中考数学压轴题函数等腰三角形问题

合集下载

中考数学——等腰三角形问题解题思路与攻略

中考数学——等腰三角形问题解题思路与攻略

中考数学——等腰三角形问题解题思路与攻略等腰三角形是中考数学中常见的一个题型,掌握解题思路和攻略对于中考数学的顺利通过非常重要。

本文将介绍等腰三角形问题的解题思路和攻略,希望能帮助同学们更好地应对这类问题。

一、等腰三角形的定义和性质等腰三角形是指两条边相等的三角形,其性质有以下几点:1. 两底角相等:等腰三角形的两个底角(底边所对的角)相等。

2. 顶角平分底边:等腰三角形的顶角(顶边所对的角)平分底边。

二、解题思路解等腰三角形问题的关键在于利用等腰三角形的性质,找到已知条件和需要求解的未知量之间的关系。

下面将介绍几种常见的解题思路。

1. 使用底角性质解题:如果已知等腰三角形的两个底角相等,可以利用这一性质来解题。

通过已知条件和底角性质,可以建立方程或找到相应的关系式,从而求解未知量。

2. 利用顶角平分底边性质解题:如果已知等腰三角形的顶角平分底边,可以利用这一性质来解题。

可以通过已知条件和顶角平分底边性质,建立方程或找到相应的关系式,进而求解未知量。

3. 利用勾股定理解题:有时候,等腰三角形问题中可能会涉及到与直角三角形相关的内容。

此时,可以尝试利用勾股定理和等腰三角形的性质进行解题。

三、解题攻略除了解题思路外,下面还列举了一些常见的解题攻略,帮助同学们更好地解决等腰三角形问题。

1. 注意题目中给出的条件:在解题时,要仔细阅读题目,将已知条件和需要求解的未知量提取出来,明确问题的要求。

2. 利用图形性质:画图是解决等腰三角形问题的有效方法之一。

合理利用等腰三角形的性质和图形的特点,可以更好地理解和解决问题。

3. 运用代数方法:当图形给出的信息较少或者不便于直接利用几何性质时,可以尝试使用代数方法,建立方程或者列举可能的条件,以求解未知量。

4. 反证法解题:有时候,可以运用反证法来解决等腰三角形问题。

假设某个结论不成立,通过推理推导出矛盾,从而得出正确结论。

四、总结通过上述的解题思路和攻略,相信同学们对于中考数学中的等腰三角形问题能够有更清晰的认识和更高的解题能力。

中考数学压轴题---因动点产生的等腰三角形问题[含答案]

中考数学压轴题---因动点产生的等腰三角形问题[含答案]

因动点产生的等腰三角形问题例1(2011年湖州市中考第24题)如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 所经过的路径长为54π.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2(2011年盐城市中考第28题)如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8AP RA C P P O RCO R A S S SS=--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P在OC上运动时的情形,0≤t<4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,42AB=,所以OB>AB.因此∠OAB>∠AOB>∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠P AQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中,3cos5A∠=为定值,7AP t=-,5520333AQ OA OQ OA OR t=-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例3(2010年上海市闸北区中考模拟第25题)如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N 分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1满分解答(1)如图2,图3,作NQ⊥x轴,垂足为Q.设点M、N的运动时间为t秒.在Rt△ANQ中,AN=5t,NQ=4t,AQ=3t.在图2中,QO=6-3t,MQ=10-5t,所以MN∶NP=MQ∶QO=5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-. (Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=.(Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况. ②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4(2010年南通市中考第27题)如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例5(2009年重庆市中考第26题)已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1 图2满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y . (2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DA DN FA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO . (3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

2024年九年级数学中考专题:二次函数等腰三角形存在性问题+两圆一线课件+

2024年九年级数学中考专题:二次函数等腰三角形存在性问题+两圆一线课件+

做题技巧
1、做题工具: 圆规,直尺
2、做题方法: 两圆一线
3、做题思想: 数形结合,分 类讨论
谢谢
C
二、两圆一线画法
尺规作图
二、两圆一线画法(尺规作图)
1、探究实验:以线段AB为边做一个等腰三角形? 2、作图:如图,在平面直角坐标系找一点P,使得ΔABP为
等腰三角形,则满足要求的点P 有几个?
三、例题解析
二次函数等腰三角形存在性问题 -----两圆一线
三、例题解析
如图,抛物线与x轴交于A. B两点,与y轴交C点,点A的坐标 为(2,0),点C的坐标为(0,3)它的对称轴是直线x=−0.5 (1)求抛物线的解析式; (2)M是坐标轴上任意一点,当△MBC为等腰三角形时, 求M点的坐标。
中考专题: 二次函数等腰三角形存在性问题
-----两圆一线Leabharlann 目录CONTENTS
一、等腰三角形 二、两圆一线画法 三、例题解析 四、方法归纳
一、等腰三角形
一、等腰三角形
等腰三角形 定义:
有两条边相等的三角形为等腰三角 形,相等的两条边叫做腰
如图:ΔABC,AB=AC, 则ΔABC为等腰三角形
A
B
轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件 的所有点P的坐标
2.如图所示,二次函数y=k(x-1)2+2的图像与一次函数y=kx-k+2 的图像交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交 于C、D两点,其中k<0.
(1)求A、B两点的横坐标;
(2)若△OAB是以OA为腰的等腰三角形,求k的值;
四、方法归纳
四、方法归纳
2、分类讨论
4、写结果
1、先作图

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题专题等腰三角形存在性问题题型一:几何图形1、在△ABC中,AB=AC,∠A=36°.求∠ABC的度数。

解析:由AB=AC,可得∠B=∠C,设∠B=∠C=x,则∠A=180°-2x,又已知∠A=36°,所以180°-2x=36°,解得x=72°,所以∠B=∠C=72°,∠ABC=180°-∠A-∠B=72°。

2、如图(2),BD是△ABC中∠ABC的平分线.①找出图中所有等腰三角形(等腰三角形ABC除外),并选其中一个写出推理过程;②在直线BC上是否存在点P,使△CDP是以CD为一腰的等腰三角形?如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠CPD的度数;如果不存在,请说明理由.解析:①等腰三角形有△ABD、△CBD、△ACD,以△ABD为例,由AB=AD,∠BDA=∠BAD=x,∠ABD=180°-2x,所以∠ABD=∠CBD=∠ACD=72°。

②存在点P,满足△CDP是以CD为一腰的等腰三角形。

如图(3),连接DP,由对称性可知∠BDP=∠ADP,又∠BDP=∠ABC/2,∠ADP=∠ACB/2,所以∠ABC=∠ACB,即△ABC是等腰三角形,所以CD=BC,所以∠CPD=∠CDP=90°-x。

变式一:如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm 每秒的速度运动,设运动时间为t秒.1)当t=1时,求△ACP的面积.2)t为何值时,线段AP是∠CAB的平分线?3)当t为何值时,△ACP是以AC为腰的等腰三角形?解析:(1)由勾股定理可得AB=10cm,所以△ABC的面积为24cm²,又由正弦定理可得sinA=3/5,所以AC=3cm,AP=2t,所以△ACP的面积为1/2×3×2t=3t。

中考数学第28题函数压轴题求等腰三角形的点的坐标

中考数学第28题函数压轴题求等腰三角形的点的坐标

中考数学第28题函数压轴题求等腰三角形的点的坐标题目:抛物线y=ax^2+bx+3的图像经过点A(-1,0), 点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2) 点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,作EF交x轴于点F,设点F的横坐标为m,求m的取值范围.答案:分析:(1)建议用韦达定理分别求a,b. 然后化为顶点式,直接得到C点的坐标;(2)设D点坐标,由CD=AD求得D的坐标,然后有两种方法,一种是求CD的解析式,然后求CD与抛物线的交点坐标;另一种是利用斜率公式,因为P,C,D三点中的任意两点都可以求得CD的斜率。

后者更好用,但平时用得比较少。

一定要学会哦!(3)破题的关键是证明△EAF和△PCE相似,再利用相似三角形边成比例的关系,就可以列得m关于E的横坐标的函数关系,由E的横坐标的取值范围,就可能求得m的取值范围.解:(1)由3/a=-3,得a=-1; 由-b/a=-1+3=2,得b=2;∴抛物线的表达式为y=-x^2+2x+3=-(x-1)^2+4, C(1,4).(2)设D(d,0),由CD=AD,有(1-d)^2+16=(d+1)^2, 解得:d=4.设P(p, -p^2+2p+3),由(-p^2+2p+3)/(p-4)=4/(1-4)=-4/3,解得:p=7/3或p=1(舍去),-p^2+2p+3=-49/9+14/3+3=20/9,∴P(7/3,20/9).解:(3)∠CEF=∠CAB+∠AFE, 且∠CEF=∠CEP+∠PEF=∠CEP+∠CAB,∴∠AFE=∠CEP, 又∠EAF=∠PCE, ∴△EAF∽△PCE, ∴AE/CP=AF/CE,直线AC的解析式为:y=2x+2, 可设E(t, 2t+2) -1<t<1,则AE=根号((t+1)^2+(2t+2)^2)=根号5(t+1).CE=根号((t-1)^2+(2t+2-4)^2)=根号5(1-t).CP=根号((1-7/3)^2+(4-20/9)^2)=20/9.∴5(1-t^2)=20(m+1)/9,化得:m=-9t^2/4+5/4∴m的取值范围为:-1<m≤5/4。

初中数学压轴题(等腰三角形问题)

初中数学压轴题(等腰三角形问题)
满分解答
(1)∵C(0, ),∴OC= .
∵tan ACO= ,∴OA=1.∴A(-1,0). ∵点 A,C 在抛物线 y=ax2-2ax+b 上,

,解得

∴此抛物线的解析式为 y= x2-x- ;
∴P(3- ,0), 综上所述,当△MPQ 为等腰三角形时,点 P 的坐标为(1,0)或(3- ,0).
然后解方程并检验. 2.本题中等腰三角形的角度特殊,三种情况的点 P 重合在一起.
满分解答
(3)抛物线的对称轴是直线 x=2,设点 P 的坐标为(2, y). ①当 OP=OB=4 时,OP2=16.所以 4+y2=16.解得 y 2 3 . 当 P 在 (2, 2 3) 时,B、O、P 三点共线(如图 2). ②当 BP=BO=4 时,BP2=16.所以 42 ( y 2 3)2 16 .解得 y1 y2 2 3 . ③当 PB=PO 时,PB2=PO2.所以 42 ( y 2 3)2 22 y2 .解得 y 2 3 . 综合①、②、③,点 P 的坐标为 (2, 2 3) ,如图 2 所示.
满分解答
图2
图3
图4
②我们先讨论 P 在 OC 上运动时的情形,0≤t<4.
如图 1,在△AOB 中,∠B=45°,∠AOB>45°,OB=7, AB 4 2 ,所以 OB>AB.因此∠OAB>∠
AOB>∠B.
如图 4,点 P 由 O 向 C 运动的过程中,OP=BR=RQ,所以 PQ//x 轴.
图2
图3
考点伸展
如图 3,在本题中,设抛物线的顶点为 D,那么△DOA 与△OAB 是两个相似的等腰三角形.
由 y 3 x(x 4) 3 (x 2)2 2 3 ,得抛物线的顶点为 D(2, 2 3 ) .

2024届中考数学压轴题攻略(湘教版)易错易混淆集训:等腰三角形中易漏解或多解的问题(原卷版)

2024届中考数学压轴题攻略(湘教版)易错易混淆集训:等腰三角形中易漏解或多解的问题(原卷版)

专题08易错易混淆集训:等腰三角形中易漏解或多解的问题易错点一求长度时忽略三边关系易错点二当腰和底不明求角度时没有分类讨论易错点三三角形的形状不明时与高线及其他线结合没有分类讨论易错点一求长度时忽略三边关系例题:(2022·河北·石家庄石门实验学校八年级期末)已知等腰三角形的两边长分别为4和8,则它的周长等于____________.【变式训练】1.(2022·新疆·和硕县第二中学八年级期末)等腰三角形的两边长分别是3和7,则它的周长是多少()A .13B .17C .13或17D .13或102.(2022·山东菏泽·八年级期末)已知等腰三角形底边和腰的长分别为6和5,则这个等腰三角形的周长为()A .15B .16C .17D .183.已知实数x ,y 满足2|5|(10)0 x y ,则以x ,y 的值为两边长的等腰三角形的周长是()A .20B .25C .20或25D .以上答案均不对4.(2021·云南·富源县第七中学八年级期中)若等腰三角形的周长为26cm ,一边为8cm ,则腰长为_______.5.(2022·黑龙江·肇东市第十中学八年级期末)已知等腰三角形的两边长分别为5cm ,2cm ,则该等腰三角形的周长是________.6.(1)等腰三角形一腰上的中线把周长分为15和12两部分,求该三角形各边的长.(2)已知一个等腰三角形的三边长分别为21,1,32x x x ,求这个等腰三角形的周长.易错点二当腰和底不明求角度时没有分类讨论例题:(2022·山东烟台·七年级期末)若等腰三角形中有一个角等于35 ,则这个等腰三角形的顶角的度数为________.【变式训练】1.(2022·陕西·西安爱知初级中学八年级阶段练习)若等腰三角形有一个内角为40°,则它的顶角度数为________.典型例题2.(2022·陕西·交大附中分校七年级期末)已知ABC 中,20B ,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ________.3.(2022·福建泉州·七年级期末)“特征值”的定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”,记作“()F △”.若等腰ABC 中,80A ,则它的特征值()ABC F △______.4.(2022·江西赣州·八年级期末)如图,ABC 中,AB AC ,40ABC ,点D 在线段BC 上运动(点D 不与点B ,C 重合),连接AD ,作40ADE ,DE 交线段AC 于点E .当ADE 是等腰三角形时,BAD 的度数为______.5.(2021·福建省泉州实验中学八年级期中)如示意图,在△ABC 中,AC =BC ,AE ⊥BC 于点E ,过点B 作∠ABC 的角平分线BF 交AE 于G ,点D 是射线BF 上的一个动点,且点D 在△ABC 外部,连接AD .∠C =2∠ADB ,当△ADG 为等腰三角形,则∠C 的度数为____________6.(2022·江西吉安·八年级期中)如图,O 是等边△ABC 内一点,连接OA ,OB ,OC ,100AOB ,BOC ,将△BOC 绕点C 顺时针旋转60°,得到△ADC ,连接OD .若△AOD 是等腰三角形,则 的度数为________.7.(2022·江苏·八年级单元测试)如图,在△ABC 中,AB =AC ,∠ABC =30°,D 、E 分别为BC 、AB 边上的动点,且∠ADE =45°,若△ADE 为等腰三角形,则∠DAC 的大小为______.易错点三三角形的形状不明时与高线及其他线结合没有分类讨论例题:若等腰三角形一腰上的高与另一腰的夹角为50 ,则这个等腰三角形的底角的度数为()A .20B .50 或70C .70D .20 或70 【变式训练】5.(2022·陕西·交大附中分校七年级期末)已知ABC 中,20B ,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ________.6.(2021·江西育华学校八年级期末)已知△ABC 中,如果过顶点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的二分割线.如图1,Rt △ABC 中,显然直线BD 是△ABC 的关于点B 的二分割线.在图2的△ABC 中,∠ABC =110°,若直线BD 是△ABC 的关于点B 的二分割线,则∠CDB 的度数是_____.。

中考数学复习:专题3-7 例析一次函数图象截出的等腰三角形问题

中考数学复习:专题3-7 例析一次函数图象截出的等腰三角形问题

例析一次函数图象截出的等腰三角形【专题综述】当一次函数图象与坐标轴围成的三角形是一个等腰直角三角形时,不仅仅考查一次函数的图象和性质,还会涉及等腰三角形一系列性质,的这个特殊的三角形能给我们解题带来许多的精彩. 【方法解读】例1 如图1,直线4y x =-+与两坐标轴分别相交于A 、B 两点,点M 是线段AB 上任意一点(A 、B 两点除外),过点M 分别作MC OA ⊥于点C ,MD OB ⊥于点D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)如图2,3当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为(04)a a <<,正方形OCMD 与AOB ∆重叠部分的面积为S .试求S 与a 的函数关系式,并画出该函数的图象.分析 第(1)问,要想确定四边形的周长在点的运动过程是如何变化的,首先要解决的就是结合图形表示出四边形的周长.根据矩形的性质,已知这里四边形的周长是2()OC MC +,四边形周长的变化规律就取决于线段和OC MC +的变化规律.结合题目条件,我们会有两种基本的思路:一是坐标法表示线段,线段OC 的长恰好是点M 的横坐标的绝对值,MC 的长恰好是点M 的纵坐标的绝对值,这是这一方法的精髓;二是转化线段和法,根据条件知道OAB ∆是一个等腰直角三角形,且腰4OA OB ==,因此MC CA =,所以线段MC OC +就转化成了OC AC OA +=,从而也能将所求化解.第(2)问,在探求周长的基础上,进一步探求四边形的面积变化规律.借鉴第(1)问的思路,解题的关键是先表示出四边形的面积,即OC MC ⨯,利用坐标法就可以将四边形的面积转化成二次函数的,最值自然就可以确定.第(3)问,解答时体现两种数学思想的灵活应用:一是数形结合的思想,初步判定重合部分图形的形状,确定面积的分割法表示;二是分类的思想,抓住a 的变化规律,立足正方形成立的条件,给出a 的正确分类也是解题的重要因素.解 (1)因为直线4y x =-+与两坐标轴分别相交于A 、B 两点,所以点A 的坐标为(4,0),点B 的坐标为(0,4).所以4OA =,4OB =,所以ABO ∆是等腰直角三角形.因为MC OA ⊥,MD OB ⊥,所以四边形OCMD 是矩形,且MCA ∆是等腰直角三角形,所以MC AC =.因为矩形OCMD 的周长为2()2()28OC MC OC CA OA +=+==,所以四边形OCMD 的周长是定值,且为8;(2)设四边形OCMD 的面积为S ,根据题意,得22(4)4(2)4S MC MD x x x x x ==-+=-+=--+所以四边形OCMD 的面积是关于点M 的横坐标(04)x x <<的二次函数,并且当2x =,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4;(3)设两个图形重合部分的面积为S ,正方形OCMD 与直线的交点Q ,如图2,当02a <≤时,2142S a =-. 如图3,当24a <<时,此时a 为正方形的边与直线交点的横坐标,所以交点的纵坐标为4a -+;纵坐标的绝对值恰好是重叠图形的等腰直角三角形的腰长,所以21(4)2s a =-;所以S 与a 函数的图象如图4所示.点评 这道题是知识与方法的盛宴.涉及的知识点广,有几何知识,一次函数知识,二次函数知识等;涉及的数学思想多,有数形结合的思想,转化的思想,分类的思想,平移的思想等,可谓是包罗万象,值得深思与探究.例2 (2013年长沙中考题)如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2.(1)求OAB ∠的度数; (2)求证AOF ∆∽BEO ∆;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为1S ,OEF ∆的面积为2S ,试探究:12S S +是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由.分析 第(1)问的证明是比较容易的;第(2)问的证明抓住一个关键点:两边对应成比例且夹角相等的两个三角形相似;第(3)问的关键在判定三条线段组成的三角形的形状.解 (1)当0x =时,2y =,当0y =时,2x =,所以点A 坐标为(2,0),点B 坐标为(0,2),OA OB =,所以45OAB ∠=︒ ;(2)法 1 因为矩形OMPN 的面积是2,所以点P 坐标为2(,)a a,点E 坐标为(,2)a a -+,点F 坐标为222(,)a a a-22AF a=,2BE a =222OA BE a a==,2222AF a OB ==OA AFBE OB∴= 45OAF EBO ∠=∠=︒∴AOF ∆∽BEO ∆法2:(2,0)A ,(0,2)B2OA OB ∴== 4OA OB ∴=点P 的坐标为(,)a b(,2)E a a ∴-,(2,)F b b -,如图5在等腰直角三角形AFD 中,得2AF b =,在等腰直角三角形BEP 中,2BE a =,222AF BE b a ab ∴==因为矩形的面积是定值2,2ab ∴=4AF BE ∴=AF BE OA OB ∴=OA AFBE OB∴= 45OAF EBO ∠=∠=︒AOF ∴∆∽BEO ∆(3)根据(2)知,以BF EF AE ,,为边的三角形是直角三角形,且斜边是2(2)EF a b =+-,所以三角形的外接圆面积为212(2)(a b S π+-=2(2)2a b π=+-过点O 作EF 边上的高OD ,易求得高为2OD =,2122(2)2S a b ∴=+-2a b =+-212(2)(2)2S S a b a b π∴+=+-++-所以关于2a b +-的二次函数的开口向上,所以12S S +有最小值,当12a b π+-=-时,函数有最小值,但是此值不在取值范围内,因此取不到.因为a ,b 都是正数,222a b ab ∴+≥=12222a b π∴+-≥->-∴当2222a b +-=-时,12S S +的值最小,最小值为2(222)2222π-+-反思 此题可以引申出如下几个独立的新结论:结论1 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,若E ,F 都在直线AB 上,求证:EOF ∠是一个定值.第(2)问的三种证明方法都可以帮助你实现证明.结论2 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,若E ,F 都在直线AB 上,试判断以BF EF AE ,,为边的三角形的形状,并证明你的猜想.相信读者也会轻松解决.结论3 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,若E ,F 都在直线AB 上,设OBF ∆面积为1S ,OEF ∆的面积为2S ,OEA ∆的面积为3S ,试判断1S ,2S ,3S 之间的关系,并证明你的猜想.根据结论2,你同样能轻松解决.结论4 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,若E ,F 都在直线AB 上,设BNF ∆面积为1S ,PEF ∆的面积为2S ,MEA ∆的面积为3S ,试判断1S ,2S ,3S 之间的关系,并证明你的猜想.结论5 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,确定点P 所在函数的解析式. 上述结论的答案分别是: 结论1:45EOF ∠=︒. 结论2:直角三角形.结论3:222213S S S =+.结论4:213S S S =+. 结论5:2y x=. 【强化训练】1.(2016浙江省温州市)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y =x +5B .y =x +10C .y =﹣x +5D .y =﹣x +102.(2016四川省内江市)如图所示,已知点C (1,0),直线y =﹣x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是 .3.(2017丽水)如图,在平面直角坐标系x Oy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C (2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结P A,PC,若∠CP A=∠ABO,则m的值是.4.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A. (A)B. (B)C. (C)D. (D)5.如图,直线l:y=x+1交y轴于点A1,在x轴正方向上取点B1,使OB1=OA1;过点B1作A2B1⊥x轴,交l 于点A2,在x轴正方向上取点B2,使B1B2=B1A2;过点B2作A3B2⊥x轴,交l于点A3,在x轴正方向上取点B3,使B2B3=B2A3;…记△OA1B1面积为S1,△B1A2B2面积为S2,△B2A3B3面积为S3,…则S2017等于()A. 24030B. 24031C. 24032D. 240336.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图①所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OP A的面积是3时,请求出点P的坐标;(2)如图②,坐标系xOy内有一点D(-1,2),点E是直线l上的一个动点.①请求出|BE+DE|的最小值和此时点E的坐标;②若将点D沿x轴翻折到x轴下方,直接写出|BE-DE|的最大值,并写出此时点E的坐标.7.一次函数y=kx+b(k≠0)的图象由直线y=3x向下平移得到,且过点A(1,2).(1)求一次函数的解析式;(2)求直线y=kx+b与x轴的交点B的坐标;(3)设坐标原点为O,一条直线过点B,且与两条坐标轴围成的三角形的面积是12,这条直线与y轴交于点C,求直线AC对应的一次函数的解析式.8.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值9.如图,在平面直角坐标系中,已知直线2y x =+和6y x =-+与x 轴分别相交于点A 和点B ,设两直线相交于点C ,点D 为AB 的中点,点E 是线段AC 上一个动点(不与点A 和C 重合),连结DE ,并过点D 作DF DE ⊥交BC 于点F . (1)判断ABC 的形状,并说明理由.(2)当点E 在线段AC 上运动时,四边形CEDF 的面积是否为定值?若是,请求出这个定值;若不是,请说明理由.(3)当点E 的横坐标为12-时,在x 轴上找到一点P 使得PEF 的周长最小,请直接写出点P 的坐标.10.如图,在平面直角坐标系xOy 中,点A 的坐标为(5,0),点B 的坐标为(3,2),直线111l y k x =:经过原点和点B ,直线222l y k x b =+:经过点A 和点B .(1)求直线1l , 2l 的函数关系式;(2)根据函数图像回答:不等式120y y ⋅<的解集为 ;(3)若点P 是x 轴上的一动点,经过点P 作直线m ∥y 轴,交直线1l 于点C ,交直线2l 于点D ,分别经过点C ,D 向y 轴作垂线,垂足分别为点E , F ,得长方形CDFE .①若设点P 的横坐标为m ,则点C 的坐标为(m , ),点D 的坐标为(m , );(用含字母m 的式子表示)②若长方形CDFE 的周长为26,求m 的值.。

(已整理)中考数学必刷压轴题专题:抛物线之等腰三角形(含解析)

(已整理)中考数学必刷压轴题专题:抛物线之等腰三角形(含解析)

中考数学抛物线压轴题之等腰三角形(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.3.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.4.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).(1)求过O、B、A三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.6.如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.7.在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B 的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.8.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.9.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l 经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m 为何值时,△OPQ是等腰三角形.10.如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A (﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.11.在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE 为等腰三角形,求Q点的坐标.12.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.13.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.14.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.15.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.16.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.17.如图1,抛物线y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:①t为何值时△MAN为等腰三角形;②t为何值时线段PN的长度最小,最小长度是多少.18.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式:(2)过点P作PN⊥BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由.19.如图1,抛物线y=﹣++2与x轴相交于A、B两点(点A在点B的右侧),与y轴相交于点C,对称轴与x轴相交于点H,与AC相交于点T.(1)点P是线段AC上方抛物线上一点,过点P作PQ∥AC交抛物线的对称轴于点Q,当△AQH面积最大时,点M、N在y轴上(点M在点N的上方),MN=,点G在直线AC上,求PM+NG+GA的最小值.(2)点E为BC中点,EF⊥x轴于F,连接EH,将△EFH沿EH翻折得△EF'H,如图所示,再将△EF'H沿直线BC平移,记平移中的△EF'H为△E'F″H',在平移过程中,直线E'H'与x轴交于点R,则是否存在这样的点R,使得△RF'H'为等腰三角形?若存在,求出R点坐标.20.如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣4交x轴于A、B两点,交y轴于点C.(1)点P为线段BC下方抛物线上的任意一点,一动点G从点P出发沿适当路径以每秒1个单位长度运动到y轴上一点M,再沿适当路径以每秒1个单位长度运动到x轴上的点N,再沿x轴以每秒个单位长度运动到点B.当四边形ACPB面积最大时,求运动时间t的最小值;(2)过点C作AC的垂线交x轴于点D,将△AOC绕点O旋转,旋转后点A、C的对应点分别为A1、C1,在旋转过程中直线A1C1与x轴交于点Q.与线段CD交于点I.当△DQI是等腰三角形时,直接写出DQ的长度.1.抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,1)(1,0).方法二:(1)∵A(﹣1,0)、B(3,0)、C(0,3),∴y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3.(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).(4)作点O关于直线AC的对称点O交AC于H,作HG⊥AO,垂足为G,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH,∴△GHO∽△GAH,∴HG2=GO•GA,∵A(﹣1,0),C(0,3),∴l AC:y=3x+3,H(﹣,),∵H为OO′的中点,∴O′(﹣,),∵D(1,4),∴l O′D:y=x+,l AC:y=3x+3,∴x=﹣,y=,∴Q(﹣,).2.(1)抛物线解析式为y=x2﹣2x﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO,(3)存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3,PB=,PC=,∵△PBC是等腰三角形,①当PB=PC时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)3.(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2).方法二:(3)设P(2,t),O(0,0),B(﹣2,﹣2),∵△POB为等腰三角形,∴PO=PB,PO=OB,PB=OB,(2﹣0)2+(t﹣0)2=(2+2)2+(t+2)2,∴t=﹣2,(2﹣0)2+(t﹣0)2=(0+2)2+(0+2)2,∴t=2或﹣2,当t=2时,P(2,2),O(0,0)B(﹣2,﹣2)三点共线故舍去,(2+2)2+(t+2)2=(0+2)2+(0+2)2,∴t=﹣2,∴符合条件的点P只有一个,∴P(2,﹣2).(4)∵点B,点P关于y轴对称,∴点M在y轴上,设M(0,m),∵⊙M为△OBF的外接圆,∴MO=MB,∴(0﹣0)2+(m﹣0)2=(0+2)2+(m+2)2,∴m=﹣,M(0,﹣).4.(1)∵该抛物线经过点A(5,0),O(0,0),∴该抛物线的解析式可设为y=a(x﹣0)(x﹣5)=ax(x﹣5).∵点B(4,4)在该抛物线上,∴a×4×(4﹣5)=4.∴a=﹣1.∴该抛物线的解析式为y=﹣x(x﹣5)=﹣x2+5x.(2)以O、A、B、M为顶点的四边形中,△OAB的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.①当0<x<4时,点M在抛物线OB段上时,如答图1所示.∵B(4,4),∴易知直线OB的解析式为:y=x.设M(x,﹣x2+5x),过点M作ME∥y轴,交OB于点E,则E(x,x),∴ME=(﹣x2+5x)﹣x=﹣x2+4x.S△OBM=S△MEO+S△MEB=ME(x E﹣0)+ME(x B﹣x E)=ME•x B=ME×4=2ME,∴S△OBM=﹣2x2+8x=﹣2(x﹣2)2+8∴当x=2时,S△OBM最大值为8,即四边形的面积最大.②当4<x<5时,点M在抛物线AB段上时,图略.可求得直线AB解析式为:y=﹣4x+20.设M(x,﹣x2+5x),过点M作ME∥y轴,交AB于点E,则E(x,﹣4x+20),∴ME=(﹣x2+5x)﹣(﹣4x+20)=﹣x2+9x﹣20.S△ABM=S△MEB+S△MEA=ME(x E﹣x B)+ME(x A﹣x E)=ME•(x A﹣x B)=ME×1=ME,∴S△ABM=﹣x2+x﹣10=﹣(x﹣)2+∴当x=时,S△ABM最大值为,即四边形的面积最大.比较①②可知,当x=2时,四边形面积最大.当x=2时,y=﹣x2+5x=6,∴M(2,6).(3)由题意可知,点P在线段OB上方的抛物线上.设P(m,﹣m2+5m),则Q(m,m)当△PQB为等腰三角形时,①若点B为顶点,即BP=BQ,如答图2﹣1所示.过点B作BE⊥PQ于点E,则点E为线段PQ中点,∴E(m,).∵BE∥x轴,B(4,4),∴=4,解得:m=2或m=4(与点B重合,舍去)∴m=2;②若点P为顶点,即PQ=PB,如答图2﹣2所示.易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.∴PB∥x轴,∴﹣m2+5m=4,解得:m=1或m=4(与点B重合,舍去)∴m=1;③若点Q为顶点,即QP=QB,如答图2﹣3所示.∵P(m,﹣m2+5m),Q(m,m),∴PQ=﹣m2+4m.又∵QB=(x B﹣x Q)=(4﹣m),∴﹣m2+4m=(4﹣m),解得:m=或m=4(与点B重合,舍去),∴m=.综上所述,当△PQB为等腰三角形时,m的值为1,2或.5.(1).(2)①设直线AB的解析式为y=kx+b.∴解得:,∴直线AB的解析式为.∴C点坐标为(0,)∵直线OB过点O(0,0),B(3,﹣3),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x),(i)当OC=OP时,.解得,(舍去).∴P 1(,).(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2(,﹣).(iii)当OC=PC时,由,解得,x 2=0(舍去).∴P3(,﹣).∴P点坐标为P 1(,)或P2(,﹣)或P3(,﹣).②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH,=DQ(OG+GH),=,=,∵0<x<3,∴当时,S取得最大值为,此时D(,﹣).方法二:(1)略.(2)①由A(﹣1,﹣1),B(3,﹣3)得l AB:y=﹣x﹣,∴C(0,﹣),l OB:y=﹣x,设P(t,﹣t),O(0,0),C(0,﹣),∵△OPC为等腰三角形,∴OP=OC,OP=PC,PC=OC,(t﹣0)2+(﹣t﹣0)2=(0﹣0)2+(0+)2,∴t1=,t2=﹣(舍),(0﹣0)2+(0+)2=(t﹣0)2+(﹣t+)2,∴t1=,t2=0(舍),(t﹣0)2+(﹣t﹣0)2=(t﹣0)2+(﹣t+)2,∴t=,∴P点坐标为P 1(,)或P2(,﹣)或P3(,﹣).②过D作x轴垂线交OB于Q,∵B(3,﹣3),∴l OB:y=﹣x,设D(t,﹣t2+t),Q(t,﹣t),∵S△OBD=(D Y﹣Q Y)(B X﹣O X),∴S△OBD=(﹣t2+t+t)•(3﹣0)=﹣t2+t,当t=时,S有最大值,D(,﹣).(3)∵△FAB是以AB为斜边的直角三角形,∴∠GOA+∠BOH=90°,∵BH⊥OH,∴∠OBH+BOH=90°,∴∠GOA=∠OBH,∴△GOA∽△OBH,∵点F为x轴上一动点,∴设F(m,0),∵A(﹣1,﹣1),B(3,﹣3),∴,∴m2﹣2m=0,∴m=0或2,∴F 1(0,0),F2(2,0).6.(1)∵二次函数L1:y=ax2﹣2ax+a+3=a(x﹣1)2+3,∴顶点M坐标为(1,3),∵a>0,∴函数y=ax2﹣2ax+a+3(a>0)的最小值为3,∵二次函数L1的对称轴为x=1,当x<1时,y随x的增大而减小;二次函数L2:y=﹣a(x+1)2+1的对称轴为x=﹣1,当x>﹣1时,y随x的增大而减小;∴当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是﹣1≤x≤1;。

2023学年人教中考数学重难点题型分类必刷题 专题05 等腰三角形、等边三角形压轴题真题(含详解)

2023学年人教中考数学重难点题型分类必刷题 专题05 等腰三角形、等边三角形压轴题真题(含详解)

专题05 高分必刷题-等腰三角形、等边三角形压轴题真题(原卷版)题型一:等腰三角形、等边三角形中的动点问题1.(湘一芙蓉)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为16cm,设运动时间为t,问:是否存在某一时刻t,使得△CPQ是等腰三角形?如存在,请求出t的值,若不存在,请说明理由.2.(中雅)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.(青竹湖)已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s 的速度同时出发.①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.4.(广益)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.5.(长郡、雅礼)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A 出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.6.(师梅)如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接QD并延长,交y轴于点P,当点C运动到什么位置时,满足PD=DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.7.(郡维)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC 交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,问当点B在y 轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.8.(长郡)如图,在△ABC中.AB =AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC 于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.9.(广益)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.题型二:等腰三角形、等边三角形综合类压轴题10.(雅境)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.11.(郡维)如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.12.(北雅)已知:△ABC为等边三角形,点E为射线AC 上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC 的延长线上且CE=CD时,求证:BD=CD;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.13.(中雅)已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE 为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.14.(雅实)如图1,△ABC 为等腰三角形,∠ABC=90°,点P在线段BC上(不与B、C重合),以点A为直角顶点作等腰直角△P AQ,且点Q在AP的左下方,过点Q作QE⊥AB于点E.(1)求证:△P AB≌△AQE;(2)连接CQ交AB于M,若PC=2PB,求的值.(3)如图2,过点Q作QF⊥AQ于AB的延长线于点F,过P点作DP⊥AP交AC于点D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由.15.(师梅)如图1,在平面直角坐标系中,点A在y轴上,点B在x轴上,AB=AC,∠BAC=90°,CM⊥y轴,交y轴于点M.(1)求证∠ABO=∠CAM;(2)如图2,D,E为y轴上的两个点,BD=BE,BD⊥BE,求∠CEM的度数;(3)如图3,△P AQ是等腰直角三角形,∠P AQ为顶角,点Q在x轴负半轴上,连接CB,交y轴于点H,AC与x轴交于点G,连接PC,交AQ于点K,交x轴于点N,若CN=CM,NG=3,HM=2,求GH.16.(博才)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y 轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.17.(青竹湖)如图,四边形OABC 的位置在平面直角坐标系中如图所示,且A(0,a),B(b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.专题05 高分必刷题-等腰三角形、等边三角形压轴题真题(解析版)题型一:等腰三角形、等边三角形中的动点问题1.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为16cm,设运动时间为t,问:是否存在某一时刻t,使得△CPQ是等腰三角形?如存在,请求出t的值,若不存在,请说明理由.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP =60°,又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM =∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°2.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B 同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°,又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°3.已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.【解答】解:(1)当△PBC是直角三角形时,∠B=60°,∠BPC=90°,所以BP=1.5cm,所以t=,(2)①∵∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,∴∠PDA=∠CDQ=∠CQD=30°,∵∠A=60°,∴AD=2AP,∴2t+t=3,解得t=1(s);②相等,如图所示:作PE垂直AD,QG垂直AD延长线,则PE∥QG,∴∠G=∠AEP,在△EAP 和△GCQ,,∴△EAP≌△GCQ(AAS),∴PE=QG,∴△PCD和△QCD同底等高,所以面积相等.4.如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a ﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【解答】(1)证明:∵直线AB分别交x 轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,∴a=b=4t,当x=0时,y=4t,当y=0时,﹣x+4t=0,解得x=4t,∴点A、B的坐标是A(4t,0),B(0,4t),∴△AOB是等腰直角三角形,∵点M是AB的中点,∴OM⊥AB,∴∠MOA=45°,∵直线BD平分∠OBA,∴∠ABD=∠ABO=22.5°,∴∠OND=∠BNM=90°﹣∠ABD=90°﹣22.5°=67.5°,∠ODB=∠ABD+∠BAD=22.5°+45°=67.5°,∴∠OND=∠ODB,∴ON =OD(等角对等边);(2)答:BD=2AE.理由如下:延长AE交BO于C,∵BD平分∠OBA,∴∠ABD=∠CBD,∵AE⊥BD 于点E,∴∠AEB=∠CEB=90°,在△ABE≌△CBE中,,∴△ABE≌△CBE(ASA),∴AE=CE,∴AC=2AE,∵AE⊥BD,∴∠OAC+∠ADE=90°,又∠OBD+∠BDO=90°,∠ADE=∠BDO (对顶角相等),∴∠OAC=∠OBD,在△OAC与△OBD中,,∴△OAC≌△OBD(ASA),∴BD=AC,∴BD=2AE;(3)OG的长不变,且OG=4t.过F作FH⊥OP,垂足为H,∴∠FPH+∠PFH=90°,∵∠BPF=90°,∴∠BPO+∠FPH=90°,∴∠FPH=∠BPO,∵△BPF是等腰直角三角形,∴BP=FP,在△OBP与△HPF 中,,∴△OBP≌△HPF(AAS),∴FH=OP,PH=OB=4t,∵AH=PH+AP=OB+AP,OA=OB,∴AH=OA+AP=OP,∴FH=AH,∴∠GAO=∠F AH=45°,∴△AOG是等腰直角三角形,∴OG=OA=4t.5.如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.【解答】解:(1)∵(a﹣6)2+|a ﹣b|=0,又∵(a﹣6)2,≥0,|a﹣b|≥0,∴a=6,b=6∴点A(6,6).(2)如图1中,∵△AOB是等边三角形,点A(6,6),∴AO=BO=AB=12,∠AOB=∠ABO =60°=∠A,∵∠OCP=60°=∠AOB,∴∠AOB=∠QOB+∠AOQ=∠QOB+∠PBO=∠PCO,∴∠AOQ =∠PBO,且AO=BO,∠A=∠AOB,∴△AOQ≌△OBP(ASA),∴OP=AQ,∴12﹣2t=3t∴t=2.4∴当t=2.4时,∠OCP=60°.(3)如图2中,过点D作DF⊥AO,DE⊥AB,连接AD,∵△ABO是等边三角形,D是OB中点,点A(6,6),∴OD=BD=6,∠AOB =∠ABO=60°,AD=6,又∵∠DFO=∠DEB=90°,∴△ODF≌△BDE(AAS),∴OF=BE,DF=DE,∵AO=AB,∴AO﹣OF=AB﹣BE,∴AF=AE,∵DF=DE,PD=DQ,∴Rt△DFP≌Rt△DEQ(HL),∴PF=EQ,∵OD=6,∠AOD=60°,∠DFO=90°,∴∠ODF=30°∴OF=3,DF=OF=3,∴AF=AO﹣OF=9=AE,BE=OF=3,∵AP+AQ=AP+AE+EQ=AP+PF+AE=AF+AE=2AF,∴2t+3t=18∴t=3.6,∴当t=,3.6时,D,P,Q三点是能构成使∠PDQ=120°的等腰三角形,∵Rt△DFP≌Rt△DEQ,∴S△DFP=S△DEQ,∴S四边形APDQ=S四边形AFDQ=S△AOB﹣2S△OFD=×12×6﹣2××3×3=27.6.如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长6.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接QD并延长,交y轴于点P,当点C运动到什么位置时,满足PD=DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【解答】解:(1)作∠DCH=10°,CH交BD的延长线于H,∵∠BAO=60°,∴∠ABO=30°,∴AB=2OA=6,∵∠BAO=60°,∠BCO=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=40°,∴∠CBD=∠DCB,∠OBD=40°﹣30°=10°,∴DB=DC,在△OBD和△HCD中,,∴△OBD≌△HCD(ASA),∴OB=HC,在△AOB和△FHC中,,∴△AOB≌△FHC(ASA),∴CF=AB=6,故答案为:6;(2)∵△ABD和△BCQ是等边三角形,∴∠ABD=∠CBQ=60°,∴∠ABC=∠DBQ,在△CBA和△QBD中,,∴△CBA≌△QBD(SAS),∴∠BDQ=∠BAC=60°,∴∠PDO =60°,∴PD=2DO=6,∵PD=DC,∴DC=9,即OC=OD+CD=12,∴点C的坐标为(12,0);(3)如图3,以OA为对称轴作等边△ADE,连接EP,并延长EP交x轴于点F.由(2)得,△AEP≌△ADB,∴∠AEP=∠ADB=120°,∴∠OEF=60°,∴OF=OA=3,∴点P在直线EF上运动,当OP⊥EF时,OP则OP的最小值为.最小,∴OP=OF=,7.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B 分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.【解答】解:(1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CF A=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1);(2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO =90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO (AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2.8.如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.【解答】(1)证明:如图1中,∵GD∥AB,∴∠B=∠EFG,在△ABE和△GFE中,,∴△ABE≌△GFE(AAS).(2)解:如图1中,∵AB=AC,∴∠B=∠ACB,∵DF∥AB,∴∠DFC=∠B,∴∠DFC=∠DCF,∴DC=DF=1,∵DG=3,∴FG=DG﹣DF=2,∵△ABE≌△GFE,∴AB=GF=2.(3)解:如图2中,∵AB=AC=2,∴∠B=∠C=45°,∴∠BAC=90°,∵AB∥FD,∴∠FDC=∠BAC =90°,即FD⊥AC∵AC=AB=2,CD=1,∴DA=DC,∴F A=FC,∴∠C=∠F AC=45°,∴∠AFC=90°,∴DF=DA=DC=1,∴AF=,∵DH⊥CF,∴FH=CH,∴点F与点C关于直线PD对称,∴当点P与D重合时,△P AF的周长最小,最小值=△ADF的周长=2+.9.如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.【解答】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°,∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=38°,∴∠DCF=38°;(2)如图,过点D作DH⊥x轴于H,∴∠CHD=90°∴∠AOC=∠CHD=90°,∵等腰直角三角形ACD,∠ACD=90°∴AC=CD,由(1)知,∠DCF=∠OAC,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO =CH=3,∴点D的坐标(n+3,n);(3)不会变化,理由:∵点A(0,3)与点B关于x轴对称,∴AO=BO,又∵OC⊥AB,∴x轴是AB垂直平分线,∴AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=3,∴OF的长不会变化.题型二:等腰三角形、等边三角形综合类压轴题10.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CEB=∠CDA=120°,∴∠AEB=60°,故答案为:60°;②AD=BE,证明:∵△ACD≌△BCE,∴AD=BE,故答案为:AD=BE;(2)∠AEB=90°,AE﹣BE=2CM,证明:∵△DCE是等腰直角三角形,CM是中线,∴CM=DM=EM=DE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CDA=∠CEB,∵∠CDA=135°,∴∠AEB=135°﹣45°=90°,∴BE=AD,∴AE﹣AD=DE=2CM,∴AE﹣BE=2CM.11.如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.【解答】(1)证明:∵△ABC和△EFC都是等边三角形,∴∠A=∠ABC=∠ACB=∠ECF=60°,AC=BC,CE=FC,∴∠ACE=∠BCF,在△ACE与△FCB中,,∴△ACE≌△FCB(SAS),∴∠A=∠CBF=60°,∵∠ABC=60°,∴∠A+∠ABC+∠CBF=180°,∴∠A+∠ABF=180°,∴AC∥BF;(2)解:△AEG是等边三角形,理由如下:如图1所示:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB =60°,∵EG∥BC,∴∠AEG=∠ABC=60°,∠AGE=∠ACB=60°,∴∠A=∠AEG=∠AGE=60°,∴△AEG是等边三角形;(3)证明:如图2,过E作EM∥BC交AC于M,则∠AEM=∠ABC=60°,∠AME=∠ACB=60°,∵∠A=∠ABC=∠ACB=60°,∴∠A=∠AEM=∠AME=60°,∴△AEM是等边三角形,∴AE=EM=AM,∴∠DAE=∠EMC=120°,∵DE=CE,∴∠D=∠MCE,在△ADE和△MCE中,,∴△ADE≌△MCE(AAS),∴AD=CM,∴AC=AM+CM,由(1)得△ACE≌△FCB,∴BF=AE,∴BF=AM,∴AC=BF+AD,∴AB=AD+BF.12.已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,求证:BD=CD;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC;(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB﹣BH=BC﹣BD,即AH=DC,∴∠BHD=60°,BD=DH,∵AD=DE,∴∠E=∠CAD,∴∠BAC﹣∠CAD=∠ACB﹣∠E,即∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°﹣∠BHD=180°﹣∠ACB,即∠AHD=∠DCE,在△AHD和△DCE,,∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD;(3)AB=BD+AE;如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠F AE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF =∠DAF,在△AFD和△EFD中,,∴△AFD≌△EFD(SSS),∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.13.已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD 交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.【解答】证明:(1)∵△ABC,△DBE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)不存在,理由如下:如图3,过点B作BN⊥AD于N,过点B作BH⊥CE于H,∵△ABC,△DBE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE =60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,S△ABD=S△CBE,∠BAD =∠BCE,∴×AD×BN=×CE×BH,∴BN=BH,又∵BF=BF,∴Rt△BFN≌Rt△BFH(HL),∴∠AFB=∠EFB,∵∠BAD=∠BCE,∠CPF=∠APB,∴∠AFC=∠ABC=60°,∴∠AFB=∠EFB=60°,∴∠CFB=∠DFB=120°,当BF平分∠CBD时,则∠CBF=∠DBF,∴∠BCF=180°﹣∠CBF﹣∠CFB=180°﹣∠DBF﹣∠DFB=∠ADB,∴∠DAB=∠ADB,∴AB=DB,与题干DB=BC=AB相矛盾,∴BF不会平分∠CBD;(3)AF=CF+BF,理由如下:如图4,在AF上截取MF=BF,连接BM,∵∠AFB=60°,MF=FB,∴△MFB是等边三角形,∴MB=BF,∠MBF =∠ABC=60°,∴∠ABM=∠CBF,在△ABM和△CBF中,,∴△ABM≌△CBF(SAS),∴AM=CF,∵AF=AM+MF,∴AF=CF+BF.14.如图1,△ABC为等腰三角形,∠ABC=90°,点P在线段BC上(不与B、C重合),以点A为直角顶点作等腰直角△P AQ,且点Q在AP的左下方,过点Q作QE⊥AB于点E.(1)求证:△P AB≌△AQE;(2)连接CQ交AB于M,若PC=2PB,求的值.(3)如图2,过点Q作QF⊥AQ于AB的延长线于点F,过P点作DP⊥AP交AC于点D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由.【解答】(1)证明:∵△ACB 为等腰三角形,∠ABC=90°,△P AQ是等腰直角三角形,QE⊥AB于E.∴AP=AQ,∠ABP=∠QEA=90°,∠QAE+∠BAP=∠BAP+∠APB=90°,∴∠QAE=∠APB,在△P AB和△AQE中,,∴△P AB≌△AQE(AAS);(2)解:∵△P AB≌△AQE,∴AE=PB,∵AB=CB,∴QE=CB.在△QEM和△CBM中,,∴△QEM≌△CBM(AAS),∴ME=MB,∵AB=CB,AE=PB,PC=2PB,∴BE=PC,∵PC=2PB,∴PC=2MB,∴=2;(3)解:式子的值不会变化,理由如下:过A作HA⊥AC交QF于点H,如图2所示:∵QA⊥AP,HA⊥AC,AP⊥PD,∴∠QAH+∠HAP=∠HAP+∠P AD=90°,∠AQH=∠APD=90°,∴∠QAH=∠P AD,∵△P AQ为等腰直角三角形,∴AQ=AP,在△AQH和△APD中,,∴△AQH≌△APD(ASA),∴AH=AD,QH=PD,∵HA⊥AC,∠BAC=45°,∴∠HAF=∠DAF,在△AHF和△ADF中,,∴△AHF≌△ADF(SAS),∴HF=DF,∴===1.15.如图1,在平面直角坐标系中,点A在y轴上,点B在x轴上,AB=AC,∠BAC=90°,CM⊥y轴,交y轴于点M.(1)求证∠ABO=∠CAM;(2)如图2,D,E为y轴上的两个点,BD=BE,BD⊥BE,求∠CEM的度数;(3)如图3,△P AQ是等腰直角三角形,∠P AQ为顶角,点Q在x轴负半轴上,连接CB,交y轴于点H,AC与x轴交于点G,连接PC,交AQ于点K,交x轴于点N,若CN=CM,NG=3,HM=2,求GH.【解答】(1)证明:∵∠BOA=90°,∴∠BAO+∠ABO=90°,又∵∠BAC=∠BAO+∠CAM=90°,∴∠ABO=∠CAM;(2)解:∵CM⊥y轴,∴∠AMC=∠BOA=90°,∵AB=AC,∠ABO=∠CAM,∴△AMC≌△BOA(AAS),∴CM=AO,AM=BO,∵BD=BE,BD⊥BE,∴△BDE是等腰直角三角形,∴∠BDE=∠BED=45°,∠EBO =∠DBE=45°,∴∠EBO=∠BEO,∴BO=EO=AM,∴EO﹣OM=AM﹣OM,∴EM=AO=CM,∴△CME是等腰直角三角形,∴∠CEM=45°;(3)解:∵AB=AC,∠BAC=90°,∴∠ACB=45°,∵△P AQ是等腰直角三角形,∴P A=QA,∠P AQ=∠CAB=90°,∴∠P AQ+∠QAC=∠CAB+∠QAC,即∠P AC=∠QAB,∵AC=AB,∴△P AC≌△QAB(SAS),∴∠APC=∠AQB,∵∠AKP=∠QKN,∴∠QNK=∠P AK=90°,∵CM⊥y轴,∴CM∥NO,∴∠NCM=∠KNO=90°,在ON的延长线上截取NI=MH,连接CI,如图3所示:∵CN=CM,∠CNI=∠CMH=90°,∴△CNI≌△CMH(SAS),∴∠NCI=∠MCH,CI=CH,∴∠NCG+∠NCI =∠NCG+∠MCH=∠NCM﹣∠GCH=90°﹣45°=45°=∠GCH=∠GCI,∴△GCI≌△GCH(SAS),∴GI =GH,∵GI=IN+NG=HM+NG=2+3=5,∴GH=5.16.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y 轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.【解答】解:(1)过C 作CM⊥x轴于M点,如图1,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°则∠MAC=∠OBA在△MAC和△OBA中,则△MAC≌△OBA(AAS),则CM=OA=2,MA=OB =4,则点C的坐标为(﹣6,﹣2);(2)过D作DQ⊥OP于Q点,如图2,则OP﹣DE=PQ,∠APO+∠QPD=90°∠APO+∠OAP=90°,则∠QPD=∠OAP,在△AOP和△PDQ中,则△AOP≌△PDQ(AAS),∴OP﹣DE=PQ=OA=2;(3)结论②是正确的,m+n=﹣4,如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=2,∠FHS=∠HFT=∠FGT,在△FSH和△FTG中,则△FSH≌△FTG(AAS),则GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣2,﹣2),∴OT═OS=2,OG=|m|=﹣m,OH=n,∴GT=OG﹣OT=﹣m﹣2,HS=OH+OS=n+2,则﹣2﹣m=n+2,则m+n=﹣4.17.如图,四边形OABC的位置在平面直角坐标系中如图所示,且A(0,a),B(b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.【解答】解:(1)∵﹣+b2+4b+8=0,∴﹣+(b﹣4)2=0,∴a=4,b=4,∴A(0,4),B(﹣4,4),C(﹣4,0),故答案为(0,4),(﹣4,4),(﹣4,0);(2)由(1)知,A(0,4),B(﹣4,4),C(﹣4,0),∴AB =BC=OC=OA=4,∴四边形OABC是菱形,∵∠AOC=90°,∴菱形OABC是正方形,过点Q作QN⊥x轴于N,∴∠PNQ=90°,∴∠QPN+∠PQN=90°,∵BP⊥BQ,∴∠BPQ=90°,∴∠BPC+∠QPN=90°,∴∠PQN=∠BPC,由(1)知,B(﹣4,4),C(﹣4,0),∴BC=4,BC⊥x,∴∠BCP=∠PNQ=90°,在△BCP和△PNQ中,,∴△BCP≌△PNQ(AAS),∴CP=QN,BC=PN,∴OC=PN=4,①当点P在x轴负半轴时,如图1、OC=CP+OP,PN=OP+ON,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,②当点P在x轴正半轴时,如图2、OC=CP﹣OP,PN=ON﹣OP,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,即:∠AOQ=45°;(3)如图2,过点Q作QN⊥x轴于N,设P(m,0)(m>0),∵OP=3AM,∴AM=OP=m,∴M(0,m+4),∵点B(﹣4,4),∴直线BM的解析式为y=mx+m+4,由(2)知,PN=OC=4,∴N(m+4,0),∴Q(m+4,m+4),∵点Q在直线BM上,∴m(m+4)+m+4=m+4,∴m=0(舍)或m=4,∴M(0,).。

专题09 三角形问题-2022中考数学压轴题精讲(解析版)

专题09 三角形问题-2022中考数学压轴题精讲(解析版)

一、单选题1.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A 同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.4【答案】D【关键点拨】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.2.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE.试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2 .正确的序号有()A.①② B.①②③ C.①②④ D.①②③④【答案】C【解析】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,学科*网又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,故正确的结论有①②④,故选C.学科*网【关键点拨】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握3.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A 顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有()①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个 B.2个 C.3个 D.4个【答案】B∴∠BAD+∠EAC=120°−∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,【关键点拨】本题考查了旋转的性质,等腰三角形的性质和判定,三角形的外角性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.4.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.随x,m,n的值而定【答案】C【解析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.【关键点拨】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.5.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A. B. C.2 D.【答案】A【解析】6.如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1::;(4)GE2+CE2=BG2.A.1个 B.2个 C.3个 D.4个【答案】C【解析】(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,学*科网∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,∴∠A=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正确;,∴△BDF≌△CDA(AAS),∴BF=AC;故(2)正确;(3)∵在△BCD中,∠CDB=90°,∠DBC=45°,∴∠DCB=45°,∴BD=CD,BC=BD.由点H是BC的中点,∴DH=BH=CH=BC,∴BD=BH,∴BH:BD:BC=BH: BH:2BH=1::2.故(3)错误;学*科网(4)由(2)知:BF=AC,∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,在△ABE与△CBE中,【关键点拨】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.学&科网7.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB 边上动点,则△MNP周长的最小值为( )A.2 B.4 C. D.【答案】B【解析】【关键点拨】本题考查了等边三角形的性质和判定,轴对称-最短路线问题的应用,正确作出辅助线,确定M、N的位置,证明△OP1P2是等边三角形是解题关键.8.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1 B.2 C.3 D.4【答案】D②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,学科*网,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【关键点拨】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.9.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A. B. C. D.【答案】A【关键点拨】本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.10.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③ B.①②④ C.①②③④ D.①③④【答案】C③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.在△AEF和△BED中,∵,∴△AEF≌△BED(AAS),∴BD=AF;故③正确;④∵AD=BC,BD=AF,∴CD=DF.学科&网∵AD⊥BC,∴△FDC是等腰直角三角形.∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确.故选C.【关键点拨】本题考查了全等三角形的判定与性质,本题中求证△BFE≌△CDE是解题的关键.11.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】D【解析】A、连接OA、OC,由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,【关键点拨】本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键. 12.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、AB′,下列说法:①∠BAD=30°;②∠BFC=135°;③AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】∵点D是等腰直角△ABC腰BC上的中点,∴BD=BC=AB,∴tan∠BAD=,∴∠BAD≠30°,故①错误;如图,连接B'D,∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,学&科网∴S△AFE≠S△FCE,故④错误;故选B.【关键点拨】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.13.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A【关键点拨】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.14.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④ B.①② C.①④ D.①②③④【答案】B【解析】如图【关键点拨】本题主要考查三角形全等及三角形全等的性质.15.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对 B.3对 C.4对 D.5对【答案】C∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.学科*网【关键点拨】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.二、填空题16.如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x 轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第个等边三角形的边长等于__________.【答案】【关键点拨】本题主要考查等边三角形的性质及解直角三角形,从而归纳出边长的规律.17.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为__.(用含正整数n的代数式表示)【答案】()2n﹣2×…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×,故答案为:()2n﹣2×.【关键点拨】本题考查了含30度角的直角三角形的性质、等边三角形的面积公式、解直角三角形等知识,熟练掌握相关性质得出等边三角形的边长的规律是解题的关键.18.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.【答案】【关键点拨】本题考查了规律题,涉及等边三角形的性质,含30度角的直角三角形的性质、勾股定理等,有一定难度,熟练掌握并灵活运用等边三角形的性质、勾股定理等解本题的关键.19.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.【答案】∴A(,0);∴OA=,设D(x,) ,∴E(x,- x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;学*科网∴EF=1,∴S△AOE=·OA·EF=2.故答案为:.【关键点拨】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.20.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD 与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.【答案】①②④.③如图,过点Q作QE⊥PC交PC延长线于E,∵∠PCQ=120°,∴∠QCE=60°,在Rt△QCE中,tan∠QCE=,∴QE=CQ×tan∠QCE=CQ×tan60°=CQ,∵CP=CD=CQ,∴S△PCQ=CP×QE=CP×CQ=,∴CD最短时,S△PCQ最小,即:CD⊥AB时,CD最短,过点C作CF⊥AB,此时CF就是最短的CD,∵AC=BC=4,∠ACB=120°,∴∠ABC=30°,∴CF=BC=2,即:CD最短为2,∴S△PCQ最小===,∴③错误;④∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形,∴④正确,故答案为:①②④.21.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与∠C的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

中考数学二次函数与等腰三角形有关的问题知识解读

中考数学二次函数与等腰三角形有关的问题知识解读

二次函数与等腰三角形有关的问题知识解读【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。

【解题思路】等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有AB=AC ;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有BA=BC ;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C ,有CA=CB .注意:若有重合的情况,则需排除.以点 C 1 为例,具体求点坐标:过点A 作AH ⊥x 轴交x 轴于点H ,则AH=1, 又32121131311==−=∴=HC AC ,()03211,坐标为故点−C类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C总结:【典例分析】【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 交x 轴于点A (﹣4,0)、B (2,0),交y 轴于点C (0,6),在y 轴上有一点E (0,﹣2),连接AE .(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【答案】(1)y=,(2)m=时,△ADE的面积取得最大值为(3)点P坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2)【解答】解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得,所以二次函数的解析式为:y=,(2)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A2=9+n2,PE2=1+(n+2)2,AE2=16+4=20,当P A2=PE2时,9+n2=1+(n+2)2,解得,n=1,此时P(﹣1,1);当P A2=AE2时,9+n2=20,解得,n=,此时点P坐标为(﹣1,);当PE2=AE2时,1+(n+2)2=20,解得,n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述,P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).【变式11】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线对称轴为x=1,点B与A(﹣1,0)关于直线x=1对称,∴B(3,0),设y=a(x﹣3)(x+1),把C(0,3)代入得:﹣3a=3,解得:a=﹣1,∴y=﹣(x﹣3)(x+1)=﹣x2+2x+3,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,故抛物线解析式为y=﹣x2+2x+3,直线BC的解析式为y=﹣x+3;(2)存在,设Q(m,﹣m+3)(0<m<3),∵A(﹣1,0),C(0,3),∴AC2=OA2+OC2=12+32=10,AQ2=(m+1)2+(﹣m+3)2=2m2﹣4m+10,CQ2=m2+m2=2m2,∵以A,C,Q为顶点的三角形是等腰三角形,∴AC=AQ或AC=CQ或AQ=CQ,当AC=AQ时,10=2m2﹣4m+10,解得:m=0(舍去)或m=2,∴Q(2,1);当AC=CQ时,10=2m2,解得:m=﹣(舍去)或m=,∴Q(,3﹣);当AQ=CQ时,2m2﹣4m+10=2m2,解得:m=,∴Q(,);综上所述,点Q的坐标为(2,1)或(,3﹣)或(,).【变式1-2】(2022•荣昌区自主招生)如图,在平面直角坐标系中,抛物线y=ax2+x+c (a≠0)与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.(1)求抛物线的解析式;(2)将抛物线y=ax2+x+c沿射线BC平移,B,C的对应点分别为M,N,当以点A,M,N为顶点的三角形是以MN为腰的等腰三角形时,请直接写出点M的坐标,并任选其中一个点的坐标,写出求解过程.【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+x+c,∴,解得,∴y=﹣x2+x+2;(2)设抛物线沿x轴负方向平移2m个单位,则沿y轴正方向平移m个单位,∴B点平移对应点M(4﹣2m,m),C的对应点N(﹣2m,2+m),∴AM=,AN=,MN=2,①当MN=AM时,=2,解得m=2+或m=2﹣,∴M(﹣2,2+)或(2,2﹣);②当MN=AN时,=2,解得m=或m=﹣(舍),∴M(4﹣2,);综上所述:M点坐标为(﹣2,2+)或(2,2﹣)或(4﹣2,).【典例2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)y=x2﹣2x﹣3(2)①n=时,PM最大=②P(3﹣,2﹣4)或(2,﹣3).【解答】解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)解法一:当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=n2=0(不符合题意,舍),n3=2,n2﹣2n﹣3=﹣3,P(2,﹣3).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n 1=0(不符合题意,舍),n2=3﹣,n3=3+(不符合题意,舍),n2﹣2n﹣3=2﹣4,P(3﹣,2﹣4).综上所述:P(3﹣,2﹣4)或(2,﹣3).解法二:当PM=PC时,∵BC:y=x﹣3∴∠ABC=45°∵PH⊥AB∴∠BMH=∠CMP=45°∴PM=PC时,△CPM为等腰直角三角形,CP∥x轴设P(n,n2﹣2n﹣3),则CP=nMP=﹣n2+3n∴n=﹣n2+3n解得n=0(舍去)或n=2,∴P(2,﹣3)当PM=CM时,设P(n,n2﹣2n﹣3),则=﹣n2+3n=﹣n2+3n∵n>0∴n=﹣n2+3n解得n=3﹣∴P(3﹣,2﹣4)综上所述:P(3﹣,2﹣4)或(2,﹣3)【变式2-1】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).【变式2-1】(2021•大渡口区自主招生)如图,若抛物线y=x2+bx+c与x轴相交于A,B 两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【解答】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣)2+,∵﹣1<0,故PM有最大值,当x=时,PM最大值为:;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或3±(舍去0和3+),故x=3﹣,则x2﹣2x﹣3=2﹣4,故点P(3﹣,2﹣4).综上,点P的坐标为:(2,﹣3)或(3﹣,2﹣4).。

2023年中考数学压轴题专题31 三角形与新定义综合问题【含答案】

2023年中考数学压轴题专题31 三角形与新定义综合问题【含答案】

专题31三角形与新定义综合问题【例1】(2022•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=°.=48,求△ABC的周长.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC【例2】(2022•柯城区校级三模)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“标准三角形”.如:在△ABC,CD⊥AB于点D,AB=CD,则△ABC为标准三角形.【概念感知】判断:对的打“√”,错的打“×”.(1)等腰直角三角形是标准三角形.(2)顶角为30°的等腰三角形是标准三角形.【概念理解】若一个等腰三角形为标准三角形,则此三角形的三边长之比为.【概念应用】(1)如图,若△ABC为标准三角形,CD⊥AB于点D,AB=CD=1,求CA+CB的最小值.(2)若一个标准三角形的其中一边是另一边的倍,求最小角的正弦值.【例3】(2020•五华区校级三模)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=,b=;如图2,当∠PAB =30°,c=2时,a2+b2=;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【例4】(2020•岳麓区校级二模)定义:在△ABC中,若有两条中线互相垂直,则称△ABC 为中垂三角形,并且把AB2+BC2+CA2叫做△ABC的方周长,记作L,即L=AB2+BC2+CA2.(1)如图1,已知△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,若AC=BC,求证:△AOB是等腰直角三角形;(2)如图2,在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,试探究△ABC的方周长L与AB2之间的数量关系,并加以证明;(3)如图3,已知抛物线y=与x轴正半轴相交于点A,与y轴相交于点B,经过点B的直线与该抛物线相交于点C,与x轴负半轴相交于点D,且BD=CD,连接AC交y轴于点E.①求证:△ABC是中垂三角形;②若△ABC为直角三角形,求△ABC的方周长L的值.【例5】(2020•安徽模拟)通过学习锐角三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;=24,求△ABC的周长.(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC一.解答题(共20题)1.(2022秋•如皋市期中)定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.2.(2022秋•义乌市校级月考)【概念认识】如图①所示,在∠ABC中,若∠ABD=∠DBE =∠EBC,则BD,BE叫做∠ABC的“三分线”,其中,BD是“邻AB三分线“,BE是“邻BC三分线”.【问题解决】(1)如图②所示.在△ABC中.∠A=80°,∠ABC=45°.若∠ABC的三分线BD交AC于点D.求∠BDC的度数.(2)如图③所示,在△ABC中.BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC 三分线,且∠BPC=140°.求∠A的度数.【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠ABC的三分线所在的直线与∠ACD的三分线所在的直线交于点P,若∠A=m°(m>54),∠ABC=54°.求出∠BPC的度数.(用含m的式子表示)3.(2022春•石嘴山校级期末)[问题情境]我们知道:在平面直角坐标系中有不重合的两点A(x1,y1)和点B(x2,y2),若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|.[拓展]现在,若规定:平面直角坐标系中任意不重合的两点M(x1,y1)、N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|.例如:图中,点M(﹣1,1)与点N(1,﹣2).之间的折线距离d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5,[应用]解决下列问题:(1)已知点E(3,2),点F(1.﹣2),求d(E,F)的值;(2)已知点E(3,1),H(﹣1,n),若d(E,H)=6,求n的值;(3)已知点P(3,4),点Q在y轴上,O为坐标系原点,且△OPQ的面积是4.5,求d(P,Q)的值.4.(2022春•镇江期末)定义:在一个三角形中,如果有一个角是另一个角的2倍,我们称这两个角互为“开心角”,这个三角形叫做“开心三角形”.例如:在△ABC中,∠A=70°,∠B=35°,则∠A与∠B互为“开心角”,△ABC为“开心三角形”.【理解】(1)若△ABC为开心三角形,∠A=144°,则这个三角形中最小的内角为°;(2)若△ABC为开心三角形,∠A=70°,则这个三角形中最小的内角为°;(3)已知∠A是开心△ABC中最小的内角,并且是其中的一个开心角,试确定∠A的取值范围,并说明理由;【应用】如图,AD平分△ABC的内角∠BAC,交BC于点E,CD平分△ABC的外角∠BCF,延长BA和DC交于点P,已知∠P=30°,若∠BAE是开心△ABE中的一个开心角,设∠BAE=∠α,求∠α的度数.5.(2022春•崇川区期末)定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.6.(2022春•亭湖区校级月考)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的所有“好点”点D;(2)△ABC中,BC=7,,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连结CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.7.(2021秋•如皋市期末)【了解概念】定义:如果一个三角形一边上的中线等于这个三角形其中一边的一半,则称这个三角形为半线三角形,这条中线叫这条边的半线.【理解运用】(1)如图1,在△ABC中,AB=AC,∠BAC=120°,试判断△ABC是否为半线三角形,并说明理由;【拓展提升】(2)如图2,在△ABC中,AB=AC,D为BC的中点,M为△ABC外一点,连接MB,MC,若△ABC和△MBC均为半线三角形,且AD和MD分别为这两个三角形BC边的半线,求∠AMC的度数;(3)在(2)的条件下,若MD=,AM=1,直接写出BM的长.8.(2021秋•顺义区期末)我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).(1)若∠A=90°,则△ABC的正度为;(2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.(3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.9.(2021秋•丹阳市期末)梅涅劳斯(Menelaus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC的三边AB,BC,CA或它们的延长线交于F、D、E三点,那么一定有=1.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图(2),过点A作AG∥BC,交DF的延长线于点G,则有,,∴=1.请用上述定理的证明方法解决以下问题:(1)如图(3),△ABC三边CB,AB,AC的延长线分别交直线l于X,Y,Z三点,证明:=1.请用上述定理的证明方法或结论解决以下问题:(2)如图(4),等边△ABC的边长为2,点D为BC的中点,点F在AB上,且BF=2AF,CF与AD交于点E,则AE的长为.(3)如图(5),△ABC的面积为2,F为AB中点,延长BC至D,使CD=BC,连接FD 交AC于E,则四边形BCEF的面积为.10.(2021秋•洪江市期末)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=44°,CD是△ABC的完美分割线,且AD=CD,求∠ACB 的度数;(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC 的完美分割线;(3)如图3,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.11.(2021秋•石景山区期末)在Rt△ACB中,∠ACB=90°,CA=CB=6,点P是线段CB 上的一个动点(不与点B,C重合),过点P作直线l⊥CB交AB于点Q.给出如下定义:若在AC边上存在一点M,使得点M关于直线l的对称点N恰好在△ACB的边上,则称点M是△ACB的关于直线l的“反称点”.例如,图1中的点M是△ACB的关于直线l的“反称点”.(1)如图2,若CP=1,点M1,M2,M3,M4在AC边上且AM1=1,AM2=2,AM3=4,AM4=6.在点M1,M2,M3,M4中,是△ACB的关于直线l的“反称点”为;(2)若点M是△ACB的关于直线l的“反称点”,恰好使得△ACN是等腰三角形,求AM 的长;(3)存在直线l及点M,使得点M是△ACB的关于直线l的“反称点”,直接写出线段CP 的取值范围.12.(2021秋•鄞州区期末)【问题提出】如图1,△ABC中,线段DE的端点D,E分别在边AB和AC上,若位于DE上方的两条线段AD和AE之积等于DE下方的两条线段BD和CE之积,即AD×AE=BD×CE,则称DE 是△ABC的“友好分割”线段.(1)如图1,若DE是△ABC的“友好分割”线段,AD=2CE,AB=8,求AC的长;【发现证明】(2)如图2,△ABC中,点F在BC边上,FD∥AC交AB于D,FE∥AB交AC于E,连结DE,求证:DE是△ABC的“友好分割”线段;【综合运用】(3)如图3,DE是△ABC的“友好分割”线段,连结DE并延长交BC的延长线于F,过点A画AG∥DE交△ADE的外接圆于点G,连结GE,设=x,=y.①求y关于x的函数表达式;②连结BG,CG,当y=时,求的值.13.(2021秋•鼓楼区校级期末)定义1:如图1,若点H在直线l上,在l的同侧有两条以H为端点的线段MH、NH,满足∠1=∠2,则称MH和NH关于直线l满足“光学性质”;定义2:如图2,在△ABC中,△PQR的三个顶点P、Q、R分别在BC,AC、AB上,若RP 和QP关于BC满足“光学性质”,PQ和RQ关于AC满足“光学性质”,PR和QR关于AB 满足“光学性质”,则称△PQR为△ABC的光线三角形.阅读以上定义,并探究问题:在△ABC中,∠A=30°,AB=AC,△DEF三个顶点D、E、F分别在BC、AC,AB上.(1)如图3,若FE∥BC,DE和FE关于AC满足“光学性质”,求∠EDC的度数;(2)如图4,在△ABC中,作CF⊥AB于F,以AB为直径的圆分别交AC,BC于点E,D.①证明:△DEF为△ABC的光线三角形;②证明:△ABC的光线三角形是唯一的.14.(2021秋•丰台区期末)对于平面直角坐标系xOy中的线段AB及点P,给出如下定义:若点P满足PA=PB,则称P为线段AB的“轴点”,其中,当0°<∠APB<60°时,称P 为线段AB的“远轴点”;当60°≤∠APB<180°时,称P为线段AB的“近轴点”.(1)如图1,点A,B的坐标分别为(﹣2,0),(2,0),则在P1(﹣1,3),P2(0,2),P3(0,﹣1),P4(0,4)中,线段AB的“轴点”是;线段AB的“近轴点”是.(2)如图2,点A的坐标为(3,0),点B在y轴正半轴上,∠OAB=30°.若P为线段AB的“远轴点”,请直接写出点P的横坐标t的取值范围.15.(2022秋•长沙期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角开中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念:(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用:(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC 的等角分割线.动手操作:(3)在△ABC中,若∠A=50°,CD是△ABC的等角分割线,请求出所有可能的∠ACB 的度数.16.(2022春•华州区期末)阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)理解并填空:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?(填“是”或“不是”)②若某三角形的三边长分别为1、、2,则该三角形(填“是”或“不是”)奇异三角形.(2)探究:在Rt△ABC,两边长分别是a、c,且a2=50,c2=100,则这个三角形是否是奇异三角形?请说明理由.17.(2022•任城区三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=.(2)sad90°=.(3)如图②,已知sin A=,其中∠A为锐角,试求sadA的值.18.(2021•柯城区模拟)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“等底高三角形”,这条边叫做等底线,这条边上的高叫做等高线.如图:在△ABC,CD ⊥AB于点D,且AB=CD,则△ABC为等底高三角形,AB叫等底线,CD叫等高线.【概念感知】判断:对的打“√”,错的打“×”.(1)等边三角形不可能是等底高三角形.(2)等底高三角形不可能是钝角三角形.【概念理解】若一个等腰三角形为等底高三角形,则此三角形的三边长之比为.【概念应用】(1)若△ABC为等底高三角形,等底线长为2,求三角形的周长的最小值.(2)若一个等底高三角形的其中一边是另一边的倍,求最小角的正弦值.19.(2021•宁波模拟)在三角形的三边中,若其中两条边的积恰好等于第三边的平方,我们把这样的三角形叫做有趣三角形,这两条边的商叫正度,记为k(0<k≤1).(1)求证:正度为1的有趣三角形必是等边三角形.(2)如图①,四边形ABCD中,AD∥BC,BD平分∠ABC,∠ACD=∠ABC,求证:△ABC 是有趣三角形.(3)如图②,菱形ABCD中,点E,F是对角线BD的三等分点,DE=DC.延长BD到P,使DP=BE.求证:△BCE,△FCP,△BCP是具有相同正度的有趣三角形.20.(2021•临海市一模)在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.(1)概念理解:在直角三角形中,直角的勾股差为;在底边长为2的等腰三角形中,底角的勾股差为;(2)性质探究:如图1,CD是△ABC的中线,AC=b,BC=a,AB=2c,CD=d,记△ACD 中∠ADC的勾股差为m,△BCD中∠BDC的勾股差为n;①求m,n的值(用含a,b,c,d的代数式表示);②试说明m与n互为相反数;(3)性质应用:如图2,在四边形ABCD中,点E与F分别是AB与BC的中点,连接BD,DE,DF,若=,且CD⊥BD,CD=AD,求的值.【例1】(2022•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=60°.=48,求△ABC的周长.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC【分析】(1)根据定义,要求can30°的值,想利用等腰三角形的三线合一性质,想到过点A作AD⊥BC,垂足为D,根据∠B=30°,可得:BD=AB,再利用等腰三角形的三线合一性质,求出BC即可解答,根据定义,canB=1,可得底边与腰相等,所以这个等腰三角形是等边三角形,从而得∠B =60°;(2)根据定义,想利用等腰三角形的三线合一性质,想到过点A作AD⊥BC,垂足为D,canB=,所以设BC=8x,AB=5x,然后利用勾股定理表示出三角形的高,再利用S△ABC =48,列出关于x的方程即可解答.【解答】解:(1)如图:过点A作AD⊥BC,垂足为D,∵AB=AC,AD⊥BC,∴BC=2BD,∵∠B=30°,∴BD=AB cos30°=AB,∴BC=2BD=AB,∴can30°===,若canB=1,∴canB==1,∴BC=AB,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=60°,故答案为:,60;(2)过点A作AD⊥BC,垂足为D,∵canB=,∴=,∴设BC=8x,AB=5x,∵AB=AC,AD⊥BC,∴BD=BC=4x,∴AD==3x,=48,∵S△ABC∴BC•AD=48,∴•8x•3x=48,∴x2=4,∴x=±2(负值舍去),∴x=2,∴AB=AC=10,BC=16,∴△ABC的周长为36,答:△ABC的周长为36.【例2】(2022•柯城区校级三模)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“标准三角形”.如:在△ABC,CD⊥AB于点D,AB=CD,则△ABC为标准三角形.【概念感知】判断:对的打“√”,错的打“×”.(1)等腰直角三角形是标准三角形.√(2)顶角为30°的等腰三角形是标准三角形.×【概念理解】若一个等腰三角形为标准三角形,则此三角形的三边长之比为1:1:或::2.【概念应用】(1)如图,若△ABC为标准三角形,CD⊥AB于点D,AB=CD=1,求CA+CB的最小值.(2)若一个标准三角形的其中一边是另一边的倍,求最小角的正弦值.【分析】【概念感知】(1)根据等腰直角三角形的两条直角边互相垂直且相等,即可判断;(2)作出图形,分别对底边上的高和腰上的高进行讨论,即可求解;【概念理解】当△ABC是等腰直角三角形时,AC:AB:BC=1:1:;当△ABC是等腰三角形,AB=AC,AE⊥BC,AE=BC,设BE=x,则AE=2x,求出AB=x,则AB:AC:BC=::2;【概念应用】(1)过C点作AB的平行线,作A点关于该平行线的对称点A',连接A'B,当A'、B、C三点共线时,AC+BC=A'B,此时AC+BC的值最小,求出A'B即可;(2)分两种情况讨论:①当AC=AB时,AC=CD,过点B作BE⊥AC交于E,设CD=AB=a,则AC=a,由等积法求出BE=a,用勾股定理分别求出AD=2a,BD=a,BC=a,则可求sin∠BCE=;②当BC=AB时,BC=DC,过点B作BE⊥AC交于E,设CD=AB=a,则BC=a,由勾股定理分别求出BD=2a,AD=3a,AC=a,再由等积法求出BE=a,即可求sin∠BCE=.【解答】解:【概念感知】(1)如图1:等腰直角三角形ABC中,AB⊥AC,∵AB=AC,∴等腰直角三角形是标准三角形,故答案为:√;(2)如图2,在等腰三角形ABC中,∠BAC=30°,AB=AC,CD⊥AB,∵∠A=30°,∴CD=AC,∵CA=AB,∴CD=AB,∴△ABC不是标准三角形;如图3,在等腰三角形ABC中,∠BAC=30°,AB=AC,AE⊥BC,此时AE>BC,∴△ABC不是标准三角形;故答案为:×;【概念理解】如图1,当△ABC是等腰直角三角形时,AC:AB:BC=1:1:;如图4,当△ABC是等腰三角形,AB=AC,AE⊥BC,AE=BC,∴BE=EC=BC=AE,设BE=x,则AE=2x,在Rt△ABE中,AB=x,∴AB:AC:BC=::2;故答案为:1:1:或::2;【概念应用】(1)如图5,过C点作AB的平行线,作A点关于该平行线的对称点A',连接A'B,当A'、B、C三点共线时,AC+BC=A'B,此时AC+BC的值最小,∵AB=CD=1,∴AA'=2,在Rt△ABA'中,A'B=,∴AC+BC的最小值为;(2)在△ABC中,AB=CD,AB⊥CD,∴AC>CD,BC>CD,∴AC>AB,BC>AB,∴△ABC的最小角为∠ACB,①如图6,当AC=AB时,AC=CD,过点B作BE⊥AC交于E,设CD=AB=a,则AC=a,=×AB×CD=×AC×BE,∵S△ABC∴BE=a,在Rt△ACD中,AD=2a,∴BD=AD﹣AB=a,在Rt△BCD中,BC=a,在Rt△BCE中,sin∠BCE=;②如图7,当BC=AB时,BC=DC,过点B作BE⊥AC交于E,设CD=AB=a,则BC=a,在Rt△BCD中,BD=2a,∴AD=3a,在Rt△ACD中,AC=a,=×AB×CD=×AC×BE,∵S△ABC∴BE=a,在Rt△BCE中,sin∠BCE=;综上所述:最小角的正弦值为或.【例3】(2020•五华区校级三模)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=4,b=4;如图2,当∠PAB =30°,c=2时,a2+b2=20;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【分析】(1)根据等腰直角三角形的性质分别求出PA、PB,根据三角形中位线定理得到MN∥AB,根据相似三角形的性质分别求出PM、PN,根据勾股定理计算即可;(2)连接MN,设PN=x,PM=y,利用勾股定理分别用x、y表示出a、b、c,得到答案;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,证明△ABF为“中垂三角形”,根据(2)中结论计算即可.【解答】解:(1)在Rt△APB中,∠PAB=45°,c=,则PA=PB=c=4,∵M、N分别为CB、CA的中点,∴MN=AB=2,MN∥AB,∴△APB∽△MPN,∴===,∴PM=PN=2,∴BM==2,∴a=2BM=4,同理:b=2AN=4,如图2,连接MN,在Rt△APB中,∠PAB=30°,c=2,∴PB=c=1,∴PA==,∴PN=,PM=,∴BM==,AN==,∴a=,b=,∴a2+b2=20,故答案为:4;4;20;(2)a2+b2=5c2,理由如下:如图3,连接MN,设PN=x,PM=y,则PB=2PN=2x,PA=2PM=2y,∴BM==,AN==,∴a=2,b=2,∴a2+b2=20(x2+y2),∵c2=PA2+PB2=4(x2+y2),∴a2+b2=5c2;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴△AHP∽△BHF,∴==1,∴AP=BF,∵AD=3AE,BC=3BF,AD=3,∴AE=BF=,∴PE=FC,∴四边形PFCE为平行四边形,∵BE⊥CE,∴BG⊥FH,∵AE∥BF,AE=BF,∴AG=GF,∴△ABF为“中垂三角形”,∴AB2+AF2=5BF2,即32+AF2=5×()2,解得:AF=4.【例4】(2020•岳麓区校级二模)定义:在△ABC中,若有两条中线互相垂直,则称△ABC 为中垂三角形,并且把AB2+BC2+CA2叫做△ABC的方周长,记作L,即L=AB2+BC2+CA2.(1)如图1,已知△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,若AC=BC,求证:△AOB是等腰直角三角形;(2)如图2,在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,试探究△ABC的方周长L与AB2之间的数量关系,并加以证明;(3)如图3,已知抛物线y=与x轴正半轴相交于点A,与y轴相交于点B,经过点B的直线与该抛物线相交于点C,与x轴负半轴相交于点D,且BD=CD,连接AC交y轴于点E.①求证:△ABC是中垂三角形;②若△ABC为直角三角形,求△ABC的方周长L的值.【分析】(1)先利用“SAS“证明△BAD≌△ABE,然后根据△ABC是中垂三角形即可证明;(2)先判断出AC=2AD,BC=2BE,再利用勾股定理,即可得出结论;(3)①利用二次函数先求出点B、点A和点C的坐标,然后根据点A和点C的坐标确定E 是AC的中点,最后根据中垂三角形的定义即可证明;②先由点A(4,0),B(0,﹣2a),C(﹣4,2a)的坐标得到k AB=a,k AC=﹣a,k BC =﹣a,然后分情况讨论即可求解;或结合射影定理分情况讨论进行求解即可.【解答】(1)证明:AC=BC,BD,AE分别是AC,BC边上的中线,∴AD=BE,∠BAD=∠ABE,∴△BAD≌△ABE(SAS),∴∠ABD=∠BAE,∴OA=OB.∵△ABC是中垂三角形,且AC=BC,∴∠AOB=90°,∴△AOB是等腰直角三角形.(2)L=6AB2.证明:如图,连接DE.∵AE,BD分别是边BC,AC上的中线,∴AC=2AD,BC=2BE,DE=AB,∴AC2=4AD2,BC2=4BE2,DE2=AB2.在Rt△AOD中,AD2=OA2+OD2,在Rt△BOE中,BE2=OB2+OE2,∴AC2+BC2=4(AD2+BE2)=4(OA2+OD2+OB2+OE2)=4(AB2+DE2)=4(AB2+AB2)=5AB2,∴L=AB2+AC2+BC2=AB2+5AB2=6AB2.(3)①证明:在y=中,当x=0时,y=﹣2a,∴点B(0,﹣2a).y=0时,=0,整理得3x2﹣4x﹣32=0,解得x1=﹣(舍),x2=4,∴点A(4,0).∵BD=CD,y C=﹣y B=2a,将y=2a代人y=,解得x1=(舍),x2=﹣4,∴C(﹣4,2a).由点A(4,0),C(﹣4,2a)可知,E是AC的中点.又∵BD=CD,∴AD,BE都是△ABC的中线.又∵∠AOB=90°,∴AD⊥BE,∴△ABC是中垂三角形.②解法一:由点A(4,0),B(0,﹣2a),C(﹣4,2a)可得k AB=a,k AC=﹣a,k BC =﹣a,∵∠C<∠AOB,∴∠C≠90°.当∠ABC=90°时,k AB•k BC=﹣1,解得a=(负值舍去),∴点B(0,﹣2),∴L=6AB2=6×24=144.当∠BAC=90°时,k AB•k CA=﹣1,解得a=2(负值舍去),∴点B(0,﹣4),∴L=6AB2=6×48=288.综上所述,△ABC的方周长L的值为144或288.解法二:由点A(4,0),B(0,﹣2a),C(﹣4,2a),∵点D是BC的中点,点E是AC的中点,∴点D(﹣2,0),E(0,a).∵∠C<∠AOB,∴∠C≠90°.当∠ABC=90°时,在△ABD中,由射影定理得OB2=OA•OD,∴4a2=8,解得α=(负值舍去),∴点B(0,﹣2),∴L=6AB2=6×24=144.当∠BAC=90°时,在△ABE中,由射影定理得OA2=OB•OE,∴16=2a2,解得a=2(负值舍去),∴点B(0,﹣4),∴L=6AB2=6×48=288.综上所述,△ABC的方周长L的值为144或288.【例5】(2020•安徽模拟)通过学习锐角三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;=24,求△ABC的周长.(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC【分析】(1)过点A作AD⊥BC于点D,根据∠B=30°,可得出BD=AB,结合等腰三角形的性质可得出BC=AB,继而得出canB;=24,(2)过点A作AE⊥BC于点E,根据canB=,设BC=8x,AB=5x,再由S△ABC可得出x的值,继而求出周长.【解答】解:(1)过点A作AD⊥BC于点D,∵∠B=30°,∴cos∠B==,∴BD=AB,∵△ABC是等腰三角形,∴BC=2BD=AB,故can30°==;(2)过点A作AE⊥BC于点E,∵canB=,则可设BC=8x,AB=5x,∴AE==3x,=24,∵S△ABC∴BC×AE=12x2=24,解得:x=,故AB=AC=5,BC=8,从而可得△ABC的周长为18.一.解答题(共20题)1.(2022秋•如皋市期中)定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有②③(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.【分析】(1)利用“倍角三角形”的定义依次判断可求解;(2)①由折叠的性质和等腰三角形的性质可求∠BAE=2∠ADB,由等腰三角形的性质可得∠BDE=∠E,可得结论;②分两种情况讨论,由三角形内角和定理和“倍角三角形”的定义可求解.【解答】(1)解:若顶角是30°的等腰三角形,∴两个底角分别为75°,75°,∴顶角是30°的等腰三角形不是“倍角三角形”,若等腰直角三角形,∴三个角分别为45°,45°,90°,∵90°=2×45°,∴等腰直角三角形是“倍角三角形”,若有一个是30°的直角三角形,∴另两个角分别为60°,90°,∵60°=2×30°,∴有一个30°的直角三角形是“倍角三角形”,故答案为:②③;(2)①证明:∵AB=AC,∴∠ABC=∠ACB,∵将△ABC沿边AB所在的直线翻折180°得到△ABD,∴∠ABC=∠ABD,∠ACB=∠ADB,BC=BD,∴∠BAE=2∠ADB,∵BE=BC,∴BD=BE,∴∠E=∠ADB,∴∠BAE=2∠E,∴△ABE是“倍角三角形”;②解:由①可得∠BAE=2∠BDA=2∠C=60°,如图,若△ABP是等腰三角形,则△BPE是“倍角三角形”,∴△ABP是等边三角形,∴∠APB=60°,∴∠BPE=120°,∵△BPE是“倍角三角形”,∴∠BEP=2∠EBP或∠PBE=2∠BEP,∴∠BEP=20°或40°;若△BPE是等腰三角形,则△ABP是“倍角三角形”,∴∠ABP=∠BAP=30°或∠APB=∠BAE=30°或∠ABP=2∠APB或∠APB=2∠ABP,∴∠APB=90°或30°或40°或80°,∴∠BPE=90°或150°或140°或100°,∵△BPE是等腰三角形,∴∠BEP=45°或15°或20°或40°,综上所述:∠BPE的度数为45°或15°或20°或40°.2.(2022秋•义乌市校级月考)【概念认识】如图①所示,在∠ABC中,若∠ABD=∠DBE =∠EBC,则BD,BE叫做∠ABC的“三分线”,其中,BD是“邻AB三分线“,BE是“邻BC三分线”.【问题解决】(1)如图②所示.在△ABC中.∠A=80°,∠ABC=45°.若∠ABC的三分线BD交AC于点D.求∠BDC的度数.(2)如图③所示,在△ABC中.BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC 三分线,且∠BPC=140°.求∠A的度数.【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠ABC的三分线所在的直线与∠ACD的三分线所在的直线交于点P,若∠A=m°(m>54),∠ABC=54°.求出∠BPC的度数.(用含m的式子表示)【分析】(1)分BD是邻AB的三分线和BD是邻BC的三分线两种情况解答即可;(2)由∠BPC=140°,得∠PBC+∠PCB=40°,故∠ABC+∠ACB=40°,可得∠ABC+∠ACB=120°,从而∠A=60°;(3)分四种情况分别解答即可.【解答】解:(1)当BD是“邻AB三分线”时,∠ABD=∠ABC=15°,则∠BDC=∠ABD+∠A=15°+80°=95°,当BD′是“邻BC三分线”时,∠ABD′=∠ABC=30°,则∠BD′C=∠ABD′+∠A=30°+80°=110°,综上所述,∠BDC的度数为95°或110°;(2)∵∠BPC=140°,∴∠PBC+∠PCB=40°,∵BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC三分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠ABC+∠ACB=40°,∴∠ABC+∠ACB=120°,∴∠A=60°;(3)如图:。

2014-2015学年中考备考数学压轴题全解析:等腰三角形存在问题

2014-2015学年中考备考数学压轴题全解析:等腰三角形存在问题

2. (13 铜仁)如图,已知直线 y=3x﹣3 分别交 x 轴,y 轴于 A,B 两点,抛物线 y=x2+bx+c 经过 A,B 两点,点 C 是抛物线与 x 轴的另一个交点(与 A 点不重合) . (1)求抛物线的解析式: (2)求△ABC 的面积; (3)在抛物线的对称轴上,是否存在点 M,使△ABM 为等腰三角形?若不存在,请说明理由:若存在,求 出点 M 的坐标.
等腰三角形
【方法归纳】 等腰三角形的定义:有两边相等的三角形是等腰三角形. 如图,若△ABC 是等腰三角形,那么有以下三种可能情况: ①AB=AC; ②AB=BC; ③AC=BC.
A
B
【典型例题】
C
1. (11 乌鲁木齐)如图,在△ABC 中,∠B=90° ,AB=6 米,BC=8 米,动点 P 以 2 米/秒得速度从 A 点 出发,沿 AC 向 C 移动,同时,动点 Q 以 1 米/秒得速度从 C 点出发,沿 CB 向 B 移动.当其中有一点到达 终点时,他们都停止移动,设移动的时间为 t 秒. (1)①当 t=2.5 秒时,求△CPQ 的面积; ②求△CPQ 的面积 S(平方米)关于时间 t(秒)的函数关系式; (2)在 P,Q 移动的过程中,当△CPQ 为等腰三角形时,写出 t 的值; (3)以 P 为圆心,PA 为半径的圆与以 Q 为圆心,QC 为半径的圆相切时,求出 t 的值.

C
O
A
x
B
【思路点拨】 (1)根据直线解析式求出点 A 及点 B 的坐标,然后将点 A 及点 B 的坐标代入抛物线解析式,可得出 b、c 的值,求出抛物线解析式; (2)令抛物线解析式中的 y=0,可求出点 C 的横坐标,即可得到点 C 的坐标.连接 BC,把 AC 与 OB 的 长度代入三角形的面积公式求出 S△ABC; (3)因为点 M 在抛物线对称轴上,所以设点 M 的坐标为(-1,m) .由点 M 构成△ABM 的等腰三角形可 分三种情况:①MA=BA,②MB=BA,③MB=MA,求出 m 的值后即可得出答案. 【解题过程】 解: (1)∵直线 y=3x-3 分别交 x 轴、y 轴于 A、B 两点,∴A(1,0) ,B(0,-3) 1+b+c=0 b=2 把 A、B 两点的坐标分别代入 y=x2+bx+c 得: ,解得: c=﹣3 c=﹣3 ∴抛物线解析式为:y=x2+2x-3 (2)令 y=0 得:x2+2x-3=0,解得:x1=1,x2=-3 1 1 ∴C 点坐标为: (-3,0) ,AC=4,故可得 S△ ABC= AC× OB= × 4× 3=6 2 2 (3)存在,理由如下: b 抛物线的对称轴为:x=- =-1,设点 M 的坐标为(-1,m) 2a ∴AB= 10,MA= 22+m2,MB= 12+(m+3)2 ①当 MA=AB 时, 22+m2 = 10,解得:m=± 6 ,∴M1(-1, 6) ,M2(-1,- 6) ; ②当 MB=BA 时, 12+(m+3)2= 10,解得:M3=0,M4=-6, ∴M3(-1,0) ,M4(-1,-6) (不合题意舍去) , ③当 MB=MA 时, 为等腰三角形

中考数学微专题6 等腰三角形、直角三角形形存在性问题

中考数学微专题6 等腰三角形、直角三角形形存在性问题

如图 4,当∠BDC=90°时, 线段 BC 的中点 T3,-32,BC=3 5, 设 D(3,m),∵DT=21BC, ∴|m+23|=3 2 5, ∴m=325-32或 m=-325-23, ∴D3,325-32或 D3,-325-23; 综上所述:△BCD 是直角三角形时,D 点坐标为(3,6)或(3,-9)或3,-325-32或3,325-32.
解:(1)对直线 y=-34x+3,当 x=0 时,y=3,当 y=0 时,x=4, ∴点 B(4,0),C(0,3), ∵抛物线过点 A(-2,0),点 B(4,0), ∴抛物线为 y=a(x+2)(x-4), 将点 C(0,3)代入得:-8a=3, ∵a=-38,
∴抛物线为:y=-38(x+2)(x-4)=-38x2+34x+3, ∵x=4-2 2=1 时,y=287.
∴DBHG=CBGH,即33=B6G, ∴BG=6,∴D(3,6);
如图 3,当∠BCD=90°, 过点 D 作 DK⊥y 轴交于点 K, ∵∠KCD+∠OCB=90°,∠KCD+∠CDK=90°, ∴∠CDK=∠OCB, ∴△OBC∽△KCD, ∴KOCB=OKCD,即K6C=33, ∴KC=6,∴D(3,-9);
解:(1)∵抛物线C:y=(x-2)2向下平移6个单位 长度得到抛物线C1, ∴C1∶y=(x-2)2-6, ∵将抛物线C1向左平移2个单位长度得到抛物线C2. ∴C2∶y=(x-2+2)2-6,即y=x2-6;
(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D, 设A(a,(a-2)2-6),则BD=a-2,AC=|(a-2)2-6|, ∵∠BAO=∠ACO=90°, ∴∠BAD+∠OAC=∠OAC+∠AOC=90°, ∴∠BAD=∠AOC, ∵AB=OA,∠ADB=∠OCA, ∴△ABD≌△OAC(AAS), ∴BD=AC, ∴a-2=|(a-2)2-6|, 解得,a=4或a=-1(舍),或a=0(舍),或a=5, ∴A(4,-2)或(5,3);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012中考数学压轴题函数等腰三角形问题(一) 例1
如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.
(1)求点D的坐标(用含m的代数式表示);
(2)当△APD是等腰三角形时,求m的值;
(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H 所经过的路长(不必写解答过程).
图1 图2
动感体验
请打开几何画板文件名“11湖州24”,拖动点P在OC上运动,可以体验到,△APD的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”,拖动点P由O向C运动,可以体验到,点H在以OM为直径的圆上运动.双击按钮“第(2)题”可以切换.
思路点拨
1.用含m的代数式表示表示△APD的三边长,为解等腰三角形做好准备.
2.探求△APD是等腰三角形,分三种情况列方程求解.
3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C .
满分解答
(1)因为PC //DB ,所以1CP PM MC BD DM MB
===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).
(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32
m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43
m =(如图4)或4m =(不合题意,舍去).
③当DA =DP 时,2(4)m -244(2)m =+-.解得23
m =(如图5)或2m =(不合题意,舍去).
综上所述,当△APD 为等腰三角形时,m 的值为32,43或23

图3 图4 图5
(3)点H 所经过的路径长为54
π.
考点伸展
第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单: ①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以
12PC MB CM BA ==.因此12PC =,32
m =. ②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43
m =. 第(2)题的思路是这样的:
如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.
图6 图7
例2
如图1,已知一次函数y =-x +7与正比例函数43
y x 的图象交于点A ,且与x 轴交于点B .
(1)求点A 和点B 的坐标;
(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y
轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O
—C —A 的路线向点A 运动;同时直线l 从点B 出发,以
相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,
交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P
和直线l 都停止运动.在运动过程中,设动点P 运动的
时间为t 秒.
①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?
②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.
图1
动感体验
请打开几何画板文件名“11盐城28”,拖动点R 由B 向O 运动,从图像中可以看到,△APR 的面积有一个时刻等于8.观察△APQ ,可以体验到,P 在OC 上时,只存在AP =AQ 的情况;P 在CA 上时,有三个时刻,△APQ 是等腰三角形.
思路点拨
1.把图1复制若干个,在每一个图形中解决一个问题.
2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.
3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.
满分解答
(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩
得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).
(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O R C O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222
t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.
因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.
图2 图3 图4
②我们先讨论P 在OC 上运动时的情形,0≤t <4.
如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .
如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.
因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.
我们再来讨论P 在CA 上运动时的情形,4≤t <7.
在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418
t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.
如7,当PA =PQ 时,那么12cos AQ A AP
∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643
t =. 综上所述,t =1或418或5或22643
时,△APQ 是等腰三角形.
图5 图6 图7
考点伸展
当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.。

相关文档
最新文档