微机原理与接口技术
微机原理与接口技术
微机原理与接口技术1.系统总线是连接计算机CPU、内存、辅存、各种输入输出部件的一组物理信号线及相关的控制电路。
2.若操作数由指令中指定的寄存器给出,则采用的寻址方式是寄存器直接寻址。
3.总线性能的重要指标是总线宽带,它定义了为总线本身所能达到的最高传输速率。
4.CISC指令的特点是指令长度固定、指令种类少、寻址方式少。
5.半导体静态存储器SRAM的存储原理是依靠双稳态电路保存信息,不需要刷新。
6.异步串行通信的主要特点是通信双方不需要同步,没有专门的同步字。
7.计算机外部中断分为可屏蔽中断和不可屏蔽中断两类。
8.运算器完成的主要运算是算术运算和逻辑运算。
9.8251A工作在异步方式时最大波特率19.2Kbit/s;工作在同步方式时最大波特率64Kbit/s。
10.8255A的端口A有3种工作方式,端口B有2种工作方式。
11.同步串行通信规程规定,传送数据的基本单位是bit,其中最先传送的是同步字。
12.8259A对中断优先级的管理,可概括为完全嵌套方式,自动循环方式和特殊全嵌套方式。
13.子程序的属性可以分为near 或Far14.在中断驱动I/O方式中,当外设要和CPU交换数据时,它就通过硬件电路给CPU一个信号,这个信号叫做中断请求。
15.系统总线通常包含地址总线、数据总线和控制总线,其中地址总线的位数确定了总线的寻址能力。
16.Pentium系列微机主要采用南北桥结构和两个中心结构。
17.8259A内部主要有中断请求寄存器,中断屏蔽寄存器和中断服务寄存器。
18.DMA数据传送有2种方式:字节方式和数据块。
19.常用的主存到Cache的地址映像方式有直接映像、全相联映像和组相联映像。
20.奇偶校验法只能发现奇数个错,不能发现无错或偶数个错。
21.Cache存储器主要作用是解决协调主存和CPU的速度不匹配问题。
22.RISC指令系统中最大特点是长度固定,指令条数少,寻址种类少。
23.主机与I/O设备传送数据时,CPU的效率最低的是查询方式,较高的是中断方式。
微机原理与接口技术pdf
微机原理与接口技术pdf微机原理与接口技术是计算机专业的一门重要课程,它涉及到计算机硬件的基本原理和接口技术的应用。
本文将从微机原理和接口技术两个方面进行介绍和讨论,希望能够对读者有所帮助。
首先,我们来谈谈微机原理。
微机原理是指微型计算机的基本工作原理,包括中央处理器(CPU)、存储器、输入输出设备等各个部分的工作原理。
CPU是微型计算机的核心部件,它负责执行指令、进行运算和控制数据传输。
存储器用于存储数据和程序,包括随机存储器(RAM)和只读存储器(ROM)等。
输入输出设备用于与外部环境进行信息交换,包括键盘、鼠标、显示器、打印机等。
了解微机原理对于理解计算机的工作原理和进行系统调试都非常重要。
其次,我们来谈谈接口技术。
接口技术是指计算机与外部设备进行数据交换的技术,包括串行接口、并行接口、通信接口等。
串行接口是一种逐位传输数据的接口,适用于远距离传输和低速设备。
并行接口是一种同时传输多位数据的接口,适用于短距离传输和高速设备。
通信接口是一种用于计算机与通信设备进行数据交换的接口,包括网卡、调制解调器等。
了解接口技术对于设计外部设备、进行通信协议的开发都非常重要。
在实际应用中,微机原理和接口技术经常是相互结合的。
例如,我们在设计一个外部设备时,需要了解计算机的工作原理,选择合适的接口技术进行数据交换。
又如,在进行系统调试时,需要了解接口技术,进行数据的采集和分析。
因此,微机原理与接口技术的学习是非常重要的。
总之,微机原理与接口技术是计算机专业的一门重要课程,它涉及到计算机硬件的基本原理和接口技术的应用。
通过本文的介绍,希望读者能够对微机原理和接口技术有所了解,并能够在实际应用中灵活运用。
希望本文能够对读者有所帮助。
微机原理与接口技术
微机原理与接口技术一、微机原理概述微型计算机,也称个人计算机或个人电脑,是一种体积小、性能强、价格低廉的计算机系统。
它主要由中央处理器(CPU)、内存、输入输出设备、存储设备以及系统总线等组成。
微机原理指的是微机系统各组成部分的工作原理,包括计算机基础知识、微型计算机系统结构、指令系统和操作程序、中断系统、I/O系统等方面。
二、微机接口技术概述微机接口技术是指为将计算机和不同设备进行连接而使用的各种技术和标准。
接口技术包括计算机内部接口技术和计算机与外部设备接口技术。
其中,计算机内部接口技术主要包括总线技术和存储器技术;计算机与外设接口技术主要包括串口、并口、USB接口、SCSI接口、以太网接口等。
三、微机原理1、微机基本结构微型计算机由中央处理器、内存、系统总线以及I/O子系统组成。
CPU是微机的中枢,其功能包括指令处理、数据处理、程序控制等。
内存用于存储数据和程序,可以分为RAM(随机访问存储器)和ROM(只读存储器)两种。
系统总线用于连接CPU、内存和I/O子系统,传输数据和控制信息。
I/O子系统分为输入子系统和输出子系统,分别用于输入和输出数据。
2、指令系统和操作程序指令系统是CPU执行的指令集合,用来实现计算机的各种功能。
指令系统分为操作码和地址码两部分,操作码表示执行的操作类型,地址码表示操作的地址。
操作程序是由指令组成的一系列程序,用于实现特定功能。
3、中断系统中断指的是CPU在执行程序时,由于外部事件发生需要停止程序执行的一种机制。
中断可以分为硬件中断和软件中断,其中硬件中断由外设触发,是CPU在执行程序时被迫中断;软件中断由程序内部设置并触发,是CPU在执行程序时人为中断。
4、I/O系统I/O系统用于处理外部设备连接到计算机时的数据传输问题。
I/O系统包括两个主要组件:I/O控制器和设备驱动程序。
I/O控制器是负责和外设交换数据的组件,设备驱动程序则是实现操作系统与I/O控制器之间的通信的程序。
微机原理与接口技术
5.2 I/O端口及其编址方式
5.1.2 接口电路中的信息
❖数据信息 ❖状态信息 ❖控制信息
习惯上把分别传送这三种信息的端口称为 数据口、状态口、控制口
1.数据信息
❖ (1)数字量:
通常以8位或16位的二进制数以及ASCII码的形式传 输,主要指由键盘、磁盘、光盘等输入的信息或主 机送给打印机、显示器、绘图仪等的信息。
❖ (2)模拟量:
第5章 输入输出接口
❖5.1 微机接口及接口技术 ❖5.2 I/O端口及其编址方式 ❖5.3 端口地址译码 ❖5.4 CPU与外设之间的数据传送方式
5.1 微机接口及接口技术
• 5.1.1 为什么要设置接口电路 • 5.1.2 接口电路中的信息 • 5.1.3 接口的基本功能 • 5.1.4 接口的基本结构
2. 端口选择功能
❖微机系统中常有多个外设,而CPU在任一 时刻只能与一个端口交换信息,因此需要 通过接口的地址译码电路对端口进行寻址。
3. 信号转换功能
❖外设所提供的数据、状态和控制信号可能 与微机的总线信号不兼容,所以接口电路 应进行相应的信号转换。
4. 接收和执行CPU命令的功能
❖CPU对外设的控制命令一般以代码形式输 出到接口电路的控制端口,接口电路对命 令代码进行识别、分析,分解成若干控制 信号,传送到I/O设备,并产生相应的具 体操作。
模拟的电压、电流或者非电量。对模拟量输入而言, 需先经过传感器转换成电信号,再经A/D转换器变成 数字量;如果需要输出模拟控制量的话,就要进行 上述过程的逆转换。
❖ (3)开关量:
用“0”和“1”来表示两种状态,如开关的通/断、电 机的转/停、阀门的开/关等。
2.状态信息
CPU在传送数据信息之前,经常需要先了解外 设当前的状态。如输入设备的数据是否准备好 、输出设备是否忙等。
微机原理与接口技术
微机原理与接口技术1、8086 CPU在内部结构上由哪几部分组成?其功能是什么?8086的内部结构分成两部分。
总线接口部件BIU,负责控制存储器与I/O 端口的信息读写,包括指令获取与排队、操作数存取等。
执行部件EU负责从指令队列中取出指令,完成指令译码与指令的执行行。
2、8086的总线接口部件有那几部分组成? 其功能是什么?8086的总线接口部件主要由下面几部分组成:4个段寄存器CS/DS/ES/SS,用保存各段址;一个16位的指令指针寄存器IP,用于保存当前指令的偏移地址;一个20位地址法器,用于形成20位物理地址;指令流字节队列,用于保存指令;存储器接口,用于与外总线的连接。
3、8086的执行单元(部件)由那几部分组成?有什么功能?8086的执行单元部件主要由下面几部分组成:控制器、算数逻辑单元、标志寄存器、通用寄存器组。
(1)控制器,从指令流顺序取指令、进行指令译码,完成指令的执行等。
(2)算数逻辑单元ALU,根据控制器完成8/16位二进制算数与逻辑运算。
(3)标志寄存器,使用9位,标志分两类。
其中状态标志6位,存放算数逻辑单元ALU运算结果特征;控制标志3位,控制8086的3种特定操作。
(4)通用寄存器组,用于暂存数据或指针的寄存器阵列。
6、8086CPU状态标志和控制标志又何不同?程序中是怎样利用这两类标志的? 8086的状态标志和控制标志分别有哪些?(1)标志分两类:状态标志(6位),反映刚刚完成的操作结果情况。
控制标志(3位),在8086特定指令操作中起控制作用。
(2)利用状态标志可以掌握当前程序操作的结果,例如了解是否产生进位,是否溢出等。
例如利用控制标志可以控制程序的单步调试。
(3)状态标志包括:包括零标志ZF、符号标志SF、奇偶标志PF、进位标志CF、辅助进位标志AF、溢出标志OF。
控制标志包括:单步运行标志TF、方向标志DF 与中断允许标志IF。
8、8086CPU的形成三大总线时,为什么要对部分地址线进行锁存?用什么信号控制锁存?为了确保CPU对存储器和I/O端口的正常读/写操作,要求地址和数据同时出现在地址总线和数据总线上。
微机原理与接口技术_第6章 IO接口
三、I/O端口编址 (续) 2.I/O独立编址(续)
缺点: 专用I/O指令增加指令系统复杂性,且I/O指 令类型少,程序设计灵活性较差; 要求处理器提供MEMR#/MEMW#和IOR#/IOW#两 组控制信号,增加了控制逻辑的复杂性。
三、I/O端口编址 (续)
PC系列微机I/O端口访问 1.I/O端口地址空间
程序控制方式
程序控制方式是指CPU与外设之间的数据传送由程序 控制完成。 程序控制方式又分为无条件传送和条件传送两种 1.无条件传送方式(同步传送) 特点:输入时假设外设已准备好,输出时假设外设 空闲。 要求:输入接口加缓冲器,输出接口加锁存器。 应用:对简单外设的操作。
1. 无条件传送方式(同步传送) 输入接口的设计要求:
寻 址 确定输入端口地址 AB、M/ IO、ALE、DT/R 等待数据输入 等待数据输入 输入缓冲器 读入数据 输入缓冲器 DB CPU
一、 I/O 接口的功能 (续)
3. I/O接口应具有的功能(解决的方案)
1) 设置数据缓冲器以解决两者速度差异所带来的 不协调问题; 输出时: CPU DB 锁存器 输出设备数据线
以上三类信息分别通过各自的寄存器和相应的控制逻辑 来完成信息的传送。通常将这类寄存器和相应的控制逻辑称 为I/O端口。CPU与一个外设之间通常有三个端口。数据端口 (输入/输出);状态端口;控制端口。
二、I/O接口的一般结构 (续) I/O接口组成:接口由接口硬件和接口软件组成。 1.接口硬件
接口
这类接口面对总线,因此要使用三态输出器件; 对于输入信号有记忆功能的一般使用三态门; 对于输入信号无记忆功能的一般还要增加锁存功能;
1. 无条件传送方式(同步传送)
微机原理及接口技术
2. 什么是机器码?什么是真值?解:把符号数值化的数码称为机器数或机器码,原来的数值叫做机器数的真值。
3. 8位和16位二进制数的原码 、补码和反码可表示的数的范围分别是多少? 解:原码(-127~+127)、(-32767~+32767)补码 (-128~+127)、(-32768~+32767) 反码(-127~+127)、(-32767~+32767)4.一般来说,其内部基本结构大都由 算数逻辑单元、控制单元、寄存器阵列、总线和总线缓冲器 四个部分组成。
高性能微处理器内部还有指令预取部件、地址形成部件、指令译码部件和存储器管理部件等。
二 1.总线接口单元BIU (Bus Interface Unit )包括段寄存器、指令指针寄存器、20位地址加法寄存器和先入先出的指令队列、总线控制逻辑。
负责与存储器、I/O 设备传送数据,即BIU 管理在存储器中获取程序和数据的实际处理过程。
20位地址加法器将16位段地址和16位偏移量相加,产生20位物理地址。
总线控制逻辑产生总线控制信号对存贮器和I/O 端口进行控制。
IP 指针由BIU 自动修改,平时IP 内存储下条要取指令的偏移地址;遇到跳转指令后,8086将IP 压栈,并调整其内容为下条要执行指令地址。
2.执行单元EU (Execution Unit )包括ALU 、状态标志寄存器、通用寄存器、暂存器、队列控制逻辑与时序控制逻辑等。
负责指令的执行。
将指令译码并利用内部的ALU 和寄存器对其进行所需的处理。
3.EU 和BIU 的动作管理—流水线技术原则控制器运算器 寄存器输入/输出接口存储器 CPU主机外部设备应用软件系统软件微型机软件微型机系统 微型机硬件(1)每当8086的指令队列中有2个空字节且EU 未向BIU 申请读写存储器操作时,BIU 就会自动把指令取到指令队列中。
(2)每当EU 要执行一条指令时,它会先从BIU 的指令队列前部取出指令代码,然后执行指令。
微机原理及接口技术
微机原理及接口技术一、前言随着信息时代的到来,计算机技术的不断发展,微机技术已经得到了广泛的应用和发展。
微机原理及接口技术作为微机技术的重要基础,对于了解微机的结构和工作原理,以及实现微机与外部设备的通信具有十分重要的意义。
本文将围绕着微机的结构、工作原理以及微机与外部设备的接口技术进行详细的介绍和分析。
二、微机的结构微机是由中央处理器(CPU)、内存(MEM)、输入/输出(I/O)接口电路、总线(BUS)等部分组成的。
CPU是微机的核心部分,它能对数据进行处理、控制微机的运作;内存是储存数据和指令的地方,CPU可以直接对内存进行读取和写入操作;I/O接口电路是微机与外部设备之间进行数据交换的桥梁;总线则是将CPU、内存和I/O接口电路连接在一起,并传递数据和控制信息。
三、微机的工作原理微机的工作过程主要由指令执行和数据存取两个部分组成。
当CPU需要执行下一条指令时,会从内存中读取这条指令,然后进行解析并执行相应的操作。
当CPU需要访问数据时,会从内存中读取数据,并将数据写入内存中。
而CPU与输入/输出设备之间的通信也是通过I/O接口电路完成的。
CPU可以根据需要对内存进行读写操作,这是因为内存与CPU的速度非常接近,对内存的操作是非常快速的。
而CPU与外设之间通过I/O接口电路进行通信,则是因为I/O接口电路需要实现对不同类型的设备接口进行适配,对设备的操作速度也受到限制。
四、微机的接口技术为了实现微机与外部设备的通信,需要通过不同的接口技术来实现对不同类型设备的连接。
常用的接口技术有串行接口(Serial Interface)、并行接口(Parallel Interface)、通用串行总线(USB)、蓝牙接口(Bluetooth Interface)等。
其中,USB接口已经成为目前最为普遍的接口技术之一。
串行接口技术和并行接口技术是早期应用比较广泛的接口技术,它们的主要区别在于对数据的传输方式不同。
微机原理与接口技术
中断请求信号 请求CPU再次输出数
据
方式1输出引脚:B端口
PB7~PB0
INTEB
PC2
PC1
PC0
ACKB OBFB
INTRB
外设响应信号 表示外设已经接收
到数据
输出缓冲器满信号 表示CPU已经输出了
数据
中断允许触发器
中断请求信号 请求CPU再次输
出数据
WR OBF
INTR
ACK 输出端口
共40个引脚,其中24个外设引脚: ①分3个端口:A口、B口、C口(3个8位并行数据
输入/输出口,通过编程设置3个口作为输入口还是 输出口)
②共3种输入输出工作方式 方式0-基本输入/输出 方式1-选通输入/输出 方式2-双向选通输入输出
③2组控制:A组控制、B组控制(C口的部分信 号线被分配作为专用的联络应答信号线)
3).读写端口C:归纳3
对端口C的数据输出有两种办法 通过端口C的I/O地址
向C端口直接写入字节数据 这一数据被写进C端口的输出锁存器,并从输
出引脚输出,但对设置为输入的引脚无效
通过控制端口
向C端口写入位控字,使C端口的某个引脚输 出1或0,或置位/复位内部的中断允许触发器
端口C的位控制字
7407
RD WR A0 A1 RESET CS D0~D7
PA0~PA7 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0
P267例题
键盘 允许/清除键盘 控制键盘时钟为低
KBD DATA SPK DATA TIM2 GATE SPK
可作数据、状态和控制端口 分两个4位,每位可独立操作 控制最灵活,最难掌握
微机原理与接口技术
RTS:请求发送,输出、高电平有效。当终端要发送 数据时,使该信号有效(高电平),向MODEM或外 设请求发送。
CTS:允许发送,输入、高电平有效。是对请求发送 信号RTS的响应信号。当MODEM或外设已准备好接 收终端传来的数据,使CTS信号有效,通知终端开始 沿发送数据线TXD发送数据。
GND RESET DRV
+5V IRQ2
-5V DRQ2
-12V CARD SLCTD
+12V GND MEMW MEMR IOW
IOR DACK3
DRQ3 DACK1
DRQ1 DACK0 CLOCK
IRQ7 IRQ6 IRQ5 IRQ4 +IRQ3 -DACK2
T/C ALE
-5V OSC GND
7.2.2 RS-232总线
目前最常用的一种串行通信接口标准
电气特性
逻辑电平定义为负逻辑 1:低于-3V 0:高于3V
机械特性
RS-232C常用25线或9线D型插件作为数据终端设 备(DTE)与数据通信设备(DCE)之间通信电缆 的连接器。
名称
次信道发送数据 发送时钟
次信道接收数据 接收时钟 未用
8位ISA
GND RESET DRV
+5V IRQ2
-5V DRQ2
-12V CARD SLCTD
+12V GND MEMW MEMR IOW IOR DACK3 DRQ3 DACK1 DRQ1 DACK0 CLOCK IRQ7 IRQ6 IRQ5 IRQ4 +IRQ3 -DACK2
T/C ALE -5V OSC GND
外总线的种类也很多,常用的有三种
微机原理与接口技术
“微机原理与接口技术” 1. 微机系统的硬件由哪几部分组成?答:三部分:微型计算机(微处理器,存储器,I/0接口,系统总线),外围设备,电源。
2. 什么是微机的总线,分为哪三组?答:是传递信息的一组公用导线。
分三组:地址总线,数据总线,控制总线。
3. 8086/8088CPU的内部结构分为哪两大模块,各自的主要功能是什么?答:总线接口部件(BIU)功能:根据执行单元EU的请求完成CPU与存储器或IO设备之间的数据传送。
执行部件(EU),作用:从指令对列中取出指令,对指令进行译码,发出相应的传送数据或算术的控制信号接受由总线接口部件传送来的数据或把数据传送到总线接口部件进行算术运算。
4. 8086指令队列的作用是什么?答:作用是:在执行指令的同时从内存中取了一条指令或下几条指令,取来的指令放在指令队列中这样它就不需要象以往的计算机那样让CPU轮番进行取指和执行的工作,从而提高CPU的利用率。
5. 8086的存储器空间最大可以为多少?怎样用16位寄存器实现对20位地址的寻址?完成逻辑地址到物理地址转换的部件是什么?答:8086的存储器空间最大可以为2^20(1MB);8086计算机引入了分段管理机制,当CPU寻址某个存储单元时,先将段寄存器内的内容左移4位,然后加上指令中提供的16位偏移地址形成20位物理地址。
6. 段寄存器CS=1200H,指令指针寄存器IP=FF00H,此时,指令的物理地址为多少?指向这一物理地址的CS值和IP值是唯一的吗? 答:指令的物理地址为21F00H;CS值和IP值不是唯一的,例如:CS=2100H,IP=0F00H。
7. 设存储器的段地址是4ABFH,物理地址为50000H,其偏移地址为多少?答:偏移地址为54100H。
(物理地址=段地址*16+偏移地址) 8. 8086/8088CPU有哪几个状态标志位,有哪几个控制标志位?其意义各是什么?答:状态标志位有6个: ZF,SF,CF,OF,AF,PF。
微机原理与接口技术
微机原理与接口技术第一章 微型计算机基础1、试说明微处理器、微型计算机和微机系统的概念。
答:微型处理器: ①大规模核心芯片;②由运算器、控制器、寄存器组 组成。
微型计算机是由微型处理器、内存储器、总线、输入输出接口电路组成。
微型计算机系统:①微型计算机;②外部设备和软件组成。
2、两个数1234H 和9ABCH 分别存储在10000H 和21000H 开始的存储单元中,试画图表示存储情况。
3、现代计算机与冯诺依曼计算机的区别?答:①从存储器的结构来讲:冯诺依曼式计算机是单一的,现代计算机的存储器是由内存和外存组成的。
内存储器有主存、高速缓存、寄存器组;外存储器有硬盘、光盘、磁带等光驱。
②从控制器方面来讲:冯诺依曼式计算机通过CPU 集中控制来工作;现代计算机是由分散控制来实现。
③从通信方面来讲:冯诺依曼式计算机是通过CPU 通信;现代计算机通过总线通信。
4、微机系统的工作过程?以一个模型为例如来说明微机的工作过和,假设计算12H + 34 H ,程序如下:MOV AL , 12H ; 将12H 送到累加器中ADD AL , 34H ; 计算12H +34H ,结果送回累加器,编绎后丙坤指令对应的机器指令为:10110000 00010010 “ MOV AL ,12H ”, 00000100 00110100 ; “ ADD AL ,34H “PC :程序计数器 AR : 地址寄存器 AB :地址总线 M:存储器 RD:读 WR:写DB:数据总线 DR:数据缓存器 IR :指令寄存器 ID :指令译码器 PLA:控制信号ALU :运算器34H 12H ... BCH 9AH 10000H 10001H ... 21000H 21001H BOH 12H 04H 34H 10000H 10001H 10002H 10003H①首址在程序计数器PC中,首址送到地址寄存器AR中,PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10001H,AR -> AB找到存储器M,CPU发读信号,BOH -> DB -> DR -> IR -> ID -> 发出各种控制信号;② PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10002H,AR -> AB找到存储器M,CPU发读信号,12H -> DB -> DR ->AL;③ PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10003H,AR -> AB找到存储器M,CPU发读信号,04H -> DB -> DR -> IR -> ID -> 发出各种控制信号;④ PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10004H,AR -> AB找到存储器M,CPU发读信号,34H -> DB -> DR -> ALU IN1; AL -> ALU IN2ALU IN1 + ALU IN2 = 46H -> AL第二章8086/8088微处理器1、微型计算机的硬件主要由哪里几部分组成?运算器、控制器、存储器、寄存器、输入输出设备。
微机原理与接口技术
微机原理与接口技术一、微机原理1.1. 微机的概念与发展微机是现代计算机的一种,通常包括中央处理器、存储器、输入/输出设备等部分,以及操作系统、应用软件等方面。
它是一种小型化的,具有高度自主、灵活性和可扩展性的计算机设备。
微机的发展源于计算机科学技术,始于19世纪60年代,经历了五十多年的演化发展,逐渐成为现代计算机的一个主要系列之一。
1.2. 微机的工作原理微机是一个高速度的计算机设备,它包括硬件和软件两个方面。
从硬件上看,微机包括中央处理器、内存、输入/输出设备等;软件方面主要包括操作系统和各种软件、程序。
微机的工作原理就是这两个方面的协同作用,首先通过输入设备将数据输入微机中,并与处理器和存储器进行交互,由操作系统控制各种资源,最后通过输出设备将结果反馈给使用者。
1.3. 微机的组成微机由中央处理器、存储器、输入/输出设备和操作系统等部分组成。
具体包括:中央处理器:是微型计算机最重要的组成部分,主要负责控制计算机运行、处理各种运算、指令执行等。
存储器:微机中的存储器由各种存储器构成,丰富的存储器可保证微计算机运行数据的高速存取、临时数据缓冲、预测等结果处理。
输入/输出设备:微机的输入设备主要包括键盘、鼠标等,输出设备主要包括显示器、打印机等。
操作系统:微机所使用的操作系统主要有Windows、Linux等,不同操作系统的功能、应用、兼容性也存在差别。
1.4. 微机的分类与应用微机根据不同的功能和应用可以分为不同的类别,如个人计算机(PC)、工作站、小型机、超级计算机等。
在应用方面,微机主要应用于办公、生产、控制、娱乐、医疗等广泛领域,其使用普及也是世界各地的各种行业、企业和机构。
二、接口技术2.1. 接口的定义与分类接口是指连接两个或多个系统、设备、技术等的一种机制,可以使它们之间进行数据传输和控制交互等。
接口按照数据传输的方向分为输入、输出或双向接口;按照数据传输的方式分为并行接口、串行接口等多种类型;按照物理连接方式,则分为USB、RS232、SCSI、IDE等种类。
微机原理与接口技术(清华大学课件,全套)
3. 符号数的算术运算
通过引进补码,可将减法运算转换为加法运算。 即:[X+Y]补=[X]补+[Y]补
[X-Y]补=[X+(-Y)]补
=[X]补+[-Y]补 注:运算时符号位须对齐
65
[例]
X=-0110100,Y=+1110100,求X+Y=?
[X]原=10110100
将指令所在地址赋给程序计数器PC; PC内容送到地址寄存器AR,PC自动加1; 把AR的内容通过地址总线送至内存储器,经地址译码器译码, 选中相应单元。
CPU的控制器发出读命令。
在读命令控制下,把所选中单元的内容(即指令操作码)读到数 据总线DB。 把读出的内容经数据总线送到数据寄存器DR。 指令译码
37
三、无符号二进制数的运算
算术运算
无符号数 二进 制数的运算 有符号数
38
逻辑运算
主要内容
无符号二进 制数的算术运算
无符号数的表达范围 运算中的溢出问题 无符号数的逻辑运算 基本逻辑门和译码器
39
1. 无符号数的算术运算
加法运算
1+1=0(有进位)
减法运算
0-1=1(有借位)
55
[例]
X= -52 = -0110100
[X]原=1 0110100
[X]反=1 1001011
56
0的反码:
[+0]反=00000000
[-0]反 =11111111 即:数0的反码也不是唯一的。
57
补码
定义:
微机原理与接口技术知识点总结
微机原理与接口技术知识点总结一、微机原理1.微机系统的组成:微处理器,存储器,输入输出设备和系统总线。
2.微处理器:CPU(中央处理单元),是微机中控制和数据处理的核心部件。
3.存储器:用于存储程序和数据的器件,分为只读存储器(ROM),随机存取存储器(RAM)。
4.输入设备:键盘,鼠标等,用于接收操作者的命令。
5.输出设备:显示器,打印机等,用于展示和输出处理结果。
二、接口技术1.接口技术是连接微机与外部设备的技术,其作用是实现微机与外部设备之间的信息交换和控制。
2.接口技术主要包括接口电路、接口程序和相关接口协议等方面的内容。
三、常用总线1.数据总线:用于在微处理器与其它器件之间传输数据,其宽度决定了微处理器一次能处理的最大数据位数。
2.地址总线:用于传输微处理器发出的地址信息,其宽度决定了微处理器能够寻址的最大地址范围。
3.控制总线:用于传达微处理器和其他部件之间的控制信号,如读写、中断等。
四、中断技术及其应用1.中断技术是微处理器处理紧急事件的一种技术,通过改变程序执行顺序,使微处理器处理外部设备产生的异常情况。
2.中断种类:硬件中断,软件中断。
3.中断处理过程:中断请求,中断响应,中断处理程序执行,中断返回。
五、微处理器指令系统1.微处理器的指令系统是指微处理器可以执行的指令集,包括数据传输指令、算术逻辑指令、程序控制指令等。
2.指令执行过程:取指令、分析指令、执行指令。
3.指令周期:取指周期、分析周期、执行周期。
六、存储器及其访问方式1.存储器:用于存储程序和数据的器件,分为只读存储器(ROM),随机存取存储器(RAM)。
2.存储器访问方式:按地址访问,按内容访问。
3.存储器的分类:主存储器,辅助存储器,外存储器。
4.存储器扩展技术:使存储器的地址空间与数据空间保持一致,实现存储器的扩展。
七、输入输出设备及其接口技术1.输入设备:键盘,鼠标等,用于接收操作者的命令。
2.输出设备:显示器,打印机等,用于展示和输出处理结果。
微机原理与接口技术
微机原理与接口技术微机原理与接口技术是计算机科学与技术领域中的重要内容,它涉及到计算机硬件、软件以及二者之间的协同工作。
微机原理是指微型计算机的基本工作原理,包括CPU、内存、输入输出设备等组成部分的工作原理;而接口技术则是指计算机与外部设备之间的连接方式和通信协议,它对计算机系统的扩展和应用起着至关重要的作用。
首先,微机原理是微型计算机系统中最基本的部分。
微型计算机由中央处理器(CPU)、存储器(内存和外存)、输入设备和输出设备等组成。
CPU是微型计算机的核心部分,它负责执行程序指令和控制各个部件的工作。
内存用于存储程序和数据,而外存则用于长期存储大量数据。
输入设备包括键盘、鼠标等,输出设备包括显示器、打印机等。
微机原理研究的重点是各个部件的工作原理、相互之间的协作关系以及计算机系统的整体结构。
其次,接口技术是微型计算机与外部设备之间的桥梁。
计算机系统通常需要与各种外部设备进行交互,比如打印机、扫描仪、摄像头等。
而这些外部设备往往采用不同的通信协议和接口标准,因此需要通过接口技术来实现它们与计算机系统的连接和数据交换。
接口技术涉及到物理接口、逻辑接口、通信协议等多个方面,它的设计和实现直接影响着计算机系统的扩展性、兼容性和性能。
微机原理与接口技术的研究对于计算机科学与技术领域具有重要意义。
首先,它有助于深入理解计算机系统的工作原理和内部结构,为计算机系统的设计、优化和调试提供理论基础和技术支持。
其次,它对于扩展和应用计算机系统具有重要的指导意义,比如在嵌入式系统、网络通信、图像处理等领域的应用。
此外,微机原理与接口技术的研究还为计算机硬件和软件的教学提供了丰富的案例和实践基础。
总的来说,微机原理与接口技术是计算机科学与技术领域中的重要内容,它涉及到计算机系统的基本工作原理和与外部设备的连接方式。
深入研究微机原理与接口技术,有助于理解计算机系统的内部结构和工作原理,为计算机系统的设计、优化和应用提供理论基础和技术支持。
微机原理与接口技术
微机原理与接口技术引言微机原理与接口技术是计算机科学与技术专业的一门核心课程,也是了解计算机硬件原理以及设备与外部世界的接口的基础。
本文将介绍微机原理与接口技术的基本概念、原理与应用,并探讨其在计算机科学领域的重要性。
一、微机原理微机原理是指对微型计算机的组成结构和工作原理进行研究的学科。
微机原理研究的内容包括微型计算机的硬件组成、数据传输方式及控制方式、指令系统、中央处理器、存储器、输入输出设备等。
了解微机原理对于掌握计算机的工作原理以及进行系统级的调试和优化非常关键。
微型计算机由中央处理器(Central Processing Unit,简称CPU)、存储器(Memory)、输入设备(Input Device)、输出设备(Output Device)等几个基本部分组成。
中央处理器是计算机的核心,负责执行计算机程序的指令,控制计算机的运行;存储器用于存储程序和数据;输入设备用于将外部信息输入到计算机中;输出设备则是将计算机处理的结果输出给外界。
二、接口技术接口技术是将计算机系统与外围设备、网络或其他系统进行连接和通信的技术。
计算机与外界设备的接口技术包括串行通信接口、并行通信接口、USB接口、网络接口等。
接口技术的发展与进步可以提高计算机的扩展性和连接性,实现计算机与外界的无缝衔接。
2.1 串行通信接口串行通信接口是一种利用串行方式进行数据传输的接口技术。
串行通信接口由发送端和接收端组成,通过使用不同的协议和信号电平进行数据的传输。
串行通信接口的优点是可以通过串行线路同时传输多个数据位,适用于长距离传输。
常见的串行通信接口有RS-232、RS-485等。
2.2 并行通信接口并行通信接口是一种利用并行方式进行数据传输的接口技术。
并行通信接口将数据分成多个位同时传输,速度较快。
常见的并行通信接口有并行打印口(LPT口)、并行接口总线(Parallel Interface Bus,简称PIB)等。
2.3 USB接口USB(Universal Serial Bus,通用串行总线)接口是一种用于连接计算机与外部设备的通信接口标准。
微机原理与接口技术
微机原理与接口技术(单片机)1.计算机的基本结构:1946年美籍匈牙利数学家冯·诺依曼提出的。
由运算器、控制器、存储器、输出设备和输出设备五部分构成。
2.两个基本能力:(1)能够存储程序(2)能够自动的执行程序3.技术机系统的组成(1)硬件系统、主要指物理设备(2)软件系统、是指管理计算机系统资源,控制计算机系统运行的程序、命令、指令和数据等。
4.硬件系统的组成:(1)主机:包括①中央处理器CP U又包括控制器又称逻辑运算和运算器又称数字运算。
②内存包括只读存储器ROM不可修改(程序)和随机存储器RAM可修改(数据)(2)外部设备:①输入设备:键盘、鼠标、扫描仪、和光笔等②输出设备:显示器、打印机和绘图仪等。
③外存储器:磁盘、光盘和U盘等④通信设备:网卡和调制解调器5.软件系统(1)系统软件①操作系统②服务软件③编译和解释系统(2)a.信息管理软件b.辅助设计软件c.文字处理软件d.图形软件e.各种程序包6.计算机的分类:(1)巨型机(2)小巨型机(3)大型机(4)小型机(5)微型机(6)工作站7.计算机的特点:(1)运算速度快(2)计算精度高(3)记忆能力强(4)具有复杂的逻辑判断能力(5)具有执行程序的能力8.计算机的运算基础十进制二进制八进制十六进制0 0000 0 01 0001 1 12 0002 2 28 1000 10 89 1001 11 910 1010 12 A11 1011 13 B12 1100 14 C13 1101 15 D14 1110 16 E15 1111 17 F9.数值转换——安全展开求和10简易微处理器由控制器、运算器、寄存器组成(1)控制器由指令寄存器IR,指令译码器ID,可编程序逻辑阵列PLA(2)运算器算术逻辑部件ALU和标志位寄存器F(3)寄存机组需画出AL、BL/AR/DR/和IP.11.微处理器主要由ALU、寄存器组、指令处理单元、数据总线和地址总线控制等组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微机原理与接口技术第一章 微型计算机基础1、试说明微处理器、微型计算机和微机系统的概念。
答:微型处理器: ①大规模核心芯片;②由运算器、控制器、寄存器组 组成。
微型计算机是由微型处理器、内存储器、总线、输入输出接口电路组成。
微型计算机系统:①微型计算机;②外部设备和软件组成。
2、两个数1234H 和9ABCH 分别存储在10000H 和21000H 开始的存储单元中,试画图表示存储情况。
3、现代计算机与冯诺依曼计算机的区别?答:①从存储器的结构来讲:冯诺依曼式计算机是单一的,现代计算机的存储器是由内存和外存组成的。
内存储器有主存、高速缓存、寄存器组;外存储器有硬盘、光盘、磁带等光驱。
②从控制器方面来讲:冯诺依曼式计算机通过CPU 集中控制来工作;现代计算机是由分散控制来实现。
③从通信方面来讲:冯诺依曼式计算机是通过CPU 通信;现代计算机通过总线通信。
4、微机系统的工作过程?以一个模型为例如来说明微机的工作过和,假设计算12H + 34 H ,程序如下:MOV AL , 12H ; 将12H 送到累加器中ADD AL , 34H ; 计算12H +34H ,结果送回累加器,编绎后丙坤指令对应的机器指令为:10110000 00010010 “ MOV AL ,12H ”, 00000100 00110100 ; “ ADD AL ,34H “PC :程序计数器 AR : 地址寄存器 AB :地址总线 M:存储器 RD:读 WR:写DB:数据总线 DR:数据缓存器 IR :指令寄存器 ID :指令译码器 PLA:控制信号ALU :运算器34H 12H ... BCH 9AH 10000H 10001H ... 21000H 21001H BOH 12H 04H 34H 10000H 10001H 10002H 10003H①首址在程序计数器PC中,首址送到地址寄存器AR中,PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10001H,AR -> AB找到存储器M,CPU发读信号,BOH -> DB -> DR -> IR -> ID -> 发出各种控制信号;② PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10002H,AR -> AB找到存储器M,CPU发读信号,12H -> DB -> DR ->AL;③ PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10003H,AR -> AB找到存储器M,CPU发读信号,04H -> DB -> DR -> IR -> ID -> 发出各种控制信号;④ PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10004H,AR -> AB找到存储器M,CPU发读信号,34H -> DB -> DR -> ALU IN1; AL -> ALU IN2ALU IN1 + ALU IN2 = 46H -> AL第二章8086/8088微处理器1、微型计算机的硬件主要由哪里几部分组成?运算器、控制器、存储器、寄存器、输入输出设备。
2、8086 CPU中哪些寄存器?各有什么用途?按寄存器功能可分为通用寄存器、段寄器、控制寄存器。
数据寄存器:AX累加器、BX基地址寄存器、CX计数器和DX数据寄存器通用寄存器地址指针寄存器:SP栈指针寄存器、BP基址指针寄存器变址寄存器:DI目的寄存器、SI源变址寄存器段寄存器:DS数据段、CS代码段、SS堆栈段、ES附加段。
控制寄存器:IP指令指针寄存器、FR标志寄存器状态标志:CFFR标志寄存器状态标志:CF进位标志、PF奇偶标志、AF辅助进位标志、ZF零标志、SF符号标志、OF溢出标志控制标志:DF方向标志、IF中断标志、TF跟踪标志3、什么是8086 CPU 的最大模式和最小工作模式?将8088/8086下列方式的特点填入表中。
4个画时序图☺☺☺☺4、8086为16位微处理器D0~D15,8088为准16位微处理器D0~D7。
20位地址线(220=216*24)。
存储器范围可达1MB 的存储空间。
5、20位地址如何形成?物理地址=段基址* 24 + 偏移地址或物理地址= 段地址:偏移地址它是由专门地址加法器将有关段寄器内容(段的起始地址)左移4位后,与16位偏移地址相加,形成了一个20位物理地址。
6、8088/8086由EU执行部件和BIU总线接口部件两部分组成。
BIU负责在CPU与存储器、I/O端口之间传送数据。
EU负责指令的执行。
BIU的内部结构由4个段寄出存器(CS、DS、SS、ES)、指令指针寄存器IP、完成与EU通信的内部寄存器、地址加法器和指令队列缓冲器组成。
这些寄存器的主要功能是生成20位物理地址。
EU由算术逻辑运算单元、暂存寄存器、标志寄存器、通用寄存器组和EU控制器构成。
7、指令队列缓冲器是按并行流水线工作的。
8、8088\8086差别:指令预取队列:8088是4字节,8086是6字节;数据总线引脚:8088是8根,8086是6根。
9、8088CPU采用双列直插式封装结构,共有40个引脚。
8086CPU采用分时复用的地址/数据总线结构,共有33个引脚。
8086CPU可在两种模式下工作(最小模式和最大模式)10、最小模式引脚功能:AD0~AD7 : 地址/数据复用线AD8~AD15 : 地址/数据复用线A16/S3~A19/S6 : 地址/状态复用总线控制总线:非BNE/S7 高8位数据总线允许/状态利用引脚RD : 读信号WR : 写信号M/IO非:存储器或I/O端口选择控制信号READY : (准备京绪信号) 采集信号中断请求:NMI : 非屏蔽中断请求信号INTR : 可屏蔽中断请求信号(输入)INTTA : 可屏蔽中断响应信号(输入)TEST非:测试信号RESET : 复位信号(输入高电平有效)ALE: 地址锁存允许信号DEN非:数据允许信号DT/R非:数据发送/接收控制信号HOLD: 总线请求信号输入端HLDA: 总线请求响应信号输出端MN/MX非:最大/最小模式(工作方式选择信号)MN/MX非=1 表示CPU最小方式系统=0 表示CPU工作在最大方式系统CLK: 主时钟信号I/O存储空间:216B11、READY = 0 时,CPU就在T3后插入TW周期,插入的TW个数取决于READY何时变为高电平。
12、最小模式——仅支持单处理器;最大模式——可支持多处理器。
13、5种基本的总线操作:存储器读、存储器写、输入、输出、中断响应。
14、VLSI : 超大规模集成电路。
15、流水线技术部是一种同时进行若干操作的并行处理方式,①超流水线是指某些CPU内部的流水线超过通常的5~6步以上。
②超标量是指在CPU中有一条以上的流水线,并且每个时钟周期内可以完成一条以上的指令,这种设计就叫超标量技术。
③超长指令(Very Long Instruction Word, VLIW)是以一条长指令来实现多个操作的并行执行。
④其它流水线技术:乱序执行技术、分枝预测和推测执行(是指CPU动态的执行技术中的主要内容,分技即得到译码)和指令特殊扩展技术。
16、RISC : 精简指令系统计算机; CISC : 复杂指令系统SIMD :单指令多数据 MMX: 多媒体扩展SSE :因特网数据流单指令序列扩展VLIM: 超长指令字技术 BP:分枝预测SE: 推测执行 BTB:分枝目标缓冲器第三章80X86 微处理器指令系统1、系统上电或复位,处理器总是处在实地址模式。
2、32位机的主要工作模式有实地址模式(刚开机的时候)、保护模式(对每个任务进行保护)、虚拟8086模式(系统管理模式)。
3、指出下列指令中操作数的寻址方式:(1)MOV BX ,20H 立即寻址(2)MOV AX, [1245H] 直接寻址(3)MOV DX,[SI] 寄存器间接寻址(4)MOV 100[ BX ],AL 相对寄存器间接寻址(5)MOV [ BP],[SI],AX 寄存器基址变址寻址(6)MOV [BX+100 ][SI], AX 相对基址变址寻址(7)MOV [1800H],AL 直接寻址(8)MOV [SI],AX 寄存器间接寻址(9) MOV AX,BX 寄存器寻址4、已知DS = 2000H , ES = 1000H , SS = 1010 H , SI = 1100H , BX = 0500H , BP = 0200H , 请指出下列源操作数字段是什么寻址方式?源操作数字段的物理地址是多少?(1 ) MOV AL, [2500H] 直接寻址DS 22500H(2 ) MOV AX, [BP] 寄存器寻址SS 10300H(3) MOV AX , ES:[BP+10] 相对寄存器寻址10210H(4) MOV AL, [BX + SI + 20 ] 相对基址加变址21620H立即寻址:操作数直接放在指令中,紧跟在操作码后,与操作码一起放在代码段寄存器寻址:操作数包含在CPU的内部寄存器中,如寄存器AX、BX、CX、DX等。
寄存器可以是8位或者16位。
直接寻址:指令要处理的数据在内存中,地址为段地址(SA):偏移地址(EA)寄存器间接寻址:操作数在内存中,操作数地址的16位EA包含在以下寄存器SI、DI、BP、BX中。
寄存器相对寻址:操作数在存储器中,由指定的寄存器内容,加上指令中给出的8位或16位偏移量作为操作数的偏移地址。
基址加变址寻址:操作数在存储器中其偏移地址由(基址寄存器)+(变址寄存器)形成基址寄存器——BX(数据段),BP(堆栈段)变址寄存器——SI、DI相对基址变址寻址:操作数在存储器中偏移地址:(基址寄存器)+(变址寄存器)+相对偏移量第五章存储器技术1、存储器性能指标:存储容量、存取时间、功耗、集成度、性能价格比。
2、静态RAM工作原理:双稳态电路交叉反馈机制3、为什么要刷新:因为电容会放电。
所以要定时刷新。
按行刷新4、动态RAM 工作原理: 依靠电容存储电荷的原理5、静态RAM和动态RAM的区别:RAM:可以读出可以写入,具有易失性,一旦断电,RAM 中的信息全部丢失。
ROM:只可以读出,不可以写入,具有非易失性,即使电源掉电,ROM中的信息也不会丢失。
6、CPU与存储器的连接;P1217、高速缓存的原理:1.位于cpu和主存之间(位置),为了弥补cpu和主存之间的速度差异,高缓与CPU之间以字为单位,高缓与主存之家以块为单位,块由若干字组成。