2017中考数学命题研究第一编教材知识梳理篇第七章圆第一节圆的有关概念及性质精练试题

合集下载

初三圆知识点

初三圆知识点

初三圆知识点圆是初中数学中非常重要的一个图形,也是中考的重点和热点内容。

下面我们来详细了解一下初三圆的相关知识点。

一、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

圆的标准方程为:$(x a)^2 +(y b)^2 = r^2$,其中$(a,b)$为圆心坐标,$r$为半径。

二、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

3、弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

圆周角定理的推论:同弧或等弧所对的圆周角相等。

半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

三、圆的位置关系1、点与圆的位置关系设点到圆心的距离为$d$,圆的半径为$r$,则有:点在圆外:$d > r$点在圆上:$d = r$点在圆内:$d < r$2、直线与圆的位置关系设圆心到直线的距离为$d$,圆的半径为$r$,则有:直线与圆相离:$d > r$,没有公共点。

直线与圆相切:$d = r$,有一个公共点。

直线与圆相交:$d < r$,有两个公共点。

3、圆与圆的位置关系设两圆的圆心距为$d$,两圆的半径分别为$R$和$r$($R >r$),则有:两圆外离:$d > R + r$,没有公共点。

两圆外切:$d = R + r$,有一个公共点。

两圆相交:$R r < d < R + r$,有两个公共点。

两圆内切:$d = R r$,有一个公共点。

两圆内含:$d < R r$,没有公共点。

四、圆的周长和面积1、圆的周长圆的周长公式为$C = 2\pi r$,其中$\pi$是圆周率,约等于 314,$r$是圆的半径。

认识圆的基本概念与性质

认识圆的基本概念与性质

认识圆的基本概念与性质圆是几何学中非常重要的一个概念,它有许多特性和性质。

在这篇文章中,我们将一起探讨认识圆的基本概念和性质。

一、圆的定义圆是指平面上所有到一个固定点(圆心)的距离都相等的一组点的集合。

这个固定距离称为半径,用字母r表示。

根据这个定义,我们可以知道圆由无数个点组成,其中每个点到圆心的距离都等于半径r。

二、圆的要素1. 圆心:圆心是圆的中心点,用字母O表示。

2. 半径:半径是从圆心到圆上任意一点的距离,用字母r表示。

3. 直径:直径是通过圆心的任意两个点之间的距离,它等于半径的两倍,用字母d表示。

三、圆的性质1. 圆的周长:圆的周长是沿着圆的边界一周所经过的距离。

我们可以通过一个简单的公式来计算圆的周长,即周长C等于半径r乘以2π(C=2πr)。

2. 圆的面积:圆的面积是指圆内部所有的点所覆盖的区域。

同样地,我们可以通过一个公式来计算圆的面积,即面积A等于半径r的平方乘以π(A=πr²)。

3. 圆的弧长:圆的弧长是圆上一段弧的长度。

计算圆的弧长需要知道弧所对应的圆心角的大小。

如果我们知道圆心角的度数为θ度,那么弧长L等于周长C乘以圆心角θ度除以360度(L=C×θ/360)。

四、圆与其他几何图形的关系1. 矩形和正方形:圆和矩形或正方形之间有一个有趣的关系,在给定固定周长的情况下,圆的面积是最大的。

也就是说,圆拥有对于给定周长最大的面积。

这是因为圆的周长分布在圆的边界上,而矩形或正方形的周长则分布在边界的四条边上。

2. 正多边形:正多边形是指所有边和角相等的多边形,圆可以看作是一个边数无限多的正多边形。

当正多边形的边数逐渐增大时,它的外接圆趋近于一个圆形。

3. 弦和切线:在圆上,连接两个不同点的线段称为弦。

弦的特点是它的中点和圆心连线垂直。

切线是指与圆只有一个交点的直线,切线与圆相切的点处的切线垂直于半径。

通过上述论述,我们对圆的基本概念和性质有了更深入的了解。

中考数学圆知识点总结

中考数学圆知识点总结

中考数学圆知识点总结一、圆的基本概念1.1 圆的定义圆是由平面上到定点到距离等于定值的所有点的集合。

这个定点叫做圆心,这个定值叫做圆的半径。

1.2 圆的元素圆的元素有圆心、半径、直径、弦、弧、扇形等。

1.3 圆的相关概念圆周率π:定圆的周长与直径的比值。

圆心角:以圆心为顶点的角。

圆周角:角的顶点在圆周上,并且角的两边都是圆上的弧。

1.4 圆的性质圆的性质有很多,比如半径相等的圆,直径相等的圆,弦长相等的圆等等。

二、圆的计算2.1 圆的周长圆的周长又叫做圆周长,也叫做圆的周长,通常用字母C表示。

圆的周长等于圆的直径乘以圆周率π。

C=πd2.2 圆的面积圆的面积是圆内部的所有点的集合,通常用字母A表示。

圆的面积等于圆心角的正弦值乘以半径的平方再乘以圆周率π。

A=πr²2.3 圆的相关角和弧长的求解在圆中,角和弧是密切相关的。

圆心角的度数等于它所对的弧所代表的圆周的长度所占整个圆周的比例。

所以我们可以利用这个性质来求解圆的相关问题。

三、圆的相关定理3.1 圆的切线与切点圆的切线与切点是圆的一个重要定理,它的性质有点多。

比如一个圆与直线相切,与圆外一点两切线为公切线或两切线的交点到原圆的距离相等。

3.2 圆的相交定理圆的相交定理也是圆的一个重要定理。

比如两个圆相交于两个不同的点,那么连接这两个交点和两个圆心就组成了一个四边形,并且它的对角线相交于一点。

3.3 圆的正接弦定理圆的正接弦定理是圆的一个重要定理。

它表示一个圆内部的一个锐角与它所对的正切弦之间的关系,这个定理在圆的相关计算中是非常重要的。

四、圆的应用圆在现实生活中有很多应用,比如钟面就是一个圆,轮胎也是一个圆,圆锥形的灯泡和圆球等等都是圆的应用。

而在数学中,圆也是几何图形中的一个重要内容,比如在三角函数中,圆和三角函数是密切相关的。

在平面几何中,圆与直线相交的问题也是经常出现的。

所以掌握圆的知识对于学生来说是非常重要的。

总之,圆是中考数学中的一个重要知识点。

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。

中考数学圆知识点归纳

中考数学圆知识点归纳

中考数学圆知识点归纳一、圆的定义和性质:1.圆的定义:平面上的所有到圆心距离相等的点的集合。

2.圆的部分:弧、弦、弧长、弦长、圆心角、半径、直径、切线、弧度、坐标公式等。

二、圆的特殊位置和位置关系:1.圆上的点与圆心之间的关系:圆周角是直径的角为直角。

2.圆内外的点与圆心之间的关系:内接圆和外接圆。

三、圆的性质:1.半径相等的圆相等,直径相等的圆相等。

2.圆的直径是两个切点。

3.两圆相交,切点在弦上,切点与所对弧不在一条直径上。

4.圆上的切线与半径垂直,且只有一条。

(切线切圆问题)5.过圆外一点可以作无数条切线,其中只有一条切线与圆通过该点处的切线垂直。

(外切线和切线问题)四、圆的计算:1.圆的周长:C=2πr(其中r为半径)。

2.圆的面积:S=πr²(其中r为半径)。

3.弧长:L=2πr(对应圆心角为360°的弧)。

4.弧度制和角度制的转换:弧度=角度×(π/180°)角度=弧度×(180°/π)五、利用圆的知识解决问题:1.根据已知条件作出相关几何图形,运用定理和性质求解问题。

2.提取关键信息,运用圆的性质和公式进行计算。

3.运用切线的特性求解问题。

4.运用弧的性质,求解弧长、弦长、圆心角等问题。

5.运用角平分线和垂直平分线的性质,求解相关问题。

六、与圆相关的解题技巧:1.制图时,可以借助直角三角形和等腰三角形的性质。

2.运用圆的部分的特性,构造性质,使用类似全等三角形的方法求解问题。

3.运用余弦定理、正弦定理等三角函数的性质,结合圆的特性求解问题。

4.利用圆内切四边形的特性解决问题。

以上为中考数学圆知识点的归纳,希望对你复习和备考有所帮助。

初中复习资料圆的有关性质知识点归纳

初中复习资料圆的有关性质知识点归纳

初中复习资料圆的有关性质知识点归纳一、圆的有关概念及其对称性1.圆的定义(1)圆是平面内到一定点的距离等于定长的所有点组成的图形.这个定点叫做________,定长叫做________;(2)平面内一个动点绕一个定点旋转一周所形成的图形叫做圆,定点叫做圆心,定点与动点的连线段叫做半径.2.圆的有关概念(1)连接圆上任意两点的________叫做弦;(2)圆上任意两点间的________叫做圆弧,简称弧.(3)________相等的两个圆是等圆.(4)在同圆或等圆中,能够互相________的弧叫做等弧.3.圆的对称性(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;(3)圆是旋转对称图形:圆绕圆心旋转任意角度,都能和原来的图形重合.这就是圆的旋转不变性.二、垂径定理及推论1.垂径定理垂直于弦的直径________这条弦,并且________弦所对的两条弧.2.推论1(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2圆的两条平行弦所夹的弧________.4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.三、圆心角、弧、弦之间的关系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.四、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.(4)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________.五、圆内接四边形的性质圆内接四边形的对角互补.与圆有关的位置关系一、点与圆的位置关系1.点和圆的位置关系点在圆______,点在圆______,点在圆______.2.点和圆的位置关系的判断如果圆的半径是r,点到圆心的距离为d,那么点在圆外⇔________;点在圆上⇔________;点在圆内⇔________.3.过三点的圆(1)经过三点的圆:①经过在同一直线上的三点不能作圆;②经过不在同一直线上的三点,有且只有一个圆.(2)三角形的外心:经过三角形各顶点的圆叫做三角形的外接圆;外接圆的圆心叫做三角形的________;这个三角形叫做这个圆的内接三角形.二、直线与圆的位置关系1.直线和圆的位置关系________、________、________.2.概念(1)直线和圆有两个交点,这时我们就说这条直线和圆________,这条直线叫做圆的________;(2)直线和圆有唯一公共点,这时我们说这条直线和圆________,这条直线叫做圆的切线,这个点叫做切点;(3)直线和圆没有公共点,这时我们说这条直线和圆________.3.直线和圆的位置关系的判断如果圆的半径是r,直线l到圆心的距离为d,那么直线l和⊙O相交⇔________;直线l和⊙O相切⇔________;直线l和⊙O相离⇔________.三、切线的判定和性质1.切线的判定方法(1)经过半径的________并且垂直于这条半径的直线是圆的切线;(2)到圆心的距离________半径的直线是圆的切线.2.切线的性质圆的切线垂直于经过________的半径.3.切线长定理过圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.四、三角形(多边形)的内切圆1.与三角形(多边形)内切圆有关的一些概念(1)和三角形各边都______的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的______,这个三角形叫做圆的______三角形;(2)和多边形各边都______的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.2.三角形的内心的性质三角形的内心是三角形三条________的交点,它到三边的距离相等,且在三角形内部.五、圆与圆的位置关系1.概念①两圆外离:两个圆______公共点,并且一个圆上的点都在另一个圆的______;②两圆外切:两个圆有______的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的______;③两圆相交:两个圆有______公共点;④两圆内切:两个圆有______的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的______;⑤两圆内含:两个圆______公共点,并且一个圆上的点都在另一个圆的______.2.圆与圆位置关系的判断设两圆半径分别为R 和r ,圆心距为O 1O 2=d .两圆外离⇔d >______;两圆外切⇔d =______;两圆相交⇔______<d <______(R ≥r );两圆内切⇔d =______(R >r );两圆内含⇔______≤d <______(R >r ).六、两圆位置关系的相关性质1.两圆相切、相交的有关性质(1)相切两圆的连心线必经过________.(2)相交两圆的连心线垂直平分________.2.两圆位置关系中常作的辅助线(1)两圆相交,可作公共弦.(2)两圆相切,可作公切线.圆的有关计算一、弧长、扇形面积的计算1.如果弧长为l ,圆心角的度数为n °,圆的半径为r ,那么弧长的计算公式为l =__________.2.由组成圆心角的两条半径和圆心角所对弧围成的图形叫做扇形.若扇形的圆心角为n °,所在圆半径为r ,弧长为l ,面积为S ,则S =__________或S =12lr ;扇形的周长=2r +l .二、圆柱和圆锥1.圆柱的侧面展开图是__________,这个矩形的长等于圆柱的底面圆的__________,宽等于圆柱的__________.如果圆柱的底面半径是r ,则S 侧=2πrh ,S 全=2πr 2+2πrh .2.圆锥的轴截面为由母线、底面直径组成的等腰三角形.圆锥的侧面展开图是一个__________,扇形的弧长等于圆锥的底面圆的__________,扇形的半径等于圆锥的__________.因此圆锥的侧面积:S 侧=12l ·2πr =πrl (l 为母线长,r 为底面圆半径);圆锥的全面积:S 全=S 侧+S 底=πrl +πr 2.三、正多边形和圆1.正多边形:各边__________、各角__________的多边形叫做正多边形.2.多边形的外接圆:经过多边形__________的圆叫做多边形的外接圆,这个多边形叫做圆的内接多边形.3.正多边形的__________的圆心叫做正多边形的中心,__________的半径叫做正多边形的半径.4.中心到正多边形的一边的__________叫做正多边形的边心距.5.正多边形每一边所对的__________的圆心角叫做正多边形的中心角,正n 边形的每个中心角都等于__________.温馨提示 (1)正多边形的各边、各角都相等.(2)正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n 边形的中心.(3)边数为偶数的正多边形是中心对称图形,它的中心是对称中心.(4)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.四、不规则图形面积的计算求与圆有关的不规则图形的面积时,最基本的思想就是转化思想,即把所求的不规则的图形的面积转化为规则图形的面积.常用的方法有:1.直接用公式求解.2.将所求面积分割后,利用规则图形的面积相互加减求解.3.将阴影中某些图形等积变形后移位,重组成规则图形求解.4.将所求面积分割后,利用旋转将部分阴影图形移位后,组成规则图形求解.5.将阴影图形看成是一些基本图形覆盖而成的重叠部分,用整体和差法求解.。

圆的基本概念与性质

圆的基本概念与性质

圆的基本概念与性质圆是几何学中重要的图形之一,具有独特的形态和性质。

本文将介绍圆的基本概念以及与圆相关的性质,旨在帮助读者更好地理解和应用圆的知识。

一、圆的基本概念圆是平面上的一个封闭曲线,它的每个点到圆心的距离都相等。

二、圆的性质1. 圆心和半径圆心是圆上所有点的中心点,通常用字母“O”表示。

半径是从圆心到圆上任意点的距离,通常用字母“r”表示。

圆心和半径是圆的两个重要元素。

2. 直径直径是通过圆心的一条直线段,它的两个端点在圆上。

直径是圆的最长线段,长度等于半径的两倍。

3. 弦弦是圆上连接两个点的线段。

弦可以是直径,也可以是除了直径以外的线段。

4. 弧弧是圆上的一部分,它是由两个端点和连接这两个点的圆弧组成。

弧的长度可以是圆周长度的任意部分。

5. 圆周角圆周角是圆上位于圆心的角,它的两条边是以圆心为顶点的两条弧。

圆周角的度数是圆上所占有的弧的度数。

6. 切线切线是与圆只有一个公共点的直线。

切线与半径的夹角是90度。

7. 弦切角弦切角是一条直线与弦相交所形成的角。

夹在圆上同一弧的两个弦上的切角,称为弦切角。

8. 弦弧关系对于圆上的弦和弧,如果弦的长度与它所夹的圆心角相等,则这个弦所对应的圆周弧的长度也相等。

这是弦和弧之间的一个重要的关系。

9. 圆的面积圆的面积由半径决定,面积的大小等于π乘以半径的平方,其中π是一个固定的无理数,约等于3.14159。

10. 圆的周长圆的周长由半径决定,周长等于半径乘以2π,即2πr。

总结圆的基本概念与性质对于几何学的学习和应用具有重要意义。

掌握了圆的基本概念,我们能够准确理解圆的形态和特点;而掌握了圆的性质,我们能够灵活应用这些性质解决与圆相关的问题。

因此,加深对圆的基本概念与性质的理解与掌握,有利于我们在几何学中取得更好的学习成果。

中考数学圆知识点总结7篇

中考数学圆知识点总结7篇

中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。

二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。

2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。

3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。

4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。

三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。

相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。

2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。

3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。

四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。

外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。

2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。

3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。

五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。

圆的幂是该点的极坐标系中的ρ值。

2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。

在极坐标系中,圆的幂可以通过ρ值来计算。

3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。

篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

中考圆知识点归纳总结

中考圆知识点归纳总结

中考圆知识点归纳总结中考圆是初中数学中非常重要的一个知识点,也是数学的基础。

掌握了中考圆的相关知识,不仅对于进一步学习数学有很大的帮助,也对于解决实际问题有很大的应用价值。

下面将对中考圆的知识点进行归纳总结,希望能够帮助大家更好地掌握这一部分内容。

1. 圆的基本概念圆是平面上距离一个固定点一定距离的点的集合,这个固定点叫做圆心,这个固定距离叫做半径。

圆通常用字母 O 表示圆心,用字母 r 表示圆的半径。

圆上的任一点到圆心的距离都等于半径,这一点是圆的重要性质之一。

2. 圆的相关线段在圆周上取两点 A、B,连接这两点和圆心 O,得到三条线段,分别是弧 AB、弦 AB 和半径 OB。

弧 AB 是连通 A、B 两点的曲线部分,弦 AB 是圆上连接 A、B 两点的线段,半径OB 是以 O 为端点的一段线段。

圆有很多重要的线段长度关系定理,比如:弦长定理、弦切定理、弦心定理等。

3. 圆的面积和周长圆的周长和面积是圆的重要特征。

圆的周长又叫做圆周长或者圆的周长,通常用字母 C 或者 P 表示,圆周长的计算公式是C=2πr,其中 r 表示圆的半径,π 是一个数学常数,约等于3.14。

圆的面积通常用 S 表示,圆的面积计算公式是S=πr²。

4. 圆中角的度量圆上的角分为圆心角、弧对应角和弦对应角。

圆心角的度数等于它所对的圆弧的度数,弧对应角和弦对应角的度数相等。

圆心角、弧对应角和弦对应角之间有很多重要的关系,比如角度的计算,叠加与相交的等。

5. 圆的切线和切点在圆上一个点处的切线是与这个点的切线有且只有一个交点的直线。

圆上的切线长相等。

切点是与切线有且只有一个公共点的圆上的点。

圆的切线和切点有很多重要的定理,比如切线与半径垂直定理等。

中考圆的知识点比较基础但非常重要,掌握了这些知识对于学生进一步学习数学有很大的帮助。

希望同学们多加练习和实践,加强对中考圆知识点的理解和掌握,提高数学的应用能力。

圆的基本概念和性质

圆的基本概念和性质

圆的基本概念和性质圆是我们日常生活中常见的几何图形之一,它具有独特的几何性质。

本文将从圆的基本概念和性质两个方面进行探讨,帮助读者更好地理解圆的特点。

一、圆的基本概念圆是由平面上的一点到另一点的全部点构成的集合。

其中,两个点之间的距离称为圆的直径(d),直径的一半称为半径(r)。

同时,圆的中心是指圆内所有点到一个点的距离相等的这个点。

圆的基本元素有三个:圆心、半径和弧。

圆心是圆的中心点,通常用字母O表示。

半径是从圆心到圆上任意一点的距离,用字母r表示。

弧是由圆上两个点所组成的路径,弧与圆心所对应的圆心角是相等的。

二、圆的性质1. 圆的对称性:圆具有高度的对称性,即图形的任意一点P与圆心O的连线OP和过圆心O的半径OA是相等的,又因为圆的每一个点都满足这个性质,所以整个圆对称。

2. 圆的周长和面积:圆的周长是圆上的一段弧的长度,可以通过公式C=2πr来计算,其中π是圆周率,近似取值为3.14。

圆的面积是整个圆内部的区域,可以通过公式A=πr²来计算。

3. 弧与圆心角的关系:弧与圆心角之间的关系可以用弧度来表示。

弧度是一个角所对应的弧长与半径之比,圆周角为2π弧度。

圆心角的弧度数等于它所对应弧所占圆周角的比例。

4. 弦的性质:弦是圆上任意两点之间的线段,在圆上相等弧上的弦相等,等长弦所对应的圆心角也相等。

5. 切线和切点:切线是与圆相切于圆上一点的直线,切线与半径的关系是垂直。

切线与弦的交点称为切点,切点在切线上的分割性质是与大弦上的两个交点。

6. 欧拉线:欧拉线是连接圆心、圆上任意一点和该点所对应的切点的直线。

总结圆是一个具有独特性质的几何图形,它的基本概念包括圆心、半径和弧的定义。

圆的性质包括对称性、周长和面积的计算、弧与圆心角的关系、弦的性质、切线和切点的关系以及欧拉线的存在。

圆是几何学中的一个基本图形,它的特性被广泛应用于数学、物理、工程学等领域。

通过了解圆的概念和性质,我们能更好地理解和应用几何学知识。

圆及其性质知识点总结

圆及其性质知识点总结

圆及其性质知识点总结圆是几何学中的重要概念,具有许多独特的性质和特点。

在几何学中,圆是一个平面上所有点到一个固定点(圆心)的距离都相等的集合。

圆的性质在数学教学中被广泛应用,对学生的数学素养有着重要的影响。

1. 圆的基本概念圆由圆心、半径和直径组成。

圆心是圆的中心点,用字母“O”表示。

半径是圆心到圆周上任一点的距离,用字母“r”表示。

直径是圆的两个端点在圆周上的两个点之间的距离,是圆的最长直径,用字母“d”表示。

2. 圆的周长和面积圆的周长是指圆周的长度。

圆的周长公式为:C=2πr。

其中,π是一个重要的数学常数,近似地等于3.14159。

圆的面积是指圆内部的面积,圆的面积公式为:A=πr²。

通过这两个公式,可以计算出圆的周长和面积。

3. 圆的弧长和扇形面积圆的周长也可以看作是一个完整的圆周上某一段弯曲的长度,称为圆弧。

圆弧的长度称为弧长,用字母“l”表示。

圆弧所对的圆心角称为圆心角,用θ表示。

当圆心角为一个整圆的圆心角时,其对应的弧长等于圆的周长,即C=2πr。

扇形是一个由圆的两条半径和圆周上的一段弧所围成的图形,扇形的面积可以用圆的面积和圆心角来计算。

扇形的面积公式为:A= (1/2)r²θ。

由此可知,弧长和扇形的面积都与圆心角和半径有关。

4. 圆的切线和切点圆上的一条直线与圆相切时,称为圆的切线。

切线和圆的交点称为切点。

切线与圆的切点是圆上的一个重要概念,对于圆的研究和应用有着重要的意义。

5. 圆的相交与包含关系在平面几何中,两个圆可能有三种相交关系:相离、相切和相交。

相离是指两个圆没有公共点;相切是指两个圆有且只有一个切点;相交是指两个圆有两个切点或者一个圆包含另一个圆。

圆的相交关系在几何学中是一种重要的概念,在解决实际问题和证明几何关系时经常用到。

6. 圆的性质和推论圆有许多重要的性质和推论,其中包括圆周角、圆心角、同弦的性质和推论等。

圆周角是圆环上的一个角,其大小等于所对的弧所对的圆心角,圆心角是半径所对的圆周角。

圆的基本概念与性质

圆的基本概念与性质

圆的基本概念与性质圆是几何学中的重要概念,具有独特的性质。

本文将详细介绍圆的基本概念以及一些常见的性质,以帮助读者更好理解和掌握圆这一几何形状。

一、圆的定义圆是由平面内与一定点之间的距离都相等的所有点的集合构成的几何图形。

二、圆的要素1. 圆心:圆心是圆上所有点到该点的距离相等的点。

通常用字母O 表示圆心。

2. 半径:半径是圆心到圆上任意一点的距离,用字母r表示。

3. 直径:直径是通过圆心的一条线段,两个端点在圆上。

直径的长度是半径的两倍,即d=2r。

三、圆的性质1. 圆的周长:圆的周长是圆上一周的长度,通常用字母C表示。

由于圆上任意两点之间的距离都是一样的,所以圆的周长可由半径或直径表示。

周长公式为:C=2πr或C=πd。

2. 圆的面积:圆的面积是圆内部的所有点的集合。

用字母A表示。

根据圆的性质,圆的面积可由半径或直径表示。

面积公式为:A=πr²或A=π(d/2)²。

3. 圆的弧长:圆的弧是圆上两点之间的一段弧,圆弧长度即为弧长。

弧长与圆心角的大小有关,公式为:L=2πr × (θ/360°),其中θ为圆心角的度数。

4. 圆的扇形面积:扇形是由圆心、圆上两点以及与圆心连线的弧所围成的图形。

扇形的面积是圆的一部分面积。

扇形面积与圆心角的大小有关,公式为:S=πr² × (θ/360°)。

5. 圆的切线:切线是与圆相切且仅切于圆上一个点的直线。

切线与半径垂直,相切点就是切线与圆的唯一公共点。

6. 圆的切点:切点是切线与圆相交的点。

由于切线仅与圆相交于一个点,所以切点也是圆上的唯一点。

7. 圆的弦:弦是圆上两点之间的线段。

弦的长度可以小于、等于或大于直径。

直径是弦的特殊情况,即直径是连接圆上任意两点的弦。

8. 圆与直线的关系:直线可以与圆有三种不同的关系:相离、相切和相交。

如果直线与圆没有相交点,则称直线与圆相离;如果直线只有一个切点,则称直线与圆相切;如果直线与圆有两个相交点,则称直线与圆相交。

圆的概念与性质

圆的概念与性质

圆的概念与性质圆是几何学中常见的一个基本图形,有着丰富的性质和应用。

本文将为您介绍圆的概念、性质以及在实际生活中的应用。

一、圆的概念圆是由平面中与一个确定点距离相等的所有点组成的集合。

该确定点称为圆心,与圆心距离相等的距离称为半径。

以圆心为原点,以半径长度为半轴的线段构成的曲线称为圆的周长,用C表示。

圆的周长与直径的比值称为圆周率,用π表示,其值约为3.14159。

二、圆的性质1. 圆的内外点关系:圆内的任意点到圆心的距离小于半径,而圆外的任意点到圆心的距离大于半径。

2. 圆的直径与半径:直径是连接圆上两个点且经过圆心的线段,它的长度是半径的两倍。

3. 圆的切线与半径:切线是与圆仅有一个交点的直线,该交点与圆心连线垂直。

切线与半径的关系是垂直关系。

4. 圆的弦与半径:弦是圆上任意两点之间的线段,弦的中点与圆心连线垂直。

弦和半径的关系是垂直关系。

5. 圆的弧与扇形:圆的弧是两个端点在圆上的弧线,可以用弧长来表示。

扇形是由圆心、圆上的两个点以及所对应的圆心角组成的区域。

6. 圆的面积:圆的面积可以用半径或者直径来计算,其公式为πr²或者π(d/2)²,其中r为半径,d为直径。

三、圆的应用圆在生活中有着广泛的应用,以下列举几个常见的例子:1. 圆的运动轨迹:许多自然界中的运动都以圆形轨迹进行,比如行星绕太阳的轨道以及地球自转产生的地球日等。

2. 圆形建筑物:圆形的建筑物在设计上具有良好的稳定性和视觉效果,比如宫殿中的圆形大厅、圆形会议室等。

3. 轮胎和车轮:轮胎和车轮的形状往往为圆形,这是为了减少摩擦力,提高行驶的平稳性。

4. 交通信号灯:交通信号灯上的圆形灯表示停止,该形状的选择是因为圆形视觉上相对于其他形状更容易辨认和传达信息。

综上所述,圆作为几何学中的一个基本图形,具有独特的概念和性质。

了解圆的性质和应用能够帮助我们更好地理解几何学知识并应用于实际生活中。

无论是在设计、建筑还是科学研究领域,对圆的理解和运用都起着重要的作用。

中考圆的知识点总结

中考圆的知识点总结

中考圆的知识点总结中考数学中,圆是一个重要的几何图形,涉及的知识点较多。

在考试中,对圆的相关知识的理解和掌握是非常关键的。

本文将对中考数学中与圆有关的知识点进行总结和归纳,帮助考生理清思路,更好地备战中考数学。

1. 圆的定义圆是平面上到一个定点的距离等于定值的所有点构成的图形。

其中,定点叫做圆心,距离叫做半径。

2. 圆的性质(1)圆上任意两点之间的线段,叫做弧。

(2)圆的直径是圆上任意两点连线沿圆内部的最大距离,它的长度是半径的2倍。

(3)圆的周长是圆周上的所有点连成的折线的长度。

(4)圆内任意两点与圆心连线的夹角是等腰三角形的夹角。

3. 圆的相关公式(1)圆的周长公式:C = 2πr(其中,C表示周长,r表示半径,π取3.14)。

(2)圆的面积公式:A = πr²(其中,A表示面积)。

4. 圆的位置关系(1)相离:两个圆没有交点,且圆心之间的距离大于两个圆的半径之和。

(2)相切外切:两个圆有且仅有一个公共切点,且圆心之间的距离等于两个圆的半径之和。

(3)相交:两个圆有两个交点,且圆心之间的距离小于两个圆的半径之和。

(4)包含内切:一个圆完全包含另一个圆,且两个圆心之间的距离小于等于两个圆的半径之差。

5. 判定正方形和矩形的方法如果一个四边形的四个角都是直角,并且四条边的长度相等,就可以判定为正方形。

若四边形的对边相等且相邻边两两相等,则可以判定为矩形。

6. 圆锥的相关知识(1)圆锥的配准:当给出圆锥的高及底面的半径时,可以通过连接圆锥的顶点、底面圆心以及连接顶点和底面圆周上的一点构成一个直角三角形,从而确定圆锥的顶部的位置。

(2)圆锥的表面积公式:S = πr² + πrl(其中,S表示表面积,r 表示底面半径,l表示斜高)。

(3)圆锥的体积公式:V = 1/3πr²h(其中,V表示体积,r表示底面半径,h表示高)。

7. 圆柱的相关知识(1)圆柱的表面积公式:S = 2πrh + 2πr²(其中,S表示表面积,r表示底面半径,h表示高)。

遵义专版2017届中考数学总复习第一编教材知识梳理篇第七章圆第一节圆的有关概念及性质课件

遵义专版2017届中考数学总复习第一编教材知识梳理篇第七章圆第一节圆的有关概念及性质课件

2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
Jie
Shu
Yu
平凡的人听从命运,只有强者才是自己的主宰。 ——维尼
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
ห้องสมุดไป่ตู้
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)

《圆的概念及性质》 知识清单

《圆的概念及性质》 知识清单

《圆的概念及性质》知识清单一、圆的定义圆是平面内到一定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

圆可以看作是一个动点以一个定点为中心,以一定长度为距离旋转一周所形成的封闭曲线。

用数学语言描述:设点 O 为圆心,r 为半径,则圆上任意一点 P 满足|OP| = r 。

二、圆的方程1、标准方程以点(a, b) 为圆心,r 为半径的圆的标准方程为:(x a)²+(y b)²= r²。

例如,以原点(0, 0) 为圆心,半径为 5 的圆的标准方程为 x²+ y²= 25 。

2、一般方程圆的一般方程为 x²+ y²+ Dx + Ey + F = 0 ,其中 D²+ E² 4F > 0 。

通过配方可以将一般方程化为标准方程:\\begin{align}x²+ y²+ Dx + Ey + F &= 0\\x²+ Dx +\frac{D²}{4} + y²+ Ey +\frac{E²}{4} &=\frac{D²+ E² 4F}{4}\\(x +\frac{D}{2})²+(y +\frac{E}{2})²&=\frac{D²+ E² 4F}{4}\end{align}\此时圆心坐标为(\frac{D}{2},\frac{E}{2}),半径为\(\sqrt{\frac{D²+ E² 4F}{4}}\)。

三、圆的性质1、对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

2、弦、直径与弧连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是圆中最长的弦。

圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章圆
第一节圆的有关概念及性质
1.(2016上海中考)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( B )
A.1<r<4 B.2<r<4
C.1<r<8 D.2<r<8
,(第1题图))
,(第2题图))
2.(2016自贡中考)如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是( C ) A.15°B.25°C.30°D.75°
3.(2016乐山中考)如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=40°,则∠CAB=( B )
A.10°B.20°C.30°D.40°
,(第3题图))
,(第4题图))
4.(2015嘉兴中考)如图,⊙O的直径CD垂直于弦AB于点E,且CE=2,DE=8,则AB的长为( D ) A.2 B.4 C.6 D.8
5.(2016兰州中考)如图,四边形ABCD内接于⊙O,四边形ABCO是平行四边形,则∠ADC=( C ) A.45°B.50°C.60°D.75°
,(第5题图))
,(第6题图))
6.(2016娄底中考)如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是__平行__.
7.(2016宿迁中考)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为__2__.
,(第7题图))
,(第8题图))
8.(2016南京中考)如图,扇形OAB的圆心角为122°,C是弧AB上一点,则∠ACB=__119°__.
9.(2016扬州中考)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为__2__.
,(第9题图))
,(第10题图))
10.(2016绍兴中考)如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40 cm,脸盆的最低点C到AB的距离为10 cm,则该脸盆的半径为__25__cm.
11.(2016雅安中考)如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为__8__.
12.(2016原创)⊙O的半径为1,弦AB=,弦AC=,则∠BAC的度数为__15°或75°__.
13.(2016吉林中考)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC.点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为__60__°.(写出一个即可)
14.(2016南充中考)如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是__50__mm.
,(第14题图))
,(第15题图))
15.(2016原创)如图,MN 是⊙O 的直径,MN =4,∠AMN =40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA +PB 的最小值为__2__.
16.(2016成都中考)如图,△ABC 接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =__239
__.
17.(2016临沂中考)如图,A ,P ,B ,C 是圆上的四个点,∠APC =∠CPB =60°,AP ,CB 的延长线相交于点D. (1)求证:△ABC 是等边三角形; (2)若∠PAC =90°,AB =2,求PD 的长.
解:(1)∵∠APC =∠CPB =60°,∴∠ABC=∠BAC =60°,∴∠ACB=60°,∴△ABC 是等边三角形;(2)方法一:∵∠PAC =90°,∠APC=∠ACB =60°,∴∠D=∠DAB =∠PCB =30°,∴BD=AB =2.又∵∠PBD =∠PAC =90°,∴PD=cos30°BD
=3=4.方法二:∵∠PAC =90°,∠APC=∠ACB =60°,∴∠ACP=∠PCB =∠D =30°,∴PD=PC.在Rt △PAC 中,AC =AB =2,∴PC=cos30°AC
=3,∴PD=4.
18.(2016呼和浩特中考)如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC.
(1)求证:∠FBC =∠FCB ;
(2)已知FA·FD=12,若AB 是△ABC 外接圆的直径,FA =2,求CD 的长.
解:(1)∵四边形AFBC 内接于圆,∴∠FBC+∠FAC =180°.∵∠CAD+∠FAC =180°,∴∠FBC=∠CAD.∵AD 是△ABC 的外角∠EAC 的平分线,∴∠EAD=∠CAD ,又∠EAD =∠FAB ,∴∠FAB=∠CAD ,又∠FAB =∠FCB ,∴∠FBC =∠FCB ;(2)由(1)知∠FBC =∠FCB.又∵∠FCB =∠FAB ,∴FAB =∠FBC ,又∠BFA =∠BFD ,∴△AFB∽△BFD,于是有FD BF =BF FA ,即BF 2
=FA·FD=12,∴BF=2,而FA =2,∴FD=6,AD =4.∵AB 为圆的直径,∴∠BFA=∠BCA =90°,∴tan ∠FBA=BF AF =32=33
,∴∠FBA=30°,又∠FBA =∠FDB ,∴∠FDB=30°,∴CD=2.。

相关文档
最新文档