17小结与复习

合集下载

人教数学八年级下《学练优》第17章 小结与复习评讲与答案

人教数学八年级下《学练优》第17章 小结与复习评讲与答案
A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,7 13.在△ABC中,若三边长分别为9,12,15,则 以两个这样的三角形拼成的长方形的面积为 108
14.如图,在5×5的正方形网格中,从在格点上 的点A,B,C,D中任取三点,能构成直角三角形 的个数是 3个 .
15.如图,在四边形ABCD中,AB=BC=2,CD =3,DA=1,且AB⊥BC于B.求:【方法6】 (1)∠BAD的度数; (1)如图,连接AC. ∵AB⊥BC,∴∠B=90°. 在Rt△ABC中,∵AB=BC=2, ∴AC= AB2 BC2 =2 2,∠BAC=45°.
9.★一辆装满货物,宽为2.4米的卡车,欲通过如图 所示的隧道,则卡车的外形高必须低于 4.1 米.
解析:∵车宽2.4米,∴欲通过隧道,只要距隧道中 线1.2米处的高度大于车高.在Rt△OCD中,由勾股 定理可得CD= OC2 OD2= 22 1.22 =1.6(米). ∴CH=CD+DH=1.6+2.5=4.1(米),∴卡车的外形 高必须低于4.1米.
又∵CD=3,DA=1, ∴AC2+DA2=8+1=9,CD2=9, ∴AC2+DA2=CD2,∴△ACD是直角三角形, 且∠CAD=90°,∴∠BAD=45°+90°=135°.
(2)四边形ABCD的面积.
(2)S四边形ABCD=S△ABC+S△ACD
= 1 ×2×2+ 1 ×1×2 2 =2+ 2 .
11.(2018·福建中考)把两个同样大小的含45°角的 三角尺按如图所示的方式放置,其中一个三角尺的 锐角顶点与另一个的直角顶点重合于点A,且另三
个锐角顶点B,C,D在同一直线上.若AB= 2 ,
求CD的长.
解:如图,过点A作AF⊥BC于F, 在Rt△ABC中,∠B=45°, ∴AB=AC, ∴BC= 2 , AB=2, BF=AF= 2 AB=1.

高三个人期末总结与反思(17篇)

高三个人期末总结与反思(17篇)

高三个人期末总结与反思(17篇)高三个人期末总结与反思(17篇)高三个人期末总结与反思篇1 一、做好期末考试总结、查缺补漏期末考试多是对前一阶段所学知识的考察,重在基础知识的考察,在考察知识的同时侧重对能力的考察。

基础知识是解决问题的工具和依据,因此考试结束后,每个学生都应该做一个总结,看一看自己这一段时间以来的复习效果如何,基础知识掌握的是否扎实,关键是要分析一下自己哪些环节做得不够,并确定改进的方法和措施,复习中注意抓基础,抓复习的针对性。

二、对照去年《考试说明》,夯实基础《考试说明》是说明考试大纲的,《考试说明》中说明了考什么?怎么考?考多难?每年的《考试说明》会稍有变动,因此在新的《考试说明》没有出来之前,我们可以对照去年的《考试说明》,抓住高考中必考的基础考点,认真复习,夯实基础,例如:阿伏加德罗常数,阿伏加德罗定律及其推论;原子结构;离子方程式判断正误;离子共存的判断;,氧化还原反应;电解质溶液中微粒浓度的关系;化学平衡的移动和判断;化学实验的基本操作、仪器的使用、物质的检验和分离;有机物的结构和性质等等。

我们要充分利用这个寒假来巩固基础知识,要“步步为营,稳扎稳打”。

同时要注意构建网络,重点复习,归纳迁移,发展能力。

注重知识的完整性、系统性和综合性。

高度重视解题思路的分析,应变能力、综合分析和解决问题的能力的提高,为下学期的第二轮复习奠定坚实的基础。

三、提高效率、抓落实动笔才是思维真正的开始,为了使你假期的复习任务落实到每天的学习之中,我建议同学们首先要制定出切实可行的计划,一是要有假期整体计划:学习的计划,休息的计划。

二是要有每天具体复习的计划。

长计划,短安排,为了避免随意性,真正把学习任务落到实处,应把每天的学习任务、学习时间具体化。

最好细化出每个时间段做什么,去做行动的巨人,真正把复习计划落到实处。

同时可以按照考试时间有要求限时做一些成套试卷,在答题过程中作到:“慢做会的求全对,稳做中档题一分不浪费,舍弃全不会。

2023-2024学年湘教版数学七年级上册 各单元小结与复习

2023-2024学年湘教版数学七年级上册 各单元小结与复习
(2) 性质 ① 同角 (等角) 的补角相等. ② 同角 (等角) 的余角相等.
立体图形
展开或从不同方向看 面动成体
平面图形

表示方法
何 图 形
平面图形
直线、射线、 线段长短的 中
线段
比较与计算 点
两个基本事实
表示方法


角 角的度量、比较与计算 分
余角和补角 概念、性质 线
第5章 数据的收集与统计图
点与原点的距离.数 a 的绝对值,记作 |a|.
(2) 正数的绝对值是它本身;负数的绝对值是它的 相反数;0 的绝对值是 0.互为相反数的两个数的绝 对值相等.
(3) 一般地,如果a表示一个数,则 ①当 a 是正数时,|a| = a;
②当 a = 0时,|a| = 0; ③当 a 是负数时,|a| = -a.
小结与复习
一、方程的有关概念 1. 方程:含有未知数的等式叫做方程. 2. 一元一次方程的概念:只含有__一__个未知数,未
知数的次数都是__1__,等号两边都是__整__式__,这 样的方程叫做一元一次方程. 3. 方程的解:使方程左右两边的值相等的未知数的 值叫做方程的解. 4. 解方程:求方程解的过程叫做解方程.
把它们的绝对值相除;0 除以任何一个不等于 0 的数都
得 0. (3) 除以一个不为 0 的数,等于乘这个数的倒数.
5. 有理数的乘方 (1) 求 n 个相同因数的积的运算,叫做乘方. 乘方
的结果叫做幂. 在 an 中,a 叫做底数,n 叫做指数.
a 幂
n 指数
特别地,a2 通常读 作 a 的平方,a3 通
2. 有理数的分类
(1) 按定义分类
(2) 按符号分类

小学生学期学习总结(通用17篇)

小学生学期学习总结(通用17篇)

小学生学期学习总结(通用17篇)小学生学期篇1又一个学期就这样结束了.迎来了盼望已久的寒假.时光飞逝,斗转星移。

回首这半年的点点滴滴,朝朝暮暮,心中顿生了许多感触。

这半年中经历的每一天,都已在我心中留下了永久的印记,因为这些印记见证我这样一个新生的成长。

在过去半年的内,通过不断地学习,我收获了很多.时间就是这么无情头也不回的向前走着,而我们却在为了不被它丢下死命的追赶着。

是的,谁都不想被时间丢下.而我们也随着时间的流逝一点一点的成长.而美好的纯真随着风雨的磨灭化成了成熟.或许这正是成长的代价.回想自己还是考生的那段日子,显得是那么的遥远。

我在憧憬中懂得了来之不易的珍惜;在思索中了解了酝酿已久的真理;在收获后才知道努力的甜美。

突然觉得自己似乎明白了许多事情,但是仔细琢磨后又不尽然……原来过去所见所识都是那么的偏见而又肤浅,以前的天真似乎在一瞬间幻化成无知和可笑,我想谁又不是这样的呢?或许在以后也回嘲笑现在的渺小……我们不得不笑着回首我们所走过的路.出勤情况:请了一次病假.拉下一天的课希望下学期争取做到全勤本学期没有迟到的情况。

在日常生活上:以前我是一个衣来伸手饭来张口的小孩子,而通过学习生活和这半年老师和同学们的帮助,使我养成了独立性,不再娇生惯养,现在我已经能做一些力所能及的家务了。

在学习上:我深知学习的重要性。

面对二十一世纪这个知识的时代,面对知识就是力量,科学技术是第一生产力的科学论断,我认为离开了知识将是一个一无是处的废人。

以资本为最重要生产力的"资本家"的时代将要过去,以知识为特征的"知本家"的时代即将到来。

而中学时代是学习现代科学知识的黄金时代,中国的本科教育又是世界一流的,我应该抓住这个有利的时机,用知识来武装自己的头脑,知识是无价的。

首先,合理安排时间,调整好作息时间,分配好学习、工作、娱乐的时间。

时间是搞好学习的前提与基础,效率和方法更为重要。

新华东师大版八年级数学下册《16章 分式 小结》教案_2

新华东师大版八年级数学下册《16章 分式  小结》教案_2

17章 《分式》小结与复习学习目标:1、进一步理解分式、最简分式、最简公分母的概念。

2、熟练掌握分式的基本性质、分式运算法则;准确熟练地进行分式的运算。

3、通过练习,加强计算能力,进一步理解数学的整体思想。

教学流程:回顾(一)1、分式的定义;2、分式有意义的条件;3、分式值为0的条件;4、分式值为正数或负数的条件;学生活动:学生师友之间交流,巩固相关知识。

并自己根据所学知识按要求书写分式并对应解决。

过关练习:值为正。

时,分式当。

值为时,分式当无意义。

时,分式当有意义。

时,分式当x x x xx x xx x xx x -13______0-13______-13___-13___---=-= 回顾(二)1、约分:把分子.分母的最大公因式(数)约去.2、通分:关键是找最简公分母:各分母所有因式的最高次幂的积。

把分母不相同的几个分式化成分母相同的分式.活动:师生共同回顾,约分、通分的方法及步骤。

过关练习:444)3(;)(8)(2)2(;2761223222-++-----m m m a b b a xy y x )化简:(16121)2(;2122-++-a a a a a b a b 与与)通分:(备注:部分学生板演,其余学生自主练习,师巡视指导。

师点拨。

巩固应用回顾(三)分式的运算:分式的乘法、除法、加法、减法,乘方。

学生练习:强调分式乘除时的注意事项和因式分解的重要性。

例:222441(1)214a a a a a a -+-⋅-+-学生练习:能力提升:2121(1)11x x x x ++--+课堂小结:学生畅谈本堂收获。

1.如果把分式 中的x 和y 的值都扩大3倍,则分式的值( ) A,扩大3倍 B,不变 C,缩小1/3 D,缩小1/6 2.如果把分式 中的x 和y 的值都扩大3倍,则分式的值( ) A,扩大3倍 B,不变 C,缩小1/3 D,缩小1/6 y x x +y x xy+分式的加减 同分母相加 异分母相加 43(1)a a +小试牛刀 计算 x x x x -+--+11211)2(243(3)23a a +1(4)12x x x +-+。

17-数列小结与复习

17-数列小结与复习

复习课: 第二章 数列(1)教学目标重点:理解数列的有关概念和性质,掌握数列求通项公式的各种方法. 难点:利用各种条件来求数列的通项公式.能力点:数列通项问题是数列的核心问题,培养学生的抽象思维能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式联系的解题思路的探寻.易错点:在具体的数列通项问题中,学生往往混淆n a 与n S 的概念 .学法与教具1.学法:讲授法、讨论法.2.教具:投影仪.二、【知识梳理】1.数列的基础知识;2.等差数列的定义、通项公式,求和公式及性质;3.等比数列的定义、通项公式,求和公式及性质;4.填写表格:三、【范例导航】 1.观察法例1写出下列数列的一个通项公式 (1)1-7,13-19,25 ,,,;(2)51333812,,24816 ,,,; (3)2414271125,,,,,;(4)13355,,,,,7,7,9,9,.【分析】观察数列中的每一项与它的序号之间的对应关系,以及所给数列与一些特殊数列之间的关系. 【解答】 (1)原数列的各项可看成数列1-1,1-1,1 ,,,与数列17,1319,25 ,,,对应项相乘的结果. 故原数列的一个通项公式为1(1)(65)n n a n +=--.(2)原数列可改写为01234111111+2+,3+4+,5+22222,,,,故通项公式为11+2n n a n -=.(3)不防把分子变成4,然后看分母,从而有4444141185,,,,,从而原数列的通项公式为417-3n a n =.(4)奇数项与项数相等,偶数项比项数大1. 可改写为1+02+1,3+04+1,5+0 ,,,,所以原数列的通项公式为1-1++22nn a n =().【点评】观察是归纳的前提,合理的转换是完成归纳的关键;有些数列的通项公式不一定唯一;写出数列的通项公式时,要熟记一些特殊数列,如:{}{}{}{}{}{}121-1,21,2,2,,nn n n n n n -⎧⎫-⎨⎬⎩⎭(),等.变式训练:写出下列数列的一个通项公式.(1)111-1,-234,,,;(2; (3)111111112233445---- ,,,,; (4)3,5,355. ,,,3,,2.利用11,1,,2,n nn S n a S S n -=⎧=⎨-≥⎩求n a例2 设n S 为数列{}n a 的前n 项和,且*3(1)()2n n S a n N =-∈,求数列{}n a 的通项公式.【分析】由n a 与n S 的关系消去n S (或n a ),转化为n a (或n S )的递推关系求解. 【解答】3(1),2n n S a =-∴ 当1n =时,1113(1),2S a a ==-解得13a =. 当2n ≥时,1133(1)(1),22n n n n n a S S a a --=-=---得13n n a a -=,所以,当2n ≥时,数列{}n a 是以3为公比的等比数列,且首项2139.a a ==当1n =时,也成立. 故数列的通项公式为*3()nn a n N =∈.【点评】已知数列的前n 项和公式,求数列的通项公式,其方法是1(2).n n n a S S n -=-≥这里常常因为忽略了2n ≥的条件而出错,要注意求11a S =并验证.当1n =时的1a 与1S 相等,n a 才是通项公式,否则要用分段函数表示为11,1,,2,n nn S n a S S n -=⎧=⎨-≥⎩.变式训练设数列{}n a 的前n 项和2*232,(),n S n n n N =++∈求数列{}n a 的通项公式,并指出此数列是否为等差数列.3.叠加法、叠乘法例3 已知数列{}n a 满足132,n n a a n +=++且12,a =求n a .【分析】因为132,n n a a n +=++属于1()n n a a f n +=+型递推公式,所以可以用叠加法求出n a . 【解答】2132431312,322,332,3(1)2,n n a a a a a a a a n --=⨯+-=⨯+-=⨯+-=⨯-+以上各式相加,得[]123123(1)2(1)(1)33222,22n a a n n n n n n n -=⨯++++-+--+=+-=-又12,a = 所以23.2n n na += 【点评】如果给出数列{}n a 的递推公式为1()n n a a f n +=+型时,并且{}()f n 容易求和,这里可采用叠加法.例4 在数列{}n a 中,满足12,n n a n a n++=且11,a =求n a . 【分析】属于1()n na f n a +=型递推公式,所以可以用叠乘法求出n a . 【解答】32411231345111231(1).2nn n a a a aa a a a a a n n n n -=+=⨯⨯⨯⨯⨯-+= 而11,a =也适合上式.故{}n a 的通项公式为(1)2n n n a +=. 【点评】如果给出数列{}n a 的递推公式为1()n na f n a +=型时,并且{}()f n 容易求积,这里可采用叠乘法. 4.构造法例4 已知数列{}n a 中,满足*132(),n n a a n N +=+∈且11,a =求{}n a 的通项公式.【分析】通过观察给出的已知条件,可以发现递推公式可变形为*113(1)(),n n a a n N ++=+∈转化为等比数列求解.【解答】将*132()n n a a n N +=+∈变形为*113(1)(),n n a a n N ++=+∈即*113,()(1)n n a n N a ++=∈+,所以数列{}1n a +是首项为112a +=,公比为3的等比数列,所以11123,231n n n n a a --+=⨯∴=⨯-.【点评】根据已知条件构造一个与n a 有关的新数列,通过新数列通项公式的求解,得{}n a 的通项公式.新的数列往往是等差数列或是等比数列.四、【解法小结】1.观察法得到数列的通项公式要注意数列的变形以及一些特殊数列.2. 已知数列的前n 项和公式,求数列的通项公式,其方法是1(2).n n n a S S n -=-≥注意“两步一检验”.3.采用叠加法、叠乘法求数列时,需是1()n n a a f n +=+或 型的递推公式.4.构造法求通项公式时一般是构造出一个等比或等差数列.五、【布置作业】1. 已知数列{}n a 的前n 项和n S ,且*32()nn S n N =+∈,求数列{}n a 的通项公式.2. 已知数列{}n a 满足113,n n n a a -+=+且12,a =求n a .3.已知数列{}n a 满足12,a =15,nn n a a +=求n a .4. 已知数列{}n a 中,满足122nn n a a a +=+且11,a =求{}n a 的通项公式.六、【教后反思】1.本教案的亮点是:首先以结构图呈现数列知识,直观简明;其次,复习相关知识并以表格的形式呈现,充分关注到数列、等差数列、等比数列的系列问题.再次,例题选择典型,关注数列的主干知识和解决数列通项公式问题的一般思路与方法,讲练结合,学生落实较好.最后,在作业的布置上,选择的中低档题,对学生理解、巩固知识能够起到良好的作用.2.本教案的弱项是:在一些具体问题中,学生容易忽略数列的小细节问题,例题的题量有点大,所以部分例题没有变式训练,作业的布置也照顾到量的问题没有面面俱到.1()n naf n a +=。

第17章分式小结与复习

第17章分式小结与复习

【模拟试题】(答题时间:40分钟)一. 选择题:1. 已知302)1(c )13(b 2a -=-==-,,,则a 、b 、c 的大小关系是( )A. a>b>cB. b>a>cC. c>a>bD. b>c>a2. 若分式1x 2x x 2+--的值为零,那么x 的值为( ) A. x =-1或x =2 B. x =0C. x =2D. x =-13. 下列各式正确的是( )A. 0yx y x =++ B. 22x y x y = C. 1y x y x =--+- D. yx 1y x 1--=+- 4. 分式3a 2a 2++,22ba b a --,)b a (12a 4-,2x 1-中,最简分式有( ) A. 1个 B. 2个C. 3个D. 4个 5. 如果把y3x xy 5-中的x ,y 都扩大3倍,那么分式的值一定( ) A. 扩大3倍 B. 缩小3倍C. 扩大15倍D. 不变二. 填空题:1. 当x________时,分式1x 3-有意义;当x________时,分式3x 9x 2--的值为0。

2. 当x________时,分式1x 1--的值为正数。

3. 若解分式方程4x m 4x 1x +=+-产生增根,则m =________。

4. 近似数0.0000315用科学记数法表示为________。

5. 如果5z 3y 2x ==,则y z x z y x -+++=________。

6. 计算421225a ]a )a [(÷÷=________。

三. 解答题:1. 计算或化简。

(1)ab b a a b b b a a 22+÷⎪⎪⎭⎫ ⎝⎛-+-;(2)⎪⎭⎫ ⎝⎛--+÷--1x 31x 1x x 2; (3)3220)1(221)23(--+⎪⎭⎫ ⎝⎛----。

2. 解下列方程:(1)7x 30x 100+=; (2)x2x 32x 12x 12+=++。

第1章 复习与小结(教学案)

第1章  复习与小结(教学案)

第1章复习与小结教学目标:1.复习本章所学的主要内容;2.进一步掌握各个知识点在数学中的应用.教学重点:弄清四种命题之间的关系以及充要条件的含义,学会逻辑联结词的用法,会用全称量词和存在量词描述数学命题,会写出有关命题的否定.教学难点:充要条件和命题的否定.教学方法:问题链导学,讲练结合.教学过程:一、知识回顾借助图表复习以下知识点:1.四种命题;2.充要条件;3.逻辑联结词;4.量词;5.含有一个量词的命题的否定.二、数学运用例1把下列命题改写成“若p则q”的形式,并写出它们的逆命题、否命题与逆否命题,同时指出它们的真假.(1)对角互补的四边形是圆的内接四边形;(2)当x=-1时,x2-x-2=0.例2设α,β,γ为平面,m,n,l为直线,则对于下列条件:①α⊥β,α∩β=l,m⊥l;②α∩ γ=m,α⊥β,γ⊥β;③α⊥γ,γ⊥β,m⊥α;④n⊥α,n⊥β,m⊥α.其中为m⊥β的充分条件的是(将你认为正确的所有序号都填上).例3数列{a n}的前n项和S n=pn+q,(p,q为非零实数,n N*),求数列{a n}为等比数列的充要条件.例4下列各组命题中,满足“p或q”为真,“p且q”为假,“非p”为真的是.(1)p:在∆ABC中,若cos A=cos B,则A=B,q:y=sin x在第一象限为增函数;(2)p:a2+b2≥2ab,q:︱x︱>x的解集为{x︱x<0};(3)p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分,q:y=sinπx 的图像关于x=1对称.例5如果二次函数f(x)=4x2-2(p-2)x-2p2-p+1区间[-1,1]上存在一个x的值,使f(x)>0,求p的取值范围.三、要点归纳与方法小结本章主要学习了命题及其四种关系、充分必要条件、逻辑联结词、全称量词和存在量词,以及它们在数学中的应用.。

人教版八年级数学下册第17章勾股定理小结和复习说课稿

人教版八年级数学下册第17章勾股定理小结和复习说课稿
(二)教学反思
在教学过程中,我预见到以下可能出现的问题或挑战:
1.部分学生对勾股定理的理解不够深入,可能在应用时出现错误。
2.学生在小组合作过程中可能出现分工不均、讨论效率低下等问题。
应对策略:
1.针对学生理解不足的问题,及时进行个别辅导,强化勾股定理的知识点。
2.在小组合作中,加强组织和引导,确保每个学生都能积极参与。
(三)学习动机
为了激发学生的学习兴趣和动机,我将在教学中采取以下策略或活动:
1.创设生活情境,让学生感受勾股定理在实际生活中的应用,提高学生的学习兴趣。
2.设计有趣的数学游戏和小组竞赛,激发学生的学习积极性,培养学生的合作意识。
3.鼓励学生主动参与课堂讨论,引导学生发现勾股定理的规律,提高学生的自主学习能力。
(二)学习障碍
学生在学习本节课之前,具备的前置知识有:勾股定理的基本概念、证明方法以及一些简单的应用。可能存在的学习障碍有:
1.对勾股定理的理解不够深入,无法灵活运用勾股定理解决问题。
2.勾股数的辨识能力较弱,容易与其他三角形的三边关系混淆。
3.在解决实际问题时,不能将问题转化为数学模型,运用勾股定理进行求解。
4.创设问题情境,引导学生通过探究、合作交流等方式解决问题,让学生在解决问题中体验成功,增强学习信心。
5.结合学生的年龄特点和兴趣,运用多媒体教学手段,直观展示勾股定理的图形和实例,提高学生的学习兴趣和动机。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括:启发式教学法、探究式教学法和小组合作学习法。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:教师提问,学生回答;教师引导学生进行探究,给予指导和反馈。

初二下数学第十七章小结与复习教案

初二下数学第十七章小结与复习教案

初二下数学第十七章小结与复习教案教学设计思想第一通过对问题的摸索与解答,回忆总结梳理本章所学的知识,将所学的知识与往常学过的知识进行紧密联结。

通过摸索,知识得到内化,认知结构得到进一步完善。

回忆本章内容,建立知识结构图。

通过练习把知识加以巩固。

教学目标知识与技能1.反比例函数的图象和性质。

2.能依照所给的条件,确定反比例函数,体会函数在实际问题中的应用价值。

3.反比例函数的应用:解决实际问题,学科内部的应用。

过程与方法1.反思在具体问题中探究数量关系和变化规律的过程,明白得反比例函数的概念,领会反比例函数作为一种数学模型的意义。

2.能画出反比例函数的图象,并依照图象和解析式把握反比例函数的要紧性质。

3.提高观看、分析、归纳的能力,感悟数形结合的数学思想方法。

情感、态度与价值观1.面对困难,树立克服困难的勇气和战胜困难的信心。

2.养成合作交流意识和运用数学问题解决实际问题的意识,认识数学的有用性。

教学重点和难点重点是:反比例函数的概念、图象和要紧性质。

难点是:对反比例函数意义的明白得。

教学方法启发引导、小组讨论课时安排1课时教学媒体课件教学过程设计唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。

而对那些专门讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,要紧协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显要,也称得上朝廷要员。

至此,不管是“博士”“讲师”,依旧“教授”“助教”,其今日教师应具有的差不多概念都具有了。

(一)创设问题情境,引入新课我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

勾股定理复习小结

勾股定理复习小结
解:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°. 在△ABD中,∠ADB=90°, ∠B=45°,AB=2,∴AD=BD= .∵在△ABD中,∠ADC=90°,∠C=60°,AD= , ∴CD= ,∴BC= ,S△ABC =
30°
160
A
M
N
P
Q
80
E
如图,公路MN和小路PQ在P处交汇,∠QPN=30°,点A处有一所学校,AP=160m,假设拖拉机行使时,周围100m内受噪音影响,那么拖拉机在公路MN上以18km/h的速度沿PN方向行驶时,学校是否受到噪音的影响?如果学校受到影响,那么受影响将持续多长时间?
A
M
N
P
Q
B
D
E
如图,公路MN和小路PQ在P处交汇,∠QPN=30°,点A处有一所学校,AP=160m,假设拖拉机行使时,周围100m内受噪音影响,那么拖拉机在公路MN上以18km/h的速度沿PN方向行驶时,学校是否受到噪音的影响?如果学校受到影响,那么受影响将持续多长时间?
思考 :在不是直角三角形中如何求线段长和面积?
01
解一般三角形的问题常常通过作高转化成直角三角形,利用勾股定理解决问题.
02
已知:如图,四边形ABCD,AB=1,BC=2,CD=2,AD=3, 且AB⊥BC.求四边形 ABCD的面积.
分析:本题解题的关键是恰当的添加辅助线,利用勾股定理的逆定理判定△ADC的形状为直角三角形,再利用勾股定理解题.
第三组练习: 会用勾股定理解决较综合的问题
2.解决折叠的问题. 已知如图,将长方形的一边BC沿CE折叠, 使得点B落在AD边的点F处,已知AB=8, BC=10, 求BE的长.
第三组练习: 会用勾股定理解决较综合的问题

第17章勾股定理小结和复习

第17章勾股定理小结和复习

第17章勾股定理小结和复习教学目标1-理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边 2. 勾股定理的应用.3. 会运用勾股定理的逆定理,判断直角三角形.重点:掌握勾股定理及其逆定理. 难点:理解勾股定理及其逆定理的应用. 教学过程 一•复习回顾在本章中,我们探索了直角三角形的三边尖系,并在此基础上得到了勾股定理, 并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习 了勾股定理的逆定理以及它的应用•其知识结构如下:勾 般 定 理 的 逆 毎 用1・勾股定理:(1) ______________________ 直角三角形两直角边的和等于的平方•就是 说,对于任意的直角三角形,如果它的两条直角边分别为a b,斜边为c,那么一定有:•这就是勾股定 理.面(2)勾股定理揭示了直角三角形一之间的数量矣系,是解决有尖线段计算问题的重要依据.(22|2«2222«2 . --------------------------------------------- -------------------a二c・b\ 二c・a,c = .ab a = v c2 _b2,b = vC2 -a22.勾股定理逆定理若三角形的两条边的平方和等于第三边的平方,则这个三角形为_____________ •这一命题是勾股定理的逆定理•它可以帮助我们判断三角形的形状•为根据边的尖系解决角的有尖问题提供了新的方法•定理的证明采用了构造法•利用已知三角形的边a,b,c(a+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSSE明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示川(n为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的•勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.2十2 2⑶ 三角形的三边分别为a、b、c,其中c为最大边,若玄13“,则三角形是直角三角形;若* b °,则三角形是锐角三角形;若玄b ” :°「,则三角形是钝角三角形•所以使用勾股定理的逆定理时首先要确定三角形的最大边•考点一、已知两边求第三边1 •在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为__________ .2._____________________________________________________ 已知直角三角形的两边长为3、2,则另一条边长是________________________________ ・3.在数轴上作出表示的点.4 •已知,如图在△ ABC 中,AB=BC=CA=2cm , AD 是边BC±的高.考点二、利用列方程求线段的长1・如图,铁路上A ,B 两点相距25km, C ,D 为两村庄,DA 丄AB 于A , CB 丄AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购 站 E,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?2.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.考点三、判别一个三角形是否是直角三角形1 •分别以下列四组数为一个三角形的边长: (D 3、4、5(2) 5、12、13 (3) 8求©AD 的长;②厶ABC 的面积.15、17 (4) 4、5、6,其中能够成直角三角形的有 ______________2. __________________________________________________________ 若三角形的三别是a+b2,2ab,f ・b%a>b>0),则这个三角形是 ___________________ ・23.如图1,在厶ABC 中,AD 是高,且AD 二BD CD ,求证:△ ABC 为直角三角考点四、灵活变通1-在RtAABC 中,a,b, c 分别是三条边‘ / B=90°,已知a=6, b=10,则边长2.边为边长的两个正方形的面积为边为边长的正方形的面积为 ___________ cm 2.柱'底圆周长6cm,高4cm, 一只蚂蚁沿外壁爬行,要从A 点爬到4- ___________________________________ 如图:带阴影部分的半圆的面积是直角三角形中,以直角7cm 2 , 8cm 2‘ 则以斜3.如图一个圆—只蚂蚁B 点,那團IB 点,则最少要爬行 _______ cm(二取3) 5.从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到么它所爬行的最短路线的长是 _________________6若一个三角形的周长12、.3cm—边长为3cm,其他两边之差为3 cm,则这个二角形是_______________________ :.7•如图:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是米考点五、能力提升1.已知:如图,△ ABC中,AB> AC, AD是BC边上的高.2 2求证:AB -AC =BC(BD-DC).2.如图,四边形ABCD中,F为DC的中点,E为BC上一点,且CE二丄BC •你能说明/ AFE是直角吗?3.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?B A三、随堂检测1.已知△ ABC 中,/ A= / B= / C,则它的三条边之比为().A. 1 : 1 : 1B. 1: 1 : 2C. 1: 2 : 3D. 1: 4: 1 下列各组线段中,能够组成 )・A. 6, 7, 8B. 5, 6, 7C. 4, 5, 6D. 3, 4, 5 3.若等边△ ABC 的边长为2cm,那么△ ABC 的面积为().— 2222A . 3 cmB . 2 cmC . 3 cmD . 4cm 4.角形的两直角边分别为5cm, 12cm,其中斜边上的高为(A . 6cmB . 8 . 5cmC . 30/ 13cm5.有两棵树,一棵高6米,另一棵高3米,两树相距4米•一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 ______ 米.6・一座桥横跨一江,桥长12m, 一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶 __________ m .7.个三角形的三边的比为5 : 12 : 13,它的周长为60cm,则它的面积是 _________8•已知直角三角形一个锐角60。

冀教版七年级数学下册全册《小结与复习》公开课精品课件精选全文

冀教版七年级数学下册全册《小结与复习》公开课精品课件精选全文

∴∠DOF=25°
针对训练
1.如图.直线AB、CD相交于点O,OE⊥AB于O, OB平分∠ DOF,∠DOE=50°,求∠AOC、 ∠ EOF、 ∠ COF的度数.
解:∵AB⊥OE (已知) ∴ ∠EOB=90°(垂直的定义) ∵∠DOE= 50° (已知) ∴ ∠DOB=40°(互余的定义) ∴∠AOC= ∠DOB=40°(对顶角相等) 又∵OB平分∠DOF ∴∠BOF= ∠DOB=40°(角平分线定义) ∴∠EOF= ∠EOB+ ∠BOF=90°+40°=130° ∴∠COF=∠COD-∠DOF=180°-80°=100°
解析:相等关系:挖土的人员+运土的人员=48. 挖土的数量=运土的数量.
解:设用x人挖土,y人运土,正好使挖的土及时运走.
依题意得
x y 48, 5x 3y.
解方程组得xy
18, 30.
答:设用18人挖土,30人运土,正好使挖的土及时运走.
4. 在水果店里,小李买了5 kg苹果,3 kg梨,老板少要
同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行
四、列二元一次方程组解决实际问题 审:审清题目中的等量关系. 设:设未知数, 分直接设未知数和间接设未知数. 列:根据等量关系,列出方程组. 解:解方程组,求出未知数. 验:检验所求的解是否符合题目要求或客观实际. 答:写出答案.
考点讲练
考点一 二元一次方程(组)的有关概念
例1 若3x2a+b+1+5ya-2b-1+5=0是关于x,y的二元一次方 程,则a=___52___,b=_-__54___.
专题二 点到直线的距离
例2 如图AC⊥BC,CD⊥AB于点D,CD=4.8cm,AC=6cm,

充分条件和必要条件 复习与小结

充分条件和必要条件 复习与小结

B. x R ,x2 x 【D】
C. x R ,x2 x
D. x R ,x2 x
(7) (2012年湖北) 命题:
“存在一个无理数,它的平方是有理数”的否定是【B】
(A)任意一个有理数,它的平方是有理数 (B)任意一个无理数,它的平方不是有理数 (C)存在一个有理数,它的平方是有理数 (D)存在一个无理数,它的平方不是有理数
预习: 圆锥曲线简介
参:§54 解析几何概述及直线的特征值
§173 复习与小结
一、知识网络
有关概念
二、注意点
构成 构造
充要条件 变性变位四命题 合成分解或且非
1.充要条件是重点
2.量词是热点 3.非命题与否命题是难点
练习1.充要条件
(1)(2014年安徽) “x<0” 是 “ln(x+1)<0” 的 【B】
A.充分不必要条件 C.充要条件
2010年新课标)已知命题 p1:函数 y 2x 2x 在R上为增函数 p2:函数 y 2x 2x 在R上为减函数
则在命题 q1: p1 p2 ; q2:p1 p2 ; q3: p1 p2
和 q4:p1 p2 中,真命题是 【C】
A. q1 , q3
B. q2 , q3
C. q1 , q4
D. q2 , q4
(9)(2013年新课标Ⅱ)已知函数
下列结论中错误的是 【C】
A. x0 R,
B.函数
的图像是中心对称图形
C.若 是f(x)的极小值点,则f(x)在
D.若 是f(x)的极值点,则
上单调递减
作业:
1.《固学案》P:7 Ex9 2.《固学案》P:7 Ex10 3.《固学案》P:7 Ex15
练习2.量词
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
C
课堂小结
两个定理(勾股定理及其逆定理); 两种重要思想(出入相补思想、数形结合思想).
互逆定理
勾股定理
勾股定理 的逆定理
直角三角形边 长的数量关系
直角三角 形的判定
课后作业
作业:教科书第38页复习题17第1,2,5,6, 7,10,14题.
追问1 在本章我们学习了 直角三角形一个重要的定理,你 能叙述这个定理吗? 追问2 我们知道任何一个 命题都有逆命题,勾股定理的逆 命题成立吗?你能叙述这个逆命 题吗?
理清脉络 构建框架
勾股定理
互逆定理
勾股定理 的逆定理
直角三角 形的判定
直角三角形边 长的数量关系
基础训练 巩固知识
练习1 在Rt△ABC中,已知a=1,b=3,∠B=90°, 则第三边c的长为 2 2 . 变式 在Rt△ABC中,已知a=1,b=3,则第三边c 2 2 或 10 的长为 .
创设情境 引出课题
问题1 如图,这是矗立在萨摩斯岛上的雕像,这 个雕像给你怎样的数学联想? (背景介绍:我们知道,古 希腊数学家毕达哥拉斯发现了勾 股定理.在西方,勾股定理又称 为“毕达哥拉斯定理”.人们为 了纪念这位伟大的科学家,在他 的家乡建了这个雕像.)
创设情境 引出课题
问题1 如图,这是矗立在萨摩斯岛上的雕像,这 个雕像给你怎样的数学联想?
八年级
下册
第17章 小结与复习
课件说明
• 本课是对全章知识的回顾和复习,通过知识整理, 进一步理解勾股定理及其逆定理,体会勾股定理在 距离(线段长度)计算中的作用,理解勾股定理与 它的逆定理之间的关系,并尝试综合运用这两个定 理解决简单的实际问题.
课件说明
• 学习目标: 1.回顾本章知识,在回顾过程中主动构建起本章知 识结构; 2.思考勾股定理及其逆定理的发现证明和应用过程, 体会出入相补思想、数形结合思想、转化思想在 解决数学问题中的作用. • 学习重点: 勾股定理及其逆定理的应用.
综合运用 解决问题
例1 如图,每个小正方形的边长都为1. (1)求四边形ABCD的面积与周长; (2)∠BCD是直角吗?
A
B
D
C
综合运用 解决问题
例2 如图所示,测得长方体的木块长4 cm,宽 3 cm,高4 cm.一只蜘蛛潜伏在木块的一个顶点 A 处, 一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛 究竟应该沿着怎样的路线爬上去,所走的路程会最短, 并求最短路径. H B F G B
基础训练 巩固知识
练习2 分别以下列四组数为一个三角形的边长: ①3,4,5;②5,12,13;③8,15,17;④4,5,6. 其中能构成直角三角形的有 ①②③ .
基础训练 巩固知识
练习3 小明想知道学校旗杆的高,他发现旗杆上 的绳子垂到地面还多1 m,当他把绳子的下端拉开 m后, 发现下端刚好接触地面,则旗杆的高为( C ). A.8 m B.10 m C.12 m D.14 m
相关文档
最新文档