电磁能量作业第二部分静电场

合集下载

电磁学02静电场中的导体与介质

电磁学02静电场中的导体与介质

A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:

第2章静电场

第2章静电场

“立个球面”的立体角=? 2. “任意曲面”dS对“某点”所张的立体角 (1) 以R0为半径的“球面”
3. “立体角”的重要结论
散度方程微分形式的引出:
请注意:此处的ρ 是指自由电荷的体密度ρvf !
(强调)散度方程
• 物理意义: 它们描述了静电场的发散性,给出了通过封闭面的 电通量与面内所围电荷量之间的关系; • 积分形式说明: 任意封闭面的电通量=面内所围电荷总量; 电通量为0,则封闭面内不包含电荷,即面内无源; 进而说明:静电场具有通量源,即自由电荷。 • 微分形式说明: 静电场(电位移)散度=该点处电荷体密度; 进而,静电场具有散度源,即自由电荷的体密度。
例2. 求电荷分布
已知真空中电场分布,求各处电荷分布的体密度. 分析: 由电场分布可知, 球对称, 电场只有径向分量; 可以直接运用散度方程求解; 仍要分球内和球外两种情况;
作业
• 试计算电荷面密度为σ 的无限大平面周围 的电场。
静电场的旋度方程
• 首先应注意,这是静电场,不是任意电场; • 积分形式: 电场沿任意闭合曲线的积分为0; C指任意闭合曲线; C自身方向与C所围曲面方向满足右手规则; 积分式即电场的环流量; • 微分形式: 静电场的旋度为0 无论在有源区还是无源区; 电荷是静电场的什么源?体密度是什么源?
真空中距离为R的两点电荷q1,q2 q1对q2的作用力,电荷量正比,距离平方反比 矢量方向:q1指向q2 真空中介电常数(Dielectric Constant)
1 12 0 8.85 10 ( F / m) 9 4 9 10
真空中静止点电荷的电场强度
q 2受到的电场力:F R, q1 , q2


总结1:
库仑定律(真空中静止电荷电场)

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。

静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。

不随时间变化的电场称为静电场。

2、请解释磁场与恒定磁场的概念。

运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。

不随时间变化的磁场称为恒定磁场。

3、请解释时变电磁场与电磁波的概念。

如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。

时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。

4、请解释自由空间的概念。

电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。

在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。

因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。

5、举例说明电磁场与波的应用。

静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。

电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。

当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。

6、请解释常矢与变矢的概念。

若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。

而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。

7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。

8、请解释静态场和动态场的概念。

如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。

换句话说,在某一空间区域中,物理量的无穷集合表示一种场。

工程电磁场第二章静电场小结

工程电磁场第二章静电场小结
K 1
SK k dS
1 2
n
K qK
K 1

We
1 2
n
K qK
K 1
3)自有能和互有能的概念
W
1 2
n
K qK
K 1
1 2
n k 1
qkk ( qk )
1 2
n
[qkk ( qk )]
k 1
一般计算没有必要把静电能分成自有能和互有能,计算也很不方便:但 对点电荷系统,因其自有能为无穷大,无法计算,才必须分开计算!
E Exex Eyey Ezez
• 积分是对源点 (x', y', z') 进行的,计算结果是场点(x, y, z) 的函数。
点电荷群
( r ) 1 N qi C
4 0 i1 r ri'
连续分布电荷
dq : dV , dS , dl
( r ) 1
dq C
4 0 v' r r'
若无限远处为电位参考点(场源有限)上式中的C为零。
• 唯一性定理为静电场问题的多种 解法(试探解、数值解、解析解 等)提供了思路及理论根据。 不同的求解方法,其解的形式 可能不一样,唯一性定理保证 它们彼此相等且均为有效。
(5)根据唯一性定理导出的镜像法(求场量) 1)无限大导体平面的镜像法
r1
e r2
e r1
r2
上半空间的场是两个点电荷产生的, 其场强和电位分别为:
在介质分界面上电位是连续的。
1
1
n
2
2
n
介质分界面上无自由面电荷时右端为零。
② 导体(1)与理想介质(2)分界面,用电位 表示的衔接条件

电磁学习题 电场部分

电磁学习题 电场部分

学号 班级 姓名 成绩第一章 真空中的静电场 (一)一、选择题1、关于电场强度定义式E=F/q 0,指出下列说法中的正确者[ ]。

A .场强E 的大小与检验电荷q 0的电量成反比;B .对场中某点,检验电荷受力F 与q 0的比值不因q0而变; C .检验电荷受力F 的方向就是场强E 的方向;D .若场中某点不放检验电荷q 0,则F=0,从而E =0。

图6-12、如图6-1所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为[ ]。

A. 204y q επ; B.202y q επ; C.302y qa επ; D. 304yqaεπ。

3、无限大均匀带电平面电荷面密度为σ,则距离平面d 处一点的电场强度大小为[ ]。

A .0; B .02σε; C .02d σε; D .04σε。

4、如图6-2所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度ERr EARr E BRr E CRrED的大小与距轴线的距离r 关系曲线为[ ]。

图6-25、在真空中,有一均匀带电细圆环,半径为R ,电荷线密度为λ,则其圆心处的电场强度为( )A 、0ελ;B 、R 02πελ;C 、202R πελ; D 、0v/m6、下列哪一说法正确( )A 、电荷在电场中某点受到的电场力很大,该点的电场强度一定很大B 、在某一点电荷附近的一点,如果没有把试验电荷放进去,则这点的电场强度为零C 、电力线上任意一点的切线方向,代表正点电荷在该点处获得的加速度方向D 、如果把质量为m 的点电荷放在一电场中,由静止状态释放,电荷一定沿电场线运动二、填空题1、两个正点电荷所带电量分别为q 1和q 2,当它们相距r 时,两电荷之间相互作用力为 F = ,若q 1+q 2=Q ,欲使两电荷间的作用力最大,则它们所带电量之比q 1:q 2= 。

电磁场理论课件 2-1静电场的标势及其微分方程

电磁场理论课件 2-1静电场的标势及其微分方程
P r
(P)
Q
4 0
(1 r
1 r
)
r2 R 2 l 2 2Rl cos
Q
2l
x -Q
求近似值:
r R
1
l2 R2
2l
cos
/
R
R
1 2l cos / R
R(1 1 2l cos ) R l cos
2R
R r
y
(l R)
同理
r R l cos
1 1 r r 2l cos 2l cos
R02 R2
20
ln
R R0
若选P0为参考点,则
(P)
ln R
ER
R
20
,
2 0 R
R0 E EZ 0
解2:
z
电荷源
dq dz z' o
r
场点
p
R
选取柱坐标:源点的坐标为(0, z'),场点的坐标为
(R, 0),考虑到导线是无限长,电场强度显然与z
无关。
这里,先求场强 E
,后求电势
E 0
D
E
这两方程连同介质的 电磁性质方程是解决 静电问题的基础。
静电场的无旋性是它的一个重要特 性,由于无旋性,我们可以引入一 个标势来描述静电场。
无旋性的积分形式是电场 沿任一闭合回路的环量等 于零,即
E dl 0
设C1和C2为P1和P2点的两 条不同路径。C1与C2合成 闭合回路,因此
量与存在着电荷分布的空间有关。真实的静电能量是以
密度 w 1 E D的形式在空间连续分布,场强大的地方 2
能量也大;
(4)W 1 dV中的 是由电荷分布 激发的电势; 2

大学物理电磁学总结

大学物理电磁学总结

大学物理电磁学总结电磁学部分总结静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。

静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动, 电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。

电场强度 E =q 0∞ W a 电势 U a ==E ⋅d rq 0a2、反映静电场基本性质的两条定理是高斯定理和环路定理Φe =E ⋅d S =ε0∑qL E ⋅d r =0要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。

重点是高斯定理的理解和应用。

3、应用(1)、电场强度的计算1q E =r 02a) 、由点电荷场强公式 4πεr 及场强叠加原理 E = ∑ E 计i 0算场强一、离散分布的点电荷系的场强1q i E =∑E i =∑r 2i 0i i 4πεr 0i二、连续分布带电体的场强 d q E =⎰d E =⎰r 204πε0r其中,重点掌握电荷呈线分布的带电体问题b) 、由静电场中的高斯定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。

还有可能结合电势的计算一起进行。

c) 、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。

(2)、电通量的计算a) 、均匀电场中S 与电场强度方向垂直b) 、均匀电场,S 法线方向与电场强度方向成θ角E =-gradU =-∇U∂U ∂U ∂U =-(i +j +k )∂x ∂y ∂zc) 、由高斯定理求某些电通量(3)、电势的计算a) 、场强积分法(定义法)——计算U P =⎰E ⋅d rb) 、电势叠加法——q i ⎰电势叠加原理计算⎰∑U i =∑4πεr⎰0iU =⎰dq ⎰dU =⎰⎰⎰4πε0r ⎰第二部分:静电场中的导体和电介质一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。

电磁学第二章习题答案

电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质)1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内表面所带的电量为 - q ,外表面所带电量为 q +Q 。

2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小204/r Q E πε=,球壳的电势R Q V 04/πε=。

3、导体静电平衡的必要条件是导体内部场强为零。

4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。

现使它们互相接触,则这两个金属球上的电荷( B )。

(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B )(A) R/r (B) r/R (C) R 2/r 2 (D) 16、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C )(A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。

7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。

试求: (1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的高斯球面S,由高斯定理01εqq dS E S +=⋅⎰⎰ ,根据导体静电平衡条件,当a <R <b 时,0=E。

则0=⋅⎰⎰SdS E ,即01=+q q ,得q q -=1根据电荷守恒定律,金属球壳上的电量为21q q Q +=q Q q Q q +=-=∴12(2)在内表面上任取一面元,其电量为dq ,在O 点产生的电势adq dV o πε411=q 1在O 点产生的电势aq aq adq dV V o o o πεπεπε4441111-====⎰⎰内内(3) 同理,外球面上的电荷q 2在O 点产生的电势bqQ bq V o o πεπε4422+== 点电荷q 在O 点产生的电势rq V o q πε4=∴ O 点的总点势o q V V V V πε41210=++=(bq Q a q r q ++-) 8、点电荷Q 放在导体球壳的中心,球的内、外半径分别为a 和b ,求场强和电势分布。

电磁学(梁灿彬)第二章导体周围的静电场

电磁学(梁灿彬)第二章导体周围的静电场

电像法可以用来求解导体周围的静电场,并给出导体表面的电荷分布和电场强度。
静电场中的高斯定理和环路定理
CATALOGUE
03
环路定理表明在静电场中,电场强度沿任意闭合路径的线积分等于零,也就是说,电场线没有起点也没有终点,它们形成闭合的曲线或直线。
总结词
环路定理是静电场的另一重要定理,它表明在静电场中,电场强度沿任意闭合路径的线积分等于零。这意味着电场线没有起点也没有终点,它们形成闭合的曲线或直线。这个定理可以用公式表示为:∮E·dl = 0。
电场强度与导体表面的电荷密度成正比
02
导体表面的电场线与导体表面垂直,并且从导体内部指向导体外部。
电场线与导体表面垂直
03
随着距离的增加,电场强度逐渐减小。
电场强度随距离的增加而减小
电像法是一种通过引入虚拟电荷来描述静电场的数学方法。
在电像法中,虚拟电荷的位置和大小是根据静电平衡条件和电场线与导体表面垂直的条件来确定的。
CATALOGUE
02
导体内部无电荷
导体内部任意位置均无电荷分布,电荷只分布在导体的表面。
电场线与导体表面垂直
导体表面的电场线与导体表面垂直,并且从导体内部指向导体外部。
导体表面电场强度与导体表面的电荷密度成正比
导体表面的电荷密度越大,导体表面的电场强度越大。
01
导体表面的电荷密度越大,导体表面的电场强度越大。
01
电子设备中的隔直、旁路和耦合作用
电容器在电子设备中可以起到隔离直流信号的作用,同时也可以旁路掉不需要的交流信号,实现不同电路之间的耦合。
02
调谐和滤波
利用电容器的充放电特性,可以调整电路的频率响应,从而实现调谐和滤波的功能。

电磁场与电磁波 第二章-5 恒定电场

电磁场与电磁波  第二章-5 恒定电场

填充两种ε1、σ1,ε2、σ2的电介质材料, 介质分界面半径为 c ,内
外导体的电压为U0。试计算
(1)介质中的电场强度;
2,2
(2)分界面上的自由电荷
(3)单位长度的电容和电导。
解: (1)考察单位长度
E1r
Jr
1
I
2 r1
, E2r
Jr
2
I
2 r 2
1,1
c
U0
c
a E1rdr
b c
1 ( m)
• 欧姆定理的推导:I J d S S
JS ES
U
El
I
S
l
I
l
S
IR
SJ
l
E
U IR
J E
5
电流密度与电荷平均速度的关系:
dt时间内流过S面的电量及电流分别为:
dq Svdt I Sv J v
S vJ
vdt
6
二、 恒定电流场方程
1 电流连续性方程 2 基尔霍夫电流定律
数值为
Js
dI dl
A/m,方向为电流的方向。
通过任意曲线l 的电流
的电流为
I S JS dl
dl
JS
bupt 2012
4
3 欧姆定律
欧姆定理微分式:
导体任一点上电流密度与电场强度成正比。 J E
描述媒质的导电特性,理想导体σ为趋于无穷大。
是媒质的电导率,单位 1/欧.米 (1/ m)
xb
U
xb x
I
2 r 2
dr
I
2
( 1 ) bI
r x 2x(x b)
半球形接地器的危险区

电磁场与电磁波第二章讲义

电磁场与电磁波第二章讲义

(r )
第二章 静 电 场
当r<a时,
Er 4r2

0 0
4
3
r3
所以
Er

0r 30
(r )
第二章 静 电 场
例 2 - 3 已知半径为a的球内、 外的电场强度为
E

er E0
a2 r2
(r a)
E

er E0 5

r 2a

3
r3 2a3

(r a)
们的连线, 同号电荷之间是斥力, 异号电荷之间是引力。点电
荷q′受到q的作用力为F′,且F′=-F,可见两点电荷之间的作用力 符合牛顿第三定律。
第二章 静 电 场
库仑定律只能直接用于点电荷。所谓点电荷,是指当带电体 的尺度远小于它们之间的距离时,将其电荷集中于一点的理想化 模型。 对于实际的带电体, 一般应该看成是分布在一定的区域 内,称其为分布电荷。用电荷密度来定量描述电荷的空间分布情 况。电荷体密度的含义是,在电荷分布区域内,取体积元ΔV, 若其中的电量为Δq,则电荷体密度为
(r)

P(r' )V '
4 0

r r' r r' 3
整个极化介质产生的电位是上式的积分:
(r) 1
4 0
V
P(r' ) (r r r' 3
4 0R2
R

q' q
4 0
R R3
式中:R=r-r′表示从r′到r的矢量;R是r′到r的距离;R°是R的单
位矢量;ε0是表征真空电性质的物理量,称为真空的介电常数,
其值为

电磁场与电磁波 第2章静电场

电磁场与电磁波 第2章静电场
如果电场由点电荷q单独产生
如果是一个闭合路径,则W=0 电场强度的环路线积分恒为零,即
应用斯托克斯定理
因此,静电场的电场强度 可以用一个标量函数 的梯度来表示,即定义
单位正实验电荷在电场中移动电场力做功
两点间的电位差定义为两点间的电压U,即
单位:V
电位函数不唯一确定,取
故可选空间某点Q作为电位参考点,空间任一点P的电位为 通常选取无限远作为电位参考点,则任一P点的电位为
在交界面上不存在 时,E、D满足折射定律。
D 1 n D 2 n 1 E 1 c1 o 2 E s 2 c2 os
E 1 t E 2 t E 1 si1 n E 2 si2n
图2.3.3 分界面上E线的折射
t电位函数 表示分界面上的衔接条件
Ax Ay Az
对应静电场的基本方程 E 0 ,矢量 A 可以表示一个静电场。
能否根据矢量场的散度来判断该矢量场是否是静电场?
2.3.2 分界面上的边界条件
1、 电位移矢量D的衔接条件 以分界面上点P作为观察点,作一
小扁圆柱高斯面( L 0)。
图2.3.1 在电介质分界面上应用高斯定律
根据 DdSq
V ' P d ' V S 'P e n d ' S 0
• 在均匀极化的电介质内,极化电荷体密度 p 0。
• 有电介质存在的场域中,任一点的电位及电场强度表示为
(r) 4 1 0 V '( r f r 'p )d' V S '( r f r 'p )d' S E (r ) 4 1 0 V '( f r p r )'3 r( r ')d' V S '( f r p r ) '3 r( r ')d' S

电磁学习题 电场部分

电磁学习题 电场部分

学号 班级 成绩第一章 真空中的静电场 (一)一、选择题1、关于电场强度定义式E=F/q 0,指出下列说法中的正确者[ ]。

A .场强E 的大小与检验电荷q 0的电量成反比;B .对场中某点,检验电荷受力F 与q 0的比值不因q 0而变;C .检验电荷受力F 的方向就是场强E 的方向;D .若场中某点不放检验电荷q 0,则F =0,从而E =0。

图6-12、如图6-1所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为[ ]。

A. 204y q επ; B.202y q επ; C.302y qa επ; D. 304yqaεπ。

3、无限大均匀带电平面电荷面密度为σ,则距离平面d 处一点的电场强度大小为[ ]。

A .0; B .02σε; C .02dσε; D .04σε。

4、如图6-2所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度E 的大小与距轴线的距离r 关系曲线为[ ]。

图6-25、在真空中,有一均匀带电细圆环,半径为R ,电荷线密度为λ,则其圆心处的电场强度为( )A 、0ελ; B 、R 02πελ;C 、202R πελ; D 、0v/m6、下列哪一说确?( )A 、电荷在电场中某点受到的电场力很大,该点的电场强度一定很大B 、在某一点电荷附近的一点,如果没有把试验电荷放进去,则这点的电场强度为零C 、电力线上任意一点的切线方向,代表正点电荷在该点处获得的加速度方向D 、如果把质量为m 的点电荷放在一电场中,由静止状态释放,电荷一定沿电场线运动RrEARr EBRr ECRrED二、填空题1、两个正点电荷所带电量分别为q 1和q 2,当它们相距r 时,两电荷之间相互作用力为F = ,若q 1+q 2=Q ,欲使两电荷间的作用力最大,则它们所带电量之比q 1:q 2= 。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

电磁场课件第2章 电场、磁场与麦克斯韦方程

电磁场课件第2章 电场、磁场与麦克斯韦方程

S
I l'
24
计算 B 在回路 l上的闭合线积分有
B d l
l
[ 0I l 4
d l' R l' R3 ]d l
0I
4
[
l l'
R R3
(dl
dl
')]
因此,由上式可得
B dl 0I d 4
为角
d
dS 所 张
'
的 积 分


根据势函数与有势场的对应关系,可得到空间一点P处的
ic s Jcds
36
运流电流
电荷在无阻力空间作有规则运动而形成
形成运流电流的电荷在运动时并不受到碰撞阻滞作用, 即使存在与其它粒子发生碰撞的机率,其作用也微乎其微, 可忽略不计,因此运流电流不服从于欧姆定律。
假设存在一个电荷体密度为 的区域,在电场作用下,
电荷以平均速度v 运动,在dt 时间内,电荷运动的距离为dl 则
q
4 0
(d
cos
r2
)
pe r
4 0r3
23
2.5 磁偶极子
在定义磁偶极子之前,首先来分析一个闭合电流回路在空间 所产生的磁场。正如电偶极子是常见的电场源的存在形式一样, 闭合电流回路是磁场源的最常见形式。
B
0
4
Id l' eR
R l '
2
0I
4
d l' R
R l '
3
M
d
dl P
n
l
R
法拉第电磁感应定律 感应电动势
闭合路径所包围的磁通
e dm dt
e l E d l

静电场的能量

静电场的能量

静电场的能量静电场是由带电粒子或物体周围的电场引起的一种现象。

静电场能量是指由静电场所包含的能量。

一、静电场的基本概念和特性静电场是由电荷之间的相互作用形成的,并且与电荷的位置关系也有关。

在静电场中,电荷会产生电场,而这个电场也会对其他电荷产生作用力。

静电场的特性有以下几点:1. 静电场的力是作用在电荷上的,而非自身的静电场或电荷本身。

2. 静电场的力是由电荷之间的相互作用引起的,其大小与电荷的数量和距离有关。

3. 静电场是一个矢量场,具有方向和大小。

4. 静电场的能量分布不均匀,通常集中在离电荷较近的地方。

二、静电场能量的计算静电场的能量可以通过以下公式进行计算:E = (1/2) * ε * V^2其中,E表示静电场的能量,ε表示真空介电常数,V表示电场的电压。

静电场的能量与电场的电压平方成正比,而与电场的介电常数成正比。

因此,当电场的电压或介电常数增加时,静电场的能量也会增加。

三、静电场能量的应用静电场的能量在现实生活中有广泛的应用。

以下列举几个例子:1. 静电能量在静电喷涂中的应用:静电喷涂是一种利用静电场将涂料均匀喷涂在物体表面的技术。

通过给喷涂液体带上电荷,使其在喷枪离开物体表面时形成一个带电雾状的状态,然后利用静电场将涂料吸附在物体表面上,从而实现均匀喷涂。

2. 静电能量在电子设备中的应用:静电场能够对微小的物体产生引力或斥力,这一特性被应用在电子设备中,如打印机、复印机等。

通过静电场的作用,可以将墨粉、纸张等粘附在特定位置,实现打印或复印的功能。

3. 静电能量在高压输电中的应用:在高压输电线路中,由于导线带有电荷,会形成强大的静电场。

这种静电场的能量会导致电线周围的空气分子离子化,形成电晕放电现象。

因此,在高压输电线路中需要采取相应的措施来减少静电场的能量损耗,提高输电效率。

综上所述,静电场能量是由静电场所包含的能量。

通过计算静电场能量的公式可以了解到静电场能量与电场的电压平方和介电常数的关系。

高等电磁场答案

高等电磁场答案

高等电磁场答案【篇一:电磁场作业题答案全】>1.1 什么是场?什么是矢量场?什么是标量场?什么是静态场?什么是时变场?答:如果在空间某一个区域内上任意一点都有一确定物理量值与之对应,则这个区域就构了一个物理量的场。

如果这个确定物理量值是一个标量(只有大小没有方向),我们称这种场为标量场,如温度场、密度场、电位场等等。

如果这个确定物理量值是一个矢量(既有大小又有方向),我们称这种场为矢量场,如电场、磁场、重力场等等。

如果在场中的这个物理量仅仅是空间位置的函数,而不是时间的函数(即不随时间变化的场),我们称这种场为静态场。

如果在场中的这个物理量不仅仅是空间位置的函数,而且还是时间的函数(即随时间变化的场),我们称这种场为时变场。

1.2 什么是标量?什么是矢量?什么是常矢?什么是变矢?什么是单位矢量?答:一个物理量如果仅仅只有大小的特征,我们称此物理量为标量。

例如体积、面积、重量、能量、温度、压力、电位等。

如果一个物理量不仅仅有大小,而且还具有方向的特征,我们称此物理量为矢量。

例如电场强度,磁感应强度、电位移矢量、磁场强度、速度、重力等。

一个矢量如果其大小和方向都保持不变的矢量我们称之为常矢。

如果矢量的大小和方向或其中之一是变量的矢量称为变矢。

矢量与矢量的模值的比值,称为单位矢量。

即模值为1的矢量称为单位矢量 1.3什么是等值面?什么是等值面方程?什么是等值线?什么是等值线方程?答:在标量场中许多相同的函数值(他们具有不同的位置)。

构成的曲面,称为等值面。

例如,温度场中由相同温度构成的等温面,电位场中相同电位构成的等位面等都是等值面。

描述等值面的方程称为等值面方程。

假定u?x,y,z?是坐标变量的连续可微函数。

则等值面方程可表述为 u?x,y,z??c (c为任意常数)在标量场中平面中相同的函数值构成的曲线,称为等值线。

描述等值线的方程称为等值线方程。

假定u?x,y?是坐标变量的连续可微函数。

则等值线方程可表述为 u?x,y??c (c为任意常数) 1.4求下列电场的等位线方程 (1)??xz, (2) ??4 x?y22解:根据等值线方程的定义即电位函数应为一常数,所以等位线方程为⑴ ??c?xz,即 x?c;⑵ ??4?c 即 x2?y2?4?k (k为常数) zcx?y1.5 求下电场的等值面方程 1)??2221222, 2) ?=x-x0)?(y?y0)?(z-z0) , 3)?=ln(x+y+z) 22x?y?z2解:根据等值面方程的定义即电位函数应为一常数,所以等位面方程为⑴ ??1即 x2?y2?z2?1?k2 ?ccx2?y2?z2⑵?=x-x0)2?(y?y0)2?(z-z0)2 ?c 即(x?x0)2?(y?y0)2?(z?z0)2?c2?k2 ⑶ ln?x2?y2?z2??c 即x2?y2?z2?ec?k2,(k为常数)1.6 什么方向导数?什么梯度?梯度与方向导数的关系?答:在标量场中任一点在某一方向上的变化率称为方向导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012-2013学年第2学期 电磁能量 上海交通大学
Xie Bao-chang, School of Electronic Information & Electrical Engineering, SJTU, Shanghai, China 1 第二部分:静电场
一、思考题
1、带电量为Q 的金属圆球,产生的电场E ,现在有一个带电量为q 的点电荷,在金属球附近测得电场力为F ,比较F /q 与该点电场E 的大小,说明理由。

2、金属圆球带正电荷,与不带电荷比较,其质量如何变化?能量又如何变化?
3、等位面上电场强度的方向与法向矢量有何关系?
4、静电场中,电位高低与电场强弱有何关系?
二、计算题
1、已知半径为a 的圆球空间内电荷对称分布! "=4#4r 2/a 2,在外部有内半径2a 外半径3a 的同心导体球壳,球壳本身不带电,以无穷远处为零电位。

计算
(1)空间电位分布;
(2)空间电场分布;
(3)球壳外表面单位面积电场力;
(4)球壳内表面单位面积电场力;
(5)球壳外电场能量;
(6)球壳内电场能量。

2、无限长直同轴圆柱面,半径分别为a 和b ,(a <b )电荷面密度分别为ρsa 和ρsb ,计算
(1)空间电位和电场强度;
(2)圆柱面外部(r >b )电场为零的两个面电荷应满足的条件,以及单位长度存储的电场能量。

3、半径为a 的圆柱形平板电容器,两极板间距5cm ,忽略边缘效应,空气的击穿强度3MV/m 。

计算
(1)极板间容许施加的电压;
(2)电容器存储的最大能量;
(3)现用厚度5cm 电介质填充,相对介电常数3,击穿强度20MV/m ,那么极板间的最大耐压多少伏?
(4)如果用1cm 厚的上述电介质填充,那么极板间的最大耐压多少伏?
(5)计算上述三种电介质结构的电容。

4、半径为a 的金属薄圆筒,轴线与地面平行,相对地面高度h ,电位V 0,圆筒内部有平行于轴线的线电荷ρl ,线电荷距离轴线b (b <a ),计算金属圆筒内外的电位分布。

5、半径a 带电量Q 的导体圆球外有一段长L 的线电荷,线电荷密度ρl ,线电荷所在直线经过导体球心,近端距离球心d ,计算
(1)导体圆球外部的电位分布; (2)导体圆球外部的电场强度分布;
(3)线电荷受到的电场力。

6、已知雷电云的面积10km 2,距离地面5km ,云层均匀分布电荷200C ,利用电容模型计算
(1)云层对地电容值;
(2)电场强度,是否发生雷电?(空气击穿强度3MV/m 。


ρl。

相关文档
最新文档