大型热网架空管道补偿器选择

合集下载

补偿器的选用及工程设计要求【全网推荐】

补偿器的选用及工程设计要求【全网推荐】

补偿器的选用及工程设计要求[工程类精品文档]本文内容极具参考价值,如若有用,请打赏支持,谢谢!【学员问题】补偿器的选用及工程设计要求?【解答】1.1管道最大安装长度计算有补偿直埋的管道应在二处高固定点,一是在直管段的端部,二是在管道的分支处。

长的无分支的直线管道两补偿器之间可以不设固定点,靠管道自然形成的驻点即可发挥固定点的作用。

驻点是两补偿器之间管道的那个不动点,在管径相同,埋深一致时,驻点与两补偿器间的距离相等。

褡补偿器(包括转角处自然补偿器)至固定点之间的距离不得超过管道的最大安装长度Lmax,管道最大安装长度的定义是固定点至自由端(补偿器)的长度,在此长度下产生的摩擦力不得超过管道许用应力下相应的弹性力。

Lmax按下式计算:常用管道的最大安装长度Lmax.应考虑16kgf/c㎡内压力所产生的环向应力的综合影响。

1.2固定支座的设计计算具有2个管道分支并在主干线上有一处转角管道平面,补偿器的布置应满足Ln F1=Pb2+L2f-0.8(Pb3+L2f)式中F1-固定支座G1的水平推力,kgf;f-管道单位长度摩擦力,Kgf/mPb2-B2膨胀节的弹性力,Kg;Pb3-B3膨胀节的弹性力,Kgfk2-B2膨胀节的刚度,Kgf/mm;△L2-B2膨胀节的补偿量,mm;L2-膨胀节至G1的距离,m;假如某一分支如自G2接出的分支带有补偿器B.那么,G2还受到一侧向推力的作用,如图中的F2(y),当L5很短(实际布置时L5也应很短),那么,侧向力F2(y)的大小为:F2(y)=Pn*A5+Pb5式中Pn-管道工作压力,Kgf/c㎡A5-B5膨胀节的有效面积,c㎡;Pb5-B5膨胀节的弹性力kgf.固定支座G3也驻点位置,从管道和土壤的摩擦力来讲,该点也受到大小相等,方向相反的两个时作用,但应注意到该点同时又受到转角处的盲板力的作用,考虑驻点漂移的影响,固定支座G3的推力F3=1.2Pn*A4式中F3-作用在固定支座G3的水平推力,Kgf;Pn-管道工作压力,Kgf/c㎡;A4-B4膨胀节的有效面积,c㎡.3.3补偿器的选用计算直埋管道由于土壤摩擦力的影响,实际热伸长量要比架空和地沟敷设的管道热热伸长量要小。

采暖固定支架及补偿器的选择、设计与计算

采暖固定支架及补偿器的选择、设计与计算

采暖固定支架及补偿器的选择、设计与计算1、固定支架及热补偿的重要性在暖通空调设计中,固定支架是一个不可避免的技术节点。

特别是在北方冬季的热水采暖管道、冬季空调冷冻水供回水管道以及生活热水管道中,管道在“热胀冷缩”的情况下必然产生巨大的自然推力。

如果不按照预先的设计方案来泄掉这部分巨大的自然推力,其产生的后果将是毁灭性的。

例如,前段时间某商业广场项目地库车位上方的热水管道瞬间脱离,管道支吊架等根本支撑不住瞬间的巨大推力。

许多非专业人员基本都会认为是施工技术差,或者认为施工方偷工减料,其实首先应该检查的是热水系统管道是否做了冷热补偿和合理的固定支架。

2、补偿器的分类在大面积的地库平面图中,如何做热水管道冷热补偿和合理的固定支架是有规律和技巧的。

但这些规律和技巧对于刚刚入职设计院的暖通设计师来说根本不掌握,或者说根本引起不了设计人员的注意。

在“三边工程”盛行的今天,出事的概率是非常高的。

首先,热水管道的托架和吊架跟固定支架并非一个意思。

只有把管道固定不动的吊架才叫“固定支架”,而普通支吊架是允许管道在其内顺着管道敷设方向自由移动的。

因为热膨胀产生多余的管道长度必须在此处让其释放、延申,吸收此多余长度的管件就是“补偿器”。

所以采暖系统中必须设置固定支架限定其只向一个预想的方向延申,而设置固定支架就必须配合使用补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。

在本文中,我们首推“自然补偿器”。

管道的自然补偿是利用管道本身自然弯曲来补偿管道的热伸长。

自然补偿常用的有L形补偿器、Z字形补偿器及“几”字型补偿器。

与自然补偿相对应的是人工补偿器,常用的人工补偿器有波纹补偿器、套筒补偿器、球形补偿器、方形补偿器及填料式补偿器等。

自然补偿器相对于人工补偿器来说优点颇多,比如减少初投资、节省施工工期、系统安全不漏水以及补偿能力不会随着时间的推移而打折扣等。

当供回水系统为大口径管道时,人工煨弯也存在一定难度。

3、自然补偿器的设计步骤自然补偿器的设计步骤主要包括以下几个方面:1)确定管道的自由长度,即管道在不受限制的情况下,由于热胀冷缩而产生的长度变化。

热力管道工程中补偿器的选用与安装

热力管道工程中补偿器的选用与安装

250 204
2 常用管 道补偿 器 的选用及 安装 的注 意事 项
定 补偿 量的一半 ( . A ) . 0 5 L 。d 方形补偿器在 安装时 , 应注意 同时
以确保补偿器 动作时 , 其两侧管道不产生横 向位移。 计算 出管道 的伸长量后 , 根据施 工现场的实 际情况来 考虑热 增补导 向支架 , 2 套管式补偿器 。套管式补偿器 的优点是补偿量 大 、 ) 占地 空 力管道 的补偿方式 , 般有 自然补偿 和补偿器补偿两种 。 一
2 1 ,6 3 ) 121 3 0 0 3 (5 :5 —5 .
1 方形补偿器 。方 形补 偿器 因其工作 可靠 、 ) 补偿 量 大、 必 不
S lc i n a d i sal t n o o p n a o n t e ma o r p p l e e gn e i g ee t n n t l i fc m e s t r i h r lp we i ei n i e rn o a o n
方形补 偿器 安装 时 , 应 注 还 计算工程 中管道 的伸缩量 , 以按下面 的公式进行 : L= × 应 留在 两垂直臂 的 中心位置 。另 外 , 可 A a 等固定支架 和滑 动支架全 部安 装好后 , 安装 在两个 固定 再 ( t) 。其 中 , 为管道的热膨胀伸缩 量 , 为管 材的线 意 :. t ×L 一 △ m; 支架的中问。b 方形补偿器水平设 置时 , . 补偿 器 的坡度 和坡 向应 膨胀系数 , / m ・C) t m( o ; 为管道 运行 时 的介质 温度 , t o 为管 C;
事故 。L形 或 z形补偿器的结构尺寸 , 由设计计算确定 , 以固定 并
支架来 明确界定 , 具体尺寸可以参考 相关 工程设计 手册 。

补偿器类型及选用

补偿器类型及选用

补偿器类型及选用摘要:补偿器又称膨胀节,在管道采用补偿器可以在承受系统压力的同时,吸收因温差引起的热膨胀,这种设备在冶金装置、炼油设备、化工设计,火电厂或核电站,供热和制冷系统,以及低温设备中获得了成功的应用。

用以补偿管道长度变化长生的应力的补偿方式可以分为自然补偿和补偿器补偿,其中补偿器可分为方形补偿器,波纹管补偿器,套筒补偿器以及球型补偿器等,本文主要介绍各种补偿器的优缺点及适用条件。

关键词:管道补偿,补偿器,热补偿补偿器是指在仪器中用于补偿相位差、光程差、偏振差、光强度或机械位移等变量的部件。

在暖通设计的范围内,由于工作介质及环境温度的变化导致管道长度发生变化,并产生拉(压)应力。

当超过管道本身的抗拉强度时,会使管道变形或破坏。

为此,在管道局部架空地段应设置补偿器,即膨胀器,使由温度变化而引起管道长度的伸缩加以调节得到补偿。

通常情况下,管道的变形产生位移可以由管道自己一定程度内的变形得到补偿,即所谓的自然补偿;当管道变形比较大管道自身不能在安全使用的条件下补偿的时候,就需要额外设置补偿器来补偿形变。

1.管道自然补偿通常采用的自然补偿器有L型和Z型两种型式。

其应用场合转角不大于150°时,管道臂长不宜超过20~25m,弯曲应力不应超过80MPa。

L形与Z形补偿器可以利用管道中的弯头构成,且便于安装。

在管道设计中,应充分利用这两种补偿器做补偿,然后再考虑采用其它种类的补偿器。

自然补偿的优点是可以节省补偿器,缺点是管道变形时产生横向位移。

架空管道中自然补偿不能满足要求时才考虑装设其它类型的补偿器。

2.补偿器补偿2.1方形补偿器方形补偿器就是最早常用一种补偿器,通常用无缝钢管煨制或机制弯头组合而成,常用有四种构造形式。

方形补偿器由于其构造形式,具有以下优点:1、制造简单,常用无缝钢管煨制或机制弯头组合;2、安装方便,可以水平安装,也可以垂直安装;3、轴向推力较小;4、补偿能力大,严密性好,运行可靠、方便,不需要经常维修,使用期限长,使用寿命等于管道使用年限;5、不需要设置管道检修平台,或检查室;6、适用范围广,可以适用任何工作压力及任何热媒介质的供热管道。

室外架空热力管道热补偿

室外架空热力管道热补偿

室外架空热力管道热补偿室外架空热力管道热补偿是指在管道运行过程中,由于温度变化导致管道发生热胀冷缩现象,为了避免对管道结构和支管设备造成不良影响,采取一系列的补偿措施以减小管道的热应力。

室外架空热力管道热补偿的主要目的是保证管道的正常运行和安全性,同时确保管道的稳定性和可靠性。

在室外环境中,管道受到太阳辐射和空气温度的影响较大,温度变化幅度也较大,因此需要对管道进行热补偿。

室外架空热力管道热补偿的主要方法有以下几种:1.弹簧支座弹簧支座是一种常用的热补偿装置,它可以通过调整支座的高度来实现管道的热补偿。

弹簧支座具有良好的弹性和稳定性,可以有效地吸收管道的热应力,减小管道的变形。

同时,弹簧支座还可以随着管道的变形自动调整,无需人工干预,操作简便。

2.管道伸缩节管道伸缩节是一种能够自由伸缩的管道连接件,其中内部设置有波纹管或球面接头,可以在管道受热胀冷缩时自由伸缩,减小管道的热应力。

管道伸缩节通常由不锈钢制成,具有良好的耐高温和耐腐蚀性能,可以在恶劣的室外环境下长期稳定工作。

3.可调支座可调支座是一种能够调节高度的管道支撑装置,通过调整支座的高度来实现管道的热补偿。

可调支座通常由钢制构件和螺杆组成,可以根据管道的热胀冷缩情况进行高度调整,保持管道的水平和垂直稳定。

4.轴向铰链支座轴向铰链支座是一种能够随着管道的轴向运动而旋转的支撑装置,它可以通过调整支座的角度来实现管道的热补偿。

轴向铰链支座具有良好的承载能力和稳定性,可以有效地吸收管道的热应力,减小管道的变形。

在室外架空热力管道的热补偿过程中,还应注意以下几个方面:1.管道材料的选择室外环境中,管道会受到太阳辐射和大气温度的影响,因此需要选择耐高温和耐腐蚀性能优良的管道材料,以确保管道的安全和可靠运行。

2.热补偿计算在进行室外架空热力管道热补偿设计之前,应进行详细的热补偿计算,确定管道的热胀冷缩量和所需的热补偿装置,以确保管道的稳定和安全性。

3.定期检查和维护对于室外架空热力管道的热补偿装置,应定期进行检查和维护,确保其正常运行和安全性。

几种管道补偿器的选择和安装

几种管道补偿器的选择和安装
补偿器的管道上 , 如地沟 中的管道和油码头上的 管道等 。这种补偿器的最大缺点是结构难于做得
因工艺需要在布置时 自 然形成 的弯曲管段称为 自
然补偿器 , L形补偿器和 z形补偿器 。凡是专 如
门设置的用来吸收管道热膨胀 的弯曲管段和伸缩
装置称 为人工补偿器 , Ⅱ 形补偿器 、 如 波纹 式补 偿器、 套管式补偿器 ( 填料式补偿器) 。 等[
板等金属薄片制成的。它利用金属本身 的弹性伸 补偿器又称为伸缩器或伸缩节、 膨胀节 , 主要 缩来减小管道的热应力 。每个波纹可吸收膨胀值 用于补偿管道受温度变化而产生 的热胀冷缩 。如 5 5n' 波纹总数一般不超过 6 。波纹补偿 ~1 2 , 1 n 个 果温度变化 时管道不能完全 自由地膨胀或收缩 , 器 的优点是体积小和结构严密 , 缺点是强度低 , 补 管道中将产生热应力。在管道设计 中必须考虑这 偿能力小 , 常只适用 于直径大于 10n1 的低 通 5 2l T 种应力 , 否则它可能导致管道的破裂 , 影响正常生 压管道和内压力小于 O 7MP 的气体管道上L 。 . a 1 J 产 的进行。作为管道工程的一个 重要组成 部分 , 1 4 套 管 式补偿 器 . 补偿器在保证管道长期正常运行方面发挥着 重要 这种补偿器是用铸铁或钢制成的。用铸铁制
装时 , 平行臂应与管线坡度相 同, 两垂直臂应平行 并呈水平状态。垂直安装时应根据不同介质设置 排气或疏水装置 , 但不得设置在弯 曲处。埋地管 道补偿器上下游 2m范 围内 , 应采用易压缩土替 换较硬的土质 , 敷设于冻土地带的补偿器 , 应水平 安装在不冻土层 l 2。 2 .
维普资讯

油 库

加 油

! 箜 翅 至 生 鱼 Q鱼 旦

补偿器选型说明书

补偿器选型说明书

一、适用范围本选型说明书,适用于我公司自行研制开发的第三代产品双向套筒补偿器、单向套筒补偿器、万向球式补偿器在供热管网中的应用,确定了产品的分类、型号、性能特点、选型计算、安装及考前须知等。

套筒补偿器是流体管道的一种新型热补偿装置,可满足管网敷设各种形式〔架空、地沟、直埋〕的要求。

二、主要规格公称直径:DN65~DN1200mm设计温度:150ºC设计压力:≤2.5Mpa补偿量:50~400mm角位移:±15°设计寿命:15~20年三、双向套筒补偿器○1型号LMRB 500—1.6 / 120轴向补偿量设计压力公称直径产品型号○2产品示意图双向套筒补偿器外形图○3性能及特点〔1〕双向性双向补偿,双向导流,可适用于循环管网。

〔2〕直埋免维护,减少费用与管道同埋地下〔不用设观察井〕,不用定期维护可降低运行本钱,节约维护费用。

〔3〕双向套筒补偿器不适用地下水位较高的地理环境。

〔4〕平安性高采用宽道自紧式密封15-20年无泄漏、不失稳,防拉脱,同心度高可防止侧向力过大造成的危害。

〔5〕无约束、降低工程造价外壳与芯管的配合形式采用机械配合形式中的动配合,具有良好的导向性,可作到无约束设计导向支架间距。

〔6〕方便施工、提高效率安装时双向套筒补偿器〔图1〕,位于两固定支架中间位置不用预拉伸,可直接同管道进展焊接,适用于任何敷设方式。

补偿器可不受施工条件的限制,对于特殊环境下,如施工中遇到电缆线、煤气管线等不可动障碍时,可临时调整补偿器的安装位置,使L≠L而不影响使用,为管网施工提供了极大的方便。

〔图1〕四、单向套筒补偿器○1型号LMDB 800—1.6 / 200轴向补偿量设计压力公称直径产品型号○2产品示意图单向套筒补偿器外形图○3性能及特点〔1〕双向导流。

〔2〕直埋免维护,减少费用与管道同埋地下〔不用设观察井〕,不用定期维护可降低运行本钱,节约维护费用。

〔3〕平安性高采用宽道自紧式密封15-20年无泄漏、不失稳,防拉脱,同心度高可防止侧向力过大造成的危害。

热力管网中补偿器的选用

热力管网中补偿器的选用

供热管道上。 方形补偿器 的优点为:制造方便 , 作 用在固定支架上 的轴向推力较小; 补偿能力大; 不 需要 经常 维修 ,因而对 于 埋地 管道 ,不需 要为 它设
置检查井。 其缺点是外形尺寸较大, 占地面积较多, 热 媒流 动 阻力较 大 。 ( 波纹补偿器 3 ) 波纹补偿器主要用于补偿轴 向位移 , 也可补偿 量值很小的横 向位移或轴向与横向合成位移 , 具有 补偿角位移的能力,但一般不用它来补偿角位移 。 通常的补偿量为单层波纹管, 若用双层或多层波纹 管, 其补偿量可大幅度增加, 其中接管中间的拉杆
维普资讯
20 0 7年 第 1期
制 冷 与 空 调
6 3
供 热 管道上 。套 管补 偿器 的补 偿 能力 大 , 般可 达 一 2 0 -0mm,尺 寸 紧凑 , 占地 较 小 ;对 热媒 流 5mm- 0 - 4 动 的阻力 比方形 补偿 器 小:承压 能力可 达 1 Mp 。 . a 6 套 管补 偿器 的缺 点是 :轴 向推 力较 大 ;需要 经 常检 修和 更换填 料 ,否 则容 易泄漏 ;如管道 变形 有横 向 位 移 时 ,易造成 填料 圈卡 住 。这种 补偿 器主 要用 在
( 2 形补偿 器 )方
使管子承受巨大的应力 , 甚至使管道破裂 。 为了使
管道不会由于温度变化所引起的应力而破坏, 必须 在管道上设置各种补偿器, 以补偿管道 的热伸长减 弱或 消除 因热膨胀 而产 生 的应 力 。 在供 热管 网 中设 置 固定支架 , 并在 固 定支架 之 间设置 各种 形式 的补
c mp n ao - h eS l b a cn o e st r o e str・—t f a n ig c mp n ao,whc a e u e n h aig n t r st l iaet eb i a g oc n - — e -l ih cn b s d i e t ewo k o ei n t l n m h nd f l n e fre o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大型热网架空管道补偿器选择
近年来,随着城镇集中供热的普及,补偿器作为热力管网中的重要管道特殊 件,在热力管网中的应用越来越广泛。

本文将针对常见的波纹补偿器(轴向型、 横向型、角向型)、旋转补偿器的结构特点和应用进行介绍和对比,同时对各种 补偿器的应用场合、原理、固定墩推力计算进行了总结。

1波纹补偿器
1.1波纹补偿器的分类
根据所吸收的位移形式分类,波纹补偿器可分为轴向型、横向型和角向型, 以及三者的组合位移形式。

根据波纹管的承压形式分类,可分为内压和外压形式。

在实际应用中,为限制波纹补偿器对管线固定支架受力的要求, 还有压力平衡型 波纹补偿器。

图1内压和外压状态下的波纹管
内压状态下,波纹管的波纹被推开,使波纹管伸长,该压力推力作用在管线 固定支架和系统设备上;在外压情况下相反,波纹被压缩,波纹管缩短,但压力 推力仍旧作用在管线固定支架或系统设备上。

有效面积是平均直径的断面面积,压力推力是系统压力和有效面积的乘积
图2
波纹补偿器位移形式

内压二
_J CL I 一
横向製
他向型
性能简介
轴向乃压適
(RNY1
■脚询压式SE铁补礙上要用于补& 轴向检楼.也町以补悽横甸也禅或戟JM与捕向自戎检籟”具克补偿曲他藩哺能力・ti一&人见它来补警细住彩・
勒M4-A :DS1
制|「一」心宀器卜宴用于补盘ft!冉位襌.牢育対尅询
却I:寸无汀叭
袖向氐钓克暹狡补備疥圧要fD于补卿网也锹悔一严閒證驚他心—「讣卜架,
袖“J取式
l<FSJ
巴理内虽式樹向里丈股纹补懐辩具奇鞍K的釉向补侶1L
刃列!聃1訂恃存枝人的特SL屋
轴冈外儿戈ITWY)
A埠忙压式(ZMWY:
戸哩内氐讓戢补卷滞帀〒嘅掘氏埋廿爼
的割虻盘鼻r不用魅小躍、可区浙恃越首扛坤
it舉瞳,足首u旨立竝以逹甘包继护.
轴曲堂IT KJi rMi«.叫韭吐瞪
iV?”
4
拠外怎啟啟补蛍細卩「吐皈r_ Jffi ii 議
的料乌吨移,邢用偿冲牢.可以嗨替*殳直援血
鼻谀.具和自汗制能」人務册免:;rj' . jr.i.^t!'
幹心巾七—
名称及型号结构型式性能简介轴向
内外压平衡述(NWP)—*ME3/
[
|
内外压半猶式波tt补傥癸HJ1暇收管线的轴
向他移.菽览力襦力由小佑器口豺结构所玖曼.曾线
固定支架仅弔冷刚度力和处用力即可.尤加适台带
以没迈咬犬固定支次的栗空管线.
轴向
全外压平衡式
(QWP)
险j•具玄内外;£平俺式敲纨卜供益的ft 点外.外压平扁型披坟补供茂还幷别遹仟于钢伕.石化.冶金岑行心的爲瞪角压工艺管线.初温烏乐炊态下嶷供九的钻向补偿就~
ti埋
内外压平衡式(ZMNWP)
同内外压千•Mt!亲却•松随符线口接坤人地乩花小同定支绘的椎力。

a埋
外压平纯式亿MQWP)
保温釉向式(BNY)
同外圧平影式液蚁补贷為.开传危管妖A 茨里人世卜.注小网定支架的抬力。

以说轴向弍液纹*卜怯莽能够碳收农线灼
轴向勺移.主安用丁钢铁.石化.冶金仃业的菽虹艺管线.
<管
压力平衡式
(ZYP)
厲件作力平&点淡纨补佶港倍够吸比伍线的轴向位移.内压桂力自身平內・可用干爪宜设賈凶定支架的h務宜氏钱线或火氏轻管线中,
图3波纹补偿器的分类及特点
1.2波纹补偿器在热网管道上的应用
补偿器的选型无非是结合工程管路的安装布局、空间环境及受力条件,将复 杂的管系分解为直线型、L 型和Z 型等典型管段,变复杂管系为简单管系,并进 行热位移量的计算,然后选用相应形式的补偿器,保证管系的安全运行。

用波纹补偿器对管段进行分段热补偿时,一个管段内原则只能设一个直线位
名称及型号
柄向皈* -■<
(RDL)
V)
JJ |<歸链式 (IMM)
性能简介
冏討人拉波以补便為可川卜 偿蚩片管段的横旬垃尊鴉甫仪拂=
角向慚链談统补億器可臥补悭昔 统布转李吏何上貯电徒移“
盯战礼淤皆 g 越可小、佬己 竣丽怙罚上的曲枇也
粗::退
im
鹘%调长碑
(QY)
址合7-.號賀补吃凰吐性够唳曲.轴 间砸可时也能聲哦収宵丫的慈*
忸垃陆主翌日十燃%怜锂匕旬 闽匚民fr
便用.恵聘眞曹焼覘的作用
葩哆
(JX)
咼I,卜仗岸
(HYH)
丿J 能能式
(H5WJ
1
卜字扛•辽花讣規的曲! Z 「用
'泉禺揶齢e ・
.斤;i.*n :內型F 宀汕 議,何吋贬僅第嶷枚構向仕穆*
矩闿单式朴桂番能够服收轴冋位
寻.IE 為梵弍补恃辭號S6曙收轴向何 禅
也优歳收啮啣f ;戸扒僅够川IHC 世 拯淮的1能笫
移补偿器,或设一组角向型补偿器。

1.2.1轴向型补偿器的应用
瓦线蚁泮段的热位移町以用轴向理补偿器皋补偿■如图&.*_城设国祖靠近欝段一端的固毬支架附近,芹 用第•、菽二导向支吧保证其正常伸钢.殆一导向支朵距补偿菇端部的最大距离齿以倍的腎子直径•第一、第 —亍导向支架之间
的廉大距离不应超过M 倍的營子世径*芬余支架迂间的距离町按式G-?计穩:
第一导向支架 第二导向支舉 中阖聲向支栗
,
图白绝同型补偿器的应用
®3
-4D
€4D . E |4D 1 L WK
------------- G T)
式中 —— 导向支架之间的対兀河距・nh
E ——管道材料的禅性權凰,Kgf/cm^t J —— 餘道的惯性矩t cmS
P ——设计压力Kgf/cm^ A -
波红許有效面积Yinb
K 一 波纹管轴向刚底* Kgf/tnnh AL ——畔道的热帅悅就.mm.
1.2.2横向型及角向型补偿器的应用
主囲星支聚
二、績向51及浦向毙补儀歸旳应用
楷向型、㈱向世补偿器 般设蜀拒LM 哩弯管上•或 设置在人为构适的”TT"型弯普上“为了不妨碍權向位移 或转角,在
Ht 近补偿器的移动■要设置平面异向£衆■即让
It 道在位移平血内自由活动■而在其他方向仍加以阻制和
导向*如图7和圏肌
Lm® = 0.0157 x
如厅导向左箓
主囿宦支架
1.2.4 波纹管补偿器支架受力基本原则
轴向波纹管补偿器受力支架分为主固定支架、次固定支架、导向支架。

固定支架推力计算:
主固定支架水平推力由三种力的合力组成:
(1 )由于工作压力引起的内压推力F= P*A :
其中P为工作压力,A为波纹管有效截面积。

内压推力由波纹管有效截面积及工作压力所决定,内压推力与工作压力、有效截面积成正比,一般来说,波纹管补偿器的内压推力都较大。

(2)波纹管刚度产生的弹性力PA = K*f*L
其中为K 波纹管刚度,L 为管道实际伸长量, f 为系数,预拉伸时为0.5,否则为1。

(3)固定支架间滑动摩擦反力q^l
其中q为管道重量,卩为摩擦系数,I为管道自由端至固定端的距离。

主固定支架水平推力=内压推力+摩擦反力+弹性力
如果不同心还将计入因偏心造成对固定支架的弯距和侧向推力。

主固定支架水平推力巨大,大管径可达上百吨,土建布置困难,需进行全面结构核算,属于重载支架。

次固定支架,受力与主固定支架相同,但内压推力平衡抵销,总推力较小,与主固定支架不是一个数量级,属于中间减载支架。

计算固定点推力时,应分别计算固定点每侧的受力,然后再合成。

固定点两侧的方向相同时,采用两个力的矢量和作为固定点推力。

两个力方向相反时,用绝对值大的力减去绝对值小的力的0.7 倍,作为固定点的推力。

相关文档
最新文档