24.4弧长与扇形面积2

合集下载

人教版九年级数学上册24.4弧长和扇形面积教案

人教版九年级数学上册24.4弧长和扇形面积教案
3.重点难点解析:在讲授过程中,我会特别强调弧长和扇形面积的计算公式这两个重点。对于难点部分,如弧度的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧长和扇形面积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用硬纸板制作一个扇形,测量并计算其面积。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了弧长和扇形面积的基本概念、计算公式以及它们在实际中的应用。通过实践活动和小组讨论,我们加深了对弧长和扇形面积的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上两点间的弧与半径的对应圆心角的比值;扇形面积是由圆心、圆上两点和这两点间的弧所围成的图形。它们在工程、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算一个半圆的弧长和面积,通过这个案例,我们可以了解弧长和扇形面积在实际中的应用,以及它们如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《弧长和扇形面积》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否遇到过需要计算圆的一部分长度或面积的情况?”比如,设计一个扇形花园,我们该如何计算它的面积?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索弧长和扇形面积的奥秘。

人教初中数学《弧长和扇形面积 》教案 (公开课获奖)

人教初中数学《弧长和扇形面积   》教案 (公开课获奖)

弧长和扇形面积教学内容24.4弧长和扇形面积〔2〕.教学目标1.了解母线的概念.2.掌握圆锥的侧面积计算公式,并会应用公式解决问题.3.经历探索圆锥侧面积计算公式的过程,开展学生的实践探索能力.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点圆锥侧面积计算公式的推导过程.教学过程一、导入新课师:大家见过圆锥吗?你能举出实例吗?生:见过,如漏斗、蒙古包.师:你们知道圆锥的外表是由哪些面构成的吗?请大家互相交流.生:圆锥的外表是由一个圆面和一个曲面围成的.师:圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.二、新课教学1.圆锥的母线.圆锥是由一个底面和一个侧面围成的几何体,如图,我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.2.探索圆锥的侧面公式.思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?〔1〕如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形.〔2〕设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πr(r+l).3.利用圆锥的侧面积公式进行计算.例蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡〔n取3.142,结果取整数〕?解:右图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12 m 2.高h 2=1.8 m ;上部圆锥的高h 1=-=1.4(m). 圆柱的底面圆的半径r =π12≈1.945(m),侧面积为2π××≈22.10(m 2).圆锥的母线长l =224.1945.1+≈2.404(m),侧面展开扇形的弧长为2π×≈12.28(m),圆锥的侧面积为21××≈14.76(m 2). 因此,搭建20个这样的的蒙古包至少需要毛毡20×+14.76)≈738(m 2). 三、稳固练习教材第114页练习. 四、课堂小结 本节课应该掌握:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算. 五、布置作业习题24.4 第4、5、7题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的D C A B性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算.E DC A B P3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。

24.4 第1课时 弧长和扇形面积 初中数学人教版九年级上册教学课件

24.4 第1课时 弧长和扇形面积 初中数学人教版九年级上册教学课件

解:如图,连接OA,OB,过点O作弦AB的垂线,
垂足为=0.3 m, ∴ OD=OC- DC=0.3 m. ∴ OD=DC. 又 AD ⊥DC,
O.
AD
B
C (3)
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
∴ ∠AOD=60˚,∠AOB=120˚.
弧 圆心角 O
A
B
扇形 O
A
判一判 下列图形是扇形吗?
×
×

× √
合作探究
问题1 半径为r的圆,面积是多少?
r
S πr2
O
问题2 下图中各扇形面积分别是圆面积的几分之几, 具体是多少呢?
r
180°
O
r 90°
O
r 45°
O

r
O
圆心角占 周角的比例
180 360 90 360
45 360
n 360
知识要点
弧长公式
l n 2πR nπR
360
180
注意 用弧长公式进行计算时,要注意公式中n的意义:n表 示1°圆心角的倍数,它是不带单位的.
算一算 已知弧所对的圆心角为60°,半径是4, 则弧长为_43__π_.
例1 制造弯形管道时,要先按中心线计算“展直长
度”,再下料,试计算如图所示管道的展直长度L.
扇形面积占 圆面积的比例
180 360

1 2
90 360

1 4
45 360
=1
8
n
360
扇形的 面积
1 πr 2 2
1 πr 2 4 1 πr2 8
n πr2 360
知识要点 扇形面积公式 半径为r的圆中,圆心角为n°的扇形的面积

24.4 弧长和扇形面积(共2课时)

24.4 弧长和扇形面积(共2课时)

24.4 弧长和扇形面积(共2课时)第一课时: 弧长和扇形面积教学内容1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 教学目标了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.重点:n °的圆心角所对的弧长L=180n R π,扇形面积S 扇=2360n R π及其它们的应用.难点:两个公式的应用.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 教学过程一、复习引入老师口问,学生口答 1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长?(1)圆的周长C=2πR (2)圆的面积S 图=πR 2(3)弧长就是圆的一部分. 课件)请同学们独立完成下题:设圆的半径为R ,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_______. ……5.n °的圆心角所对的弧长是_______.我们可得到:n °的圆心角所对的弧长为180Rn l π=例1、已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。

说明:没有特别要求,结果保留π。

例2、课本111页例题 课堂练习1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即 AB 的长(结果精确到0.1mm )(幻灯片7).c分析:要求 AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110∴ AB 的长=180n R π=11040180π⨯≈76.8(mm ) 因此,管道的展直长度约为76.8mm .扇形的定义:由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。

弧长和扇形面积2

弧长和扇形面积2

自学指导2
认真阅读p111的例1注意解题 格式
巩固练习
课本P112练习3.
尝试练习2
已知扇形的圆心角为120°,半径为2, 则这个扇形的面积为多少?
S扇形
S扇形
n R 120 2 4 360 3 360
2
2
n n 4 2 120 2 S圆 R ( 2 ) 360 360 360 3
3
例题回顾
1、如图,水平放置的圆柱形排水管道
的截面半径是0.6m,其中水面高0.3m. 求截面上有水部分的面积(精确到 0.01m2)
变式:如图、水平放置的圆柱形排水管 道的截面半径是0.6cm,其中水面高 0.9cm,求截面上有水部分的面积。 弓形的面积 = S 扇+ S △
A D E 0 B
当堂训练
l , R 3代入 3n nR l 180 180
2
已知扇形的半径为3cm,扇形的弧长为 πcm,则该扇形的面积是______cm2,
n 60
2
S扇形
nR 60 3 3 360 360 2
3、已知半径为2的扇形,面积4 4 3 为 ,则这个扇形的弧长=____.
(1)公式中n的意义.n表示1°圆心角的 倍数,它是不带单位的; (2)公式要理解记忆(即按照上面推导 过程记忆).
1.扇形的弧长和面积都由_______、_____决定 2.(当圆半径一定时)扇形的面积随着圆 增大 心角的增大而______。
0的扇形面积是多少? 3.圆心角是180
尝试练习2
圆心角是900的扇形面积是多少? 圆心角是2700的扇形面积是多少?
24.4.1 弧长和扇形面积 (二)

弧长和扇形面积2教案

弧长和扇形面积2教案

课题24.4 弧长和扇形面积(第2课时)【教学目标】(一)教学知识点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.(三)情感与价值观要求1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.【重点难点】重点:1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.难点:经历探索圆锥侧面积计算公式.【教学方法】观察猜想、合作交流、讲练结合【自主复习、预习】【教学过程】一、检查自主复习、预习1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.2.问题1:一种太空囊的示意图如图所示,•太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.老师点评:(2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,•圆柱的侧面积和底圆的面积.这三部分中,第二部分和第三部分我们已经学过,会求出其面积,•但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它.二、新课导学我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.(学生分组讨论,提问二三位同学)问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,•底面圆的半径为r,•如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,•因此圆锥的侧面积为________,圆锥的全面积为________.老师点评:很显然,扇形的半径就是圆锥的母线,•扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积S=2360n lπ,其中n可由2πr=2180n lπ求得:n=360rl,•∴扇形面积S=2360360rllπ=πrL;全面积是由侧面积和底面圆的面积组成的,所以全面积=πrL+r2.例1.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.解:设纸帽的底面半径为rcm,母线长为Lcm,则r=582π2258()202π+≈22.03S纸帽侧=πrL≈12×58×22.03=638.87(cm)638.87×20=12777.4(cm2)所以,至少需要12777.4cm2的纸.例2.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?分析:(1)由S扇形=2360n Rπ求出R,再代入L=180n Rπ求得.(2)若将此扇形卷成一个圆锥,•扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径,•圆锥母线为腰的等腰三角形.解:(1)如图所示:∵300π=2 120 360Rπ∴R=30∴弧长L=12030180π⨯⨯=20π(cm)(2)如图所示:∵20π=20πr∴r=10,R=30900100-2∴S轴截面=12×BC×AD=12×2×10×22(cm2)三、巩固练习(一)基础训练——夯实基础一、课本课本P114 练习1、2、二、选择题.1.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线为()A.6cm B.8cm C.10cm D.12cm2.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,•用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()A.228° B.144° C.72° D.36°3.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,•从点A出发绕侧面一周,再回到点A的最短的路线长是()A.3.332C.3 D.3(二)提升训练——能力培养1.母线长为L,底面半径为r的圆锥的表面积=_______.2.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,•所得圆柱体的表面积是________(用含 的代数式表示)3.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡.4.一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,•需要加工这样的一个烟囱帽,请你画一画:(1)至少需要多少厘米铁皮(不计接头)(2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?5.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,•求圆锥全面积.(三)综合运用——拓展思维如图所示,一个几何体是从高为4m,底面半径为3cm•的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,•求这个几何体的表面积.四、归纳小结本节课应掌握:1.什么叫圆锥的母线.2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题.五、布置作业P108 8、9【课后反思】。

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 第2课时 圆锥的侧面积与全面积

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 第2课时 圆锥的侧面积与全面积
7.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形, 求这个圆锥的侧面积及高.
解:侧面积为12 ×12×12π=72π(cm2).设底面半径为 r cm,则有 2πr =12π,∴r=6.由于高、母线、底面圆的半径恰好构成直角三角形, 根据勾股定理可得,高 h= 122-62 =6 3 (cm)
知识点 2:圆锥的全面积 8.圆锥的底面半径为 4 cm,高为 5 cm,则它的表面积为( D ) A.12π cm2 B.26π cm2 C. 41 π cm2 D.(4 41 +16)π cm2
9.已知直角三角形 ABC 的一条直角边 AB=12 cm,另一条直角边 BC =5 cm,则以 AB 为轴旋转一周,所得到的圆锥的表面积是( A ) A.209π cm2 B.155π cm2 C.90π cm2 D.65π cm2
解:l=2π×3=nπ18×0 6 ,∴n=180,∴圆锥侧面展开图是一个半圆,如 图所示,∠BAP=90°,AB=6 m,AP=3 m,∴BP=3 5 m,∴小猫 所经过的最短路程是 3 5 m
人教版
第二十四章 圆
24.4 弧长和扇形面积 第2课时 圆锥的侧面积与全面积
1.圆锥是由一个底面和一个__侧__面围成的几何体,连接圆锥_顶__点__和底面 圆周上任意一点的线段叫做圆锥的母线.
练习1:一圆锥的母线长为5,高为4,则该圆锥底面圆的周长为_6_π__.
2.圆锥的侧面展开图是一个__扇__形,扇形的半径为圆锥的_母__线__长,扇形 的弧长即为圆锥底面圆的_周__长__.圆锥的全面积等于底面积+_侧__面__积__.
则圆锥的侧面积为12 π·AC2=18π(cm2)
17.(2020·广东中考改编)如图,从一块半径为1 m的圆形铁皮上剪出一个 圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,求该圆锥 的底面圆的半径r.

弧长与扇形面积公式第2课时

弧长与扇形面积公式第2课时
(4)用公式表示圆锥的侧面积.
提问:
(1)你用什么办法可以计算圆锥的侧面积? (2) 圆锥的侧面展开图是一个什么图形? 扇形.
(3) 设圆锥的母线长为l,底面圆的半径为r,那 么这个扇形的半径为 l ,扇形的弧长为 2πr , 扇形的面积(即圆锥的侧面积)是多少? πrl 最后得出: 圆锥的侧面积计算公式:s圆锥侧=πrl. 圆锥的全面积=侧面积+底面积
解题思路图:
底面积为 35 m2 可以求出 r的值
高为3.5 m, 外围高1.5 m
可以求出 h1和h2
求出母线 l及S圆锥侧、S圆柱侧
解:根据题意,下部圆柱的底面积为35 m2,高为 1.5 m;上部圆锥的高为3.5-1.5=2(m). 圆柱的底面半径为
35 m 3.34m, π
侧面积为2π×3.34×1.5≈31.46(m2).
l
r
O
2.谈
1.必做题: 教科书第114~115页习题24.4第1(3)、4、7、 8 题. 2.选做题: 教科书第115页习题24.4第9题.
10 m
3m
五、归纳总结
1.本节的主要内容
两个公式:圆锥的侧面积、全面积计算公式.
s圆锥侧=πrl. s圆锥全= s圆锥侧+ s圆锥底= πrl+πr2
两个结论:
l2=
h2+
r
2,
r 360 (度) l
两种能力:一是相互转化能力,圆锥的母线 就是扇形的半径,扇形的弧长就是圆锥的底面周 长;二是运用所学知识解决实际问题的能力.
四、课堂练习,提高能力
1.填空
(1)75˚的圆心角所对的弧长是2.5 π cm,则此 弧所在圆的半径是 cm;

24.4弧长及扇形面积(第2课时)课件

24.4弧长及扇形面积(第2课时)课件

S
h=20
解:设纸帽的底面半径为rcm,母线长为lcm,所以
由2πr=58得
58 29 r . 2
2
l
O┓ r
1 S圆锥侧 2r l 29 22.03 638 87(cm2 ). . 2
2πr=58 29 2 根据勾股定理 ,圆锥母线 l 20 22.03.
24.4弧长和扇形面积
Байду номын сангаас
圆锥的侧面积和全面积
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
n 2 s r 或s 1 lr 360 2
圆锥
我们把连接圆锥的顶点S和底 面圆上任一点的连线SA,SB 等叫做圆锥的母线
圆锥的高 S
连接顶点S与底面圆的圆心O 的线段叫做圆锥的高
思考:圆锥的母线和圆 锥的高有那些性质?
母线 A O
r
B
如果用r表示圆锥底面的半径, h表示圆锥的高 线长, l 表示圆锥的母线长,那么r,h, l 之间有 怎样的数量关系呢?
由勾股定理得:
h r ll
r2+h2=l 2
填空: 根据下列条件求值(其中r、h、l 分别是圆锥的底面半径、高线、母线长) (1)
例1:如图所示的扇形中,半径R=10,圆心角θ=144° 用这个扇形围成一个圆锥的侧面. (1)求这个圆锥的底面半径r;
(2)求这个圆锥的高(精确到0.1)
A
C
B
O
解:(1)因为此扇形的弧长=它所 围成圆锥的底面圆周长 R 所以有 2 r 180 所以: r
R
360
(2)因为圆锥的母线长=扇形的半径

【课件】24.4弧长和扇形面积

【课件】24.4弧长和扇形面积

∴AF= AB2+BF2= 22+12= 5.由平行四边形的性质,△FEC≌
△CGF,∴S△FEC=S△CGF,∴S 阴影=S 扇形 BAC+S△ABF+S△FGC-S 扇形 FAG
=90×3π60×22+12×2×1+12×(1+2)×1-90×π
×( 360
5)2=52-π4
16.(2014·昆明)如图,在△ABC 中,∠ABC=90°,D 是边 AC 上的一点,连接 BD,使∠A=2∠1,E 是 BC 上的一点,以 BE 为直径的⊙O 经过点 D.
(1)求证:AC 是⊙O 的切线; (2)若∠A=60°,⊙O 的半径为 2,求阴影部分的面积.(结果
保留根号和π)
解:(1)连接 OD,∵OB=OD,∴∠1=∠BDO,∴∠DOC=2 ∠1=∠A.在 Rt△ABC 中,∠A+∠C=90°,即∠DOC+∠C=90 °,∴∠ODC=90°,即 OD⊥DC,∴AC 为圆 O 的切线
3.已知扇形的圆心角为 45°,弧长等于π2 ,则该扇形的半径是 ___2__.
4.(2014·兰州)如图,在△ABC 中,∠ACB=90°,∠ABC=30
°,AB=2.将△ABC 绕直角顶点 C 逆时针旋转 60°得△A′B′C,则点
B 转过的路径长为(B )
π A. 3
3π B. 3
2π C. 3
∠FAB=90°.∵线段 AF 绕点 F 顺时针旋转 90°得线段 FG,∴∠
AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC
∥FG.∵AF=EC,AF=FG,∴EC=FG,∴四边形 EFGC 是平行四
边形,∴EF∥CG
(2)∵AB=2,E 是 AB 的中点,∴FB=BE=12AB=12×2=1,

弧长和扇形面积2

弧长和扇形面积2

迅速、 正确的运用 所学公式解题,培养 学生良好的学习习 惯,训练学生的解题 速度.
培养学生综合运 用知识解题的能力. 教师出示例题后, 引导学生分析已 知条件,教师要关注学生对题目中的 有关概念是否清楚,如水面高指的是 什么?
教学过程设计 问题与情境 师生行为 经过分析,学生知道了水面高即 设计意图
24.4.1
弧长和扇形面积
教学任务分析 知识技能 数学思考 解决问题 情感态度 掌握弧长和扇形面积公式的推导过程,初步运用扇形面积公式 进行一些有关计算. 通过弧长和扇形面积公式的推导过程,发展学生分析问题、解 决问题的能力. 通过扇形面积公式的推导,发展学生抽象、理解、概括、归 纳能力和迁移能力. 在扇形面积公式的推导和例题教学过程中,渗透“从特殊到 一般,再由一般到特殊”的辩证思想.
O A D C B
学生在学习新知 弧 AB 的中点到弦 AB 的距离. 识的同时要想到学过 因此想到做辅助线的方法: 连接 OA、AB,过 O 作 OC⊥AB 于 的知识,在这里就运 用了垂径定理. 点 D,交 AB 于点 C. 教师关注学生对题目的理解, 师 生共同分析题目条件后,由学生独 立写出解题过程,用实物投影展示 学生的解题过程,再由学生对解题 过程给予评价. 由学生谈谈本节课学习的体会 和收获,各抒己见.教师对学生的 回答给予帮助, 让语言表达更准确. nπ R 知识:弧长公式 l = ; 180 扇形面积公式: nπ R 2 1 S扇形 = = lR . 360 2 能力: 灵活运用公式解决实际问 题. 数学思想:数形结合思想. 学生课下独立完成. 教师对学生的作业在批改后及 时反馈. 巩固所学知识, 达到复习的目的,教 师及时了解学生对本 节知识的掌握情况, 对教学进度和方法进 行适当调整,并对有 困难的学生给予指 导。 发展学生的解决 实际问题的能力和应 用意识.初步探索建 立数学模型.让学生 畅所欲言,教师了解 学生的学习情况,并 让学生逐渐的学会总 结。 检查知识的落实 性,以便发现问题和 及时解决问题。 继续培养学生的 探究意识和学习上持 之以恒的精神.

【精】 《弧长和扇形面积(第2课时)》精品教案

【精】 《弧长和扇形面积(第2课时)》精品教案

《弧长和扇形面积(第2课时)》精品教案课题24.4弧长和扇形面积(2)单元第二十四章学科数学年级九年级上学习目标情感态度和价值观目标培养学生的观察、想象、实践能力,获得数学学习经验,懂的数学与生活的密切联系。

能力目标通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题。

知识目标 1.了解圆锥母线的概念.2.理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用。

重点圆锥侧面积和全面积的计算公式的探索与运用。

难点探索圆锥侧面积计算公式。

学法自主探索、合作交流、启发引导教法情景教学法、活动探究法;教学过程教学环节教师活动学生活动设计意图导入新课一、复习引入回忆n°的圆心角所对的弧长公式和扇形面积公式,并讲讲它们的区别与联系.这节课主要探究圆锥的侧面积计算方法. 通过回顾上节课的主要知识,引导学生巩固重点,引出课题。

通过知识回顾,巩固重点,提出问题,激发学生的学习兴趣。

讲授新课二、探究新知活动1:圆锥的有关概念1.圆锥的形成①一个底面和一个侧面围成的;②一个直角三角形绕一条直角边所在直线旋转一周得到的.引导学生思考圆锥的形成,学生按教师要求操作,观察,思考,通过探索圆锥的概念,将学生的思维从生活中走进2.把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.3圆锥的高:连接底面圆圆心和圆锥顶点的线段.4圆锥的侧面(曲面)和底面(圆)活动2:圆锥的侧面积问题:圆锥的侧面是一个曲面,无法直接求其面积.圆柱的侧面也是一个曲面,因为展开图是一个长方形,所以求圆柱的侧面积就是求其展开图的面积.类似的,利用圆锥的侧面展开图求其侧面的面积可以吗?圆锥的侧面展开图是什么图形?沿圆锥一条母线将圆锥侧面剪开并展平,圆锥的侧面展开图是一个以圆锥的顶点为圆心,母线为半径的扇形.如图所示,设圆锥的母线长为l,•底面圆的半径为r,•那么这个扇形的半径为_____,扇形的弧长为______,因此圆锥的侧面积为_______.扇形的弧长:2πr,圆锥的侧面积:注意:计算时需搞清圆锥与侧面展开扇形之间几个量的对应关系:交流,教师给出圆锥的母线、圆锥的高等定义。

24.4 弧长和扇形公式(第二课时)(教学设计)九年级数学上册同步备课系列(人教版)

24.4 弧长和扇形公式(第二课时)(教学设计)九年级数学上册同步备课系列(人教版)

24.4 弧长和扇形公式(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十四章“圆”24.4 弧长和扇形公式(第二课时),内容包括:圆锥的侧面积.2.内容解析圆锥的侧面展开图是平面图形与空间几何体相互转换的教学内容,是培养学生空间想象能力和动手操作能力的重要内容.由于圆锥的侧面展开图是一个扇形,因此,利用弧长和扇形面积公式,可通过计算它的展开图的面积求得圆锥的侧面积,进而可以求出其全面积.结合圆锥侧面积和全面积的学习,有助于培养学生的空间想象能力.基于以上分析,确定本节课的教学重点是:计算圆锥的侧面积和全面积.二、目标和目标解析1.目标1)理解圆锥的相关概念.2)理解圆锥侧面积的计算公式,并会运用公式解决问题.2.目标解析达成目标1)的标志是:理解圆锥、圆锥的高、圆锥的母线、圆锥的侧面积、圆锥的全面积等概念.达成目标2)的标志是:理解圆锥侧面积的计算公式,并会运用公式解决问题.三、教学问题诊断分析本节课学习圆锥的侧面积和全面积,是弧长和扇形面积公式的应用,在研究圆锥侧面展开图时,需要学生具备一定的空间观念,能认识立体图形与平面图形之间的联系,并利用这种关系进行分析,这对学生来说是一个难点.本节课的教学难点是:圆锥侧面积公式的推导.四、教学过程设计(一)探究新知【问题一】观察下面几何体,你发现了什么?师生活动:教师提出问题,学生通过观察图形发现以上几何体都是由一个底面和一个侧面围成的几何体.从而教师给出圆锥、母线、圆锥的高的概念.【设计意图】理解圆锥、母线、圆锥的高的概念【问题二】观察下图,你觉得圆锥的高与底面、底面圆心有什么关系?师生活动:学生通过观察图形发现:圆锥的高通过底面的圆心,并垂直于底面.【问题三】圆锥的母线有多少条?你发现了什么?师生活动:学生通过观察图形发现:圆锥的母线有无数条,它们的长都相等.【问题四】圆锥的底面圆半径r、高h、母线l三者之间有什么关系呢?师生活动:先由学生通过观察图形给出自己的见解,再由教师引导与总结得出:圆锥的母线l、圆锥的高h、圆锥底面圆半径r恰好构成一个直角三角形,所以圆锥可以看做是一个直角三角形绕它的一条直角边旋转一周所构成的图形,满足l2=h2+r2,利用这一关系,已知任意两个量,可以求出第三个量.【设计意图】让学生理解圆锥的母线l、圆锥的高h、圆锥底面圆半径r恰好构成一个直角三角形,满足l2=h2+r2.【问题五】将一个扇形纸片的两条半径重合,所围成的几何体是_____________.师生活动:学生通过动手操作,给出答案(圆锥体).【问题六】圆锥体展开后是什么样子的呢?师生活动:学生根据本节课所学,可以得出:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成.【问题七】展开的扇形弧长和底面圆之间有什么关系呢?师生活动:学生根据本节课所学,可以得出:扇形的弧长=底面圆的周长.【问题八】圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?师生活动:学生根据本节课所学,可以得出:扇形的半径与圆锥中的母线相等.【问题九】如何计算圆锥的侧面积?l×2πr= πr l(r表示圆锥底面的半径,l表示圆锥的母线长)师生活动:S扇形= 12【设计意图】让学生理解圆锥侧面积计算公式的推导过程.(二)典例分析与针对训练例1 已知圆锥的底面半径为5 cm,母线长为13 cm,则这个圆锥的侧面积是___________cm2【针对训练】1. 已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.2. 已知圆锥的母线长为5cm,侧面积为15π cm2,则这个圆锥的底面圆半径为_____cm.3. 圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5 √3cm B.10cm C.6cm D.5cm4. 若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120° B.180°C.240°D.300°5. 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15πC.20πD.30π6. 如图,聪聪用一张半径为6cm、圆心角为120°的扇形纸片做成一个圆锥,则这个圆锥的高为()A.4√2cm B.2√2cm C.2√3cm D.√3cm7.若把一个半径为12cm,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的半径是_______,圆锥的高是__________,侧面积是____________.【设计意图】利用圆锥侧面积公式进行计算.(三)探究新知【问题十】如何计算圆锥的表面积?师生活动:学生根据本节课所学,可以得出:S表=S扇+S底=πr l+πr2 .【设计意图】让学生掌握圆锥表面积的计算方法.(四)典例分析与针对训练例2 蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为12m2,高为3.2 m,外围高1.8m的蒙古包,至少需要多少m2的毛毡?(π取3.142,结果取整数).【针对训练】1. 如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5√29)πm2B.40πm2C.(30+5√21)πm2D.55πm22. 用铁皮制作圆锥形容器盖,其尺寸要求如图所示.(1)求圆锥的高;(2)求所需铁皮的面积S(结果保留π).3. 如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm),电镀时,如果每平方米用锌0.11kg,电镀100个这样的锚标浮筒,需要用多少锌?【设计意图】考查学生对计算圆锥表面积方法的掌握情况.(五)直击中考1.(2023·山东东营中考真题)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.6⏜的长为()2.(2023·湖南中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中AA′A.4πB.6πC.8πD.16π3.(2023·浙江宁波中考真题)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为cm2.(结果保留π)4.(2023·四川内江中考真题)如图,用圆心角为120°半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是.5.(2023·湖南娄底中考真题)如图,在△ABC中,AC=3,AB=4,BC边上的高AD=2,将△ABC绕着BC所在的直线旋转一周得到的几何体的表面积为.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考的内容,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.简述圆锥的相关概念?3.简述与圆锥面积计算的相关公式?(七)布置作业P114:练习第1题,第2题P115:习题24.4 第5题,第9题五、教学反思。

24-4弧长和扇形面积(第二课时)课件22-23学年人教版九年级数学上册

24-4弧长和扇形面积(第二课时)课件22-23学年人教版九年级数学上册

叫做圆锥的高。
ha
3. 连结圆锥_顶_ 点__和底面圆周上的任意一点的A O r B
线段叫做圆锥的母线。圆锥的母线有_无__数___条。
4. 根据下列条件求值(其中r、h、l 分别是圆锥的底面半
径、高线、母线长)
(1)l = 2,r=1 则 h=___3____
(2) l = 10, h = 8 则r=___6____
圆锥的全面积
R
A
圆锥的全面积=圆锥的侧面积+底面积.
n
h
l
B Or C
S全 =S侧+S底
rR r 2
典型例题
蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建 20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多 少平方米的毛毡? (π取3.142,结果取整数).
34 5
=2.4.
S全3=S侧上+S侧下=πr3l2+πr3l3=π×2.4×3+π×2.4×4=16.8π.
课堂小结
重要图形
S
圆锥
的高
l
h
母线
A
OrB
侧面
展开图 底
l

ro
重要结论
r2 + h2 = lS2圆锥侧 = πrl
S圆锥全 = S圆锥侧 + S圆锥底 = πrl + πr2
① 圆锥侧面展开图扇形的半径 = 母线长 l
② 圆锥侧面展开图扇形的弧长 = 底面圆周长
人 教版
第二十四章:圆 24.4弧长和扇形面积
第二课时-圆锥的侧面积和全面积
学习目标
1. 体会圆锥侧面积的探索过程;(重点) 2. 会求圆锥的侧面积和全面积,并能解决一些简单

最新人教版初中数学九年级上册《24.4 弧长和扇形面积 (第2课时)》精品教学课件

最新人教版初中数学九年级上册《24.4 弧长和扇形面积 (第2课时)》精品教学课件

巩固练习
如图所示的扇形中,半径R=10,圆心角θ=144°,用这
个扇形围成一个圆锥的侧面.
(1)则这个圆锥的底面半径r= 4 .
(2)这个圆锥的高h=
A
2 21 .
r
R=10
θ
C
O
B
探究新知
素养考点 2
圆锥有关面积的计算
例2 如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为
50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面
2 .一个扇形,半径为30cm,圆心角为120度,用它做成一个
10cm .
圆锥的侧面,那么这个圆锥的底面半径为_____
3.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积
2
2
是 15πcm ,全面积是 24πcm .
课堂检测
能力提升题
如图,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求
布 置 作 业
课后作业
1.从课后习题中选取;
2.完成练习册本课时的习题。
总结点评
同学们,我们今天的探索很成
功,但探索远还没有结束,让我们
在今后的学习生涯中一起慢慢去发
现新大陆吧!


我们把连接圆锥的顶点S和底面圆上任一点的连线SA,
SB 等叫做圆锥的母线.
圆锥有无数条母线,它们都相等.
圆锥的高
S
圆锥的高
从圆锥的顶点到圆锥底面圆心
之间的距离是圆锥的高.
母线
A
O
r
B
探究新知
要点归纳
如果用r表示圆锥底面的半径, h表示圆锥的高线长,
l表示圆锥的母线长,那么r、h、l 之间数量关系是:

弧长和扇形面积第二课时初中数学原创课件

弧长和扇形面积第二课时初中数学原创课件
24.4 弧长和扇形 面积(2)
复习回顾
1. 半径为 3 的圆中,圆心角为 120 的弧长是 2 , 扇形面积是 3 .
l nR 120 3 2 180 180
S扇形 =
nR2 360
120 32 360
3
复习回顾
2. 半径为 6 的圆中,扇形面积为 9π,则它的弧长 为 3 .
S扇形 =
h2 r2 l2.
B
O r A 圆锥的母线长都相等.
圆锥的侧面积和全面积
做一做:沿一条母线将圆锥侧面剪开并展平, 观察圆锥的侧面展开图.
圆锥的侧面展开图是扇形.
圆锥的侧面积和全面积
想一想: 圆锥的侧面展开图是扇形,那扇形的半径 与圆锥中哪一条线段相等,扇形的弧长与谁相等?
圆锥的侧面积和全面积
A 多少 cm?
过圆锥轴(高)的截面,即△ABC
B
C
分析:
曲面 平面. 圆锥侧面 扇形.
垂线段最短 BD.
BAC 1 BAB '. 2
A
B A
B
D
C
C B'
例题
解:设圆锥侧面展开图的圆心角为 n ,
nl 2r , n r 360 10 360 120.
180
l
30
BAC 60 .
根据垂线段最短,
A
当 BD AC 时 BD 最短.
BD 15 3(cm).
B
B'
D
∴它爬行的最短路线长是15 3 cm. C
练习
3. 已知圆锥底面半径为 10 cm,母线长 为 40 cm. 若一甲虫从圆锥底面圆上 一点 A 出发,沿着圆锥侧面绕行到母 线 PA 的中点 B ,它所走的最短路程 长是多少 cm?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.4 弧长和扇形面积(第2课时)
【学习目标】
1、了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.
2、通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.
【学习过程】
一、温故知新:
1、什么是n °的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点。

2、一种太空囊的示意图如图所示,•太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.
二、自主学习:
自学教材P 122---P 123,思考下列问题:
1、什么是圆锥的母线?
2、圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积? 若圆锥的母线长为l ,底面圆的半径为r ,则圆锥的侧面积可表示为 ,圆锥的全面积为 。

3、圆柱的侧面展开图是什么图形?若圆柱底面圆的半径为r ,圆柱的高为h ,则圆柱的侧面积可表示为 ,全面积可表示为 。

三、典型例题:
例1:(教材123页例2)
例2:已知扇形的圆心角为120°,面积为300 cm2.
(1)求扇形的弧长;
(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?
四、巩固练习:
练习1;
1、教材P
124
2、教材P
练习2;
124
3、(教材124页习题24.4第4题)
Rt△ABC中,∠C=90°,AC=3,BC=4,把它分别沿三边所在的直线旋转一周,求所得的三个几何体的全面积。

五、教学反思:
【拓展创新】
1、如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,•从点A出发绕侧
面一周,再回到点A的最短的路线长是()
C. D.3
A..
2
2、如图所示,一个几何体是从高为4m,底面半径为3cm•的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,•求这个几何体的表面积.
3、教材125页习题24.4第10题。

【布置作业】:教材125页习题24.4第8、9题。

相关文档
最新文档