人教版初一数学-相交线与平行线知识点与习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线

1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。

2、互为邻补角:

(1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。

(2)性质:从位置看:互为邻角;从数量看:互为补角;

3、互为对顶角:

(1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。

(2)性质:对顶角相等

垂直

4、垂直:

(1)定义:垂直是相交的一种特殊情形。当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。它们交点叫做垂足。其中的一条直线叫做另一条直线的垂线。

(2)性质:过一点有且只有一条直线和已知直线垂直。

(3)表示方法:用符号“⊥”表示垂直。

5、任何一个“定义”既可以做判定,又可以做性质。

6、垂线是一条直线,垂线段是垂线的一部分。

7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。两点间的距离:连接两点间的线段的长度。

“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。

同位角、内错角、同旁内角

9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。这样的两个角叫做内错角。

10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方。这样的两个角叫做同位角。

11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。这样的两个角叫做同旁内角。

相交线、平行线

12、截线与被截直线的定义:截线就是截断两条同一方向直线的直线,被截直线就是被截线所截断的两条同一方向的直线。

13、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线。

14、平行线:

(1)定义:在平面内不相交的两条直线,叫做平行线。(2)表示方法:用符号“∥”表示平行。

(3)公理:经过直线外一点,有且只有一条直线与已知直线平行(这个公理说明了平行线的存在性和唯一性)。

(4)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

(5)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线互相平行(简单说成:同位角相等,两直线平行)。

判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线互相平行(简单说成:内错角相等,两直线平行)。

判定3:两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行(简单说成:同旁内角相等,两直线平行)。

判定4:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。

(6)性质1:如果两条平行直线被第三条直线所截,那么同位角相等(简单说成:两直线平行,同位角相等)。

性质2:如果两条平行直线被第三条直线所截,那么内错角相等(简单说成:两直线平行,内错角相等)。

性质3:如果两条平行直线被第三条直线所截,那么同旁内角相等(简单说成:两直线平行,同旁内角相等)。

15、命题

(1)定义:表示判断一件事情的语句,叫做命题。

(2)分类:命题分为真命题:正确的命题。假命题:错误的命题。(3)组成:命题是由条件(题设)和结论两部分组成。条件(题设)是已知事项,结论是由已知事项推出的事项。

(4)定理:通过推理证实过的真命题叫做定理。定理也可以作为继续推理的依据。

平移

16、平移:

(1)定义:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移变换,简称平移。

(2)性质1:平移不改变图形的形状和大小,只改变图形的位置。

性质2:经过平移对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

(3)作图步骤:

1、按照题目要求,确定平移方向和距离;

2、找出所作图形的关键点,例如顶点;

3、沿确定的方向和距离平移所有关键点;

4、联结平移后的关键点并标出

对应字母。 习题:

1、同位角、内错角、同旁内角?

2、如图, AB//CD ,AE 平分∠BAD ,CD 与AE 相交于F,∠CFE= ∠E 。求证:AD//BC

3、如图:AC 平分∠DAB ,∠1=∠2,填空:因为AC 平分∠DAB ,证明 AB ∥CD 。

4、已知:如图,∠1=40°,∠2=65°,AB ∥DC ,求:∠ADC 和∠A 的度数.

B

A

M

N

A

D

B

C b 2

1

a

E

5、如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D ,求证DF ∥

AC .

6、如图,AB 是一条直线,∠C = ∠1,∠2和∠D 互余,BE ⊥FD 于G . 求证:AB ∥CD .

7、如图已知直线a ∥b ,AB 平分∠MAD ,AC 平分∠NAD ,DE ⊥AC 于E ,求证:∠

1=∠2.

8、已知:如图,CD 平分∠ACB ,AC ∥DE ,∠DCE=∠FEB ,求证:EF 平分∠DEB .

A B C

D E

F

1

4

2

3 A

D

F

B

E C

相关文档
最新文档