10.排列、组合、概率与统计——数学基础知识与典型例题复习

合集下载

组合数学例题和知识点总结

组合数学例题和知识点总结

组合数学例题和知识点总结组合数学是一门研究离散对象的组合结构及其性质的数学分支。

它在计算机科学、统计学、物理学等领域都有着广泛的应用。

下面我们通过一些例题来深入理解组合数学中的重要知识点。

一、排列组合排列是指从给定的元素集合中取出若干个元素按照一定的顺序进行排列。

组合则是指从给定的元素集合中取出若干个元素组成一组,不考虑其顺序。

例题 1:从 5 个不同的元素中取出 3 个进行排列,有多少种不同的排列方式?解:根据排列的公式,\(A_{5}^3 = 5×4×3 = 60\)(种)例题 2:从 5 个不同的元素中取出 3 个进行组合,有多少种不同的组合方式?解:根据组合的公式,\(C_{5}^3 =\frac{5×4×3}{3×2×1} =10\)(种)知识点总结:1、排列数公式:\(A_{n}^m = n×(n 1)×(n 2)××(n m + 1)\)2、组合数公式:\(C_{n}^m =\frac{n!}{m!(n m)!}\)二、容斥原理容斥原理用于计算多个集合的并集的元素个数。

例题 3:在一个班级中,有 20 人喜欢数学,15 人喜欢语文,10 人既喜欢数学又喜欢语文,求喜欢数学或语文的人数。

解:设喜欢数学的集合为 A,喜欢语文的集合为 B,则喜欢数学或语文的人数为\(|A ∪ B| =|A| +|B| |A ∩ B| = 20 + 15 10= 25\)(人)知识点总结:容斥原理的一般形式:\(|\cup_{i=1}^{n} A_i| =\sum_{i=1}^{n} |A_i| \sum_{1\leq i < j\leq n} |A_i ∩ A_j| +\sum_{1\leq i < j < k\leq n} |A_i ∩ A_j∩ A_k| +(-1)^{n 1} |A_1 ∩ A_2 ∩ ∩ A_n|\)三、鸽巢原理鸽巢原理也叫抽屉原理,如果有 n + 1 个物体放入 n 个抽屉中,那么至少有一个抽屉中会放有两个或更多的物体。

高中数学中的排列组合与概率统计

高中数学中的排列组合与概率统计

高中数学中的排列组合与概率统计高中数学是我们学习的重要学科之一,其中排列组合与概率统计是数学中的两个重要概念。

它们在数学中的应用广泛,不仅帮助我们解决实际问题,还培养了我们的逻辑思维和分析能力。

一、排列组合排列组合是数学中的一种方法,用于计算一组对象的不同排列或组合的数量。

在排列中,对象的顺序是重要的,而在组合中,对象的顺序是不重要的。

排列的计算方法可以通过以下例子来理解。

假设有3个球,分别是红球、蓝球和绿球,现在要将这3个球放在一个篮子里。

那么,一共有多少种不同的排列方式呢?首先,我们可以将红球放在篮子的第一个位置,然后将蓝球放在第二个位置,最后将绿球放在第三个位置。

这样的排列方式是一种情况。

同样的,我们可以将红球放在第一个位置,绿球放在第二个位置,蓝球放在第三个位置,这样的排列方式也是一种情况。

根据这个思路,我们可以得出结论,一共有3个球,所以一共有3!(3的阶乘)种不同的排列方式。

组合的计算方法则是通过以下例子来理解。

假设有5个人,我们要从中选出3个人组成一个小组。

那么,一共有多少种不同的组合方式呢?首先,我们可以从5个人中选出一个人作为小组的第一个成员,然后从剩下的4个人中选出一个人作为第二个成员,最后从剩下的3个人中选出一个人作为第三个成员。

这样的组合方式是一种情况。

同样的,我们可以从5个人中选出一个人作为第一个成员,从剩下的4个人中选出一个人作为第二个成员,从剩下的3个人中选出一个人作为第三个成员,这样的组合方式也是一种情况。

根据这个思路,我们可以得出结论,一共有5个人,我们要选出3个人,所以一共有5C3(5的组合数)种不同的组合方式。

二、概率统计概率统计是研究随机事件发生的可能性的一门学科。

它可以帮助我们预测事件发生的概率,并根据概率进行决策和分析。

概率的计算方法可以通过以下例子来理解。

假设有一个装有10个红球和10个蓝球的箱子,现在我们从中随机抽取一个球。

那么,抽到红球的概率是多少呢?首先,我们可以计算出总共有20个球,其中10个是红球。

排列与组合知识总结及经典例题OK

排列与组合知识总结及经典例题OK

排列与组合1.排列与排列数“排列”的定义包含两个基本内容: 一是“取出元素;二是“按一定的书序排列。

“排列数”是指“从n 个不同元素中取出m 个元素的所有排列的个数”, 它是所有排列的个数, 是一个数值。

)1()2)(1(+---=m n n n n A m n 或)!(!m n n A m n -= (其中m ≤n m,n ∈Z ) 全排列、阶乘的意义;规定 0!=12.组合与组合数“一个组合”是指“从n 个不同元素中取出m 个元素合成一组”, 它是一件事情, 不是一个数;(隐含n ≥m )“组合数”是指“从n 个不同元素中取出m 个元素的所有组合的个数”, 它是一个数值。

基本公式: 或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且 组合数公式具有的两个性质: (1)常用的等式:(3)0132n n n n n n C C C C ++++= (由二项式定理知)证明: ∵又)!(!!m n m n C m n -=∴m n n m n C C -= )]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n)!1(!!)1(!+-++-=m n m m n m n n)!1(!!)1(+-++-=m n m n m m n)!1(!)!1(+-+=m n m nm n C 1+=∴ = + .式(1)说明从n 个不同元素中取出m 个元素, 与从n 个不同元素中取出n-m 个元素是一一对应关系, 即“取出的”与“留下的”是一一对应关系;式(2)说明从a, b, c ……(n+1个元素)中取出m 个元素的组合数可以分为两类: 第一类含某个有元素( ), 第二类不含这个元素( )要解决的问题是排列问题还是组合问题, 关键是看是否与顺序有关排列问题的主要题型⑴ 有特殊元素或特殊位置的排列问题, 通常是先排特殊元素或特殊位置, 称为优先处理特殊元素(位置)法(优先法);⑵ 某些元素要求必须相邻时, 可以先将这些元素看作一个元素, 与其他元素排列后, 再考虑相邻元素的内部排列, 这种方法称为“捆绑法”;⑶ 某些元素不相邻排列时, 可以先排其他元素, 再将这些不相邻元素插入空挡, 这种方法称为“插空法”;⑷ 在处理排列问题时, 一般可采用直接和间接两种思维形式, 从而寻求有效的解题途径, 这是学好排列问题的根基.第一部分1.⑴ 7位同学站成一排, 共有多少种不同的排法?⑵ 7位同学站成两排(前3后4), 共有多少种不同的排法? ⑶ 7位同学站成一排, 其中甲站在中间的位置, 共有多少种不同的排法?⑷7位同学站成一排, 甲、乙只能站在两端的排法共有多少种?⑸7位同学站成一排, 甲、乙不能站在排头和排尾的排法共有多少种?2.7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?⑵甲、乙和丙三个同学都相邻的排法共有多少种?⑶甲、乙两同学必须相邻, 而且丙不能站在排头和排尾的排法有多少种?3.7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种?⑵甲、乙和丙三个同学都不能相邻的排法共有多少种?4.从10个不同的文艺节目中选6个编成一个节目单, 如果某女演员的独唱节目一定不能排在第二个节目的位置上, 则共有多少种不同的排法?5.⑴八个人排成前后两排, 每排四人, 其中甲、乙要排在前排, 丙要排在后排, 则共有多少种不同的排法?⑵不同的五种商品在货架上排成一排, 其中a, b两种商品必须排在一起, 而c, d两种商品不排在一起, 则不同的排法共有多少种?⑶6张同排连号的电影票, 分给3名教师与3名学生, 若要求师生相间而坐, 则不同的坐法有多少种?6.⑴由数字1, 2, 3, 4, 5可以组成多少个没有重复数字的正整数?⑵由数字1, 2, 3, 4, 5可以组成多少个没有重复数字, 并且比13 000大的正整数?7、用1, 3, 6, 7, 8, 9组成无重复数字的四位数, 由小到大排列.⑴第114个数是多少?⑵ 3 796是第几个数?8、用0, 1, 2, 3, 4, 5组成无重复数字的四位数, 其中⑴能被25整除的数有多少个?⑵十位数字比个位数字大的有多少个?9、现有8名青年, 其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任), 现在要从中挑选5名青年承担一项任务, 其中3名从事英语翻译工作, 2名从事德语翻译工作, 则有多少种不同的选法?10、甲、乙、丙三人值周, 从周一至周六, 每人值两天, 但甲不值周一, 乙不值周六, 问可以排出多少种不同的值周表?11.6本不同的书全部送给5人, 每人至少1本, 有多少种不同的送书方法?变题1: 6本不同的书全部送给5人, 有多少种不同的送书方法?变题2: 5本不同的书全部送给6人, 每人至多1本, 有多少种不同的送书方法?变题3: 5本相同的书全部送给6人, 每人至多1本, 有多少种不同的送书方法?12、6本不同的书, 按下列要求各有多少种不同的选法:⑴分给甲、乙、丙三人, 每人两本;⑵分为三份, 每份两本;⑶分为三份, 一份一本, 一份两本, 一份三本;⑷分给甲、乙、丙三人, 一人一本, 一人两本, 一人三本;⑸分给甲、乙、丙三人, 每人至少一本.13.身高互不相同的7名运动员站成一排, 甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?14.⑴四个不同的小球放入四个不同的盒中, 一共有多少种不同的放法?⑵四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?15、马路上有编号为1, 2, 3, …, 10的十盏路灯, 为节约用电又不影响照明, 可以把其中3盏灯关掉, 但不可以同时关掉相邻的两盏或三盏, 在两端的灯都不能关掉的情况下, 有多少种不同的关灯方法?16.九张卡片分别写着数字0, 1, 2, …, 8, 从中取出三张排成一排组成一个三位数, 如果6可以当作9使用, 问可以组成多少个三位数?17、平均分组问题除法策略6本不同的书平均分成3堆,每堆2本共有多少分法?18、重排问题求幂策略把6名实习生分配到7个车间实习,共有多少种不同的分法19、排列组合混合问题先选后排策略有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.20、小集团问题先整体后局部策略用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个?第二部分一. 选择题1.3名医生和6名护士被分配到3所学校为学生体检, 每校分配1名医生和2名护士, 不同分配方法共有()(A)90种(B)180种(C)270种(D)540种2.从8盒不同的鲜花中选出4盆摆成一排, 其中甲、乙两盆不同时展出的摆法种数为()A. 1320B. 960C. 600D. 3603.20个不加区别的小球放入编号为1号, 2号, 3号三个盒子中, 要求每个盒子内的球数不小于盒子的编号数, 则不同的放法总数是()(A)760 (B)764 (C)120(D)914. 从10名女学生中选2名, 40名男生中选3名, 担任五种不同的职务, 规定女生不担任其中某种职务, 不同的分配方案有()A. B. C. D.5.编号1, 2, 3, 4, 5, 6的六个球分别放入编号为1, 2, 3, 4, 5, 6的六个盒子中, 其中有且只有三个球的编号与盒子的编号一致的放法种数有()A. 20B. 40C. 120D. 4806.如果一个三位正整数形如“”满足, 则称这样的三位数为凸数(如120、363.374等), 那么所有凸数个数为()A. 240B. 204C. 729D. 9207.有两排座位, 前排11个座位, 后排12个座位, 现安排2人就座, 规定前排中间的3个座位不能坐, 并且这2人不左右相邻, 那么不同排法的种数是( )A. 234B. 346C. 350D. 3638. 某校高二年级共有六个班级, 现从外地转入4名学生, 要安排到该年级的两个班级且每班安排2名, 则不同的安排方案种数( )A. B. C. D.9.4名教师分配到3所中学任教, 每所中学至少1名教师, 则不同的分配方案共有( )A. 12 种B. 24 种 C 36 种 D. 48 种10.从5位男教师和4位女教师中选出3位教师, 派到3个班担任班主任(每班1位班主任)要求这3位班主任中男、女教师都要有, 则不同的选派方案共有A. 210种B. 420种C. 630种D. 840种11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种, 分别种在不同土质的三块土地上, 其中黄瓜必须种植, 不同的种植方法共有( )A. 24种B. 18种C. 12种D. 6种12.用0、1.2.3.4这五个数字组成无重复数字的五位数, 其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A. 48B. 36C. 28D. 1213.已知集合A={1, 2, 3, 4}, B={5, 6}, 设映射, 使集合B中的元素在A中都有原象, 这样的映射个数共有()A. 16B. 14C. 15D. 12 14.ABCD—A1B1C1D1是单位正方体, 黑白两个蚂蚁从点A出发沿棱向前爬行, 每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→……, 黑蚂蚁爬行的路是AB→BB1→……, 它们都遵循如下规则: 所爬行的第段所在直线必须是异面直线(其中i是自然数).设白、黑蚂蚁都走完2005段后各停止在正方体的某个顶点处, 这时黑、白两蚂蚁的距离是A. 1B.C.D. 015.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为.. )A.480B.240C.120D.9616.从1, 2, 3, 4, 5, 6中任取3个数字组成无重复数字的三位数,其中若有1和3时,3必须排在1的前面,若只有1和3其中一个时,也应排在其它数字的前面,这样的不同三位数个数有( )A321144432A A C C++ B.311443A A C+ C.3612A+24A D.36A17.有7名同学站成一排照毕业照, 其中甲必须站在中间, 并且乙、丙两位同学要站在一起, 则不同的站法有( )(A)240 (B)192 (C)96 (D)48二. 填空题1. 五个不同的球放入四个不同的盒子, 每盒不空, 共有____ 种放法。

数学中的排列与组合知识点总结

数学中的排列与组合知识点总结

数学中的排列与组合知识点总结在数学中,排列和组合是两个重要的概念。

它们在各个领域都有广泛的应用,特别是在概率论、统计学和组合数学中。

本文将对排列和组合的概念、性质和应用进行总结。

一、排列的概念与性质排列是从一组元素中选取若干个元素按照一定的顺序进行排列。

设有n个元素,则从中选取m个元素进行排列的方式记为P(n, m)。

排列的计算公式为:P(n, m) = n!/(n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

排列的性质如下:1. 排列数P(n, m)满足如下关系:P(n, m) = P(n-1, m) + P(n-1, m-1)2. 对于任意正整数n,有P(n, n) = n!,即n个元素的全排列数为n 的阶乘。

3. 当m>n时,P(n, m) = 0,即不能取出超过给定元素总数的元素进行排列。

4. 当m=0时,P(n, m) = 1,即不取任何元素进行排列时,排列数为1。

二、组合的概念与性质组合是从一组元素中选取若干个元素组成一个集合,而不考虑元素的顺序。

设有n个元素,则从中选取m个元素进行组合的方式记为C(n, m)。

组合的计算公式为:C(n, m) = n!/(m!(n-m)! )组合的性质如下:1. 组合数C(n, m)满足如下关系:C(n, m) = C(n-1, m) + C(n-1, m-1)2. 对于任意正整数n,有C(n, 0) = C(n, n) = 1,即不取任何元素或者取出全部元素的组合数为1。

3. 当m>n时,C(n, m) = 0,即不能取出超过给定元素总数的元素进行组合。

4. 组合数C(n, m)与排列数P(n, m)之间存在以下关系:C(n, m) = P(n, m)/m!三、排列与组合的应用1. 概率计算:排列和组合在概率计算中有广泛的应用。

10第十章排列、组合、概率、统计

10第十章排列、组合、概率、统计

第十章排列、组合、概率、统计一、考点精要解读本章是中学数学中概念性强,实用性强,处理手段多变,分析方法灵活的一部分内容,是进一步学习概率论的基础。

考点主要包括两个基本原理、排列与组合、五种事件的概率以及抽样方法、总体分布的估计、期望和方差,准确求解排列、组合问题和进行概率的计算既是本章的重点,也是本章的难点.本章试题的特点是:(1)综合性强.如排列、组合题大多能与集合、数列、立体几何等内容组合构成小型综合题,使每题涉及的知识点在两个以上.(2)应用性强.如统计问题及概率问题,都是以实际问题为背景.(3)对运用数学思想的要求高,如解排列、组合问题时,需分类讨论、分步讨论.以几何为背景的排列、组合题需用数形结合的思想,在解非二项问题时,需用转化思想化归为二项问题求解等,这种命题特点在以后的高考中仍会保持下去.二、高考命题趋势以本章考点为载体的试题都具有一定的灵活性、机敏性和综合性,是考查学生思维能力和数学素养的极好材料之一.高考对本章的考查力度有明显加大之势,除了传统的选择填空题外,解答题的出现已成必然。

概率的计算和几何计数问题有望成为高考的热点。

高考复习指导低据高考试题的现状和发展的趋势,复习备考中应注意以下几点:(1)立足基础知识和基本方法的复习.恰当选取典型例题,构建思维模式,造就思维依托和思维的合理定势,如对排列应用题可用①某元素排在某位上;②某元素不排在某位上;③某几个元素排在一起;④某几个元素不得相邻;⑤某几个元素顺序一定等基本问题,加强思维的规范训练.(2)抓好破势训练,为提高能力,运用变式题目,常规题向典型问题的转化,进行多种解法训练,从不同角度,不同侧面对题目进行全面分析,结合典型的错解分析,查找思维的缺陷,提高分析解决问题的能力.(3)抓好“操作”训练,就是面对问题,具体排一排、选一选,运用分类计数原理和分步计数原理为“完成这件事”设计合理的程度或分类标准,注意加强解题过程的展示与分析.(4)重点掌握随机事件、等可能事件,互斥事件、独立事件、独立重复试验中恰好发生n次等五种事件的概率,会用样本频率分布估计总体分布,会用样本平均数估计总体期望值,会用样本的方差估计总体方差.(5)加强数学思想方法训练.分类讨论是本章最基本的数学思想,在分析较为复杂的排列、组合、概率问题,对问题的分类讨论是最基本的策略.正难则反的思想方法也经常遇到,如解排列组合题时的排除法,考虑对立事件的概率等.(6)在复习中要控制好训练的难度,不做难题、偏题、怪题.要重视一题多解,要有意识地培养思维的简捷性.三、典型例题解析n的展开式中,前三项的系数成等差数列,求展开形式中的有理项.【例1】若在解:n 的展开式中前三项是:T 1=0112,n n n n C T C -=3222,n n T C -=其系数分别是:011,2n n C C 21,.4n C用102112.24n n n C C C ⋅=+解之得n=1或n=8,n=1不合题意应舍去,故n=8.当n=8时,818r r r r T C -+=⋅=163481.2rr r C x -⋅⋅T r +1为有理项式的充要条件是1634r-∈Z ,所以r 应是4的倍数.故r 可为0、4、8.故所有有理项为 T 1=x 4,T 5=92351,.8256x T x = 【例2】 某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次出牌机会,每次只能出一种点数的牌但张数不同,此人有多少种不同的出牌方法?分析:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,可以考虑按此分类. 解:出牌的方法可分为以下几类: (1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法; (4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法; (6)2张2分开出,3张A 分两次出,有2435C A 种方法.因此,共有不同的出牌方法5242332455535535860A A A A A A C A +++++=种.全面细致地分类是解决本题的关键,若按出牌次数分类,方法数为524232535355(1)(1)860.A C A C A A +++++=种【例3】 用正五棱柱的10个顶点中的5个顶点做四棱锥的5个顶点,共可得到多少个四棱锥? 分析:共面而不共线的四点可成为四棱锥的底面,再在平面外找一点为顶点就形成了四棱锥,于是可从四棱锥的底面四点着眼,将构成棱锥的5个顶点的取法分类.解:按照构成四棱锥的底面四点分为以下四类:(1)四点取在棱柱的底面上有4155250C C =个;(2)四点取在棱柱的侧面上有16530;C =个(3)四点取在棱柱的对角面上有16530;C =个(4)四点取在以过一个底面中的一条对角线和另一个底面中与其平行的一边所确定的面上有162560C ⨯=个.所以共可组成50+30+30+60=170个四棱锥.另外此题亦可采用排除法,在510C 中去掉五点共面和无四点共面的两种情况,算式为5511055244170C C C --⨯=(个).【例4】 从0,1,……,9,这10个数字中,每次任选5个,组成没有重复数字的5位数,计算: (1)这个5位数是奇数的概率; (2)这个5位数能被25整除的概率;(3)这个5位数是50000到90000之间的偶数的概率.分析:从09到10个数字中,每次任选5个,可组成49927216A =个没有重复数字的5位数,这些数字出现的可能性是相等的,因此可由等可能事件的概率公式求解.解:(1)设“这个5位数为奇数”的事件为A 1,因为适合条件的5位奇数有:11358813440A A A ⨯⨯=(个)故P (A 1)=1344040.2721681=即这个5位数是奇数的概率为40.81(2)设“这个5位数是奇数能被25整除”的事件为A 2,因为没有重复数字的能被25整除的5位数有:1237782924(),A A A ⨯⨯+=个故P (A 2)=92411,27216324=即这个5位数能被25整除的概率为11.324(3)设“这个5位数是50000到90000之间的偶数”的事件为A 3,因为这样的5位数有:113113258248504026887728().A A A A A A ⨯⨯+⨯⨯=+=个故P (A 3)=772823.2721681=即这个5位数为50000到90000之间的偶数的概率为23.81【例5】 某局域网的终端有5台电脑,每台电脑在任一时刻上网的概率是13,每台电脑上网是随机的,且相互独立,设任一时刻上网的电脑台数为ξ,(1)求ξ的概率分布和E ξ.(2)要使每台电脑上网的接通率不低于95%,至少要设置多少条接入线.分析:本题是n 次独立重复试验中事件恰好发生k 次的概率计算问题,随机变量ξ服从二项分布ξ~B (5,13),鉴于接通率较高,而电脑台数较少,可采用验算法,即找最少的m ,使得P (ξ≤m )≥0.95. 解:(1)由题意知ξ=0,1,2,3,4,5 显然ξ~B (5,13). 故P (ξ=k )=5512()(),0,1,2,3,4,5.33k k k C k -= E ξ=nP=5×13=5.3(2)设最少应设置m 条入线则能保证不超过m 台电脑同时上网,要使每条支线的上网概率不小于0.95,即5台电脑中不超过m 台电脑同时上网的概率不小于0.95,即P (ξ≤m )≥0.95,由P (ξ≤3)=1-P (ξ=4)-P (ξ=5)=0.955>0.95, 而P (ξ≤2)=P (ξ=0)+P (ξ=1)+P (ξ=2)=0.790<0.95. 因此最少应设置3条接入线.【例6】 某先生居住在城镇的A 处,准备开车到单位B 处上班.若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图10-2.(例如:A →C →D 算作两个路段:路段AC 发生堵车事件的概率为110,路段CD 发生堵车事件的概率为115). 请你为其选择一条由A 到B 的路线,使得途中发生堵车事件的概率最小;分析:分别计算出每一条由A 到B 的路线中发生堵车事件的概率进行比较。

新高考数学 第10章 第2讲 排列与组合

新高考数学  第10章 第2讲 排列与组合

第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
知识点二 组合与组合数 (1)组合的定义:一般地,从n个__不__同____元素中取出m(m≤n)个元素 __作__为__一__组____,叫做从n个不同元素中取出m个元素的一个组合.
(2) 组 合 数 的 定 义 : 从 n 个 不 同 元 素 中 取 出 m(m≤n) 个 元 素 的 __所__有__不__同__组__合____的个数,叫做从n个不同元素中取出m个元素的组合 数,用符号___C_mn___表示.
项工作,每人至少完成 1 项,每项工作由 1 人完成,可得:6×A33=36
种,故选 D.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
4.(2018·浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中 任取2个数字,一共可以组成_1_2_6_0_____个没有重复数字的四位数.(用数 字作答)
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
[解析] (1)C24C24A22=72.或 C24·A244=72. (2)根据题意,将两名家长、孩子全排列,有 A44=24 种排法,其中两 个孩子相邻且在两端的情况有 A22A22A22=8 种,则每个小孩子要有家长相 邻陪坐的排法有 24-8=16 种,故答案为:16.
注:应用公式化简、求值、解方程、解不等式时,注意 Amn 、Cmn 中的
隐含条件 m≤n,且 m,n∈N*.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
对于有附加条件的排列、组合应用题,通常从三个途径考虑 (1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素. (2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. (3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的 排列数或组合数.

数学基础知识与典型例题复习--排列、组合、概率与统计

数学基础知识与典型例题复习--排列、组合、概率与统计

数学基础知识与典型例题m种不同的方法,在第.分类计数原理:完成一件事,有n类办法,在第1类办法中有1m种不同的方法,那么完成这件事共有种不同的方法,……,在第n类办法中有n种不同的方法.时,排列称为全排列,排列数为≤n.等距离”的两项的二项式系数相等;.n rC -.....n 1+)n b c +展开123①对立事件的概率和等于1:1P(A)=+=+.P()AAP(A)次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,次试验是独立的. 如果在一次试验中某事件发生的概率为1.随机试验:⑴试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,n n x p ++ξ的数学期望或平均数、均值的数学期望:(E E a ηξ=+n ξ为ξ的根方差或标准差.随机变量ξ的方差与标准取值的稳定与波动,集中与离散的程度.D ξ越小,稳定性越高,ξ服从几何分布即(,N μσ均可化为标准正态总体(0,1)N ξ来进行研究.(,N μσ只需作变换η=(0,1)N ,∴有公式()()x F x μσ-=Φ.∴若(,N ξμσ则(P a ξ<≤)(a μσ--Φ”原则.第十章排列、组合、概率与统计)答案例1.A 例2.C 例3.D 例4.C例5.C 例6.B 例7.D 例8.B例9.510例10. 解:⑴如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植, 因为a 2、a 3与a 1不同颜色,a 2、a 3也不同。

所以S (3)=3×2=6(种)。

如图2,S (4)=3×2×2×2-S (3)=18(种)。

⑵如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i =2、3、……、n -1)不同颜色, 但不能保证a 1与a n 不同颜色.于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为()(3)S n n ≥种. 另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样的种法相当于对n -1部分符合要求的种法,记为)1(-n S .共有3×2n -1种种法.这样就有123)1()(-⨯=-+n n S n S .即]2)1([2)(1----=-n n n S n S ,则数列{()2}(3)n S n n -≥是首项为32)3(-S 公比为-1的等比数列. 则33()2[(3)2](1)(3).n n S n S n --=--≥由⑴知:6)3(=S ,∴3()2(68)(1)n n S n --=--.∴3()22(1)n n S n -=-⋅-. 答:符合要求的不同种法有322(1)(3).n n n --⋅-种≥例11.D 例12.C 例13.C例14.B 例15.D 例16.B例17. 73 例18. 542例19. ①,③例20. 解:(1)显然A 胜与B 胜为对立事件,A 胜分为三个基本事件: ①A 1:“A 、B 均取红球”;②A 2:“A 、B 均取白球”;③A 3:“A 、B 均取黄球”.123111(),(),()626366x y z P A P A P A =⨯=⨯=⨯ 12332()()()(),36x y z P A P A P A P A ++∴=++= 32()136x y z P B ++∴=- (2)由(1)知32()36x y z P A ++=,6,0,0,0x y z x y z ++=又≥≥≥ 于是32121(),36362x y z x z P A +++-==≤ 6,0x y z ∴===当,即A 在箱中只放6个红球时,获胜概率最大,其值为.21例21.B 例22.A 例23.B例24.A 例25.D 例26.B例27.D 例28. 1.2 例29. 0.32 , 72例30. 本小题主要考查概率及其基础知识和运算能力. 解(Ⅰ)一次实验中,设事件A 表示“试验成功”, 则4445(),()1().6699P A P A P A =⨯==-= (Ⅱ)依题意得::),95,4(~其概率分布列为B ξ52054804,4.999981E D ξξ∴=⨯==⨯⨯=。

2022届高考数学一轮复习(新高考版) 第10章 排列、组合

2022届高考数学一轮复习(新高考版) 第10章  排列、组合

3.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选, 则不同的选法共有_1_6__种.(用数字填写答案)
解析 方法一 按参加的女生人数可分两类:只有 1 位女生参加有 C12C24 种,有 2 位女生参加有 C22C14种. 故所求选法共有 C12C24+C22C14=2×6+4=16(种). 方法二 间接法:从 2 位女生,4 位男生中选 3 人,共有 C36种情况,没有 女生参加的情况有 C34种, 故所求选法共有 C36-C34=20-4=16(种).
题型突破 核心探究
TIXINGTUPO HEXINTANJIU
题型一 排列问题
自主演练
1.用1,2,3,4,5这五个数字,可以组成比20 000大,并且百位数不是数字3
的没有重复数字的五位数,共有
A.96个
√B.78个
C.72个
D.64个
解析 根据题意知,要求这个五位数比20 000大, 则万位数必须是2,3,4,5这4个数字中的一个, 当万位数是3时,百位数不是数字3,符合要求的五位数有A44 =24(个); 当万位数是2,4,5时,由于百位数不能是数字3, 则符合要求的五位数有 3×(A44-A33)=54(个), 因此共有54+24=78(个)这样的五位数符合要求.
表示
微思考
1.排列问题和组合问题的区别是什么? 提示 元素之间与顺序有关的为排列,与顺序无关的为组合. 2.排列数与组合数公式之间有何关系?它们的公式都有两种形式,如何 选择使用? 提示 (1)排列数与组合数之间的联系为 CnmAmm=Anm. (2)两种形式分别为:①连乘积形式;②阶乘形式. 前者多用于数字计算,后者多用于含有字母的排列数式子的变形与论证.
思维升华

高考排列组合、概率知识点总结及典型例题(教师版)

高考排列组合、概率知识点总结及典型例题(教师版)

高考排列组合、概率知识点总结及典型例题排列组合知识点总结:一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式:()()()C A A n n n m m n m n m n m nm mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①m m n c -=n n c ;②111-m n c --+=m n n n c c ;③11-k n kc -=k n nc ;11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n nn C C ==则或 四、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数.....最大. I. 当n是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大.③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C概率知识点总结:一、基本知识在一定的条件下必然要发生的事件,叫做必然事件; 在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生也可能不发生的事件,叫做随即事件。

数学中的组合、排列与概率问题

数学中的组合、排列与概率问题
加密算法
密码学中的很多加密算法也与组合数学密切相关。例如,RSA算法中的素数选择、AES算 法中的S盒设计等,都涉及到组合数学的知识。这些算法通过运用组合数学的原理,提高 了加密算法的安全性和效率。
CHAPTER 03
概率论基础
概率的定义与性质
随机试验与样本空间
概率论研究随机现象,通过随机试验来描述。样本空间是随机试验所有可能结果的集合。
CHAPTER 05ห้องสมุดไป่ตู้
组合、排列与概率的综合问 题
基础综合问题解析
基础概念辨析
首先,要明确组合、排列的定义及其区别,理解概率的基本概念与 计算方法。
公式与定理应用
掌握组合数公式、排列数公式,以及加法原理、乘法原理等基本原 理,能熟练运用这些公式和原理解决基础问题。
典型例题解析
通过解析典型例题,如抽签问题、分房问题等,进一步加深对组合 、排列与概率基础知识的理解。
几何概型
试验的样本空间是某个几何区域,事件对应为区域中的子区域。通过计算子区域的几何度量(如面积 、体积)与全区域的几何度量之比,得到事件的概率。
条件概率与独立性
条件概率
在已知某事件发生的条件下 ,另一事件发生的概率。通 过条件概率,可以研究事件
之间的相互依赖关系。
独立性
若两事件的发生概率等于各 自发生概率的乘积,则称这 两事件独立。独立事件互不 影响,一个事件的发生不会
在经济学中,期望效用理论是描述个体在面对不 确定性时如何做决策的重要理论,其基础就是概 率论。
风险度量
概率论提供了度量风险的方法,如方差、标准差 等,这些方法在经济学中被广泛应用。
3
计量经济学
计量经济学是经济学的一个分支,它用统计方法 对经济数据进行处理和分析,概率论是其不可或 缺的理论基础。

中职数学基础模块知识点、典型题目系列---10.统计与概率(适合打印,经典)

中职数学基础模块知识点、典型题目系列---10.统计与概率(适合打印,经典)

第十章 概率与统计初步第1节 计数原理一、分类计数原理(加法原理)完成一件事,有n 类方式。

第一类方式有1k 种方法,第2类方式有2k ,...第n 类方式有n k 种方法,那么完成这件事的方法共有n k k k N +⋅⋅⋅++=21(种)二、分步计数原理(乘法原理)完成一件事,有n 个步骤,完成第1步有1k 种方法,完成第2步方式有2k ,...完成第n 步方式有n k 种方法,那么完成这件事的方法共有n k k k N •⋅⋅⋅••=21(种)第2节 随机事件三、事件随机事件:可能发生,可能不发生(表示:A,B,C ) 必然事件:一定发生(表示:Ω) 不可能事件:一定不发生(表示:Φ)举例说明生活中哪些是随机事件,哪些是必然事件,哪些是不可能事件。

事件的描述:加大括号 A={抛掷一枚硬币,出现正面向上}任意抛掷一颗骰子,观察掷出的点数。

事件A={点数是1},B={点数是2}.C={点数不超过2}之间存在着什么联系呢?基本事件:不能再分的最简单事件 复合事件:基本事件组成的事件 二、概率回忆频率的概念,频数:出现的次数总数频数频率=举例:抛掷一枚硬币25次,出现13次正面向上,则正面向上的频率为2513;大量重复地抛一枚硬币,发现事件A 发生的频率稳定在21,事件A 发生的概率为21概率:在大量重复试验中,事件发生的频率的稳定值记为()A P 。

频率与概率的区别:1、频率是试验中的近似值,概率是理论上的准确值;2、概率是频率在大量试验中的稳定值。

三、事件的概率的性质1.对于任意事件A ,有()10≤≤A P2.必然事件的概率为1,()1=ΩP ;3.不可能事件的概率为0,();0=ΦP第3节 古典概型一、古典概型 满足(1)有限性:基本事件有有限个;(2)等可能性:每个基本事件发生的可能性相等。

的试验称为古典概型。

举例:1.在圆内随机找一点,如果找出的每个点都是等可能的,这是古典概型吗? 分析:满足等可能性不满足有限性2.在射击训练中,结果有“命中10环”,“命中9环”,“命中8环”,“命中7环”,“命中6环”,“命中5环”,“不中环”,你认为这是古典概型吗? 分析:满足有限性不满足等可能性。

高考数学一轮复习知识点之排列、组合和概率

高考数学一轮复习知识点之排列、组合和概率

2019高考数学一轮复习知识点之排列、组合和概率排列是指从给定个数的元素中取出指定个数的元素进行排序。

以下是查字典数学网整理的高考数学一轮复习知识点,请考生学习。

.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。

.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。

二项式系数最大项与展开式中系数最大项易混。

二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r..你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。

) .二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;事件A发生k次的概率:。

其中k=0,1,2,3,,n,且0家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

.求分布列的解答题你能把步骤写全吗?如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。

)要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

2019-2020年高三数学专题复习排列、组合与概率人教版

2019-2020年高三数学专题复习排列、组合与概率人教版

一、基本知识点回顾:(一)排列、组合1、 知识结构表:2、 两个基本原理:(1) 分类计数原理(2) 分步计数原理3、 排列(1) 排列、排列数定义(2) 排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A m n (3) 全排列公式:4、 组合(1) 组合、组合数定义(2) 组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C m n (3) 组合数性质:① ② ③④n n n n n n C C C C 2210=+⋅⋅⋅+++⑤0)1(210=-+⋅⋅⋅++-n n n n n n C C C C 即:1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C 5、 思想方法(1) 解排列组合应用题的基本思路:① 将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步② 对“组合数”恰当的分类计算是解组合题的常用方法;③ 是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;(2) 解排列组合题的基本方法:① 优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;② 排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

③ 分类处理:某些问题总体不好解决时,常常分成若干类,再由分类计数原理得出结论;注意:分类不重复不遗漏。

④ 分步处理:对某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决;在解题过程中,常常要既要分类,以要分步,其原则是先分类,再分步。

⑤插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间。

⑥捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列。

高三数学总复习 第十章 排列、组合、二项式定理和概率、统计

高三数学总复习 第十章 排列、组合、二项式定理和概率、统计

十年高考分类解析与应试策略数学第十章排列、组合、二项式定理和概率、统计●考点阐释本章从内容到方法都是比较独特的,是进一步学习概率论的基础知识.其中分类计数原理和分步计数原理是本章的基础,它是学习排列、组合、二项式定理和计算事件的概率的预备知识.在对应用题的考查中,经常要运用分类计数原理或分步计数原理对问题进行分类或分步分析求解,如何灵活利用这两个原理对问题进行分类或分步往往是解应用题的关键.从两个原理上,完成一件事的“分类”和“分步”是有区别的,因此在应用上,要注意将两个原理区分开.排列、组合也是本章的两个主要概念.定义中从n个不同元素中,任取M(M≤n)个元素“按一定的顺序排成一列”与不管怎样的顺序“并成一组”是有本质区别的.只有准确、全面把握这两个概念,才能正确区分是排列问题,还是组合问题.具体解决手段:只要取出2个元素交换看结果是否有变化.二项式定理中,公式一般都能记住,但与其相关的概念如:二项式系数、系数、常数项、项数等,学生易混,须在平常加以对比分析,对通项公式重点训练.应用上要注意:①它表示二项展开式中的任意项,只要n与r确定,该项随之确定.②公式表示的是第r+1项.③公式中a、b的位置不能颠倒,它们的指数和为n.④r的取值从0到n,共n+1个.古典概型是学习概率与统计的起点,而掌握古典概型的前提是能熟练掌握排列组合的基本知识.熟练掌握五种事件的概率以及抽样方法、总体分布的估计、期望和方差.●试题类编一、选择题1.(2003京春理,9)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()A.42B.30C.20D.122.(2003京春文,10)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为( )A.6B.12C.15D.303.(2002京皖春理,6)从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有( )A.280种B.240种C.180种D.96种4.(2002京皖春文,6)若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有( )A.180种B.360种C.15种D.30种5.(2002京皖春理,10)对于二项式(x1+x 3)n(n ∈N *),四位同学作出了四种判断: ①存在n ∈N *,展开式中有常数项 ②对任意n ∈N *,展开式中没有常数项 ③对任意n ∈N *,展开式中没有x 的一次项 ④存在n ∈N *,展开式中有x 的一次项上述判断中正确的是( )A.①③B.②③C.②④D.①④6.(2002京皖春文,10)在(x1+x 2)6的展开式中,x 3的系数和常数项依次是( ) A.20,20 B.15,20 C.20,15D.15,157.(2002全国文,12、理,11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A.8种B.12种C.16种D.20种8.(2002北京文,9)5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为( )A.480B.240C.120D.969.(2002北京理,9)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A.4448412C C C 种B.34448412C C C 种C.3348412AC C种D.334448412A C C C 种 10.(2001京皖春,3)1222C C lim ++∞→n n n nn 等于( )A.0B.2C.21D.41 11.(2001天津理,9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有( )A.3种B.4种C.5种D.6种12.(2000京皖春,8)从单词“equation ”中选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( )A.120个B.480个C.720个D.840个13.(1999全国理,8)若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+ax 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( )A.1B.-1C.0D.214.(1999全国,14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A.5种B.6种C.7种D.8种15.(1998全国理,11)3名医生和6名护士被分配到3所学校为学生体检,每校分配1 名医生和2名护士.不同的分配方法共有( ) A.90种B.180种C.270种D.540种16.(1997全国理,15)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种17.(1997全国文)四面体的一个顶点为A ,从其他顶点与棱的中点中取3个点,使它们和点A 在同一平面上,不同的取法有( )A.30种B.33种C.36种D.39种18.(1996全国文)6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( ) A.720种B.360种C.240种D.120种19.(1995全国文15,理13)用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有( )A.24个B.30个C.40个D.60个20.(1995全国,6)在(1-x 3)(1+x )10的展开式中,x 5的系数是( ) A.-297B.-252C.297D.20721.(1994全国,10)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )A.1260种B.2025种C.2520种D.5040种22.(1994上海,18)计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( )A.5544A A 种 B.554435A A A 种 C.554413A A A 种D.554422A A A 种二、填空题23.(2003上海春,9)8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有_____场比赛.24.(2002上海7)在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增至14名,但只任取其中7名裁判的评分作为有效分.若14名裁判中有2人受贿,则有效分中没有受贿裁判的评分的概率是_____.(结果用数值表示)25.(2002上海春,7)六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是_____.26.(2002上海春,5)若在(xx 15)n的展开式中,第4项是常数项,则n = . 27.(2002全国理,16)(x 2+1)(x -2)7的展开式中x 3项的系数是 . 28.(2002上海文,9)某工程由下列工序组成,则工程总时数为 天.29.(2002天津文,15)甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):其中产量比较稳定的小麦品种是_____.30.(2001上海,7)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种 种.(结果用数值表示)31.(2001全国,16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .32.(2001上海理,8)在代数式(4x 2-2x -5)(1+21x )5的展开式中,常数项为 . 33.(2001全国文,13)(21x +1)10的二项展开式中x 3的系数为 . 34.(2001上海春)在大小相同的6个球中,2个红球,4个白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是_____.(结果用分数表示)35.(2001广东河南,13)已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有 种可能(用数字作答).36.(2001江西、山西、天津理)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_____.(用数字作答)37.(2001上海文)利用下列盈利表中的数据进行决策,应选择的方案是_____.38.(2000上海春,4)若(x +a )5的展开式中的第四项是10a 2(a 为大于零的常数),则x =_____.39.(2000上海春,10)有n (n ∈N *)件不同的产品排成一排,若其中A 、B 两件产品排在一起的不同排法有48种,则n =_____.40.(2000京皖春理,17)103)1(xx 展开式中的常数项是_____. 41.(2000全国文、理,3)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答).42.(2000年上海,9)在二项式(x -1)11的展开式中,系数最小的项的系数为 .(结果用数值表示)43.(2000上海,10)有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3.现任取3面,它们的颜色与号码均不相同的概率是 .44.(2000两省一市理,13)某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次品数以ξ的概率分布是45.(1999全国,16)在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄.为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有_____种(用数字作答).46.(1999上海理,3)在(x 3+22x)5展开式中,x 5项的系数为 . 47.(1999上海理,11)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是 .48.(1998全国理,17)(x +2)10(x 2-1)的展开式中x 10的系数为_____(用数字作答).49.(1998上海,9)设n 是一个自然数,(1+n x )n的展开式中x 3的系数为161,则n =_____.50.(1997全国,16)已知(2x x a)9的展开式中x 3的系数为49,常数a 的值为_____. 51.(1997上海,11)若(3x +1)n (n ∈N *)的展开式中各项系数的和是256,则展开式中x 2的系数是_____.52.(1997上海,16)从集合{0、1、2、3、5、7、11}中任取3个元素分别作为直线方程Ax +By +C =0中的A 、B 、C ,所得经过坐标原点的直线有_____条(结果用数值表示).53.(1996全国,17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有_____个(用数字作答).54.(1996上海,17)有8本互不相同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有_____种(结果用数字表示).55.(1996上海理,14)在(1+x )6(1-x )4的展开式中,x 3的系数是_____(结果用数值表示).56.(1995上海,13)若(x +1)n =x n +…+ax 3+bx 2+…+1(n ∈N *),且a ∶b =3∶1,那么n =_____.57.(1995上海,19)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各2台,则不同的选取法有_____种.(结果用数值表示).58.(1995全国,20)四个不同小球放入编号为1、2、3、4的四个盒中,则恰有一个空盒的放法共有_____种.(用数字作答)59.(1994全国,16)在(3-x )7的展开式中,x 5的系数是_____(用数字作答). 三、解答题60.(2002天津文20,理19)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(Ⅰ)求至少3人同时上网的概率; (Ⅱ)至少几人同时上网的概率小于0.3?61.(2001江西、山西、天津)如图10—1,用A 、B 、C三类不同的元件连接成两个系统N 1,N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80、0.90、0.90.分别求系统N 1、N 2正常工作的概率P 1、P 2.62.(2001上海理)对任意一个非零复数z ,m z ={ω|ω=z 2n -1,n ∈N } (1)设α是方程x +21=x的一个根,试用列举法表示集合M α.若在M α中任取两个数,求其和为零的概率P .(2)设复数ω∈M z ,求证:M ω⊆M z .63.(2001全国理,20)已知i ,m ,n 是正整数,且1<i ≤m <n . (1)证明n i i m A <m i i n A ; (2)证明(1+m )n >(1+n )m .64.(2000江西、山西、天津理,17)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少? 65.(2000上海,22)规定!)1()1(C m m x x x mx+-⋅⋅-⋅=Λ,其中x ∈R ,m 是正整数,且0C x =1,这是组合数mn C (n 、m 是正整数,且m ≤n 的一种推广).(1)(文)求315C -的值; (理)求515C -的值;(2)(文)设x >0,当x 为何值时,213)C (C x x 取最小值?(理,文2)组合数的两个性质: ①m n n mn-=C C . ②mn m n m n 11C C C +-=+.是否都能推广到mx C (x ∈R ,m 是正整数)的情形?若能推广,请写出推广的形式,并给出证明;若不能,则说明理由.(3)(理)已知组合数mn C 是正整数,证明:当x ∈Z ,m 是正整数时,mn C ∈Z .66.(1996全国文24,理23)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%,如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?●答案解析 1.答案:A解析:这是一个插空问题,应分两类:第一类,新增的两个节目连在一起;第二类,两个新增节目不连在一起,而原来的5个节目可看做分出6个空位.第一类则有2×16A 种不同的插法,第二类则有26A 种不同的插法.应用分类计数原理,共有12+30=42种不同的插法.评述:该题是应用问题,内容贴近学生,有一定的综合性、灵活性、考查分析,解决问题及逻辑思维的能力.同时应有周密的思维习惯.2.答案:D 解析:见第1题.3.答案:B 解析:因为甲、乙两名志愿者都不能从事翻译工作.因此,翻译工作从余下的四名志愿者选一人有14A 种,再从余下的5人中选3人从事导游、导购、保洁有35A 种.因此3514A A =240.4.答案:B 解析:46A =360. 5.答案:D 解析:二项式(x 1+x 3)n 展开式的通项为T r +1=r n C (x1)n -r (x 3)r =r n C x r -n ·x 3r =r n C x 4r -n 当展开式中有常数项时,有4-n =0,即存在n 、r 使方程有解. 当展开式中有x 的一次项时,有4r -n =1,即存在n 、r 使方程有解. 即分别存在n ,使展开式有常数项和一次项. 6.答案:C 解析:二项式(x1+x 2)6展开式的通项为:T r +1=636266C )()1(C --=r r r r rx x x∴当T r +1为x 3项时,r =3,∴T r +1=36C ·x 3=20·x 3 当T r +1为常数项时,r =2,∴T r +1=26C =15 7.答案:B解析:联想以空间模型,注意到“有2个面不相邻”,既可从相对平行的平面入手正面构造,即16C ·12C ;也可从反面入手剔除8个角上3个相邻平面,即:1836C C -. 8.答案:B解析:先把5本书中的两本捆起来(25C ),再分成四份(44A ),∴分法种数为25C ·44A =240(种).9.答案:A解析:先分配4个人到第一个路口,再分配4个人到第二个路口,最后分配4个人到第三个路口,即:412C ·48C ·44C .10.答案:D解析:原式=n n n n n n n n n n n n n n n n n n n n n n n n 2411)12(21)12)(22()1)(1(A A A A A A A A 122112111222++=++=++++=⋅⋅=++++++++ ∴41C C lim 1222=++∞→n n n nn11.答案:A解析:设该队胜x 场,平y 场,则负(15-x -y )场,由题意得3x +y =33,∴y =33-3x ≥0∴x ≤11,且x +y ≤15,(x ,y ∈N ) 因此,有以下三种情况:⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==69310011y x y x y x 或或 评述:本题利用不定方程及穷举法解决排列、组合问题. 12.答案:B解析:4436A C =480. 13.答案:A 14.答案:C解法一:由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种; 买3盒磁盘时,有买3片或4片软件两种;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种,故共有1+2+4=7种不同的选购方式,答案为C.解法二:先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘、再买1盒磁盘、再买两盒磁盘三类,仿解法一可知选C.评述:本题主要考查分类计数原理、分类讨论思想.背景简单,但无现成模式可用,对分析解决问题的能力有较高要求.15.答案:D解析:设计让3所学校依次挑选,先由学校甲挑选,有2613C C 种,再由学校乙挑选,有2412C C 种,余下的到学校丙只有一种,于是不同的方法数共有13C ·26C ·2412C C =540种,答案为D.评述:设计一个程序是解答排列组合应用题的常见解法. 16.答案:D解法一:10个点任取4个点取法有410C 种,其中面ABC 内的6个点中任意4点都共面,从这6点中任取4点有46C 种,同理在其余3个面内也有46C 种,又每条棱与相对棱中点共面有6种,各棱中点中4点共面的有3种,故10个点中取4点,不共面的取法共有36C 4C 46410---=141种.解法二:四面体记之为A —BCD ,设平面BCD 为α,那么从10个点中取4个不共面的点的情况共有四类:(1)恰有3个点在α上,有4(3C 36-)=68种取法;(2)恰有2个点在α上,可分两种情况:该2个点在四面体的同一条棱上时有3)3C (C 2423-=27种,该2个点不在同一条棱上,有(2326C 3C -)·(24C -1)=30种;(3)恰有1个点在α上,可分两种情况,该点是棱的中点时有3×3=9种,该点是棱的端点时有3×2=6种;(4)4个点全不在α上,只有1种取法.根据分类计数原理得,不同的取法共有68+27+30+9+6+1=141种.评述:本题对空间想象能力要求较高,对观察能力和思维能力要求也高.在应用背景及其限制条件下合理分类是解题的关键.17.答案:B解析:四面体有4个顶点,6条棱有6个中点,每个面上的6个点共面,点A 所在的每个面中含A 的4点组合有35C 个,点A 在3个面内,共有335C 个组合,点A 在6条棱的三条棱上,每条棱上有3个点,这3点与对棱的中点共面,所以与点A 共面的四点组合共有335C +3=33(个)评述:本题考查组合的知识和空间想象能力.对考生的观察能力和思维能力有较高要求,考生失误的主要原因是没有把每条棱上的3点与它对棱上的中点共面的情况计算入内.18.答案:C解析:把甲、乙两人看作1个人,这样6个人看作5个人,5个人的全排列有55A 种,甲、乙两个人还有顺序问题,所以排法总数为55A ·22A =240(种)评述:这是一道有限制条件的排列题,考查排列的概念和排列数公式.“相邻问题”是一个常见的典型问题.19.答案:A解法一:其中2在个位的三位数有24A 个,4在个位的三位数有24A 个,故没有重复数字的三位偶数共有224A =24个,故选A.解法二:先排个位有12A 种,再排十位、百位有24A 种,于是合乎要求的三位偶数共有2412A A =24个.故选A. 评述:本题为有特殊要求的排列问题,考查排列基础知识和逻辑推理能力. 20.答案:D解析:∵原式=(1+x )10-x 3(1+x )10.∴欲求原展开式中x 5的系数,只需求出(1+x )10展开式中x 5和x 2的系数.而(1+x )10=1+…+210C x 2+…+510C x 5+….故(1-x 3)(1+x )10展开式中,x 5的系数为510C -210C =207.21.答案:C解法一:从10人中选派4人有410C 种,进而对选出的4人具体分派任务,有1224C C 种,由分步计数原理得不同的选派方法为1224410C C C =2520种,答案为C.解法二:据分步计数原理,不同选法种数为210C ·18C ·17C =2520种.评述:本题主要考查组合和分步计数原理,答数较大,对组合数的计算要求较高.方法一用的是先选后派方法是处理排列组合应用题的基本方法.22.答案:D解析:先各看成整体,但水彩画不在两端,则为22A ,然后水彩画与国画各全排列,所以共有554422A A A .23.答案:16解析:分两组比赛,每组有24C 场,每组的第一名与另一组的第二名比赛有2场,三、四名比赛,冠亚军比赛,共有224C +2+2=16(场)24.答案:133 解析:有效分应该是由没有受贿裁判的评分,因此,7名裁判应从12人中选712C ,则有效分中没有受贿裁判的评分的概率是133C C 714712=.25.答案:201 解析:因为后排每人均比前排人高,因此应将6人中最高的3个人放在后排,其余3人站前排.故所有排法有33A ·33A =36种.故后排每人均比前排同学高的概率为201A A A 663333=⋅ 26.答案:18 解析:∵5183333534)1(C )1()(C ---=-=n n n nx xx T 为常数项. ∴518-n =0,即n =18.27.答案:1008解析:系数为:17C (-2)6+37C (-2)4=1008. 28.答案:11解析:要完成某项工序,必须先完成它的紧前工序且在紧前工序完成的条件下,若干件工序可同时进行,因而工程总时数为:3+2+5+1=11(天).29.答案:甲解析:根据题意,需要比较2*甲S 和2*乙S由于2*甲S =0.158,2*乙S =0.552 因此甲产量比较稳定. 30.答案:7解析:在5种不同的荤菜中取出2种的选择方式应有245C 25⨯==10(种)选择方式至少为200种,设素菜为x 种,∴252C C x ≥2002)1(-x x ≥20,x (x -1)≥40,x ≥7 ∴至少应为7种素菜. 31.答案:2n (n -1)解析:先在圆上找一点,2n 个点因为是等分点,所以过圆心的直径应有n ,减去过这点的直径,剩下的直径n -1个都可以与这个点形成直角三角形,∴一个点可以形成n -1个直角三角形,这样的点有2n 个.∴一共为2n (n -1). 32.答案:15 解析:15205)1(1C )4()1(1C 512415202505=+-=+-xx x . 33.答案:15 解析:15816891081C )21(C 3103310=⨯⨯⨯=⨯= 34.答案:54解析:所选3球中至少有一个红球的选法有12C ·2224C C +·14C =16(种) 从6个球中任选3个球的选法有36C =20(种). 故概率p =542016=. 评述:本题主要考查对可能事件的概率计算,以及考生分析问题解决问题的能力.古典概率是学习概率与统计的起点,而掌握古典概型的前提是能熟练地掌握排列组合的基本知识.35.答案:4900解析:完成这件事可分为两步:第一步:从甲组8人中抽取4个,有48C 种方法; 第二步:从乙组8人中抽取4人,有48C 种方法. 因此,比赛人员的组成共有48C ·48C =4900种可能.评述:本题考查分步计数原理、组合的概念以及组合数的运算,考查分析问题、解决问题的能力.36.答案:1.2解析:设其中含红球个数为x ,则x =1或 x =2.而含一个红球的概率A 1=106C C C 251213=⋅ 含两个红球的概率为A 2=103C C 2523=∴含红球个数的数学期望为1×106+2×103=1.2 评述:本题考查数学期望的概念、概率的概念及它们的计算. 37.答案:A 3解析:A 1的数学期望:1x E =0.25×50+0.30×65+0.45×26=43.7 A 2的数学期望:2x E =0.25×70+0.30×26+0.45×16=32.5 A 3的数学期望:3x E =0.25×(-20)+0.30×52+0.45×78=45.7A 4的数学期望:4x E =0.25×98+0.30×82+0.45×(-10)=44.6评述:本题考查概率与数学期望,考查学生识表的能力.对图表的识别能力,是近年高考突出考查的热点.图表语言与其数学语言的相互转换,应成为数学学习的一个重点,应引起高度重视.38.答案:a1 解析:∵x a a x T 33352135410)(C ==-,∴x =a1.39.答案:5解析:由11A 2--n n =48,得11A --n n =24,∵44A =24,∴n =5. 40.答案:210 解析:T r +1=65301031102110)1(C )()(C r r rr rrxx x----=-⋅,令30-5r =0,得r =6.∴常数项T 7=610C ·(-1)6=210.41.答案:252解析:222733A C A =252. 42.答案:-462解法一:因为在(x -1)11的展开式中,各项的二项式系数与系数相等或互为相反数,又展开式中二项式系数最大的项有两项,分别为第六项511C x 6(-1)5.第七项611C x 5(-1)6,所以得系数最小的项的系数为462C 511-=-. 解法二:展开式中第r +1项为r rrx)1(C 1111--,要使项的系数最小,则r 为奇数,且使r11C 为最大,由此得r =5,所以项的最小系数为462)1(C 5511-=-.43.答案:141解析:从9面旗帜中任取3面,共有39C (种)取法. 现取3面,颜色与号码均不相同共有13C ·12C ·11C =6(种)因此,所求概率为141846C 639==. 44.答案:解析:设次品数为ξ,则ξ~(2,0.05),其中p =0.05为次品率,则q =0.95为正品率,于是由二项分布公式(列成表格):即得所求结果. 45.答案:12解析:先考虑A 种植在左边的情况,有三类:A 种植在最左边一垄上时,B 有三种不同的种植方法;A 种植在左边第二垄上时,B 有两种不同的种植方法;A 种植在左边第三垄上时,B 只有一种种植方法.又B 在左边种植的情况与A 时的相同,故共有2×(3+2+1)=12种不同的选垄方法.评述:本题主要考查两个基本原理、分类讨论思想,对分析解决问题的能力有较高要求. 46.答案:40解析:由通项公式T r +1=r5C (x 3)5-r ·(22x )r =r 5C ·2r ·x 15-5r由题意,令15-5r =5.得r =2. ∴含x 5项的系数为25C ·22=40. 47.答案:92 解析:掷两次骰子分别得到的总数m 、n 作为P 点的坐标共有16A ·16A =36(种)可能结果,其中落在圆内的点有8个:(1,1)、(2,2)、(1,2)、(2,1)、(1,3)、(3,1)、(2,3)、(3,2),则所求的概率为92368=. 评述:本题考查点与圆的位置关系,概率概念等基础知识以及运用数形结合的思想和分类讨论的思想解决实际问题的能力.48.答案: 179解析:展开式中x 10的系数与(x +2)10的展开式中x 10的系数和x 8的系数有关,由多项式运算法则知所求系数为010C ·(-1)+210C ·22·1=179.评述:本题考查在逻辑思维能力上的要求,兼考查分类讨论的思想. 49. 答案:4解析:T r +1=r r nn x )(C ,令r =3得x 3的系数1611C 33=n n ,解得n =4.50.答案: 4解析:T r +1=929299292C )1()()2()1(C -+---⋅⋅⋅-=-r rr r r r r r rr x a xa x当392=-+r r ,即r =8时,492C )1(28898=⋅⋅--a ,解得a =4.评述:本题考查二项式定理的基础知识,重点考查通项公式和项的系数的概念,兼考运算能力.51.答案: 54解析:令x =1得展开式各项系数之和4n =256解得n =4,所以x 2的系数是24C ·32=54. 52.答案:30解析:因过原点的直线常数项为0知c =0,从集合中任取两个非零元素作系数A 、B 有26A 种,所以适合条件的直线有26A =30条.53.答案: 32解析:7个点任取3点的组合数37C =35,其中三点在一线上不能组成三角形的有3个,故组成三角形的个数为35-3=32个.评述:本题是有限制条件的组合应用题,背景采用几何图形,对逻辑思维能力要求较高.易出现不排除不构成三角形的情况的错误.54.答案: 1440解析:将数学书与外文书分别捆在一起与其他3本书一起排,有55A =120种排法,再将3本数学书之间交换有33A =6种,2本外文书之间交换有22A =2种,故共有223355A A A =1440种排法.55.答案: -8解析:原式=(1+x )2(1-x 2)4=(1+2x +x 2)(1-x 2)4含x 3的项为2x ·14C ·(-x 2)=-8x 3,故x 3的系数为-8.56.答案:11 解析:2233C C ,C C nn n n n nb a ====--, 由已知有113)1(62)2)(1(13C C 23=⇒=-⋅--⇒=n n n n n n n n . 57. 答案:350解析:选法是原装取2台组装取3台,原装取3台组装取2台.故不同的选取法有25363526C C C C +=350种. 58. 答案:144解法一:考虑用分配的数学模型来解.若1号盒空,2号盒放2个球,3号盒和4号盒各放一个球有111224C C C =12种放法. 若1号盒空,3号盒放2个球,4号盒和2号盒各放一个球时仍有111224C C C =12种放法. 若1号盒空,4号盒放2个球,2号盒和3号盒各放一个球同样有111224C C C =12种放法. 即1号盒空共有3×12=36种放法.同理2号盒空有36种放法,3号盒空有36种放法,4号盒空有36种放法. 故按题中要求恰有一个空盒的放法共有4×36=144种放法.解法二:先将4个球分成3组每组至少1个,分法有6种.然后再将这3组球放入4个盒子中每盒最多装一组.则恰有一个空盒的放法种数为634A =144种.评述:本题是一道排列组合综合题,运用先分组,后排列的方法较好. 59.答案: -189 解析:r r r r x T )()3(C 771-=-+,所以r =5,x 5的系数为57C 32(-1)5=-189.评述:本题考查二项式定理,重点考查通项公式,兼考计算能力.60.解:(Ⅰ)至少3人同时上网的概率等于1减去至多2人同时上网的概率,即32216415611)5.0(C )5.0(C )5.0(C 1626616606=++-=---.(Ⅱ)至少4人同时上网的概率为3.03211)5.0(C )5.0(C )5.0(C 666656646>=++ 至少5人同时上网的概率为:3.0647)5.0)(C C (66656<=+. 因此,至少5人同时上网的概率小于0.3.61.解:分别记元件A 、B 、C 正常工作为事件A 、B 、C ,由已知条件 P (A )=0.80,P (B )=0.90,P (C )=0.90.(Ⅰ)因为事件A 、B 、C 是相互独立的,系统N 1正常工作的概率P 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648. 故系统N 1正常工作的概率为0.648. (Ⅱ)系统N 2正常工作的概率)]()(1[)()](1[)(2C P B P A P C B P A P P ⋅-⋅=⋅-⋅=.∵P (B )=1-P (B )=1-0.90=0.10. P (C )=1-P (C )=1-0.90=0.10.∴P 2=0.80×[1-0.10×0.10]=0.80×0.99=0.792. 故系统N 2正常工作的概率为0.792. 62.解:(1)解方程x +21=x得x =i 2222± 当α1=i 2222+时ω=α12n -1=112121])2222[()(ααααn nni i =+=由i n 的周期性知:ω有四个值. n =1时,ω=i i i 22222222+=+n =2时,ω=i i 222222221+-=+- n =3时,ω=i i i 22222222--=+- n =4时,ω=i i 222222221-=+ 当α2=2222-i 时,ω=α22n-1=2222)()(αααnn i -= n =1时,ω=i i i 22222222-=-- n =2时,ω=i i 222222221--=-- n =3时,ω=i i i 22222222+-=- n =4时,ω=i i 222222221+=- ∴不管α=i 2222+还是α=i 2222- M α={i i i i 2222,2222,2222,2222--+--+ } P =3162C 224== (2)∵ω∈M z ,则ω=z 2m -1,m ∈N 任取x ∈M ω,则x =ω2n -1,n ∈N 而ω=z 2m -1 ∴x =(z 2m -1)2n -1=z (2m-1)(2n -1)∵(2m -1)(2n -1)为正奇数 ∴x ∈M z ∴M ω⊆M z评述:复数的运算是复数的基础,本题考查复数的奇数次幂,由于i n 的周期性,因而α2n -1只有四个值,题目以集合的形式给出复数ω,使复数与集合有机的结合在一起,不仅考查复数还考查集合的表示方法.而证明一个集合是另一个集合的子集在对集合的考查上又高了一个层次.证明尽管不繁,但思维层次较高.63.证明:(1)方法一:i i i m m i m m m m )1()1(A +-⋅⋅-⋅=Λi i i n ni n n n n )1()1(A +-⋅⋅-⋅=Λ 对于m <n ,∴k =1,2,…,i -1有mkm n k n ->- ∴ii m i i n mn A A >即m i i n A >n ii m A 方法二:n i in A =43421Λ个n n n n ⋅⋅·m ·(m -1)·(m -2)·…·(m -i +1) =mn ·(mn -n )·(mn -2n )·…·[mn -n (i -1)]①同理m i im A =mn ·(mn -m )·(mn -2m )·…·[mn -m (i -1)] ② ∵1<i ≤m <n ,∴mn -n <mn -m ,mn -2n <mn -2m ,…, mn -n (i -1)<mn -m (i -1)③∴联系①、②、③可得n i im A <m i A i n . (2)由二项式定理:nn n n n nmm m m C C C )1(1100+++=+Λ mm m m m m n n n n C C C )1(1100+++=+Λ又∵!A C i m m i i n ii n=而i n A m i >im A n i ∴2222C C n mmn >。

高三数学第二轮专题复习系列(10)--排列、组合、二项式定理和概率统计

高三数学第二轮专题复习系列(10)--排列、组合、二项式定理和概率统计

高三数学第二轮专题复习系列(10)--排列、组合、二项式定理和概率统计一、知识要点二、高考要求1、掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题。

2、理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3、理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题。

4、掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5、了解随机事件的发生存在着规律性和随机事件概率的意义。

6、了解等可能事件的概率的意义,并会用排列组合的基本公式计算一些等可能性事件的概率。

7、了解互斥事件的相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8、会计算事件在n次独立重复试验中恰好发生k次的概率。

9、了解随机变量、离散型随机变量、连续型随机变量的意义,会求某些简单的离散型随机变量的分布列。

10、了解离散型随机变量的期望、方差的意义,会根据离散型随机变量的分布列求期望与方差。

11、了解连续型随机变量的概率密度的意义。

12、会用简单随机抽样,系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。

13、会用2S*与2S去估计总体方差2δ,会用S*与S去估计总体标准δ。

14、会用样本频率分布去估计总体分布。

了解线性回归的方法和简单应用。

三、热点分析排列与组合是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题都有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,并且结果数目较大,无法一一检验,因此给考生带来一定困难。

解决问题的关键是加深对概念的理解,掌握知识的内在联系和区别,科学周全的思考、分析问题。

二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点。

概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫。

高考数学总复习------ 排列组合与概率统计

高考数学总复习------ 排列组合与概率统计

高考数学总复习------排列组合与概率统计【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶ 排列与组合的主要公式①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A mn (m≤n)A nn =n! =n(n―1)(n―2) ...2·1. ②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C mn (m≤n).③组合数性质:①m n n m n C C -=(m≤n). ②nn n n n n C C C C 2210=+⋅⋅⋅+++ ③1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C2.二项式定理 ⑴ 二项式定理(a +b)n =C 0n a n +C 1n a n -1b+…+C rn a n -r b r +…+C n n b n ,其中各项系数就是组合数C rn ,展开式共有n+1项,第r+1项是T r+1 =C rn a n -r b r .⑵ 二项展开式的通项公式二项展开式的第r+1项T r+1=C rn a n -r b r (r=0,1,…n)叫做二项展开式的通项公式。

⑶ 二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即C rn = C rn n - (r=0,1,2,…,n).②若n 是偶数,则中间项(第12+n 项)的二项公式系数最大,其值为C 2nn ;若n 是奇数,则中间两项(第21+n 项和第23+n 项)的二项式系数相等,并且最大,其值为C 21-n n = C 21+n n .③所有二项式系数和等于2n ,即C 0n +C 1n +C 2n +…+C nn =2n . ④奇数项的二项式系数和等于偶数项的二项式系数和,即C 0n +C 2n +…=C 1n +C 3n +…=2n―1. 3.概率(1)事件与基本事件::S S S ⎧⎪⎧⎨⎨⎪⎩⎩随机事件在条件下,可能发生也可能不发生的事件事件不可能事件:在条件下,一定不会发生的事件确定事件必然事件:在条件下,一定会发生的事件基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化. (3)互斥事件与对立事件:(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例. 两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个. (5)古典概型与几何概型的概率计算公式: 古典概型的概率计算公式:()A P A =包含的基本事件的个数基本事件的总数.几何概型的概率计算公式:()A P A =构成事件的区域长度(面积或体积)试验全部结果构成的区域长度(面积或体积).两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同. (6)概率基本性质与公式①事件A 的概率()P A 的围为:0()1P A ≤≤. ②互斥事件A 与B 的概率加法公式:()()()P AB P A P B =+.③对立事件A 与B 的概率加法公式:()()1P A P B +=.(7)如果事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率是p n (k) = C kn p k (1―p)n―k . 实际上,它就是二项式[(1―p)+p]n 的展开式的第k+1项.(8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)(012)k kn k nP X k C p p k n -==-=,,,,,.此时称随机变量X 服从二项分布,记作~()X B n p ,,并称p 为成功概率.4、统计(1)三种抽样方法 ①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况. 系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k ,当Nn(N为总体中的个体数,n 为样本容量)是整数时,N k n =;当Nn不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n 整除,这时N k n'=;第三步,在第一段用简单随机抽样确定起始个体编号l ,再按事先确定的规则抽取样本.通常是将l 加上间隔k 得到第2个编号()l k +,将()l k +加上k ,得到第3个编号(2)l k +,这样继续下去,直到获取整个样本. ③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本. (2)用样本估计总体样本分布反映了样本在各个围取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图. ②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为s =. 有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.(3)两个变量之间的关系 变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:第一步:先把数据制成表,从表中计算出211nni i i i i x y x y x ==∑∑,,,;第二步:计算回归系数的a ,b ,公式为1112211()()()n n ni i i i i i i n ni i i i n x y x y b n x x a y bx =====⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑∑∑∑,;第三步:写出回归直线方程y bx a =+.(4)独立性检验①22⨯列联表:列出的两个分类变量X 和Y ,它们的取值分别为12{,}x x 和12{,}y y 的样本频数表称为22⨯列联表构造随机变量22()()()())n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)得到2K 的观察值k 常与以下几个临界值加以比较:如果 2.706k >,就有0090的把握因为两分类变量X 和Y 是有关系;如果 3.841k > 就有0095的把握因为两分类变量X 和Y 是有关系; 如果 6.635k > 就有0099的把握因为两分类变量X 和Y 是有关系;如果低于 2.706k ≤,就认为没有充分的证据说明变量X 和Y 是有关系.【典型例题】考点一:排列组合 【方法解读】1、解排列组合题的基本思路:① 将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步 ② 对“组合数”恰当的分类计算是解组合题的常用方法;③ 是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”; 2、解排列组合题的基本方法:① 优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;② 排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

高考数学知识点总结:排列、组合和概率

高考数学知识点总结:排列、组合和概率

2019 高考数学知识点总结:摆列、组合和概率.解摆列合的依照是:分相加,分步相乘,有序摆列,无序合。

解摆列合的律是:相捆法 ;不插空法 ;多排排法 ;定位先法 ;定序倍法 ;多元分法 ;有序分派法 ;取先排后排法 ;至多起码接法。

.二式系数与睁开式某一的系数易混,第 r+1 的二式系数。

二式系数最大与睁开式中系数最大易混。

二式系数最大中一或两 ;睁开式中系数最大的求法要用解不等式来确立 r..你掌握了三种常的概率公式?(①等可能事件的概率公式;②互斥事件有一个生的概率公式;③互相独立事件同生的概率公式。

).二式睁开式的通公式、n 次独立重复中事件 A 生 k 次的概率易混。

通公式:它是第r+1 而不是第 r ;事件 A 生 k 次的概率:。

此中 k=0,1,2,3,⋯,n,且 0 .求散布列的解答你能把步写全?怎样体散布行估 ?(用本估体,是研究的一个基本思想方法,一般地,本容量越大,种估就越精准,要求能画出率散布表和率散布直方;理解率散布直方矩形面第1页/共2页1 / 2积的几何意义。

)宋此后,京师所设小学馆和武学堂中的教师称呼皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝当选翰林院的进士之师称“教习”。

到清末,学堂盛行,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的帮手一律称“训导”。

于民间,特别是汉代此后,关于在“校”或“学”中教授经学者也称为“经师”。

在一些特定的讲学场合,比方书院、皇室,也称教师为“院长、西席、讲席”等。

.你还记得一般正态整体怎样化为标准正态整体吗 ?(对任一正态整体来说,取值小于 x 的概率,此中表示标准正态整体取值小于的概率 )第2页/共2页2 / 2。

排列、组合、概率与统计基础知识与典型例题

排列、组合、概率与统计基础知识与典型例题

排列、组合、概率与统计基础知识与典型例题一、排列与组合1.分类计数原理: 完成一件事,有n类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,……,在第n类办法中有种不同的方法,那么完成这件事共有N= n1+n2+n3+…+nM种不同的方法.2.分步计数原理:完成一件事,需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有N=n1•n2•n3•…nM 种不同的方法.注:分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。

它们的共同点都是把一个事件分成若干个分事件来进行计算。

只不过利用分类计算原理时,每一种方法都独立完成事件;如需连续若干步才能完成的则是分步。

利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性.比较复杂的问题,常先分类再分步。

3.⑪排列的定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.⑫排列数的定义: 从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n个不同元素中取出m个元素的一个排列数,用符号表示. 其中n,m∈,并且m≤n.⑬排列数公式:!(1)(1)(,,)()!mnnA n n n m m n n m Nn m=--+=∈-≤当m=n时,排列称为全排列,排列数为= 记为n!, 且规定O!=1.注:;4.⑪组合的定义: 从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.⑫组合数的定义: 从n个不同的元素中取出m(m≤n)个元素的所有组合数,叫做从n个不同元素中取出m个元素的组合数.用符号表示.⑬组合数公式: .规定,其中m,n∈N+,m≤n.注: 排列是“排成一排”,组合是“并成一组”, 前者有序而后者无序.⑭组合数的两个性质:①从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的.②根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C ,如果不取这一元素,则需从剩余n个元素中取出m个元素,所以共有C 种,依分类原理有.5.解排列、组合题的基本策略与方法(Ⅰ)排列、组合问题几大解题方法:①直接法; ②排除法;③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”. ⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,()m m n <个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有mm nnA A 种排列方法.(Ⅱ)排列组合常见解题策略:①特殊元素优先安排策略; ②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列); ④正难则反,等价转化策略; ⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略; ⑦定序问题除法处理策略;⑧分排问题直排处理的策略; ⑨ “小集团”排列问题中先整体后局部的策略; ⑩构造模型的策略.6.二项式定理:⑪对于n N *∈,00110()n n n r n r r n n n n n n a b C a b C a b C a b C a b --+=+++++ ,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的展开式. 注:展开式具有以下特点: 项数:共有1+n 项;系数:依次为组合数;,,,,,,210nn r n n n n C C C C C且每一项的次数是一样的,即为n 次,展开式依a 的降幂排列,b 的升幂排列展开. ⑫二项展开式的通项:()na b +的展开式第r+1为1(0,)r n rrr n T C a b r n r Z -+=∈≤≤.⑬二项式系数的性质.①二项展开式中的(0,1,2,,)rn C r n = 叫做二项式系数.....②在二项展开式中与首未两项“等距离”的两项的二项式系数相等;即011,,,.n n r n r n n n n n n C C C C C C --===③二项展开式的中间项二项式系数.....最大且当12n +k <时,二项系数是逐渐增大,当12n +k >时,二项式系数是逐渐减小的.(Ⅰ)当n 是偶数时,中间项是第12n +项,它的二项式系数2nnC 最大;(Ⅱ)当n 是奇数时,中间项为两项,即第12n +项和第112n ++项,它们的二项式系数1122n n nnCC-+=最大.④系数和:所有二项式系数的和:012n nn n nC C C+++= ;奇数项二项式系数的和=偶数项而是系数的和:0241312n n n n n n C C C C C -+++=++= . ⑤1121m mm m m m m m m nm n C C CCC++++++++=⑭如何来求()n a b c ++展开式中含p q r a b c 的系数呢?其中,,,p q r N ∈且p q r n ++=把()[()]n n a b c a b c ++=++视为二项式,先找出含有r c 的项()r n rrn C a b c -+,另一方面在()n ra b -+中含有q b 的项为q n r qqq p q n rn rCab Ca b ----=,故在()na b c ++中含pqra b c 的项为rq pqrn n rC Ca b c -.其系数为!()!!!()!!()!!!!r q pqr n n rn n pr n n r n C C C CC r n r q n r q r q p ---=⋅==---.⑮二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

(整理)排列组合与概率统计专题复习

(整理)排列组合与概率统计专题复习

排 列 组 合 与 概 率 统 计 专 题一、2012年考纲要求(1)理解排列、组合的意义,掌握计算公式和组合数的性质,并能用它们解决一些简单的应用问题.;(2)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.; (3)了解随机事件的发生存在着规律性和随机事件、等可能性事件的概念的意义,会用排列组合的基本公式计算一些等可能性事件的概率;(4)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率;(5)会计算事件n 次独立重复试验中恰好发生k 次的概率;(6)了解离散型随机变量及其期望、方差的意义,会根据离散型随机变量的分布列求出期望值、方差;(7)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本,用样本频率分布去估计总体分布;(8)了解正态分布的意义及主要性质,线性回归的方法和简单应用. 二.经典例题剖析考点一 排列、组合的应用问题1.在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )1212111121212121211211C C C D.C C C C C C C.C C C C .C B C C C A.C n m n m n m m n n m m n n m m n n m +++++++++解析:方法1:从OA 边上(不包括O)中任取一点与从OB 边上(不包括O)中任取两点,可构造一个三角形,有C 1mC 2n个;第二类办法 从OA 边上(不包括O)中任取两点与OB 边上(不包括O)中任取一点,与O 点可构造一个三角形,有C 2m C 1n个;第三类办法 从OA 边上(不包括O)任取一点与OB 边上(不包括O)中任取一点,与O 点可构造一个三角形,有C 1m C 1n个由加法原理共有N=C 1m C 2n +C 2m C 1n +C 1m C 1n个三角形方法2 从m+n+1中任取三点共有C 31++n m 个,其中三点均在射线OA(包括O 点),有C 31+m 个,三点均在射线OB(包括O 点),有C 31+n 个 所以,个数为N=C 31++n m -C 31+m -C 31+n 个 答案C2.如图,一环形花坛分成AB C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ).A .96B .84C .60D .48解析:解法一 当选两种不同的花时,有1224=A 种,选三种不同的花 时有48331234=A C C 种,选四种不同的花时有2444=A 种,共有84244812=++种.解法二 当A 、C 种同一种花时,有36131314=C C C 种,当A 、C 种不同的花时,有48121224=C C A 种,共有844836=+种,故选B.3.将5名志愿者分配到3个不同的场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A.540B.300C.180D.150解析:将5分成满足题意的3份有1,1,3与2,2,1两种,所以共有150332223253335=+A A C C A C 种方案,故D 正确.4.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为.18A .24B .30C .36D的种数是24C ,顺序有33A 种,而甲乙被分在同一个班的有33A 种,所以种数是30333324=-A A C ,故C 正确.5. 已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(A)33 (B) 34 (C) 35 (D)36 解:不考虑限定条件确定的不同点的个数为113233C C A =36,但集合B 、C 中有相同元素1,由5,1,1三个数确定的不同点的个数只有三个,故所求的个数为36-3=33个,选A6.现安排甲、乙、丙、丁、戊5名同学参加志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是.A .152B .126C .90D .54 解析:甲乙从事同一样工作,有183313=A C 种安排方案,甲乙从事不同工作,有108222323=A C A 种安排方案,则共有12610818=+种,应选C.考点二、二项式定理的应用7.设22221201212)...2n n n n n x a a x a x a x a x --+=+++++,则22024213521lim[(...)(...)]n n n a a a a a a a a -→∞++++-++++=解析:令0x =得201(22n n a ==令1x =时20122(1)2n na a a a +=+++⋅⋅⋅+令1x =-时201221)2n n a a a a -=-+-⋅⋅⋅+两式相加得:220221)1)222n n n a a a ++-++⋅⋅⋅+=两式相减得:2213211)1)222n n n a a a -+--++⋅⋅⋅+=代入极限式可得,故08.()10x y -的展开式中,73x y 的系数与37x y 的系数之和等于 .解析:由二项式定理,37y x 的系数为310C -,73y x 的系数为710C -,故系数和为240)(710310-=-+-C C .9. 若多项式=+++++++=+91010910102,)1(9)1()1(a x a x a x a a x x 则 -1010.已知n4)x21x (+的展开式前三项中的x 的系数成等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学基础知识与典型例题
完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第类办法中有n m 种不同的方法,那么完成这件事共有N = n 1+n 2+
123n
①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每
(0,1),∴有公式()()x F x μσ-=Φ.
)a μ
-
例1.A 例2.C 例3.D 例4.C
例5.C 例6.B 例7.D 例8.B
例9.510
例10. 解:⑪如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植, 因为a 2、a 3与a 1不同颜色,a 2、a 3也不同。

所以S (3)=3×2=6(种)。

如图2,S (4)=3×2×2×2-S (3)=18(种)。

⑫如图3,圆环分为n 等份,对a 1有3种不同的种法, 对a 2、a 3、…、a n 都有两种不同的种法,
但这样的种法只能保证a 1与a i (i =2、3、……、n -1)不同颜色, 但不能保证a 1与a n 不同颜色.
于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为()(3)S n n ≥种. 另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分, 这样的种法相当于对n -1部分符合要求的种法,记为)1(-n S . 共有3×2n -1种种法.这样就有123)1()(-⨯=-+n n S n S . 即]2)1([2)(1----=-n n n S n S ,
则数列{()2}(3)n S n n -≥是首项为32)
3(-S 公比为-1的等比数列. 则33()2[(3)2](1)(3).n n S n S n --=--≥
由⑪知:6)3(=S ,∴3()2(68)(1)n n S n --=--.∴3()22(1)n n S n -=-⋅-. 答:符合要求的不同种法有322(1)(3).n n n --⋅-种≥
例11.D 例12.C 例13.C
例14.B 例15.D 例16.B
例17. 73 例18. 5
42
例19. ①,③
例20. 解:(1)显然A 胜与B 胜为对立事件,A 胜分为三个基本事件: ①A 1:“A 、B 均取红球”; ②A 2:“A 、B 均取白球”; ③A 3:“A 、B 均取黄球”.
123111
(),(),()626366
x y z P A P A P A =⨯=⨯=⨯
12332()()()(),36
x y z
P A P A P A P A ++∴=++=
32()136
x y z
P B ++∴=-
(2)由(1)知32()36
x y z
P A ++=
,6,0,0,0x y z x y z ++=又≥≥≥ 于是32121
(),36362
x y z x z P A +++-=
=≤ 6,0x y z ∴===当,
即A 在箱中只放6个红球时,获胜概率最大,其值为.2
1
例21.B 例22.A 例23.B
例24.A 例25.D 例26.B
例27.D
例28. 1.2 例29. 0.32 , 72
例30. 本小题主要考查概率及其基础知识和运算能力. 解(Ⅰ)一次实验中,设事件A 表示“试验成功”,
则4445
(),()1().6699
P A P A P A =⨯==-=
(Ⅱ)依题意得::),9
5
,4(~其概率分布列为B ξ
5205480
4,4.999981
E D ξξ∴=⨯==⨯⨯=。

相关文档
最新文档