中考数学知识点总结4

合集下载

深圳中考数学知识点归纳

深圳中考数学知识点归纳

深圳中考数学知识点归纳
一、代数与函数
1.整式与分式的加减乘除运算
2.一元一次方程与一元一次方程组的解法
3.二元一次方程组的解法
4.二次根式的化简与运算
5.平方根与立方根的运算
6.简单的二次方程的解法
7.二次函数的图像与性质
8.一次函数与一次函数的图像与性质
9.函数的概念与性质
10.等差数列与等比数列的概念与性质
11.数列的通项公式与前n项和公式
12.正比例函数与反比例函数的概念与性质
二、几何与图形
1.平面图形的性质与判定
2.直线与角的性质与判定
3.三角形的性质与判定
4.四边形的性质与判定
5.折线与多边形的性质与判定
6.圆的性质与判定
7.圆的面积与周长的计算
8.三角形的面积与周长的计算
9.直角三角形的性质与判定
10.三角形内角与外角的关系
11.空间图形的性质与判定
三、数据与统计
1.数的性质与运算
2.有理数与无理数的概念与性质
3.整数的性质与运算
4.分数的概念与性质
5.百分数与比例的计算
6.数据的收集与整理
7.数据的统计分析与图示
四、概率与统计
1.概率的概念与性质
2.事件的概念与性质
3.概率的计算与应用
4.排列与组合的概念与计算
5.统计与抽样的概念与应用
以上是深圳中考数学的主要知识点归纳,考生在备考过程中可以结合教材内容进行系统学习和复习。

同时,还应注重理论与实践相结合,多做相关的习题和真题,以提升解题能力和应试能力。

祝愿考生能够在深圳中考数学科目取得好成绩!。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、数与代数。

(一)有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如:3是正整数, - 5是负整数,0.25(可化为(1)/(4))是有限小数属于分数,0.3̇(可化为(1)/(3))是无限循环小数属于分数。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

- 例如:3 + 5=8;-3+(-5)= - 8;3+(-5)= - 2;5+(-5)=0。

- 减法:减去一个数,等于加上这个数的相反数。

即a - b=a+(-b)。

- 例如:5 - 3 = 5+(-3)=2;3 - 5=3+(-5)= - 2。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。

- 例如:3×5 = 15;-3×(-5)=15;3×(-5)= - 15;0×5 = 0;(-2)×(-3)×(-4)= - 24(3个负因数,积为负)。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

即a÷b=a×(1)/(b)(b≠0)。

两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 例如:15÷3 = 5;-15÷(-3)=5;15÷(-3)= - 5;0÷5 = 0。

- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

- 例如:2^3 = 2×2×2 = 8;(-2)^3=-2× - 2× - 2=-8。

中考数学复习知识点总结与解题方法专题讲解4--- 角平分线模型在三角形中的应用

中考数学复习知识点总结与解题方法专题讲解4--- 角平分线模型在三角形中的应用

中考数学复习知识点总结与解题方法专题讲解专题04 角平分线模型在三角形中的应用【专题说明】在初中几何证明中,常会遇到与角平分线有关的问题。

不少同学遇到这类问题时,不清楚应该怎样去作辅助线。

实际上这类问题是有章可循的,其策略是:明确辅助线作用,记清相应模型辅助线作法,理解作辅助线以后的目的。

能做到这三点,就能在解题时得心应手。

【知识总结】【模型】一、角平分线垂两边角平分线+外垂直当已知条件中出现OP为OAB⊥于点M时,辅助∠的角平分线、PM OA线的作法大都为过点P作PN OB∆等,∆≌ONP⊥即可.即有PM PN=、OMP利用相关结论解决问题.【模型】二、角平分线垂中间角平分线+内垂直当已知条件中出现OP为AOB⊥于点P时,辅助线∠的角平分线,PM OP的作法大都为延长MP交OB于点N即可.即有OMN∆是等腰三角形、OP是三线等,利用相关结论解决问题.【模型】三、角平分线构造轴对称角平分线+截线段等当已知条件中出现OP为AOB∠的角平分线、PM不具备特殊位置时,辅助线的作法大都为在OB上截取ON OM=,连结PN即可.即有OMP∆≌∆,利用相关结论解决问题.ONP【模型】四、角平分线加平行线等腰现角平分线+平行线当已知条件中出现OP为AOB∠的角平分线,点P角平分线上任一点时,辅助线的作法大都为过点P作PM//OB或PM//OA即可.即有OMP∆是等腰三角形,利用相关结论解决问题.1、如图, ABN CBN⊥于点D,∠=∠, P为BN上的一点,并且PD BC2BAP BCP∠+∠=︒.AB BC BD+=,求证:180【思路点拔】已知条件中出现BP为ABC⊥于点D,∠的角平分线,PD BC属于角平分线基本模型一.辅助线的作法可尝试过点P 作PE AB ⊥,即有PE PD =, BPE ∆≌BPD ∆等,利用相关结论解决问题.证明 过点P 作PE AB ⊥于点E .,,PE AB PD BC ⊥⊥且ABP CBP ∠=∠,PE PD ∴=.在Rt PBE ∆和Rt PBC ∆中, BP BP =,PE PD =Rt PBE ∴∆≌Rt PBC ∆,BE BD ∴=.2,,,AB BC BD BC CD BD AB BE AE +==+=-AE CD ∴=.,,PE AB PD BC ⊥⊥90PEB PDB ∴∠=∠=︒.在PAE ∆和Rt PCD ∆中, PE PD =PEB PDC ∠=∠AE DC =∴Rt PAE ∆≌Rt PCD ∆,PCB EAP ∴∠=∠.180BAP EAP ∠+∠=︒,180BAP BCP ∴∠+∠=︒.2、如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.【思路点拨】已知条件中出现CD 为ACB ∠的平分线,AD CD ⊥于点D ,属于角平分线基本模型二.辅助线的作法可尝试延长AD 交BC 于点F ,即有CAF ∆是等腰三角形、CD 是三线,利用相关结论解决问题.证明 延长AD 交BC 于点F . CD 平分ACF ∠, ACD FCD ∴∠=∠.又,,AD CD CD CD ⊥=∆,AD FD∴∆≌FDCADC∴=.又DE∥BC,EA EB∴=.3、已知:如图7,2,,⊥.=∠=∠=,求证:DC ACAB AC BAD CAD DA DB【思路点拨】已知条件中出现AD为BAC∠的角平分线,DC不具备特殊位置,属于角平分线基本模型三.辅助线的作法可尝试在AB上截取AE AC=,连结∆DE.即有ACD≌AED∆,利用相关结论解决问题.证明在AB上截取AE AC=,连结DE.=,且AE AC= , EA EB2AB AC∴=.又,=∴⊥.DA DB ED AB又,,,∠=∠==BAD CAD AE AC AD ADACD ∴∆≌AED ∆,AED ACD ∴∠=∠,即有DC AC ⊥.4、如图8,AB //CD ,AE 、DE 分别平分BAD ∠和ADC ∠.探究:在线段AD 上是否存在点M ,使得2AD EM =.【思路点拨】已知条件中出现AE 、DE 分别平分BAD ∠和ADC ∠,点E 为角平分线上任一点时,猜侧属于角平分线基本模型四.辅助线的作法可尝试过点E 作EM //AB ,或EM //CD .即有MDE ∆(MAE ∆)是等腰三角形,利用相关结论解决问题.解 过点E 作EM //AB . EM ∥AB ,MEA BAE ∴∠=∠.又AE 平分BAD ∠,MAE BAE ∴∠=∠即MEA MAE ∠=∠,AM EM ∴=.又AB ∥CD ,EM ∴∥CD ,同理可得DM EM =.又,2AM DM AD AD EM +=∴=.∴线段AD 上存在点M ,使得2AD EM =.以上四个例题并不复杂,但对研究含有角平分线的几何证明题具有指导意义.在教学过程中,要利用基本模型将复杂的几何证明简单化,要真正看透问题的本质,并将课本知识内化为自己的知识,从而提高自己探究问题的能力和数学绘合素养.。

中考数学重要知识点归纳

中考数学重要知识点归纳

中考数学重要知识点归纳
一、数与式
1.整数与分数的运算
2.整式与分式的运算
3.代数式的加减乘除运算
4.矩形的面积与周长计算
二、代数式与方程
1.一元一次方程求解
2.一元二次方程求解
3.线性方程组求解
4.不等式的解集表示
三、几何
1.平面直角坐标系
2.直线与线段的性质
3.圆的性质与计算
4.三角形的性质与计算
5.平行线与角的性质
6.平面图形的对称性
四、函数
1.线性函数与线性方程的关系
2.幂函数与指数函数的计算与图像
3.函数的平移、翻折与对称
4.函数的最值与极值
五、统计与概率
1.统计数据的收集与整理
2.平均数、中位数、众数的计算
3.概率的计算与事件的排列组合
4.抽样调查的设计与分析
六、三角函数
1.直角三角形中的三角函数计算
2.任意角的三角函数计算
3.三角恒等式的证明与应用
4.根据图像判断三角函数与角度的关系
七、利益问题
1.简单利息与复利的计算
2.等额本息与等本等息的还款计算
3.百分数与比例的计算
以上是中考数学的重要知识点的归纳,考生可以根据这些知识点进行
系统地学习和总结,以提高数学考试成绩。

当然,除了掌握基础知识,考
生还需注重练习和思维能力的培养,通过多做题目、深入理解和独立思考,才能真正掌握数学知识,提升解题能力。

深圳中考数学考点知识点总结

深圳中考数学考点知识点总结

2016 深圳中考数学考点、知识点总结一、初中数学常考知识点Ⅰ. 代数部分:(一)数与式:1、实数:(1)实数的有关概念;常考点:倒数、相反数、绝对值(选择第 1 题)(2)科学记数法表示一个数(选择题前第 5 题)(3)实数的运算法则:混合运算(计算题)(4)实数非负性应用:代数式求值(选择、填空)2、代数式:代数式化简求值(解答题)3、整式:(1)整式的概念和简单运算、化简求值(解答题)(2)利用提公因式法、公式法进行因式分解(选择填空必考题)4、分式:化简求值、计算(解答题)、分式取值范围(一般为填空题)(易错点:分母不为0)5、二次根式:求取值范围、化简运算(填空、解答题)(二)方程与不等式:1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)2、解不等式、解集的数轴表示、解不等式组解集(常考解答题)3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检验)(必考解答题)4、一元二次方程根的判别式(三)函数及其图像1、平面直角坐标系与函数(1)函数自变量取值范围,并会求函数值;(2)坐标系内点的特征;(3)能结合图像对简单实际问题中的函数关系进行分析(选择8 题)2、一次函数(解答题)(1)理解正比例函数、一次函数的意义、会画图像(2)理解一次函数的性质(3)会求解析式、与坐标轴交点、求与其他函数交点(4)解决实际问题3、反比例函数(解答题)(1)反比例函数的图像、意义、性质(两支,中心对称性、分类讨论)(2)求解析式,与其他函数的交点、解决有关问题(如取值范围、面积问题)4、二次函数(必考解答题)(1)图像、性质(开口、对称性、顶点坐标、对称轴、与坐标轴交点等)(2)解析式的求解、与一元二次方程综合(根与交点、判别式)(3)解决实际问题(4)与其他函数综合应用、求交点(5)与特殊几何图形综合、动点问题(解答题)Ⅱ. 空间与图形一)图形的认识1、立体图形、视图和展开图(选择题)(1)几何体的三视图,几何体原型相互推倒(2)几何体的展开图,立体模型相互推倒2、线段、射线、直线(解答题)(1)垂直平分线、线段中点性质及应用(2)结合图形判断、证明线段之间的等量、和差、大小关系(3)线段长度的求解( 4 )两点间线段最短(解决路径最短问题)3、角与角分线(解答题)(1)角与角之间的数量关系(2)角分线的性质与判定(辅助线添加)4、相交线与平行线(1)余角、补角(2)垂直平分线性质应用(3)平分线性质与判定5、三角形(1)三角形内角和、外角、三边关系(选择题)(2)三角形角分线、高线、中线、中位线性质应用(辅助线)(3)三角形全等性质、判定、融入四边形证明(必考解答题)4)三角形运动、折叠、旋转、平移(全等变换)、拼接(探究问题)6、等腰三角形与直角三角形(1)等腰三角形的性质与判定、直角三角形的性质、勾股定理及逆定理(2)等腰三角形、直角三角形与四边形或圆的综合(3)锐角三角函数、特殊角三角函数、解直角三角形(解答题)(4)等腰、直角、等腰直角三角形与函数综合形成的代几综合题(压轴题必考)7、多边形:内角和公式、外角和定理(选择题)8、四边形(解答题)(1)平行四边形的性质、判定、结合相似、全等证明(2)特殊的平行四边形:性质、判定、以及与轴对称、旋转、平移和函数等结合应用(动点问题、面积问题及相关函数解析式问题)(3)梯形:一般及等腰、直角梯形的性质、与平行四边形知识结合,计算、加辅助线8、圆(必考解答题)(1)圆的有关概念、性质(2)圆周角、圆心角之间的相互联系(3)掌握并会利用垂径定理、弧长公式、扇形面积公式,圆锥侧面面积、全面积公式(4)圆中的位置关系:要会判断:点与圆、直线与圆、圆与圆(5)重点:圆的证明计算题(圆的相关性质与几何图形综合)(二)图形与变换1、轴对称:会判断轴对称图形、能用轴对称的知识解决简单问题2、平移:会运用平移的性质、会画出平移后的图形、能用平移的知识解决简单问题3、旋转:理解旋转的性质(全等变换),会应用旋转的性质解决问题,会判断中心对称图形4、相似:会用比例的基本性质、三角形相似的性质证明角相等、相似比求线段长度(解答题)Ⅲ. 统计与概率(一)相关概念的理解与应用:平均数、中位数、众数、方差等(选择题)(二)能利用各种统计图解决实际问题(必考,解答题)(三)会用列举法(包括图表、树状图法)计算简单事件发生的概率(解答题,填空题)二、初中数学各部分知识框架第一部分《数与式》定义:有理数和无理数统称实数.分类有理数:整数与分数 分类 无理数:常见类型( 开方开不尽的数、与 有关的数、无限不循环小数)实数 实数运算 法则:加、减、乘、除、乘方、开方实数运算 运算定律:交换律、结合律、分配律 数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:2 有效数字、平方根与算术平方根、立方根、非负式子(a 2,a , a) 单项式:系数与次数 分类多项式:次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项a a m 1 m n m n m n m n m n mn m m m a m a 0 p 1 a a a ;a a a ;(a) a ,(ab) ab;( ) m ;a 1;ab b m a p 乘法运算: 单项式 单项式;单项式 多项式;多项式 多项式单项式 单项式;多项式 单项式 混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先 乘法公式平方差公式:(a b)(a 2 b) 2a 2 b 2 2完全平方公式:(a b)2 a 2 2ab b 2 分式的定义:分母中含可变字母 分式 分式有意义的条件:分母不为零 分式值为零的条件:分子为零,分母不为零 a a m ; a a m (通分与约分的根据)b b m b b m 通分、约分,加、减、乘、除 分式的运算 先化简再求值(整式与分式的通分、符号变化) 化简求值化简求值 整体代换求值定义:式子 a(a ≥0)叫二次根式.二次根式的意义即被开方数大于等于0.a 2 a(a 0)a(a 0) 最简二次根式(分解质因数法化简) 二次根式 二次根式的相关概念 同类二次根式及合并同类二次根式 分母有理化(“单项式与多项式”型) 加减法:先化最简,再合并同类二次根式 二次根式的运算 a a乘除法:a b ab; a a ;(结果化简)定义:(与整式乘法过程相反,分解要彻底) 提取公因式法:(注意系数与相同字母,要提彻底) 分解因式 公式法 平方差公式:a 2 2b 2 (a b 2)(a b) 2方法 完全平方公式:a 2 2ab b 2 ( a b)2十字相乘法:x 2 (a b) x ab (x a)(x b) 分组分解法:(对称分组与不对称分组)幂的运算:整式 数与式 分式 分式的性质:2 a; 二次根式的性质方程第二部分《方程与不等式》定义与解:元一次方程解法步骤:去分母、去括号、移项、合并同类项、系数化为1.应用:确定类型、找出关键量、数量关系定义与解:解法:代入消元法、加减消元法元一次方程(组)解简法单的:代三元入一消元次法方程、加组减:消元法简单的二元二次方程组:元二次方程定义与判别式(△=b2-4ac)解法:直接开平方法、配方法、求根公式法、因式分解法.定义与根(增根):解法:去分母化为整式方程,解整式方程,验根.1.行程问题:2.工程(效)问题:3.增长率问题:(增长率与负增长率)类型4. 数字问题5.图形问题6.销售问题7.储蓄问题8.分配与方案问题:1.线段图示法:常用方法2.列表法:3.直观模型法:分式方程方程与不等式方程的应用不等式(组)数位变化)周长与面积(等积变换))利润与利率)利息、本息和、利息税)元一次不等式一般不等式解法条件不等式解法解法:(借助数轴)1.不等式与不等式2.不等式与方程应用3.不等式与函数4.最佳方案问题5. 最后一个分配问题元一次不等式组第三部分《函数与图象》① 各象限内点的特点:x 轴:纵坐标y=0;② 坐标轴上点的特点 x 轴:纵坐标y=0;y 轴:横坐标x=0.③ 平行于x 轴,y 轴的线段长度的求法(大坐标减小坐标) ④ 不共线的几点围成的多边形的面积求法(割补法) 关于x 轴对称(x 相同,y 相反)⑤对称点的坐标 关于y 轴对称(x 相反,y 相同) 关于原点O 对称(x ,y 都相反)最小值 =4ac b ;a <0时,x=- b ,y 最大值 =2a 4a 2a 示意图:画示意图五要素(开口方向、顶点、对称轴、与 x 、y 交点坐标) a 与c :开口方向确定 a 的符号,抛物线与 y 轴交点纵坐标确定 c 的值; b 的符号:b 的符号由a 与对称轴位置有关:左同右异. 符号判断 Δ=b 2 4ac : Δ>0与x 轴有两个交点; Δ=0与x 轴有两个交点; Δ<0与x 轴无交点. a b c :当 x=1时,y=a+b+c 的值. a b c :当x=-1时,y=a-b+c的值.①求函数表达式: 函数应用 ②求交点坐标:③求围成的图形的面积(巧设坐标):④比较函数的大小.第四部分《图形与几何》函数 函数表达式 正比例函数:y=kx (k ≠0) 增减性 一次函数 平移性 垂直性 求交点 正负性 反比例函数 性质 一点求解析式)二一、、四三象象限限角角平平分分线线::y=y -=x x 两点求解析式) 一次函数:y=kx+b (k ≠0) y=kx 与 y=kx+b 增减性一样, k >0时, x 增大 y 增大; k < 0,x 增大 y 减小. y=kx+b 可由y=kx 上下平移而来;若 y=k 1x+b 1与y=k 2x+b 2平行,则k 1 k 2,b 1≠b 2 . 若 y=k 1x+b 1与 y=k 2x+b 2垂直,则k 1 k 2 1. (联立函数表达式解方程组) 观察图像y >0与y <0时,x 的取值范围(图像在x 轴上方或下方时, x 的取值范围) 表达式:y k (k ≠0)(一点求解析式) x ①区域性:k >0时,图像在一、 k >0在每个象限内, ②增减性 k >0在每个象限内, k <0在每个象限内, ③恒值性:(图形面积与k 值有关) ④对称性:既是轴对称图形,又是中心对称图形 .求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)三象限; k <0时,图像在二、四象限. y 随x 的增大而减小; y 随x 的增大而减小. 直角坐标系 ①一般式:y=ax 2 bx c, 其中(a 0),表达式 ②顶点式:y=a (x k )2 h,其中(a 0(), k,h ) 为抛物线顶点坐标; ③交点式:y=a (x x 1)(x x 2 ),其中(a 0),x 1、 x 2是函数图象与x 轴交点的横坐标; ①开口方向与大小:a >0向上,a <0向下;a 越大,开口越小;a 越小,开口越小. ②对称性:对称轴直线 x=- b2a ③增减性 a >0,在对称轴左侧,x 增大y 减小;在对称轴右侧,性质 a <0,在对称轴左侧, x 增大y 增大;在对称轴右侧, 2 ④顶点坐标:( - b ,4ac b )2a 4a⑤最值:当 a >0时,x=- b ,y二次函数 x 增大y 增大; x 增大y减小; 4ac b 2 4a2 直线:两点确定一条直线线 射线: 线段:两点之间线段最短,(点到直线的距离,平行线间的距离) 角的分类 : 锐角、直角、钝角、平角、周角 .角 角的度量与比较:10 60”, 1' 60”; 余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等, 角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角相交线对顶角:对顶角相等 . 相交线 垂线:定义,垂直的判定,垂线段最短 .定义:在同一平面内,不相交的两条直线叫平行线平行 线 性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行三角函数 特殊三角函数值 sin45 0 2 ,cos450 2 , tan450 1;应用:要构造 Rt △,才能使用三角函数 .220 3 0 1 0 sin6 00 ,cos600 , tan300 3.22 2 2 3分类 按边分类:不等边三角形、等腰三角形、等边三角形按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边; 边1面积与周长:C=a+b=c ,S=1 底 高.2 三角形的内角和等于180度,外角和等于360度;角 三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角.中线:一条中线平分三角形的面积 性质:角平分线上的点到角两边的距离相等; 判定:到角两边的距离相等的点在角的平分线.上 内心:三角形三条角平分线的交点,到三边距离相.等 线段 高:高的作法及高的位置(可以在三角形的内部、边上、外部) 中位线:三角形的中位线平行于第三边且等于第三边的一.半性质:线段垂直平分线上的点到线段两端点的距离相等; 中垂线 判定:到线段两端点的距离相等的点在线段的垂直平分线.上 三角形三边垂直平分线的交点,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图.形 性质等边三角形的三边上均有三线合一,三边相等,三角形等都6为0度. 等腰三角形有两边相等的三角形是等腰三角形;等腰三角形 判定 有两角相等的三角形是等腰三角形; 判定 有一个角为60度的等腰三角形是等边三角形; 有两个角是60度的三角形是等边三角形. 一个角是直角或两个锐角互余;性质 直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,300的锐角所对的直角边等于斜边的一半; 勾股定理:两直角边的平方和等于斜边的平方. 证一个角是直角或两个角互余; 判定 有一边上的中线等于这边的一半的三角形是直角三角形; 勾股定理的逆定理:若a 2 +b 2 =c 2,则∠C 900.性质 全等三角形的对应边相等,对应角相等,周长、面积也相等; 全等三角形 性质 全等三角形对应线段(角平分线、中线、高、中位线等)相.等 判定:ASA ,SAS ,AAS ,SSS ,HL.三角形 一般三角形 角平分线外心 直角三角形多边形:多边形的内角和为(n-2 )1800,外角和为3600.定义:一组对边平行而另一组对边不平行的四边形叫做梯形. 直角梯形性质:两腰相等、对角线相等,同一底上的两角相等梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平行且相等性质:平行四边形的两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形. 两组对角分别相平行四边形等对角线互相平分共性:具有平行四边形的所有性质. 性质个性:对角线相等,四个角都是直角.四边形矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;三个角是直角的四边形是矩形. 共性:具有平行四边形的所有性质.性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形. 性质:具有平行四边形、矩形、菱形的所有性质. 正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:S= 1(上底下底)高=中位线高2 平行四边形:S= 底高面积求法矩形:S 长宽菱形:S=底高=对角线乘积的一半正方形:S 边长边长=对角线乘积的一半点在圆外:d >r点与圆的三种位置关系点在圆上:d =r点在圆内:d <r弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性垂径定理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧 五组量的关系:在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、 五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分相等别.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角9是00; 900的圆周角所对的弦是直径,所对的弧是半.圆相交线定理:圆中两弦AB 、CD 相交于P 点,则PA PA PCPD. 圆中两条平行弦所夹的弧相.等相离:d >r直线和圆的三种位置关系相切:d =r (距离法)圆相交:d <r 圆的切线性质:圆的切线垂直于过切点的直径(或半径) 直线和圆的位置关系圆的切线判定:经过半径的外端且垂直于这条半径的直线是圆的.切线 弦切角:弦切角等于它所夹的弧对的圆周角 切线长定理:如图,PA=PB ,PO 平分∠APB 切割线定理:如图,PA 2 PCPD.外心与内心:相离:外离(d >R+r ),内含(d <R-r )圆和圆的位置关系相切:外切(d=R+)r ,内切(d=R-r ) 相交:R-r <d <R+r ) 弧长公式:l 弧长 n 2 r n r弧长360 180 1圆锥的侧面积:S 侧 1 2 r l rl (r 为底面圆的半径,l 为母线) 圆锥的全面积:S 全r 2 rl 第五部分《图形的变化》圆的中心对称性圆的有关计算扇形面积公式:S 3n 60r 12l 弧长 r① 轴对称指两个图形之间的关系,它们全等② 对应点的连线段被对称轴垂直平分轴对称(折叠)轴对称③对应线段所在的直线相交于对称轴上一点(或平行)轴对称 ④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形 ①指一个图形② 轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等平 移 ②平移前后对应点的连线段相等且平行(或共线)平 移 ③平移前后的对应角相等,对应线段相等且平行(或 共线) ④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等旋 转 ②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角 旋 转 ③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角 黄金分割:线段 AB 被点C 分成AC 、 BC 两线段( AC >BC ),满足AC 2=BC AB ,则点C 为AB 的一个黄金分割点相似多边形 性质:相似多边形的对应边成比例、对应角相等相似多边形 判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质 ②对应线段(中线、高、角平分线、周长)的比等于相似比③ 面积的比等于相似比的平方①有两个角相等的两个三角形相似②两边对应成比例且夹角相等的两个三角形相似③ 三边对应成比例的两个三角形相似④ 有一条直角边与 斜边对应成比例的两个直角三角形相似射影定理:在 Rt △ABC 中,∠C 900,CD ⊥AB ,则AC 2=AD AB , BC 2 =BD AB ,CD 2 =AD BD (如图)① 位似图形是一种特殊的相似图形,具有相似图形的一切性质位似图形 ②位似图形对应点所确定的直线过位似中心③通过位似可以将图形放大或缩小第六部分《统计与概率》视图与投影 图形的变化 ①大小、比例要适中 视图的画法②实线、虚线要画清 平行投影:平行光线下的投影,物体平行影子平行或共线中心投影:点光源射出的光线下的投影,影子不平 行 投影视点、视线、盲区 投影的计算:画好图形,相似三角形性质的应用 基本性质:a b 比例的性质 合比性质:ab等比性质:ab cad bcd c a b c d db cm... k dnda b d b m n k ,(条件b d ... n ≠0)相似形 相似图形 相似三角形 判定统计与概率两查普查:总体与个体(研究对象中心词)抽样调查:样本与容量(无单位的数量)折线图(发展趋势与波动性横纵轴坐标单位长度要统一)三图条形图(纵坐标起点为零高度之比等于频数或频率之比)扇形图(知道各量的百分比可用加权平均数求平均值)算术平均数平均数参照平均数三数众数(可能不止一个)中位数(排序、定位)1方差:s2(x x1)2(x x2)2(xx n )(一组数据整体被扩大n倍,平均数扩大n倍,方差扩大n2倍);三差(一组数据整体被增加m,平均数增加m,方差不变)标准差:方差的算术平方根s 极差:最大数与最小数之差(方差与标准差均衡量数据的波动性,方差越小波动越小)确定事件必然事件:(概率为1)事件不可能事件:(概率为0)不确定事件:(概率在0与1之间)频率:(试验值,多次试验后频率会接近理论概率)两率比例法(数量之比、面积之比等)概率:求法列表法(返回与不返回的两步实验求概率)树状图(返回与不返回的两步或两步以上的试验求概率)。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

数学中考的知识点

数学中考的知识点

数学中考的知识点数学中考的知识点集合15篇在我们平凡的学生生涯里,大家都背过各种知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。

相信很多人都在为知识点发愁,以下是店铺为大家收集的数学中考的知识点,希望能够帮助到大家。

数学中考的知识点11.有理数的加法运算:同号相加一边倒;异号相加大减小,符号跟着大的跑;绝对值相等零正好。

【注】大减小是指绝对值的大小。

2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

5.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。

(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n6.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

7.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

8.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

9.代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)10.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

11.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

数学中考的知识点21、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

湖南中考数学考点知识点(四)

湖南中考数学考点知识点(四)

湖南中考数学考点知识点(四)1.函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式都有意义.①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.2.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..3.动点问题的函数图象函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.4.分段函数(1)一次函数与常函数组合的分段函数.分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)(2)由文字图象信息确定分段函数.根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量.②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.【规律方法】用图象描述分段函数的实际问题需要注意的四点1.自变量变化而函数值不变化的图象用水平线段表示.2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.3.各个分段中,准确确定函数关系.4.确定函数图象的最低点和最高点.5.一次函数的图象(1)一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b.注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y =b分别是与y轴,x轴平行的直线,就不是一次函数的图象.(2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.注意:①如果两条直线平行,则其比例系数相等;反之亦然;②将直线平移,其规律是:上加下减,左加右减;③两条直线相交,其交点都适合这两条直线.6.一次函数的性质一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.7.一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.8.两条直线相交或平行问题直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条线段重合.(1)两条直线的交点问题两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.(2)两条直线的平行问题若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.9.一次函数综合题(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.10.反比例函数的图象用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.11.反比例函数的性质反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.12.反比例函数图象上点的坐标特征反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.14.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.15.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.16.二次函数图象上点的坐标特征二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y轴交点的纵坐标是函数解析中的c值.③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.17.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.18.含30度角的直角三角形(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.19.菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度)20.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.21.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)。

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。

镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。

初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

初中数学中考必考知识点之难点归纳

初中数学中考必考知识点之难点归纳

初中数学中考必考知识点之难点归纳一.整数运算和代数1.整数运算:包括整数的加减乘除运算,要求掌握运算法则,特别是二元一次方程的解法。

2.代数式与等式:包括代数式化简和等式解法,要求学生能够进行因式分解、提公因式、合并同类项等操作。

二.分数与比例1.分数的加减乘除:要求学生能够进行分数的加减乘除运算,尤其需要掌握分数的约分和通分。

2.比例与比例关系:要求学生能够理解比例与比例关系,能够应用比例关系解决实际问题。

三.平面图形与空间几何1.平面图形的认识和性质:包括对各种平面图形的名称、性质和特征的认识,要求学生能够理解和应用平行四边形、正方形、等腰三角形、等边三角形等形状的性质。

2.空间几何的认识和性质:包括对立体的认识,要求学生能够理解和应用箱体、球体、圆柱体等几何体的计算和性质。

四.数据与统计1.数据的收集和整理:包括对数据的收集、整理和处理,要求学生掌握数据的分类、整理和统计的方法。

2.统计图表的应用:要求学生能够读懂和应用各种统计图表,包括直方图、折线图、饼图等。

五.方程与不等式1.一元一次方程:要求学生能够解一元一次方程的应用题,特别是应用题中的词语和符号的转化。

2.一元一次不等式:要求学生能够解一元一次不等式的应用题,特别是应用题中的词语和符号的转化。

六.函数1.函数的概念与性质:要求学生能够理解函数的概念和性质,包括定义域、值域、图像、导数等。

2.函数的应用:要求学生能够应用函数解决实际问题,包括函数的最大值、最小值、零点等求解方法。

总结起来,初中数学中考必考的难点主要集中在整数运算和代数、分数与比例、平面图形与空间几何、数据与统计、方程与不等式、函数等方面。

学生在备考中应重点掌握和理解这些知识点,并能够熟练运用解决各种实际问题。

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

三、直角三角形和勾股定理有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

中考数学必考知识点归纳整理

中考数学必考知识点归纳整理

中考数学必考知识点归纳整理一、整数与有理数1.整数的概念及性质:整数的定义、相反数、绝对值、大小比较等。

2.有理数的概念及性质:有理数的定义、分数与小数的关系等。

3.整数与有理数的四则运算:加法、减法、乘法、除法的运算法则和性质。

4.整数与有理数的混合运算:根据题目要求进行整数与有理数的混合运算。

二、代数式与方程式1.代数式的概念及性质:代数式的定义、项、系数、次数等。

2.代数式的运算:加法、减法、乘法、除法、乘方等运算法则。

3.一元一次方程及其应用:方程的定义、基本性质、解方程的方法及应用。

4.一元一次不等式及其应用:不等式的定义、基本性质、解不等式的方法及应用。

三、平面图形与尺规作图1.平面图形的基本概念与性质:点、线、面的定义及性质。

2.四边形的性质:平行四边形、矩形、正方形、菱形、长方形的性质与判定等。

3.三角形的性质:等边三角形、等腰三角形、直角三角形的性质与判定等。

4.尺规作图:已知条件作图、已知作图求解等。

四、数据与统计1.数据的收集与整理:问卷调查、实验等方式收集数据,并对数据进行整理与分类。

2.数据的表示与分析:数据的图表表示,如条形图、折线图等,以及对数据的分析与解读。

3.统计相关性与预测:根据数据的相关性进行预测与判断。

五、几何变换1.平移、旋转、翻转的概念与性质:几何图形进行平移、旋转、翻转时的性质与规律。

2.平移、旋转、翻转的判定与作图:根据题目要求判断是否满足平移、旋转、翻转的条件,并进行作图。

六、函数与图像1.函数的概念与性质:函数的定义、自变量、因变量、函数值等。

2.函数的表示与性质:函数的图像、函数的单调性、函数的奇偶性等。

3.函数的运算:函数的加减乘除、函数的复合等运算法则。

4.函数的应用:函数的实际问题应用,如函数的最值、函数的变化规律等。

七、比例与相似1.比例的概念与性质:比例的定义、比例的性质、比例的性质与判定等。

2.比例的运算:比例的加减乘除、比例的复合等运算法则。

浙教版中考数学知识点总结

浙教版中考数学知识点总结

浙教版中考数学知识点总结浙教版中考数学知识点总结一、数的性质与关系1.自然数、整数、有理数、实数、正数、负数的含义及其性质。

2.数的绝对值的性质。

3.数的相反数与数的加、减运算法则。

4.数的乘法与数的除法运算法则。

5.大小关系的表示:大于、小于、等于、大于等于、小于等于。

6.绝对值的大小关系:绝对值大于另一个数与绝对值小于另一个数之间的关系。

二、分式与小数1.分数的定义及其性质。

2.分数的大小关系与化简。

3.分数的加法、减法、乘法和除法运算法则。

4.小数的定义及其运算。

5.小数与分数的相互转化。

三、整式与方程1.代数式、整式与多项式的定义及其性质。

2.单项式与多项式的加减运算法则。

3.一元一次方程及其解的概念与性质。

4.一元一次方程的解法与应用。

四、图形的认识1.各种多边形的定义及特征。

2.角的概念及其分类。

3.线段、直线、射线、平行线、垂直线的定义及特征。

4.相交线及其性质。

五、长方体和平行四边形的认识1.长方体的定义及其性质。

2.平行四边形的定义及其性质。

3.矩形的定义及其性质。

六、几何变换与投影1.几何变换的概念及分类。

2.平移、旋转和镜面对称的性质和规律。

3.图形的投影及其性质。

七、统计和概率1.统计数据的搜集、整理和处理。

2.频数、频率的概念与计算。

3.概率的定义及其性质。

八、函数与方程1.函数的概念及其表示法。

2.函数的关系及其图像。

3.一元一次方程组及其解的概念与性质。

4.二元一次方程组及其解的概念与性质。

以上是浙教版中考数学的主要知识点总结,相信通过对这些知识点的系统学习和掌握,同学们一定能够在中考中取得优异的成绩。

中考数学重要知识点归纳大全

中考数学重要知识点归纳大全

中考数学重要知识点归纳大全
一、数与代数
1.自然数、整数、有理数、实数的概念及性质。

2.数字计算的初步技能,包括整数的加减乘除、分数的加减乘除、百分数的运算等。

3.基本的代数运算,包括代数表达式的计算、方程的求解、分式的运算等。

4.代数式的展开与因式分解。

5.利用等式解决问题。

二、几何与图形
1.平面内角的概念,直线与平面的位置关系。

2.常见图形的性质,如正方形、长方形、三角形、梯形等。

3.常见多面体和圆柱体的性质。

4.直线与曲线的位置关系。

5.平行线与平行四边形的性质。

6.相似与全等的判断。

7.平行线与平面的位置关系。

三、函数与方程
1.函数的概念与性质。

2.函数的图像和函数关系的表示。

3.线性函数的性质与图像。

4.二次函数的性质与图像。

5.函数的运算与复合函数。

6.一元一次方程与一元一次不等式。

7.二次方程及一元二次不等式的解法。

8.一元一次方程组的解法。

四、数据与概率
1.数据的收集和整理。

2.数据的统计和描述。

3.常见统计图表的制作与分析。

4.概率的概念与性质。

5.事件的概念与计算。

6.排列与组合的计算。

7.概率的计算与应用。

五、实际问题
1.实际问题中的数学模型建立。

2.实际问题解决中的数学计算与推理。

3.实际问题中的解释和表达能力。

湘教版中考数学知识点总结归纳

湘教版中考数学知识点总结归纳

湘教版中考数学知识点总结归纳一、概括基础知识:包括数的基本概念、数的运算、代数式及其运算等,这些是数学学习的基石,也是中考常考内容。

几何知识:涵盖平面几何和立体几何的基本概念、图形的性质、图形的变换等,对学生的空间想象力和逻辑推理能力有较高要求。

函数与方程:函数是数学的核心概念之一,方程则是解决实际问题的重要工具。

中考中常涉及一次函数、二次函数以及方程的解法等知识点。

统计与概率:包括数据的收集、整理、描述以及概率的基本运算,与现实生活紧密相连,是中考的重要考点。

1. 简述中考数学的重要性中考数学是学生升学的重要参考依据。

良好的数学成绩可以为学生在高中阶段选择优质学校和专业提供有力支持。

数学作为培养逻辑思维和分析能力的关键学科,对学生未来的学术发展乃至职业发展都具有深远的影响。

数学在日常生活中的应用无处不在,从财务管理到空间感知,从问题解决到逻辑推理,都离不开数学的支持。

中考数学不仅是对学生学业水平的检验,更是对学生未来生活能力的一次考察。

中考数学的重要性体现在其对学生学业发展的推动作用、未来生活能力的考察以及其作为评价学生综合素质的重要标准上。

学生在备考过程中应充分认识到这一点,全面而深入地理解和掌握数学知识,培养自己的数学思维能力和问题解决能力。

2. 强调知识点总结归纳的必要性总结归纳知识点有助于形成完整的知识体系。

湘教版中考数学涵盖了广泛的数学知识点,这些知识点之间有着紧密的联系和逻辑关系。

通过总结归纳,学生可以清晰地掌握每个知识点的概念、性质、公式以及应用方法,进而形成完整的知识体系,从而更好地理解和掌握数学知识。

其次, 总结归纳有助于提升复习效率。

复习是中考备考的关键环节,有效的复习方法能显著提高学习效率。

通过总结归纳,学生可以明确自己的学习重点和难点,有针对性地进行复习和巩固。

这样不仅能避免在复习过程中的盲目性和无效性,还能使复习过程更加系统化、条理化。

知识点总结归纳有助于提高学生的思维能力。

深圳中考数学知识点归纳

深圳中考数学知识点归纳

深圳中考数学知识点归纳一、代数运算1.整式的加减乘除运算,包括对整式合并同类项和提取公因式。

2.分式的加减乘除运算,包括对分式的约分、通分和合并同类项。

3.一次、二次根式的加减乘除运算。

4.约分、化简含有根式的算式。

二、方程与不等式1.一元一次方程及一元一次方程组的解法。

2.一元二次方程的解法,包括用因式分解和配方法解一元二次方程。

3.不等式的解集表示法,特别是带有绝对值的不等式。

4.二元一次方程组的解法,包括代入法、减法消元法和加法消元法。

三、函数与应用1.数列的概念和等差、等比数列的通项公式、前n项和公式。

2.函数的概念和函数的性质,包括奇函数、偶函数、单调性和周期性。

3.利用函数的图象和解析式求解函数方程的问题。

4.函数图象的平移、翻折和缩放等性质。

四、图形的性质和变换1.点、线、面等几何基本概念。

2.角的概念和角平分线的性质。

3.与平行线、相交线有关的性质,包括同位角、内错角、同旁内角等。

4.等腰、等边、直角三角形的性质。

5.直角坐标系的基本概念和应用。

五、空间与立体几何1.点、线、面、多面体等基本概念。

2.空间中两点的距离和两点之间的中点坐标。

3.平行四边形、菱形、正方体、正方体等的性质和计算,特别是正方体表面积和体积的计算。

4.球体、圆锥、圆柱、圆台等的性质和计算,特别是球体表面积和体积的计算。

六、概率与统计1.随机试验的基本概念,包括试验、试验结果、样本空间和事件等。

2.理解事件的概率表示形式,包括频率和几何概率。

3.概率的运算,包括概率的加法定理和乘法定理。

4.统计数据的收集和处理,包括频数、频率、组距和组数等的计算。

以上是深圳中考数学知识点的一个全面归纳,这些知识点是在中考中经常出现的考点,掌握了这些知识点,就能够更好地应对中考数学试题。

合理安排学习时间,通过大量的练习,加深对这些知识点的理解和应用能力,可以更好地取得优异的成绩。

4、初中数学中考知识点复习之数与式知识点归纳

4、初中数学中考知识点复习之数与式知识点归纳

数与式知识点汇总若()2,0x a a=,则x是a的平方根,平方根为+x与-x两个互为相反数。

正的平方根为算术平方根。

若3,x a=(a为任何数),则x是a的立方根。

2.实数的计算:1] 实数的计算顺序:从左到右,先算特殊值(如乘方、开方、三角函数、绝对值等),再乘除,后加减;有括号从小、中、大顺序进行。

2]开方的计算:5加减:先每项化为最简二次根式(没得开方),再合并同类二次根式(根号内相同),如10---3==,3.几数:倒数、相反数,近似数,有效数字,绝对值:1]倒数:相乘为1;2]相反数:符号不同但数字相同,相加为0;3]近似数:四舍五入;4]有效数字:从非零数数起。

5]绝对值:,,aaaìïï=íï-ïîaa³pa2a=352-=22=-22=;科学记数法:()10110na a矗p,n为整数;4.比较大小:作差法:比较0,a b a ba ba b a bì-[ïïíï-ïîf f作商法:比较1,0,1a b a ba ba b a bì福郏ïïíï港ïîff f作平方法:比较22220,0,a b a ba ba b a bìï[ïïíïïÛïîf ff fab a b=a a a?()m mna a=()1m ma a-=;01a=()2222a b a ab b??;()()22a b a b a b+-=-;()m a b am bm+=+;()()a b m n am an bm bn++=+++;7.常用口诀:完全平方:()2222??尾尾尾头头头;平方差:()()22+-=-同反同反同反;完全平方的应用:()2222a ab b a b++=+()2222a b a b ab+=+-()()2222ab a b a b=+-+()()224ab a b a b?+--8.整式:加减:去括号(用分配律,注意符号),合并同类项(字母及指数都对应相同);乘除用幂公式;9.分式(与分数相同):乘除:约分(约去公因式);加减:通分(分母变为相同的最小公倍数,再分子加减)10.因式分解(结果为积的形式):先1、提公因式;再2、公式法(完全平方,平方差);后3、十字相乘11.式子是否有意义:分母不为00,0,a12.去括号:2(34)68x y x y-+=-+,2(34)68x y x y--=-+提括号:682(34)x y x y-=-,682(34)x y x y-+=--13.符号问题:同号得正,异号得负;负数中偶次方为正,奇次方为负。

学科数学中考知识点总结

学科数学中考知识点总结

学科数学中考知识点总结一、数与代数1. 自然数、整数、有理数、实数和复数的相关概念。

2. 整式的概念,整式的加减乘除以及相关性质。

3. 一元一次方程与一元一次方程组,包括解法、实际问题和应用。

4. 一元一次不等式及其解法。

5. 一元二次方程及其解法,根与系数之间的关系。

6. 实系数多项式的相关概念,多项式的运算、根、系数与项数的关系。

7. 多项式整式的除法,多项式的因式分解以及分解方法。

8. 分式及其相关概念,分式的乘除法、分式方程及其解法。

9. 分式不等式及其解法。

10. 实数的大小比较及实数的绝对值。

11. 实数的实数平方根、实数立方根及其运算。

12. 复数及其相关概念,复数的加减乘除。

13. 多项式与一元一次方程的联系。

二、平面几何与空间几何1. 几何图形的基本性质,例如,各种三角形的性质、四边形的性质等。

2. 圆及其相关概念,圆的面积、周长与圆内接正多边形的面积的计算。

3. 直角坐标系,坐标的概念,点的坐标,距离的计算。

4. 直线和曲线的方程以及它们的相关性质。

5. 多边形的面积和周长的计算。

6. 三角形的面积,三角形的高、中线、角平分线等的相关概念及应用。

7. 直角三角形的三边关系及其应用。

8. 三角形的三边角关系及其证明。

9. 三角形的外心、内心、重心和垂心的相关概念及应用。

10. 圆锥曲线的相关概念,如椭圆、双曲线等。

11. 空间图形的相关概念和性质,如球体、柱体、锥体等的表面积和体积计算。

三、函数与图像1. 函数及相关概念,函数的自变量、因变量、定义域、值域和图像。

2. 一次函数的概念及相关性质,一次函数的表示形式和性质。

3. 一次函数的图像,一次函数的斜率、截距及其应用。

4. 一次函数的应用,如利润、成本、收入等问题的建立和求解。

5. 二次函数及其图像,二次函数的导数、顶点、对称轴及相关性质。

6. 二次函数与一元二次方程的关系,二次函数的最值及相关应用。

7. 二次函数与实际问题的应用。

中考数学培优知识点总结

中考数学培优知识点总结

中考数学培优知识点总结一、整数1. 整数概念及种类2. 整数的加减乘除3. 整数的比较及大小关系4. 整数的应用题二、分数1. 分数的概念及种类2. 分数的加减乘除及化简3. 分数的大小比较4. 分数的应用题三、小数1. 小数的概念及种类2. 小数的加减乘除及化简3. 小数和分数的互换4. 小数的大小比较5. 小数的应用题四、代数1. 代数的概念及基本运算规则2. 一元一次方程及应用3. 一元一次不等式及应用4. 一元一次方程组及应用5. 二元一次方程及应用6. 一元一次方程的解法7. 代数的应用题五、平面图形1. 直线和射线的概念及性质2. 角的概念及种类3. 三角形的分类及性质4. 四边形的分类及性质5. 多边形的分类及性质6. 圆的概念及性质7. 平面图形的周长和面积六、空间图形1. 空间图形的概念及分类2. 三视图及其应用3. 空间图形的表面积及体积4. 空间图形的应用题七、函数1. 函数的概念及表示2. 函数的性质及概念3. 一次函数及其图像4. 二次函数及其图像5. 函数图像的性质6. 函数的应用题八、统计与概率1. 统计的基本概念及方法2. 统计图的表示及分析3. 概率的基本概念及计算4. 概率问题的应用题九、空间几何1. 空间图形的平面图形投影2. 空间几何体的三视图及其应用3. 空间几何体的表面积及体积4. 空间几何体的应用题十、常用逻辑1. 命题与命题的连接词2. 命题的简化与否定3. 命题的充分条件和必要条件4. 命题的等价变换5. 命题的推理法则6. 逻辑推理题的应用以上是中考数学培优的知识点总结,希望对大家备考中学数学有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学知识点总结4
㈡空间与图形
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角
线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

③将线段的两端无限延长就形成了直线。

直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形。

相关文档
最新文档