-5,此时z =⎝⎛⎭⎫12x -2y取得最大值,即z max =⎝⎛⎭⎫12-5=32,故选C.3.(2018·高考北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D.若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D.4.(2019·长春市质量检测(二))已知动点M (x ,y )满足线性条件⎩⎪⎨⎪⎧x -y +2≥0,x +y ≥0,5x +y -8≤0,定点N (3,1),则直线MN 斜率的最大值为( )A .1B .2C .3D .4解析:选C.不等式组表示的平面区域为△ABC 内部及边界,如图所示,数形结合可知,当M 点与B 点重合时,MN 的斜率最大.由⎩⎪⎨⎪⎧5x +y -8=0,x +y =0,得B (2,-2).MN 斜率的最大值为1+23-2=3.5.(2019·陕西省质量检测(一))若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为________.解析:法一:由约束条件可知可行域的边界分别为直线y =1,x +y =0,x -y -2=0,则边界的交点分别为(-1,1),(3,1),(1,-1),分别代入z =x -2y ,得对应的z 分别为-3,1,3,可得z 的最大值为3.法二:作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0并平移,由图可知,当直线过点(1,-1)时,z 取得最大值,即z max=1-2×(-1)=3.答案:36.(2019·广东茂名模拟)已知点A (1,2),点P (x ,y )满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,O 为坐标原点,则z =OA →·OP →的最大值为________.解析:由题意知z =OA →·OP →=x +2y ,作出可行域如图阴影部分,作直线l 0:y =-12x ,当l 0移到过A (1,2)的l 的位置时,z 取得最大值,即z max =1+2×2=5.答案:57.(2019·石家庄市质量检测(二))设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -3≤0,x +y ≥3,y -2≤0,则y +1x的最大值为________.解析:作出可行域,如图中阴影部分所示,而y +1x 表示区域内的动点(x ,y )与定点(0,-1)连线的斜率的取值范围,由图可知,当直线过点C (1,2)时,斜率最大,为2-(-1)1-0=3.答案:38.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1)作出可行域如图中阴影部分所示,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1.所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).[综合题组练]1.(2019·湘东五校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,则(x+5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:选A.作出不等式组⎩⎨⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x+y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y =6.由⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),因为直线y =k 过点A ,所以k =3.(x +5)2+y 2的几何意义是可行域内的点与D (-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝ ⎛⎭⎪⎪⎫|-5+2×0|12+222=5.故选A.2.(2019·重庆六校联考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1解析:选D.画出约束条件所表示的可行域,如图中阴影部分所示.令z =0,画出直线y =ax ,a =0显然不满足题意.当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则需使直线y =ax 与x +y -2=0平行,此时a =-1;当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则需使直线y =ax 与2x -y +2=0平行,此时a =2.综上,a =-1或2.3.(2019·安徽合肥一模)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千克B .360千克C .400千克D .440千克解析:选B.设生产甲产品x 件,生产乙产品y 件,利润z 千元,则⎩⎪⎨⎪⎧2x +3y ≤480,6x +y ≤960,z =2x +y ,作出⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +3y ≤480,6x +y ≤960表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N )时,z 取得最大值,为360.4.(综合型)实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.解析:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B 坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max =21.答案:21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲二元一次不等式(组)与简单的线性规划问题【2013年高考会这样考】1.考查二元一次不等式组表示的区域面积和目标函数最值(或取值范围).2.考查约束条件、目标函数中的参变量的取值范围.【复习指导】1.掌握确定平面区域的方法(线定界、点定域).2.理解目标函数的几何意义,掌握解决线性规划问题的方法(图解法),注意线性规划问题与其他知识的综合.基础梳理1.二元一次不等式表示的平面区域(1)一般地,直线l:ax+by+c=0把直角坐标平面分成了三个部分:①直线l上的点(x,y)的坐标满足ax+by+c=0;②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c>0;③直线l另一侧的平面区域内的点(x,y)的坐标满足ax+by+c<0.所以,只需在直线l的某一侧的平面区域内,任取一特殊点(x0,y0),从ax0+by0+c值的正负,即可判断不等式表示的平面区域.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax +By+C所得到实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),由Ax0+By0+C的符号即可判断Ax+By+C>0表示直线Ax+By+C =0哪一侧的平面区域.2.线性规划相关概念名称意义目标函数欲求最大值或最小值的函数约束条件目标函数中的变量所要满足的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组线性目标函数目标函数是关于变量的一次函数可行解满足线性约束条件的解可行域 所有可行解组成的集合最优解 使目标函数取得最大值或最小值的点的坐标 线性规划问题在线性约束条件下,求线性目标函数的最大值或最小值问题一种方法确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线.(2)特殊点定域,即在直线Ax +By +C =0的某一侧取一个特殊点(x 0,y 0)作为测试点代入不等式检验,若满足不等式,则表示的就是包括该点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点;当C =0时,常选点(1,0)或者(0,1)作为测试点. 一个步骤利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 两个防范(1)画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化. (2)求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.要注意:当b>0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.双基自测1.(人教A 版教材习题改编)如图所示的平面区域(阴影部分),用不等式表示为( ).A .2x -y -3<0B .2x -y -3>0C .2x -y -3≤0D .2x -y -3≥0解析 将原点(0,0)代入2x -y -3得2×0-0-3=-3<0,所以不等式为2x -y -3>0. 答案 B2.下列各点中,不在x +y -1≤0表示的平面区域内的点是( ). A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)解析 逐一代入得点(-1,3)不在x +y -1≤0表示的平面区域内. 答案 C3.如图所示,阴影部分表示的区域可用二元一次不等式组表示的是( ).A.⎩⎨⎧ x +y -1≥0x -2y +2≥0B.⎩⎨⎧ x +y -1≤0x -2y +2≤0C.⎩⎨⎧x +y -1≥0x -2y +2≤0D.⎩⎨⎧x +y -1≤0x -2y +2≥0解析 两条直线方程为:x +y -1=0,x -2y +2=0. 将原点(0,0)代入x +y -1得-1<0, 代入x -2y +2得2>0,即点(0,0)在x -2y +2≥0的内部,在x +y -1≤0的外部,故所求二元一次不等式组为⎩⎨⎧x +y -1≥0,x -2y +2≥0.答案 A4.(2011·安徽)设变量x ,y 满足|x |+|y |≤1,则x +2y 的最大值和最小值分别为( ).A .1,-1B .2,-2C .1,-2D .2,-1解析 法一 特殊值验证:当y =1,x =0时,x +2y =2,排除A ,C ;当y =-1,x =0时,x +2y =-2,排除D,故选B.法二 直接求解:如图,先画出不等式|x |+|y |≤1表示的平面区域,易知当直线x +2y =u 经过点B ,D 时分别对应u 的最大值和最小值,所以u max =2,u min =-2. 答案 B5.完成一项装修工程需要木工和瓦工共同完成.请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x 人,瓦工y 人,请工人的约束条件是________.答案 ⎩⎨⎧50x +40y ≤2 000x ∈N+y ∈N+考向一 二元一次不等式(组)表示的平面区域【例1】►(2011·湖北)直线2x +y -10=0与不等式组⎩⎨⎧x ≥0y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( ).A .0个B .1个C .2个D .无数个[审题视点] 准确画出不等式组所表示的平面区域,比较直线2x +y -10=0与4x +3y -20=0的斜率即可判断.解析 由不等式组画出平面区域如图(阴影部分). 直线2x +y -10=0恰过点A (5,0),且斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).答案B不等式组表示的平面区域是各个不等式所表示的平面区域点集的交集,因而是各个不等式所表示的平面区域的公共部分.【训练1】 已知关于x ,y 的不等式组⎩⎨⎧0≤x ≤2,x +y -2≥0,kx -y +2≥0所表示的平面区域的面积为4,则k 的值为( ). A .1 B .-3 C .1或-3D.0解析 其中平面区域kx -y +2≥0是含有坐标原点的半平面.直线kx -y +2=0又过定点(0,2),这样就可以根据平面区域的面积为4,确定一个封闭的区域,作出平面区域即可求解.平面区域如图所示,根据区域面积为4,得A (2,4),代入直线方程,得k =1. 答案 A考向二 求线性目标函数的最值【例2】►(2011·广东)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤ 2,y ≤2,x ≤ 2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1)则z =OM →·O A →的最大值为( ).A .3B .4C .3 2D .4 2[审题视点] 作出平行域D ,然后解出目标函数z 的表达式,用截距法求z 的最大值.解析 画出区域D ,如图中阴影部分所示,而z =OM →·O A →=2x +y ,∴y =-2x +z ,令l 0:y =-2x ,将l 0平移到过点(2,2)时,截距z 有最大值,故z max =2×2+2=4. 答案B求目标函数的最大值或最小值,必须先求出准确的可行域,令目标函数等于0,将其对应的直线平行移动,最先通过或最后通过的顶点便是最优解.【训练2】 已知变量x ,y 满足条件⎩⎨⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是( ).A.⎝ ⎛⎭⎪⎫-∞,-12 B.⎝ ⎛⎭⎪⎫-12,0C.⎝⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫12,+∞解析 画出x 、y 满足条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.答案 D考向三 求非线性目标函数的最值【例3】►变量x 、y 满足⎩⎨⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx ,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围.[审题视点] 利用目标函数所表示的几何意义求解.解由约束条件⎩⎨⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.作出(x ,y )的可行域如图所示. 由⎩⎨⎧ x =1,3x +5y -25=0,解得A ⎝ ⎛⎭⎪⎫1,225.由⎩⎨⎧x =1,x -4y +3=0,解得C (1,1). 由⎩⎨⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).(1)∵z =y x =y -0x -0.∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.(2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.求目标函数的最值,必须先准确地作出线性约束条件表示的可行域,再根据目标函数的几何意义确定取得最优解的点,进而求出目标函数的最值.【训练3】 如果点P 在平面区域⎩⎨⎧2x -y +2≥0,x +y -2≤0,2y -1≥0上,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为( ). A.32 B.45-1 C .22-1 D.2-1 解析如图,当P 取点⎝ ⎛⎭⎪⎫0,12,Q 取点(0,-1)时,|PQ |有最小值为32. 答案 A考向四 线性规划的实际应用【例4】►某企业生产A ,B 两种产品,生产每一吨产品所需的劳动力、煤和电耗如下表:产品品种 劳动力(个)煤(吨) 电(千瓦)A 产品 3 9 4B 产品1045已知生产每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业如何安排生产,才能获得最大利润?[审题视点] 题目的设问是“该企业如何安排生产,才能获得最大利润”,这个利润是由两种产品的利润所决定的,因此A ,B 两种产品的生产数量决定着该企业的总利润,这里两种产品的生产数量是问题的主要变量,故可以设出A ,B 两种产品的生产数量,列不等式组和建立目标函数.解 设生产A ,B 两种产品分别为x 吨,y 吨,利润为z 万元,依题意,得⎩⎨⎧3x +10y ≤300,9x +4y ≤360,4x +5y ≤200,x ≥0,y ≥0.目标函数为z =7x +12y . 作出可行域,如图阴影所示.当直线7x +12y =0向右上方平行移动时,经过M (20,24)时z 取最大值. ∴该企业生产A ,B 两种产品分别为20吨和24吨时,才能获得最大利润.线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题.【训练4】 (2011·四川)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z =( ). A .4 650元B .4 700元C .4 900元D .5 000元解析 设派用甲型卡车x 辆,乙型卡车y 辆,获得的利润为z 元,z =450x +350y ,由题意,x 、y 满足关系式⎩⎪⎨⎪⎧x +y ≤12,2x +y ≤19,10x +6y ≥72,0≤x ≤8,0≤y ≤7,作出相应的平面区域,z =450x +350y =50(9x +7y ),在由⎩⎨⎧x +y =12,2x +y =19确定的交点(7,5)处取得最大值4 900元.答案 C难点突破16——高考中线性规划问题近几年新课标高考对线性规划问题的考查主要是以选择题或填空题的形式出现,线性约束条件下的线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.【示例1】► (2011·山东)设变量x ,y 满足约束条件⎩⎨⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y +1的最大值为( ). A .11 B .10 C .9 D.172【示例2】► (2010·浙江)若实数x ,y 满足不等式组⎩⎨⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且z =x +y 的最大值为9,则实数m 等于( ).A .-2B .-1C .1D .2。

相关文档
最新文档