管理运筹学复习题

合集下载

《管理运筹学期末复习题》

《管理运筹学期末复习题》

《管理运筹学期末复习题》运筹学期末复习题⼀、判断题:1、任何线性规划⼀定有最优解。

()2、若线性规划有最优解,则⼀定有基本最优解。

()3、线性规划可⾏域⽆界,则具有⽆界解。

()4、基本解对应的基是可⾏基。

()5、在基本可⾏解中⾮基变量⼀定为零。

()6、变量取0或1的规划是整数规划。

()7、运输问题中应⽤位势法求得的检验数不唯⼀。

()8、产地数为3,销地数为4的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为⼀组基变量.()9、不平衡运输问题不⼀定有最优解。

()10、m+n-1个变量构成基变量组的充要条件是它们不包含闭回路。

()11、含有孤⽴点的变量组不包含有闭回路。

()12、不包含任何闭回路的变量组必有孤⽴点。

()13、产地个数为m销地个数为n的平衡运输问题的系数距阵为A,则有r(A)≤m+n-1()14、⽤⼀个常数k加到运价矩阵C的某列的所有元素上,则最优解不变。

()15、匈⽛利法是求解最⼩值分配问题的⼀种⽅法。

()16、连通图G的部分树是取图G的点和G的所有边组成的树。

()17、求最⼩树可⽤破圈法.()18、Dijkstra算法要求边的长度⾮负。

()19、Floyd算法要求边的长度⾮负。

()20、在最短路问题中,发点到收点的最短路长是唯⼀的。

()21、连通图⼀定有⽀撑树。

()22、⽹络计划中的总⼯期等于各⼯序时间之和。

()23、⽹络计划中,总时差为0的⼯序称为关键⼯序。

()24、在⽹络图中,关键路线⼀定存在。

()25、紧前⼯序是前道⼯序。

()26、后续⼯序是紧后⼯序。

()27、虚⼯序是虚设的,不需要时间,费⽤和资源,并不表⽰任何关系的⼯序。

()28、动态规划是求解多阶段决策问题的⼀种思路,同时是⼀种算法。

()29、求最短路径的结果是唯⼀的。

()30、在不确定型决策中,最⼩机会损失准则⽐等可能性则保守性更强。

()31、决策树⽐决策矩阵更适于描述序列决策过程。

()32、在股票市场中,有的股东赚钱,有的股东赔钱,则赚钱的总⾦额与赔钱的总⾦额相等,因此称这⼀现象为零和现象。

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案

四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。

建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。

月销售分别为250,280和120件。

问如何安排生产计划,使总利润最大。

2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。

并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。

已知该线性规划的目标函数为maxZ=5x 1+3x 2,约束形式为“≤”,X 3,X 4为松驰变量.表中解代入目标函数后得Z=10(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解第四章 线性规划的对偶理论五、写出下列线性规划问题的对偶问题1.minZ=2x 1+2x 2+4x 3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。

七、用对偶单纯形法求解下列线性规划问题:八、已知线性规划问题(1)写出其对偶问题 (2)已知原问题最优解为X﹡=(2,2,4,0)T,试根据对偶理论,直接求出对偶问题的最优解。

《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-《管理运筹学》期中测试题 第一部分 线性规划 一、填空题 1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。

2.图解法适用于含有 两个 _ 变量的线性规划问题。

3.线性规划问题的可行解是指满足 所有约束条件_ 的解。

4.在线性规划问题的基本解中,所有的非基变量等于 零 。

5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关 6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。

7.若线性规划问题有可行解,则 一定 _ 有基本可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。

9.满足 非负 _ 条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。

12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。

13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。

14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。

15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。

17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。

18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。

19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。

运筹学复习题

运筹学复习题

D.指派问题的数学模型是整数规划模型 六、网络模型(每小题 10 分,共 100 分)
1. μ 是关于可行流 f 的一条增广链,则在 μ 上有 "D"
A.对一切
B.对一切
C.对一切
D.对一切
2.下列说法正确的是 "C"
A.割集是子图
B.割量等于割集中弧的流量之和
C.割量大于等于最大流量
D.割量小于等于最大流量
C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解
4.原问题与对偶问题都有可行解,则 "D"
A. 原问题有最优解,对偶问题可能没有最优解 B. 原问题与对偶问题可能都没有最优解
C.可能一个问题有最优解,另一个问题具有无界解 D.原问题与对偶问题都有最优解
5.已知对称形式原问题(MAX)的最优表中的检验数为(λ1,λ2,...,λn),松弛变量的检验数为(λn+1, λn+2,...,λn+m),则对偶问题的最优解为 "C"
A. 约束条件相同
B.模型相同 C.最优目标函数值相等
D.以上结论都不对
2.对偶单纯形法的最小比值规划则是为了保证 "B"
A.使原问题保持可行
B.使对偶问题保持可行
C.逐步消除原问题不可行性 D.逐步消除对偶问题不可行性
2
3.互为对偶的两个线性规划问题的解存在关系 "A"
A.一个问题具有无界解,另一问题无可行解 B 原问题无可行解,对偶问题也无可行解
A.最大流量等于最大割量 B.最大流量等于最小割量
C.任意流量不小于最小割量 D.最大流量不小于任意割量

管理运筹学复习题

管理运筹学复习题

管理运筹学复习题一、简答题1、试述线性规划数学模型的结构及各要素的特征。

2、求解线性规划问题时可能出现哪几种结果,哪些结果反映建模时有错误。

3、举例说明生产和生活中应用线性规划的方面,并对如何应用进行必要描述。

4、什么是资源的影子价格,同相应的市场价格之间有何区别,以及研究影子价格的意义。

5、试述目标规划的数学模型同一般线性规划数学模型的相同和异同之点。

二、判断题1、线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;( )2、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点;( )3、若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;( )4、线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优。

( )5、求网络最大流的问题可归结为求解一个线性规划模型。

( )三、计算题1、用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。

2、线性规划问题:试用图解法分析,问题最优解随c1(-∞,+∞) 取值不同时的变化情况。

3、某饲养场需饲养动物,设每头动物每天至少需700g蛋白质、30g矿物质、100mg维生素。

现有五种饲料可供选用,各种饲料每kg营养成分含量及单价如表1-8所示。

要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。

4、写出下列线性规划问题的对偶问题。

5、某厂生产甲、乙、丙三种产品,已知有关数据如表2-12所示,试分别回答下列问题:(a) 建立线性规划模型,求使该厂获利最大的生产计划;(b)若产品乙、丙的单件利润不变,则产品甲的利润在什么范围内变化时,上述最优解不变。

(c)若原材料A市场紧缺,除拥有量外一时无法购进,而原材料B如数量不足可去市场购买,单价为0. 5,问该厂应否购买,以购进多少为宜;6、某厂生产I、II、III三种产品,分别经过A、B、C三种设备加工。

(完整word版)最全的运筹学复习题及答案

(完整word版)最全的运筹学复习题及答案

5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2)。

表示约束条件的数学式都是线性等式或不等式;(3)。

表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2.图解法适用于含有两个变量的线性规划问题.3.线性规划问题的可行解是指满足所有约束条件的解。

4.在线性规划问题的基本解中,所有的非基变量等于零.5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7.线性规划问题有可行解,则必有基可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解.9.满足非负条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13.线性规划问题可分为目标函数求极大值和极小_值两类。

14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解. 17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18。

如果某个约束条件是“≤"情形,若化为标准形式,需要引入一松弛变量。

19。

如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j =X j ′- X j 。

运筹学复习题目加答案

运筹学复习题目加答案

一、单选题1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。

A. maxZB. max(-Z)C. –max(-Z)D.-maxZ2. 下列说法中正确的是( )。

A .基本解一定是可行解B .基本可行解的每个分量一定非负C .若B 是基,则B 一定是可逆D .非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为 ( )A.多余变量 B .松弛变量 C .人工变量 D .自由变量4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。

A .多重解B .无解C .正则解D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。

A .等式约束B .“≤”型约束C .“≥”约束D .非负约束6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。

A .多余变量B .自由变量C .松弛变量D .非负变量7.在运输方案中出现退化现象,是指数字格的数目( )。

A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-1二、判断题1.线性规划问题的一般模型中不能有等式约束。

2.对偶问题的对偶一定是原问题。

3.产地数与销地数相等的运输问题是产销平衡运输问题。

4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。

5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。

6.线性规划问题的基本解就是基本可行解。

三、填空题1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。

2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为:3. 线性规划解的情形有4. 求解指派问题的方法是 。

管理运筹学 复习题

管理运筹学 复习题

复习题一、问答题1、线性规划最优解的存在有哪几种情况?简述各种情况在单纯形法求解过程中的表现?1(1)、在遇到退化的基可行解时、单纯形法求解出现循环时如何处理? 2、什么是影子价格?影子价格有什么作用?3、什么是平衡运输问题?该类问题数学模型上有什么样的特征?4、分支定界法包含两个重要概念,即“分支”和“定界”。

试述这两个概念的基本含义!5、什么是增广链?如何确定调整量?如何确定新的流?6、试阐述具有不同等级目标规划求解的基本过程。

7、试述目标规划问题的解决思路。

8、在图论中什么是最小生成树,试述破圈法求最小生成树的方法。

9、图论中的图的涵义是什么? 10、在图论中什么是生成子图? 11、在图论中网络的含义是什么?12、如何识别线性规划问题有多重最优解? 13、如何识别运输问题有多重最优解? 一、问答题1、答:线性规划问题的最优解主要存在四种情况:1)唯一最优解。

判断条件:单纯形最终表中所有非基变量的检验数均小于零 2)多重最优解:判断条件:单纯形最终表中存在至少一个非基变量的检验数等于零。

3)无界解。

判断条件:单纯形法迭代中某一变量的检验数大于零,同时它所在系数矩阵列中的所有元素均小于等于零4)无可行解。

判断条件:在辅助问题的最优解中,至少有一个人工变量大于零2、答:把在一定条件下的最优生产方案中,某种资源增加或减少一个单位给总收益带来的改变量,称为此种资源在一定条件的影子价格。

作用:a.能为经理的经营决策提供重要的指导(可举例说明)b.为重新分配一个组织内的资源提供依据。

3、答:平衡运输问题指的是总供给等于总需求的运输问题。

其特点如下: 1)系数矩阵全部由0和1两种元素值组成,前m 行每行有n 个1,后n 行每行有m 个1。

每列又且只有2个1,P ij 向量的1分别在第i 行和第m+j 行。

2)共有m*n 个决策变量,m+n 个约束方程,基变量却只有m+n-1个。

3)任何一个平衡运输问题至少有一个最优解4、答:“分支”:若x k 不为整数,将对应的线性规划问题分别加入两个不等式,即[]k k b x ≤和[]1+≥k k b x 。

《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案

《管理运筹学》期中测试题第一部分线性规划一、填空题1.线性规划问题是求一个在一组下的最值问题。

2.图解法适用于含有变量的线性规划问题。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其的集合中进行搜索即可得到最优解。

9.满足条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 _ 变量。

12.线性规划模型包括、、三个要素。

13.线性规划问题可分为目标函数求 _ 值和 _值两类。

14.线性规划问题的标准形式中,约束条件取 _ 式,目标函数求_值,而所有决策变量必须。

17.求解线性规划问题可能的结果有。

18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 _ 变量。

24.在单纯形迭代中,选出基变量时应遵循_法则。

二、单选题3.线性规划模型不包括下列_要素。

A.目标函数 B.约束条件 C.决策变量 D.状态变量4.线性规划模型中增加一个约束条件,可行域的范围一般将_。

A.增大 B.缩小 C.不变 D.不定11.若目标函数为求max,一个基本可行解比另一个基本可行解更好的标志是A使Z更大 B 使Z更小 C 绝对值更大 D Z绝对值更小15如果第K个约束条件是“≤”情形,若化为标准形式,需要A左边增加一个变量 B右边增加一个变量 C左边减去一个变量D 右边减去一个变量16.若某个b k≤0, 化为标准形式时原不等式A 不变B 左端乘负1C 右端乘负1D 两边乘负117.为化为标准形式而引入的松弛变量在目标函数中的系数应为A 0B 1C 2D 319.用单纯形法的代数形式求解最大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部<0,则说明本问题。

A.有惟一最优解 B.有多重最优解 C.无界 D.无解20. 单纯形法代数形式当中,入基变量的确定应选择检验数A绝对值最大 B绝对值最小 C 正值最大 D 负值最小第二部分运输问题一、填空题2.运输方案的最优性判别准则是:当全部检验数时,当前的方案一定是最优方案。

管理运筹学客观题复习题

管理运筹学客观题复习题

一、单项选择题1.用单纯形法求解线性规划时最优表格的检验数应满足〔D〕A.大于0;B.小于0;C.非负D.非正2.线性规划的可行域的形状主要决定于〔D〕A.目的函数B.约束条件的个数C.约束条件的系数D.约束条件的个数和约束条件的系数3.线性规划一般模型中,自由变量可以用两个非负变量的什么来代换〔B〕A.和B.差C.积D.商4.线性规划问题假设有最优解,那么一定可以在可行域的什么点到达〔C〕A.内点B.外点C.顶点D.几何点5.在线性规划模型中,满足约束条件和非负条件的解称为〔〕A.根本解 B.可行解 C.根本可行解 D.最优解6.对于线性规划问题,以下说法正确的选项是〔〕A 线性规划问题可能没有可行解B 在图解法上,线性规划问题的可行解区域都是“凸〞区域C 线性规划问题如有最优解,那么最优解可在可行解区域顶点上到达D 上述说法都正确7.在线性规划模型中,没有非负约束的变量称为〔C〕A.多余变量B.松弛变量C.自由变量D.人工变量8.下面命题不正确的选项是〔C〕A.线性规划的最优解是根本可行解B.根本可行解一定是根本解C.线性规划一定有可行解D.线性规划的最优值至多有一个9在极大化线性规划问题中,人工变量在目的中的系数为〔〕;松弛变量在目的中的系数为〔〕。

A.MB.–MC. 1D. 010.在目的函数最大化的线性规划问题中,用两阶段法求解时,假设第一阶段的目的函数值〔〕,那么问题无可行解。

A. 小于零B. 大于零C. 等于零D. 无穷大11.在单纯形法计算中,如不按最小比值原那么选取换出变量,那么在下一个解中〔〕。

A. 不影响解的可行性B.至少有一个基变量的值为负值C. 找不到出基变量D. 找不到进基变量12.极大化线性规划问题中增加一个约束条件,那么以下说法错误的选项是〔〕A. 可行域一般将缩小B. 最优目的值一般会降低C. 根本可行解的集合一般不变D. 最优解一般会改变13.在线性规划问题中,当采用大M 法求解时,如经过迭代,检验数均满足最优判别条件,但仍有人工变量为基变量,且其不为零,那么该线性规划问题为( )A. 无可行解B.无界解C.有最优解D. 无穷多最优解14.在极大化线性规划问题中,引入人工变量的处理方式,其作用不包括以下哪个〔 〕。

运筹学复习题——考试题

运筹学复习题——考试题

《运筹学》复习题一、填空题(1分×10=10分)1.运筹学的主要研究对象是(组织系统的管理问题)。

2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。

3.模型是一件实际事物或现实情况的代表或抽象。

4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。

6.运筹学用(系统)的观点研究(功能)之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是(建立数学模型),并对模型求解。

13.用运筹学解决问题时,要分析,定义待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s.t.”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

19.线性规划问题是求一个(线性目标函数),在一组(线性约束)条件下的极值问题。

20.图解法适用于含有两个变量的线性规划问题。

21.线性规划问题的可行解是指满足所有约束条件的解。

22.在线性规划问题的基本解中,所有的(非基变量)等于零。

23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

25.线性规划问题有可行解,则必有基可行解。

26.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解的集合中进行搜索即可得到最优解。

管理运筹学(物流)总复习题建模题

管理运筹学(物流)总复习题建模题

管理运筹学总复习题(物流管理专业)四、建模题(只建模,不求解)1. 某农场打算添购一批拖拉机以完成每年三季度的生产任务:春种330公顷,夏管130公顷,秋收470公顷。

可供选择的拖拉机型号、单台市场价格以及拖拉机的使用能力参数如下:单台拖拉机的使用能力(公顷) 拖拉机 型号 购买价格 (元) 春种 夏管 秋收 A 型 B 型 C 型 D 型50000 45000 44000 5300030 29 32 3117 16 18 1445 40 42 44问每种拖拉机各购买几台,才能顺利地完成全年的各项生产任务,并且还能保证总的花费最少。

试就这一问题建立数学模型。

2. 某工厂生产A 、B 两种产品,已知生产A 每公斤要用煤6吨、电4度、劳动力3个;生产B 每公斤要用煤4吨、电5度、劳动力10个。

又知,每公斤A 、B 的利润分别为7万元和12万元。

现在该工厂只有煤360吨、电200度、劳动力300个。

问在这种情况下,各生产A 、B 多少公斤,才能获最大利润?3. 某企业生产甲、乙、丙三种产品,已知有关数据如下表所示:问在这种情况下,各生产甲、乙、丙三种产品各生产多少件,才能获最大利润,建立数学模型。

4. 某公司有一级质检人员8名,二级质检人员10名。

此公司每天(按8小时计算)至少有1800个工件需要质量检验,一级检验人员每小时可检验工件25个,检验的准确率为98%,每小时的工资为7元;二级检验人员每小时可检验工件15个,检验的准确率为95%,每小时的工资为5元;检验人员每出现一次错检,将给公司造成2元的经济损失。

问公司应该选拔多少位一级和二级检验人员从事质检工作,才能使质量方面的花费最小,请你建立该问题的数学模型。

5. 现要截取2.9米、2.1米和1.5米的元钢各100根,已知原材料的长度是7.4米,问应如何下料,才能使所消耗的原材料最省。

试构造此问题的数学模型。

6. 某炼油厂生产三种牌号的汽油,70#,80#和85#汽油。

管理运筹学复习

管理运筹学复习

管理运筹学复习(1)某工厂在计划期内要安排Ⅰ,Ⅱ两种产品的生产。

生产单位产品所需的设备台时及A,B 两种原材料的消耗以及资源的限制如下表所示:多少单位产品Ⅰ和产品Ⅱ才能使获利最多?解: max z=50X1+100X2 ;满足约束条件:X1+X2≤300,2X1+X2≤400,X2≤250,X1≥0,X2≥0。

(2):某锅炉制造厂,要制造一种新型锅炉10台,需要原材料为∮63.5×4mm的锅炉钢管,每台锅炉需要不同长度的锅炉钢管数量如下表所示:多少根原材料?设按14 种方案下料的原材料的根数分别为X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14, 可列出下面的数学模型:min f=X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12+X13+X14满足约束条件:2X1+X2+X3+X4≥ 80X2+3X5+2X6+2X7+X8+X9+X10≥420X3+X6+2X8+X9+3X11+X12+X13≥ 350X4+X7+X9+2X10+X12+2X13+3X14≥ 10X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14≥ 0(3)某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、应如何调运,使得总运输费最小?解:此运输问题的线性规划的模型如下min f =6X11+4X12+6X13+6X21+5X22+5X23约束条件: X11+X12+X13=200X21+X22+X23=300X11+X21=150X12+X22=150X13+X23=200X ij≥0(i=1,2;j=1,2,3)(4) 某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产(6)箱、500箱。

需要供应四个地方的销售,这四地的产品需求分别为400箱、250②如果2分厂的产量从400箱提高到了600箱,那么应如何安排运输方案,使得总运费为最小?③如果销地甲的需求从400箱提高到550箱,而其他情况都同①,那该如何安排运输方案,使得运费为最小?解:①此运输问题的线性规划的模型如下minf=21X11+17X12+23X13+25X14+10X21+15X22+30X23+19 X24+23X31+21X32+20X33+22X34 约束条件:X11+X12+X13 +X14=300X21+X22+X23+X24=400X31+X32+X33+X34=500X11+X21+X31=400X12+X22+X32=250X13+X23+X33=350X14+X24+X34=200X ij≥0(i=1,2,3;j=1,2,3,4)某公司拟用集装箱托运甲、乙两种货物,这两种货物每件的体积、重量、可获利解:设X1,X2分别为甲、乙两种货物托运的件数,其数学模型如下所示:max z=2X1+3X2约束条件:195X1+273X2≤1365,4X1+40X2≤140,X1≤4,X1, X2≥0,X1,X2 为整数。

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象。

4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。

运筹学研究和解决问题的效果具有连续性。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定议待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s·t”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过(C)来验证模型最优解。

A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括(A )阶段。

A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

管理运筹学

管理运筹学

管理运筹学复习题一、基本概念(判断和填空题)1.可行解集S中的点x是极点,当且仅当x是基可行解。

(T)2.产地数与销地数相等的运输问题是产销平衡运输问题。

(F)3.基本解中取值不为零的变量一定是基变量。

(F )4.当一个线性规划问题无可行解时,它的对偶问题的解为无界解。

(F)5.任何线性规划问题存在并具有唯一的对偶问题。

(T)6.线性规划问题的最优值可以在极点上达到。

(T )7.影子价格是一种绝对值。

(T )8.线性规划问题的每一个基本可行解对应可行域上的一个顶点。

(F)9.线性规划的变量个数与其对偶问题的约束条件个数是相等的。

(T )10.线性规划问题的可行解一定是基本解。

(T)11.若线性规划存在最优解,它一定在可行域的某个顶点得到。

(F )12.影子价格无法定量反映资源在企业内部的紧缺程度。

(T )13.如果原问题有最优解,那么对偶问题也有最优解,但二者目标函数值不一定相等。

(T)14.影子价格的大小客观反映地反映了各种不同的资源在系统内的稀缺程度。

(T )15.若线性规划问题有最优解,则最优解一定在可行域的(极点)找到。

16.线性规划问题解得到可能的结果有(唯一最优解)(无穷多最优解)(无界解)(无可行解)。

17.最小元素法的基本思路以(单位运价最低者优先)为原则,安排初始的调运方案。

18.在线性规划问题求解过程中,如果在大M法的最优单纯形表的基变量中仍含有(人工变量),那么该线性规划就不存在可行解。

二、选择题1.如果某个基本可行解所对应的检验向量所有分量小于等于0,规划问题有()。

A.唯一最优解B.无界解C.无可行解D.无穷多最优解2.原问题的第i个约束方程是“=”型,则对偶问题的变量是()。

A.多余变量B.自由变量C.松弛变量D.非负变量3.对于线性规划问题,下列说法正确的是()。

A.线性规划问题没有可行解B.在图解法上,线性规划问题的可行解区域都是在“凸”区域C.线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D.上述说法都正确4.线性规划问题中,如果在约束条件中没有单位矩阵作为初始可行基,我们通常用增加()的方法来产生初始可行基。

《管理系统运筹学》复习题2014.12

《管理系统运筹学》复习题2014.12

《管理运筹学》复习题2014.12一、填空题(每题3分,共18分)1.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

2.数学模型中,“s ·t ”表示约束。

3.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

4.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

5.图解法适用于含有两个变量的线性规划问题。

6.线性规划问题的可行解是指满足所有约束条件的解。

7.在线性规划问题的基本解中,所有的非基变量等于零。

8.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

9.满足非负条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11.线性规划问题可分为目标函数求极大值和极小_值两类。

12.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

13.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

14.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。

15.物资调运问题中,有m 个供应地,A l ,A 2…,A m ,A j 的供应量为a i (i=1,2…,m),n 个需求地B 1,B 2,…B n ,B 的需求量为b j (j=1,2,…,n),则供需平衡条件为 ∑=mi i a 1=∑=nj ib116.物资调运方案的最优性判别准则是:当全部检验数非负时,当前的方案一定是最优方案。

17.可以作为表上作业法的初始调运方案的填有数字的方格数应为m+n -1个(设问题中含有m 个供应地和n 个需求地) 18、供大于求的、供不应求的不平衡运输问题,分别是指∑=mi i a 1_>∑=n j i b 1的运输问题、∑=m i i a 1_<∑=n j i b 1的运输问题。

19.在表上作业法所得到的调运方案中,从某空格出发的闭回路的转角点所对应的变量必为基变量。

管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案(由于该课程理论性强,采用开卷考试的形式)一、名词解释1.模型2.线性规划3.树4.网络5.风险型决策二、简答题1.简述运筹学的工作步骤。

2.运筹学中模型有哪些基本形式?3.简述线性规划问题隐含的假设。

4.线性规划模型的特征。

5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解?6.简述对偶理论的基本内容。

7.简述对偶问题的基本性质。

8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。

9.简述运输问题的求解方法。

10.树图的性质。

11.简述最小支撑树的求法。

12.绘制网络图应遵循什么规则。

三、书《收据模型与决策》2.1314. 有如下的直线方程:2x1+x2=4a. 当x2=0时确定x1的值。

当x1=0时确定x2的值。

b. 以x1为横轴x2为纵轴建立一个两维图。

使用a的结果画出这条直线。

c. 确定直线的斜率。

d. 找出斜截式直线方程。

然后使用这个形式确定直线的斜率和直线在纵轴上的截距。

答案:14. a. 如果x2=0,则x1=2。

如果x1=0,则x2=4。

c. 斜率= -2d. x2=-2 x1+42.40你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。

模型的代数形式如下所示。

Maximize 成本=15 x1+20 x2约束条件约束1:x1+ 2x2≥10约束2:2x1-3x2≤6约束3:x1+x2≥6和x1≥0,x2≥0a.用图解法求解这个模型。

b.为这个问题建立一个电子表格模型。

c.使用Excel Solver求解这个模型。

答案:a.最优解:(x1, x2)=(2, 4),C=1103.2考虑具有如下所示参数表的资源分配问题:单位贡献=单位活动的利润b.将该问题在电子表格上建模。

c.用电子表格检验下面的解(x1, x2)=(2, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3), 哪些是可行解,可行解中哪一个能使得目标函数的值最优?d.用Solver来求解最优解。

交通运输专业自考本科真题07296 管理运筹学

交通运输专业自考本科真题07296  管理运筹学

《管理运筹学》复习资料(课程代码: 07296)习题汇总:(一)一、单项选择题1.目标函数取极小(minZ)的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( C )A. maxZ B. max(-Z) C.–max(-Z) D.-maxZ2、在转化标准式的过程中对于≤的约束条件需要加入()使变成等于的约束条件( A )A.松弛变量B.多余变量C.自由变量D.非基变量3、在利用单纯性法求目标函数最大值时判断最优解的方法是( D )A.检验数都小于零B.检验数都大于零C.检验数都等于零D.检验数都小于或等于零4、使目标值达到最优的可行解叫做( D )A.基本解B.可行解C.多重解D.最优解5.下列说法中正确的是( B )A.基本解一定是可行解 B.基本可行解的每个分量一定非负C.若B是基,则B一定是可逆 D.非基变量的系数列向量一定是线性相关的6.在线性规划模型中,没有非负约束的变量称为( D )A.多余变量 B.松弛变量 C.人工变量 D.自由变量7.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足( D )A.等式约束 B.“≤”型约束 C.“≥”约束 D.非负约束8、如果线性问题有多重最优解则表达式为( A )A.X=αX1+(1—α)X2 (0<α<1)B.X= X1+(1—α)X2C.X= X1+(1—α)X2 (0<α<1)D.X=αX1+X2 (0<α<1)9、某人要从上海乘飞机到奥地利首都维也纳,他希望选择一条航线,经过转机,使他在空中飞行的时间尽可能短。

该问题可转化为( A )A.最短路线问题求解B.最大流量问题求解1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

065、线性规划数学模型具备哪几个要素?第二章线性规划的基本概念一、填空题1.线性规划问题是求一个_在一组条件下的极值问题。

2.图解法适用于含有变量的线性规划问题。

3.线性规划问题的可行解是指满足的解。

4.在线性规划问题的基本解中,所有的非基变量等于。

5.在线性规划问题中,基本可行解的非零分量所对应的列向量6.若线性规划问题有最优解,则最优解一定可以在可行域的达到。

7.线性规划问题有可行解,则必有。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其_的集合中进行搜索即可得到最优解。

9.满足条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式_端加入变量。

12.线性规划模型包括三个要素。

13.线性规划问题可分为目标函数求和_值两类。

14.线性规划问题的标准形式中,约束条件取式,目标函数求值,而所有变量必须。

15.线性规划问题的基可行解与可行域顶点的关系是16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则。

17.求解线性规划问题可能的结果有。

18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一变量。

19.如果某个变量X j为自由变量,则应引进两个非负变量X j′,X j〞,同时令X j=X j′-X j。

20.表达线性规划的简式中目标函数为。

21..线性规划一般表达式中,a ij表示该元素位置在。

二、单选题1.如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_ _。

A.m个 B.n个 C.C n m D.C m n个2.下列图形中阴影部分构成的集合是凸集的是3.线性规划模型不包括下列_要素。

A.目标函数 B.约束条件 C.决策变量 D.状态变量4.线性规划模型中增加一个约束条件,可行域的范围一般将_ _。

A.增大 B.缩小 C.不变 D.不定5.若针对实际问题建立的线性规划模型的解是无界的,不可能的原因是 __。

A.出现矛盾的条件 B.缺乏必要的条件 C.有多余的条件 D.有相同的条件6.在下列线性规划问题的基本解中,属于基可行解的是A.(一1,0,O)T B.(1,0,3,0)T C.(一4,0,0,3)T D.(0,一1,0,5)T7.关于线性规划模型的可行域,下面_ _的叙述正确。

A.可行域内必有无穷多个点B.可行域必有界C.可行域内必然包括原点D.可行域必是凸的8.下列关于可行解,基本解,基可行解的说法错误的是_ __.A.可行解中包含基可行解 B.可行解与基本解之间无交集C.线性规划问题有可行解必有基可行解 D.满足非负约束条件的基本解为基可行解9.线性规划问题有可行解,则A 必有基可行解B 必有唯一最优解C 无基可行解 D无唯一最优解10.线性规划问题有可行解且凸多边形无界,这时A没有无界解 B 没有可行解 C 有无界解 D 有有限最优解11.若目标函数为求max,一个基可行解比另一个基可行解更好的标志是A使Z更大 B 使Z更小 C 绝对值更大 D Z绝对值更小12.如果线性规划问题有可行解,那么该解必须满足A 所有约束条件B 变量取值非负C 所有等式要求D 所有不等式要求13.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在集合中进行搜索即可得到最优解。

A 基B 基本解C 基可行解D 可行域14.线性规划问题是针对求极值问题.A约束 B决策变量 C 秩 D目标函数15如果第K个约束条件是“≤”情形,若化为标准形式,需要A左边增加一个变量 B右边增加一个变量 C左边减去一个变量D右边减去一个变量16.若某个b k≤0, 化为标准形式时原不等式A 不变B 左端乘负1C 右端乘负1D 两边乘负117.为化为标准形式而引入的松弛变量在目标函数中的系数应为A 0B 1C 2D 312.若线性规划问题没有可行解,可行解集是空集,则此问题A 没有无穷多最优解B 没有最优解C 有无界解D 有无界解三、多选题1.在线性规划问题的标准形式中,不可能存在的变量是 .A.可控变量B.松驰变量c.剩余变量D.人工变量2.下列选项中符合线性规划模型标准形式要求的有A.目标函数求极小值B.右端常数非负C.变量非负D.约束条件为等式E.约束条件为“≤”的不等式3.某线性规划问题,n个变量,m个约束方程,系数矩阵的秩为m(m<n)则下列说法正确的是。

A.基可行解的非零分量的个数不大于mB.基本解的个数不会超过C m n个C.该问题不会出现退化现象D.基可行解的个数不超过基本解的个数E.该问题的基是一个m×m阶方阵4.若线性规划问题的可行域是无界的,则该问题可能A.无有限最优解B.有有限最优解C.有唯一最优解D.有无穷多个最优解E.有有限多个最优解5.判断下列数学模型,哪些为线性规划模型(模型中a.b.c为常数;θ为可取某一常数值的参变量,x,Y为变量)6.下列模型中,属于线性规划问题的标准形式的是7.下列说法错误的有_ _。

A.基本解是大于零的解 B.极点与基解一一对应C.线性规划问题的最优解是唯一的 D.满足约束条件的解就是线性规划的可行解8.在线性规划的一般表达式中,变量x ij为A 大于等于0B 小于等于0C 大于0D 小于0E 等于09.在线性规划的一般表达式中,线性约束的表现有A <B >C ≤D ≥E =10.若某线性规划问题有无界解,应满足的条件有A P k<0 B非基变量检验数为零C基变量中没有人工变量Dδj>O E所有δj≤011.在线性规划问题中a23表示A i =2B i =3C i =5D j=2E j=343.线性规划问题若有最优解,则最优解A定在其可行域顶点达到 B只有一个 C会有无穷多个 D 唯一或无穷多个 E 其值为042.线性规划模型包括的要素有A.目标函数 B.约束条件 C.决策变量 D 状态变量 E 环境变量四、名词1基:2、线性规划问题:3 .可行解:4、可行域:5、本解:6.、图解法:7、本可行解:8、模型四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。

建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。

月销售分别为250,280和120件。

问如何安排生产计划,使总利润最大。

2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?第三章线性规划的基本方法一、填空题1.线性规划的代数解法主要利用了代数消去法的原理,实现的转换,寻找最优解。

2.标准形线性规划典式的目标函数的矩阵形式是_。

3.对于目标函数极大值型的线性规划问题,用单纯型法求解时,当基变量检验数时,当前解为最优解。

4.用大M法求目标函数为极大值的线性规划问题时,引入的人工变量在目标函数中的系数应为。

5.在单纯形迭代中,可以根据_表中判断线性规划问题无解。

6.在线性规划典式中,所有基变量的目标系数为。

7.当线性规划问题的系数矩阵中不存在现成的可行基时,一般可以加入构造可行基。

8.在单纯形迭代中,选出基变量时应遵循法则。

9.线性规划典式的特点是。

10.对于目标函数求极大值线性规划问题在非基变量的检验数全部δj≤O、情况下,单纯形迭代应停止。

11.在单纯形迭代过程中,若有某个δk>0对应的非基变量x k的系数列向量P k__时,则此问题是无界的。

12.在线性规划问题的典式中,基变量的系数列向量为_13.对于求极小值而言,人工变量在目标函数中的系数应取14.(单纯形法解基的形成来源共有种15.在大M法中,M表示。

二、单选题1.线性规划问题2.在单纯形迭代中,出基变量在紧接着的下一次迭代中立即进入基底。

A.会 B.不会 C.有可能 D.不一定3.在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中。

A.不影响解的可行性B.至少有一个基变量的值为负C.找不到出基变量D.找不到进基变量4.用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部<0,则说明本问题。

A.有惟一最优解 B.有多重最优解 C.无界 D.无解5.线性规划问题maxZ=CX,AX=b,X≥0中,选定基B,变量X k的系数列向量为P k,则在关于基B的典式中,X k的系数列向量为_A.BP K B.B T P K C.P K B D.B-1P K6.下列说法错误的是A.图解法与单纯形法从几何理解上是一致的 B.在单纯形迭代中,进基变量可以任选C.在单纯形迭代中,出基变量必须按最小比值法则选取 D.人工变量离开基底后,不会再进基7.单纯形法当中,入基变量的确定应选择检验数A绝对值最大 B绝对值最小 C 正值最大 D 负值最小8.在单纯形表的终表中,若若非基变量的检验数有0,那么最优解A 不存在B 唯一C 无穷多D 无穷大9.若在单纯形法迭代中,有两个Q值相等,当分别取这两个不同的变量为入基变量时,获得的结果将是A 先优后劣B 先劣后优C 相同D 会随目标函数而改变10.若某个约束方程中含有系数列向量为单位向量的变量,则该约束方程不必再引入A 松弛变量B 剩余变量C 人工变量D 自由变量11.在线性规划问题的典式中,基变量的系数列向量为A 单位阵 B非单位阵 C单位行向量 D单位列向量12.在约束方程中引入人工变量的目的是A 体现变量的多样性B 变不等式为等式C 使目标函数为最优D 形成一个单位阵13.出基变量的含义是A 该变量取值不变B该变量取值增大 C 由0值上升为某值D由某值下降为014.在我们所使用的教材中对单纯形目标函数的讨论都是针对情况而言的。

A minB maxC min + maxD min ,max任选15.求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有A无界解B无可行解 C 唯一最优解D无穷多最优解三、多选题1.对取值无约束的变量x j。

通常令x j=x j’- x”j,其中x j’≥0,x j”≥0,在用单纯形法求得的最优解中,可能出现的是2.线性规划问题maxZ=x1+CX2其中4≤c≤6,一1≤a≤3,10≤b≤12,则当_时,该问题的最优目标函数值分别达到上界或下界。

相关文档
最新文档