图论和函数总结梳理离散数学思维导图

合集下载

离散数学图论基础知识文稿演示

离散数学图论基础知识文稿演示

图的定义
定义8.1 一个图是一个序偶<V,E>,记为 G=<V,E>,其中: 1) V={v1,v2,v3,…,vn}是一个有限的非空集合,
vi(i=1,2,3,…,n)称为结点,简称点,V为结 点集; 2) E={e1,e2,e3,…,em}是一个有限的集合, ei(i=1,2,,…,m)称为边,E为边集,E中的 每个元素都有V中的结点对与之对应。即对任 意e∈E,都有e与<u,v>∈VV或者(u,v)∈ V&V相对应。
图论
▪ 一个图就是一个离散的拓扑结构,经常用于描 述和研究许多领域中的各种问题。
▪ 随着计算机科学的飞速发展,图论组合和算法 的研究在近代也成为计算机科学和数学中发 展最快的基础学科之一,也受到国际上的学术 界和高新技术企业方面特别重视。
图论
▪ 理论计算机科学中的算法理论经典问题(图中点对之 间最短路,货郎担问题,图重抅问题,HAMILTON 问 题,P-NP问题等),通信网络通讯(网络设计, 通讯速度 和容量, 网络可靠性和容错性等) ;
图论本身是应用数学的一部份,因此,历史上图论曾经 被好多位数学家各自独立地建立过。关于图论的文字 记载最早出现在欧拉1736年的论着中,他所考虑的原 始问题有很强的实际背景
图论
图论起源于著名的哥尼斯堡七桥 问题。
欧拉证明了这个问题没有解,并 且推广了这个问题,给出了对于 一个给定的图可以某种方式走遍 的判定法则。 这项工作使欧拉成为图论〔及拓 扑学〕的创始人。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学 的两台不同的电子计算机上,用了1200个小时,作了 100亿判断,终于完成了四色定理的证明。
不过不少数学家并不满足于计算机取得的成就,他们认 为应该有一种简捷明快的书面证明方法。

离散数学重要公式定理汇总分解

离散数学重要公式定理汇总分解

离散数学重要公式定理汇总分解离散数学是计算机科学领域中的一门基础课程,它主要研究离散结构和离散对象之间的关系。

离散数学中有许多重要的公式和定理,这些公式和定理在计算机科学和其他领域中有广泛的应用。

下面是对离散数学中一些重要的公式和定理的汇总。

1.集合:-幂集公式:一个集合的幂集是所有它子集的集合。

一个集合有n个元素,那么它的幂集有2^n个元素。

-集合的并、交、差运算规则:并集运算满足交换律、结合律和分配律;交集运算也满足交换律、结合律和分配律;差集运算不满足交换律和结合律。

2.逻辑:-代数运算规则:多个逻辑表达式的与、或、非运算满足交换律、结合律和分配律。

-归结原理:对于一个给定的只包含“合取”和“析取”的合式公式集合,如果假设集合中的每个合式公式都为真,以及从这些前提出发,不能推导出这个集合中的一个假命题,则称这个假设集合是不一致的。

3.图论:-图的欧拉路径和欧拉回路:对于一个连通的图,如果它存在欧拉路径,那么这个图中最多只有两个度数为奇数的节点;如果一个连通的图存在欧拉回路,那么所有节点的度数都是偶数。

-图的哈密顿路径和哈密顿回路:对于一个图,如果它存在哈密顿路径,那么这个图中任意两个不相邻的节点u和v之间必然存在一条边;如果一个图存在哈密顿回路,那么从任意一个节点开始,可以经过图中的所有节点且最后回到起点。

4.代数结构:-子群定理:如果G是群H的一个子集,并且G是关于群H的运算封闭的,那么G是H的一个子群。

- 同态定理:如果f是从群G到群H的一个满射同态,那么G的核ker(f)是G的一个正规子群,而H是G/ker(f)的同构像。

5.排列组合:-排列公式:从n个元素中取出m个元素进行排列,有P(n,m)=n!/(n-m)!-组合公式:从n个元素中取出m个元素进行组合,有C(n,m)=n!/(m!*(n-m)!)以上只是离散数学中一小部分重要的公式和定理,这些公式和定理在计算机科学、密码学、图形学等领域中有广泛的应用。

《离散数学图论》课件

《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径

离散数学-第9章 图

离散数学-第9章 图
2023/11/27
例9.2.2 分析
分析 由于V中有5个结点,因此要用5个小圆圈 分别表示这5个结点,点的具体摆放位置可随意 放。而对E中的6条边,圆括号括起的结点对表示 无向边,直接用直线或曲线连接两个端点,尖括 号括起的结点对表示有向边,前一个是始点,后 一个始终点,用从始点指向终点的有向直线或曲 线连接。
ai
j
1 , 0 ,
若 ( vi,vj ) 否则
E

vi,vj
E
i,j 1,2,3, ,n
2023/11/27
例9.2.4
试写出下图所示图G的邻接矩阵。
分解析 若首结先点将排图序中为的v16v个2v结3v4点v5排v6,序则, v1 然其邻后接利矩用v1阵定v义2 9.v23.2写v4出其v5邻接v6矩阵。 初按结学vv点时21 0排可1 序先01标在上0矩01结阵1 点的000,行0若与1第01列i1前行01分前别的 v5 结在否则可邻点则vvvv标接到为6543 记矩第00011。A如阵jG列若下0001的前结:第11100的点0111i10000行结排第点序111100111j有为11100列边v11000元00111v相2素11100v连30111为v4,v15则,v6,
2023/11/27
例9.2.5
试写出下图所示图G的所有结点的邻接点、所有边
的邻接边,并指出所有的孤立结点和环。
v3
v4
v5
e4 e5 v2
e6 e1
e2 v6 e7
v1 e3
2023/11/27
例9.2.5 分析
根据定义9.2.4,如果两个结点间有边相连,那 么它们互为邻接点;如果两条边有公共结点,那 么它们互为邻接边。需要注意的是,只要当一个 结点处有环时,它才是自己的邻接点;由于一条 边有两个端点,在计算邻接边时要把这两个端点 都算上,例如e2和e4都是e1的邻接边。所有边都 是自己的邻接边。

离散数学思维导图第一章

离散数学思维导图第一章

重言式
矛盾式可满足式非重言式的可满足式直接应用规则推理附加前提证明法
归谬法命题
命题变项和命题常项
简单命题(原子命题)、复合命题
联接词:否定、合取、析取、异或、蕴含、等价、与非、或非
什么是命题公式?
分类
真值表简单合取式、简单析取式
合取范式和析取范式
极小项和极大项
用途:
联接词可以等价替换
联接词全功能集
联接词的极小全功能集构造证明法真值表法
主合取范式和主析取范式
命题符号化及联接词命题公式及分类等值演算范式联接词及其全功能集推理理论第一章:命题逻辑。

离散数学——图论

离散数学——图论

2021/10/10
11
哥尼斯堡七桥问题
❖ 把四块陆地用点来表示,桥用点与点连线表 示。
2021/10/10
12
❖ 欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
2021/10/10
2
图论的发展
❖ 图论的产生和发展经历了二百多年的历史, 从1736年到19世纪中叶是图论发展的第一阶 段。
❖ 第二阶段大体是从19世纪中叶到1936年,主 要研究一些游戏问题:迷宫问题、博弈问题、 棋盘上马的行走线路问题。
2021/10/10
3
❖ 一些图论中的著名问题如四色问题(1852年)和哈密 尔顿环游世界问题(1856年)也大量出现。同时出现 了以图为工具去解决其它领域中一些问题的成果。
❖ P(G)表示连通分支的个数。连通图的连通 分支只有一个。
2021/10/10
40
练习题---图的连通性问题
❖ 1.若图G是不连通的,则补图是连通的。 ❖ 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
2021/10/10
41
❖ 2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
❖ 例子
2021/10/10
29
多重图与带权图
❖ 定义多重图:包含多重边的图。 ❖ 定义简单图:不包含多重边的图。 ❖ 定义有权图:具有有权边的图。 ❖ 定义无权图:无有权边的图。
2021/10/10
30

离散数学图论整理

离散数学图论整理

总 结第八章 图论8.1 图的基本概念8.1.1 图定义8.1―1 一个图G 是一个三重组〈V (G ),E (G ),ΦG 〉,其中V (G )是一个非空的结点(或叫顶点)集合,E (G )是边的集合,ΦG 是从边集E 到结点偶对集合上的函数。

一个图可以用一个图形表示。

定义中的结点偶对可以是有序的,也可以是无序的。

若边e 所对应的偶对〈a ,b 〉是有序的,则称e 是有向边。

有向边简称弧,a 叫弧e 的始点,b 叫弧e 的终点,统称为e 的端点。

称e 是关联于结点a 和b 的,结点a 和结点b 是邻接的。

若边e 所对应的偶对(a ,b )是无序的,则称e 是无向边。

无向边简称棱,除无始点和终点的术语外,其它术语与有向边相同 每一条边都是有向边的图称为有向图。

每一条边都是无向边的图称为无向图。

有向图和无向图也可互相转化。

例如,把无向图中每一条边都看作两条方向不同的有向边,这时无向图就成为有向图。

又如,把有向图中每条有向边都看作无向边,就得到无向图。

这个无向图习惯上叫做该有向图的底图。

在图中,不与任何结点邻接的结点称为弧立结点。

全由孤立结点构成的图称为零图。

关联于同一结点的一条边称为自回路。

在有向图中,两结点间(包括结点自身间)若同始点和同终点的边多于一条,则这几条边称为平行边。

在无向图中,两结点间(包括结点自身间)若多于一条边,则称这几条边为平行边。

两结点a 、b 间互相平行的边的条数称为边[a ,b ]的重数。

仅有一条时重数为1,无边时重数为0。

定义8.1―2 含有平行边的图称为多重图。

非多重图称为线图。

无自回路的线图称为简单图。

仅有一个结点的简单图称为平凡图。

定义 8.1―3 赋权图G 是一个三重组〈V ,E ,g 〉或四重组〈V ,E ,f ,g 〉,其中V 是结点集合, E 是边的集合,f 是定义在V 上的函数,g 是定义在E 上的函数。

8.1.2 结点的次数定义 8.1―4 在有向图中,对于任何结点v ,以v 为始点的边的条数称为结点v 的引出次数(或出度),记为deg +(v );以v 为终点的边的条数称为结点v 的引入次数(或入度),记为deg -(v );结点v 的引出次数和引入次数之和称为结点v 的次数(或度数),记作deg (v )。

离散数学知识点

离散数学知识点

离散数学知识点摘要:离散数学是计算机科学和数学的一个分支,它专注于非连续结构的研究。

本文旨在概述离散数学的核心知识点,包括集合论、逻辑、关系、函数、图论、组合数学和递归等。

1. 集合论- 集合的基本概念:集合是离散数学的基础,它是一组明确的、无重复的对象的集合。

- 集合运算:包括并集、交集、差集、补集等。

- 幂集:一个集合所有子集的集合。

- 笛卡尔积:两个集合所有可能的有序对的集合。

2. 逻辑- 命题逻辑:研究命题(声明的真值)和它们之间的关系,如合取、析取、否定等。

- 谓词逻辑:使用量词(如全称量词和存在量词)来表达更复杂的逻辑关系。

- 逻辑推理:包括直接证明、间接证明和归谬法等。

3. 关系- 关系的定义:一个集合到另一个集合的有序对的集合。

- 关系的类型:自反性、对称性和传递性等。

- 关系的闭包:在给定关系下,集合的最小闭包。

4. 函数- 函数的定义:一个集合到另一个集合的映射,每个元素有唯一的像。

- 函数的类型:单射、满射和双射。

- 复合函数:两个函数可以组合成一个新的函数。

5. 图论- 图的基本概念:由顶点(节点)和边组成的结构。

- 图的类型:无向图、有向图、连通图、树等。

- 图的算法:如最短路径、最小生成树、图的着色等。

6. 组合数学- 排列和组合:从n个不同元素中取出r个元素的不同排列和组合的数量。

- 二项式定理:描述了二项式的幂展开的系数。

- 生成函数:一种编码序列的方法,用于解决复杂的计数问题。

7. 递归- 递归定义:一个对象通过引用比自己更小的版本来定义。

- 递归函数:在计算机程序中,一个函数调用自身来解决问题。

结论:离散数学为理解和设计计算机系统提供了基础工具和理论。

它的知识点广泛应用于算法设计、数据结构、编程语言理论和数据库等领域。

掌握离散数学对于任何希望在计算机科学领域取得进展的人来说都是至关重要的。

本文提供了一个简洁的离散数学知识点概述,每个部分都直接针对一个主题,避免了不必要的背景信息和解释。

离散数学 欧拉图

离散数学  欧拉图
13
3. 指出下列图中哪些是欧拉图,哪些是半欧拉图, 如果是,请画出它们的欧拉回路或通路。
14
将上述方法推广到有向图中可得:
• 定理:一个有向连通图是欧拉图的充分必要条件 是: 图中每个点的出度和入度相等。 一个有向连通图是半欧拉图的充分必要条件是: 图中至多有两个奇数度点。其中一个顶点的入度 比出度大1,另一个顶点的入度比出度小1 。 而其他顶点的入度和出度相等。
(a)
(b)
由于B到E的通路可以有多条,因此邮递员所走的最短路径问题 就归结为求B到E的各通路中重复边的权之和最小的问题,显然 (a)图为最优。
21
思考:求下图中国邮路问题的解.
解:如图可知有四个奇数度结点.分别为:
deg(v1)= deg(v2) )= deg(v5) )= deg(v7)
且W(v1,v2)=3,W(v1,v5)=8, W(v1,v7)=9, W(v2,v5)=5,W(v2,v7)= 7 ,W(v5,v7)=5
8
由此,在七桥问题中,其4个顶点都是奇数度点, 所以,七桥图不是欧拉图,也不是半欧拉图。 因此,这个图不可能一笔画成。
9
欧拉图是连通的且若干个边不重的圈之并,见示意图
PLAY
10
如图9.30(a)的每一个结点的度数都是偶数2,所以(a)中 有一个欧拉回路,是欧拉图;在图9.30 (b)中有两个结点的 度数是奇数3,故 (b)中有一个欧拉通路,但没有欧拉回路, 不是欧拉图;在图9.30 (c)中四个结点的度数都是奇数3, (c)中没有欧拉通路,更没有欧题是我国数学家管梅谷教授于 1960年首先提出解决的,所以国际上常 称为中国邮路问题
19
如果邮递员所走街道的图形是一个欧拉图, 则中国邮路问题可以理解为图中任何一条欧 拉回路都是最优回路。

离散数学第八章一些特殊的图知识点总结

离散数学第八章一些特殊的图知识点总结
图论部分 第八章、一些特殊的图 8.1 二部图 二部图:定义 设无向图 G=<V,E>, 若能将 V 划分成 V1 和 V2 (V1V2=V, V1V2=), 使得 G 中的每条边的两个端 点都一个属于 V1, 另一个属于 V2, 则称 G 为二部图, 记为<V1,V2,E>, 称 V1 和 V2 为互补顶点子集. 完全二部图:又若 G 是简单图, 且 V1 中每个顶点都与 V2 中每个顶点相邻, 则称 G 为完全二部图, 记为 Kr,s, 其中 r=|V1|, s=|V2|. 注意: n 阶零图为二部图.
得证 m=k+1 时结论也成立. 证毕.
欧拉公式的推广
设 G 是有 p (p2) 个连通分支的平面图, 则
nm+r=p+1
证 设第 i 个连通分支有 ni 个顶点, mi 条边和 ri 个面.
对各连通分支用欧拉公式,
ni mi + ri = 2, 求和并注意 r = r1+…+rp+ p1, 即得
极大平面图: 定义 若 G 是简单平面图, 并且在任意两个不相邻的顶点之 间加一条新边所得图为非平面图, 则称 G 为极大平面图. 性质
• 若简单平面图中已无不相邻顶点,则是极大平面图. 如 K1, K2, K3, K4 都是极大平面图.
• 极大平面图必连通. • 阶数大于等于 3 的极大平面图中不可能有割点和桥.
8.2 欧拉图
欧拉通路: 图中行遍所有顶点且恰好经过每条边一次的通路. 欧拉回路: 图中行遍所有顶点且恰好经过每条边一次的回路.
欧拉图: 有欧拉回路的图. 半欧拉图: 有欧拉通路而无欧拉回路的图. 几点说明: 上述定义对无向图和有向图都适用. 规定平凡图为欧拉图. 欧拉通路是简单通路, 欧拉回路是简单回路. 环不影响图的欧拉性.

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结1. 集合论- 集合的基本概念:集合、元素、子集、幂集、并集、交集、差集、补集。

- 集合的运算:德摩根定律、分配律、结合律、交换律。

- 有限集合和无限集合:可数与不可数集合、阿列夫零、阿列夫一。

2. 数理逻辑- 命题逻辑:命题、联结词、真值表、逻辑等价、逻辑蕴含、逻辑独立。

- 一阶谓词逻辑:量词、谓词、解释、满足、逻辑公式、全称量词、存在量词。

- 证明方法:直接证明、间接证明、反证法、数学归纳法。

3. 递归关系和函数- 递归定义:递归方程、初始条件、递归函数。

- 递归函数的例子:阶乘、斐波那契数列。

- 函数的性质:单射、满射、双射、复合函数。

4. 图论- 图的基本概念:顶点、边、路径、回路、图的同构。

- 图的类型:无向图、有向图、简单图、多重图、连通图、强连通图。

- 图的算法:欧拉路径、哈密顿回路、最短路径(Dijkstra算法)、最小生成树(Prim算法、Kruskal算法)。

5. 组合数学- 排列与组合:排列数、组合数、二项式定理。

- 组合恒等式:Pascal三角形、组合恒等式。

- 组合问题:计数原理、Inclusion-Exclusion原理。

6. 布尔代数- 布尔运算:AND、OR、NOT、XOR、NAND、NOR、XNOR。

- 布尔表达式的简化:卡诺图、奎因-麦克拉斯基方法。

- 布尔函数的表示:真值表、卡诺图、逻辑表达式。

7. 关系论- 关系的基本概念:笛卡尔积、自反性、对称性、传递性。

- 关系的类型:等价关系、偏序关系、全序关系。

- 关系的闭包:自反闭包、对称闭包、传递闭包。

8. 树和森林- 树的基本概念:节点、边、根、叶、子树、兄弟、祖先、子孙。

- 特殊类型的树:二叉树、平衡树、B树、B+树。

- 树的遍历:前序遍历、中序遍历、后序遍历、层次遍历。

9. 算法复杂度- 时间复杂度:最好情况、最坏情况、平均情况、大O表示法。

- 空间复杂度:算法空间需求的分析。

- 渐进分析:渐进紧确界、大Θ表示法、小o和大O的非正式描述。

《离散数学(第三版)》期末复习知识点总结含例题(呕心沥血整理).doc

《离散数学(第三版)》期末复习知识点总结含例题(呕心沥血整理).doc
5、理解等价关系和偏序关系 的概念,学握等价类的求法和 偏序关系做哈斯图的方法,极 人/小元、最人/小元、上/卜•界、 最小上界、最人下界的求法。
6、理解函数概念:函数、函 数相等、复介畅数和反畅数。
7、理解单射、满射、双射等 概念,学握其判别方法。 [木章重点习题]
P25,1;P32〜33, 4, 8, 10;P43,2, 3, 5;
2、考核试卷题量分配
试卷题量在各部分的分 配是:集合论约i'40% ,数理 逻辑约占40%,
设R是篥合A上的二元 关系,如果关系R同时 具有性.对称性
和性,则称R是
等价关系。
命题公式G=(PaQ)->R,则G共冇个
不同的解释;把G在其 所有解释下所取真值列 成一个表,称为G的;解
释(「P, Q, ->R)或(0,
(al9a2)e R. \a2,a3)e R,,则(R。如若(a,b)w R,R ,
则有,且(b,b)w R。
R=心)血2)伽)‘(3,4),(4,4啊織劇命题与联
念的基础上,主要掌握闭包的 求法。关键是熟记三个定理的 结论:定理2 ,
=R5a;定理3,s(R)=R o R ';定理4,
n
推论/(/?) =Ijx。
1 , 0)使G的真值 为,
设G二(P, L)是图.如 果G是连通的,并 口,则G
是树。如果根树T的每 个点V最多有两棵子树, 则称T
为O
[单项选择题](选择一个正确 答案的代号,填入括号中)
1.由集合运算定义,下列 各式正确的冇
()O
A.XcXuY
B.XoXuY
C.XcXnY
D.YcXnY
2.设Rp R?是集合A={a, b, c, d)±的两个关系,其中Ri={ (a. a) , (b, b) , (b, c) , (d, d)), R2={ (a, a) , (b, b),

离散数学的概念总结

离散数学的概念总结

图论基本概念重要定义:有向图:每条边都是有向边的图。

无向图:每条边都是无向边的图。

混合图:既有有向边又有无向边的图。

自回路:一条边的两端重合。

重数:两顶点间若有几条边,称这些边为平行边,两顶点a,b间平行边的条数成为(a,b)的重数。

多重图:含有平行边的图。

简单图:不含平行边和自回路的图。

注意!一条无向边可以用一对方向相反的有向边代替,因此一个无向图可以用这种方法转化为一个有向图。

定向图:如果对无向图G的每条无向边指定一个方向由此得到的有向图D。

称为的G定向图. 底图:如果把一个有向图的每一条有向边的方向都去掉,得无向图G称为的D底图。

逆图:把一个有向图D的每条边都反向由此得到的图称为D的逆图。

赋权图:每条边都赋上了值。

出度:与顶点相连的边数称为该定点的度数,以该定点为始边的边数为出度。

入度:以该定点为终边的边数为入度。

特殊!度数为零的定点称为孤立点。

度数为一的点为悬挂点。

无向完全图:在阶无向图中如果任何两点都有一条边关连则称此图是无向完全图。

Kn完全有向图:在阶有向图中如果任意两点都有方向相反的有向边相连则称此图为完全有向图。

竟赛图:阶图中如果其底图是无向完全图,则程此有向完全图是竟塞图。

注意!n阶有向完全图的边数为n的平方;无向完全图的边数为n(n-1)/2。

下面介召图两种操作:①删边:删去图中的某一条边但仍保留边的端点。

②删点:删去图中某一点以及与这点相连的所有边。

子图:删去一条边或一点剩下的图。

生成子图:只删边不删点。

主子图:图中删去一点所得的子图称的主子图。

补图:设为阶间单无向图,在中添加一些边后,可使成为阶完全图;由这些添加边和的个顶点构成的图称为的补图。

重要定理:定理5.1.1 设图G是具有n个顶点m条边的有向图,其中点集V={v,v, (v)deg+(vi)=deg-(vi)=m定理5.1.2 设图G是具有n个顶点m条边的无向图,其中点集V={v,v,v, (v)deg(vi)=2m推论在无向图中,度数为积数的顶点个数为偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档