2020年辽宁省沈阳市中考数学一模试卷 解析版

合集下载

2020年辽宁省沈阳市中考数学一模试卷 (含答案解析)

2020年辽宁省沈阳市中考数学一模试卷 (含答案解析)

2020年辽宁省沈阳市中考数学一模试卷一、选择题(本大题共10小题,共20.0分)1.下列各数中,比−4小的数是()A. −5B. −1C. 0D. 12.我国自行设计、自主集成研制的蛟龙号载人潜水器最大下潜深度为7062m.将7062用科学记数法表示为()A. 7.062×103B. 7.1×103C. 0.7062×104D. 7.062×1043.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A. a2+a3=a5B. a4⋅a3=a12C. a4÷a3=aD. (a4)3=a75.如图,AB//CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A. 34°B. 56°C. 66°D. 54°6.不等式−3x−3>0的解集是()A. x<1B. x<−1C. x>1D. x>−17.下列事件中,是必然事件的是()A. 将油滴入水中,油会浮在水面上B. 车辆随机到达一个路口,遇到红灯C. 如果a 2=b 2,那么a =bD. 掷一枚质地均匀的硬币,一定正面向上8. 关于一元二次方程x 2+4x +3=0的根的情况,下列说法正确的是( )A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 不确定9. 直线y =kx +b 交坐标轴于A(−2,0),B(0,3)两点,则直线不经过第( )象限A. 一 B. 二 C. 三D. 四10. 如图,矩形ABCD 中,AB =√2,BC =2,以B 为圆心,BC 为半径画弧,交AD 于E ,则图中阴影部分的周长是( )A. 2+π2B. √2+π2C. 2十πD. 1+π二、填空题(本大题共6小题,共18.0分)11. 因式分解:x 2−2x =______.12. 方程组{x −y =13x +y =7的解为______. 13. 甲、乙两人进行射击比赛,每人10次射击的平均成绩都是8.5环,方差分别是s 甲2=3,s 乙2=2.5,则射击成绩较稳定的是______.14. 在△ABC 中,AB =AC =17 cm ,BC =16 cm ,AD ⊥BC 于点D ,则AD =_______.15. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,点E 、F 分别是线段AO 、BO 的中点.若AC +BD =24cm ,若EF =4cm ,则△OCD 的周长= cm .16. 如图,矩形ABCD 中,AD =9,AB =15.点E 为射线DC 上的一个动点,将△ADE 沿着AE 折叠,当△AD′B 为直角三角形时,DE 的长为________.三、解答题(本大题共9小题,共82.0分))−1−2sin60°.17.17.计算:(3.14−π)0+|1−√3|+(−1418.某校组织一项公益知识竞赛,比赛规定:每个代表队由3名男生、4名女生和1名指导老师组成.但参赛时,每个代表队只能有3名队员上场参赛,指导老师必须参加,另外2名队员分别在3名男生和4名女生中各随机抽出一名.七年级(1)班代表队有甲、乙、丙三名男生和A、B、C、D4名女生及1名指导老师组成.求:(1)抽到D上场参赛的概率;(2)恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率.(请用“画树状图”或“列表”的方式给出分析过程)19.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.求证:AF=BE.20.保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2−条形统计图补充完整;(2)在图3−扇形统计图中,求出“D”部分所对应的圆心角等于______度;(3)在抽样数据中,产生的有害垃圾共有______吨;(4)调查发现,在可回收物中废纸垃圾约占1,若每回收1吨废纸可再造好纸0.85吨.假设该城市5每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?21.列方程解应用题某工程队修建一条1200m的道路,由于施工过程中采用了新技术,所以工作效率提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)这项工程,如果要求工程队提前两天完成任务,那么实际的工作效率比原计划增加百分之几?22.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD//AB,求证:BC是⊙O的切线;23.如图1,在平面直角坐标系中,点A坐标为(2,0),点B在x轴负半轴上,C在y轴正半轴上,∠ACB=90°,∠ABC=30°.(1)求点B坐标;(2)如图2,点P从B出发,沿线段BC运动,点P运动速度为每秒2个单位长度,设运动时间为t秒,用含t的式子表示三角形△OBP的面积S;(3)如图3,在(2)的条件下,点P出发的同时,点Q从O出发,在线段OC上运动,运动速度为每秒2个单位长度,一个点到达终点,另一个点也停止运动.连接PQ,以PQ为一边,在第二象限作等边△PQM,作ME⊥y轴于E,点D为PC中点,作DN⊥BC交y轴于N,若CE=BP,BC=4√3,求N的坐标.24.(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:____;②若AC=BC=√10,DC=CE=√2,则线段AD的长为____;(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=√21,BC=√7,CD=√3,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM//OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN的面积的2倍,求MN的值.NC-------- 答案与解析 --------1.答案:A解析:此题考查的是有理数的大小比较,根据正数都大于0,负数都小于0,正数大于一切负数,两个负数比较,绝对值大的反而小的法则进行判断即可.解:−5<−1<0<1,所以比−4小的数是−5,故选A.2.答案:A解析:解:7062用科学记数法表示为7.062×103,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:A解析:解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.答案:C解析:解:A、a2+a3,无法计算,故此选项错误;B、a4⋅a3=a7,故此选项错误;C、a4÷a3=a,正确;D、(a4)3=a12,故此选项错误;故选:C.利用同底数幂的乘除运算法则和幂的乘方运算法则分别计算得出答案.本题主要考查了同底数幂的乘除运算和幂的乘方,正确掌握运算法则是解题的关键.5.答案:B解析:解:∵AB//CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°−90°−34°=56°.故选:B.根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.本题考查了平行线的性质,三角形的内角和,熟记平行线的性质定理是解题的关键.6.答案:B解析:解:−3x>3,x<−1故选:B.根据一元一次不等式的解法即可求出答案.本题考查一元一次不等式,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.7.答案:A解析:解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D 、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A .根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.答案:A解析:本题考查了根的判别式,利用根的判别式是解题关键.根据根的判别式,可得答案.解:a =1,b =4,c =3,Δ=b 2−4ac =42−4×1×3=4>0,∴一元二次方程x 2+4x +3=0有两个不相等的实数根,故选A .9.答案:D解析:本题考查用待定系数法求一次函数解析式,一次函数的图象.熟练掌握一次函数y =kx +b 的图象是一条直线,掌握直线的位置和性质与系数k ,b 的关系,再根据一次函数银析式中k ,b 的取值范围,确定一次函数图象经过的象限,从而得出答案.解:序曲直线解析式为y =kx +b ,把A(−2,0),B(0,3)代入即得{−2k +b =0b =3, 解得:{k =32b =3, ∵k =32>0,b =3>0,∴直线y =32x +3经过第一、第二、第三象限,不经过第四象限,故选D . 10.答案:A解析:解:∵矩形ABCD 中,AB =√2,BC =2,∴AD =BC =2,CD =AB =√2∠A =90°,∵BE =BC =2,在Rt △ABE 中,∵AB =√2,BE =2,∴∠AEB =∠ABE =45°,AE =AB =√2,∴DE =AD −AE =2−√2,∵∠ABC =90°,∴∠CBE =45°,∴CE ⏜的长度=45⋅π×2180=π2, ∴图中阴影部分的周长=√2+2−√2+12π=2+12π,故选:A .根据矩形的想知道的AD =BC =2,CD =AB =√2∠A =90°,求得BE =BC =2,得到∠AEB =∠ABE =45°,AE =AB =√2,根据弧长公式得到CE ⏜的长度=45⋅π×2180=π2,于是得到结论. 本题考查了弧长的计算,矩形的性质,等腰直角三角形的判定和性质,熟练掌握弧长的计算公式是解题的关键.11.答案:x(x −2)解析:解:原式=x(x −2),故答案为:x(x −2)原式提取x 即可得到结果.此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.答案:{x =2y =1解析:解:{x −y =1 ①3x +y =7 ②, ①+②得:4x =8,解得:x =2,把x =2代入①得:y =1,则方程组的解为{x =2y =1. 故答案为:{x =2y =1. 方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 13.答案:乙解析:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,比较出甲和乙的方差大小即可.解:∵s 甲2=3,s 乙2=2.5,∴s 甲2>s 乙2,∴则射击成绩较稳定的是乙,故答案为乙.14.答案:15cm解析:此题主要考查了勾股定理,等腰三角形的性质的理解及运用.利用等腰三角形“三线合一”的性质求得AD的长度是解题的关键.利用等腰三角形的性质求得BD=12BC=8cm.然后在直角△ABD中,利用勾股定理来求AD的长度.解:如图,∵△ABC中,AB=AC=17cm,BC=16cm,AD⊥BC于点D,∴BD=12BC=8cm,∴在直角△ABD中,由勾股定理,得AD=√AB2−BD2=√172−82=15(cm).故答案是:15cm.15.答案:20解析:本题主要考查了三角形中位线定理以及平行四边形的性质;熟练掌握平行四边形的性质,求出AB的长是解决问题的关键.根据平行四边形的性质可知OC=12AC,OD=12BD,求出OC+OD=12cm,由三角形中位线定理求出AB的长,即可得出△OCD的周长.解:∵▱ABCD的对角线AC,BD相交于点O,∴OC=12AC,OD=12BD,CD=AB,∵AC+BD=24cm,∴OD+OC=12cm,∵点E,F分别是线段AO,BO的中点,∴CD=AB=2EF=8cm,∴△OCD的周长=OC+OD+CD=12+8=20cm;故答案为20.16.答案:3或27解析:本题考查翻折的性质,三角形全等的判定与性质,勾股定理,矩形的性质,运用了分类讨论思想,分两种情况:点E在DC线段上,点E为DC延长线上的一点,进一步分析探讨得出答案即可.解:如图1,点D翻折到D′位置,由折叠得△AD′E≌△ADE,∴∠AD′E=∠D=90°,AD′=AD=BC,∵∠AD′B=90°,∴B、D′、E三点共线,又∵∠C=90°,∠ABC=90°,∠AD′B=90°,∴∠CEB+∠CBE=90°,∠D′BA=∠CBE=90°,∠C=∠AD′B,∴∠CEB=∠D′BA,又∵AD′=BC,∴ABD′≌△BEC(AAS),∴BE=AB=15,∵BD′=√AB2−AD′2=√152−92=12,∴DE=D′E=15−12=3;如图2,点D翻折到D′′位置,∵∠D,∴∠ABD″+∠EBC=∠ABD″+∠BAD″=90°,∴∠EBC=∠BAD″,在△ABD″和△BEC中,{∠D′′=∠BCE AD′′=BC∠BAD′′=∠EBC,∴△ABD″≌△BEC(ASA),∴BE=AB=15,CE=√BE2−BC2=√152−92=12,∴DE=CD+CE=15+12=27.综上所知,DE=3或27.故答案为3或27.17.答案:−4解析:分别利用零指数幂法则、绝对值的代数意义、负整数指数幂法则以及特殊角的三角函数值计算即可得到结果.【详解】=1+√3−1−4−√3=−4.原式=1+√3−1−4−2×√32本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.18.答案:解:(1)抽到D上场参赛的概率=1;4(2)画树状图为:共有12种等可能的结果数,其中恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的结果数为1,.所以恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率=112解析:(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,找出恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.19.答案:证明:∵四边形ABCD是矩形,∴AD=BC,AD//BC,∴∠DAE=∠BEA,在△ABE和△DFA中,{∠B=∠DFA∠BEA=∠FAD AE=AD,∴△ABE≌△DFA(AAS),∴AF=BE.解析:利用矩形的性质对边相等且平行以及每个内角都为90°,进而得出△ABE≌△DFA(AAS),求出即可.此题主要考查了矩形的性质以及全等三角形的判定与性质,得出△ABE≌△DFA是解题关键.20.答案:(1)抽查的垃圾总数是:5÷10%=50(吨)B组的数量是:50×30%=15.(2)36;(3)3;(4)10000×54%×15×0.85=918(吨).解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据D 类垃圾有5吨,所占的百分比是10%,据此即可求得总数,然后利用百分比的意义求得B 类的数值;(2)利用360°乘以对应的百分比即可求得;(3)利用抽查的总数乘以对应的百分比;(4)利用总数乘以可回收的比例,然后乘以0.85即可求解.解:(1)抽查的垃圾总数是:5÷10%=50(吨)B 组的数量是:50×30%=15.;(2)“D ”部分所对应的圆心角是:360°×10%=36°;(3)在抽样数据中,产生的有害垃圾共有:50×(1−54%−30%−10%)=3(吨);(4)10000×54%×15×0.85=918(吨). 21.答案:解:(1)设这个工程队原计划每天修建道路x 米,则实际每天修建道路(1+50%)x 米, 依题意,得:1200x −1200(1+50%)x =4,解得:x =100,经检验,x =100是原方程的解,且符合题意.答:这个工程队原计划每天修建道路100米.(2)设实际的工作效率比原计划增加的百分比为y ,依题意,得:1200100−1200100(1+y)=2,解得:y =0.2=20%.经检验,y =20%是原方程的解,且符合题意.答:实际的工作效率比原计划增加20%.解析:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.(1)设这个工程队原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,根据工作时间=工作总量÷工作效率结合实际比原计划提前4天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设实际的工作效率比原计划增加的百分比为y,根据工作时间=工作总量÷工作效率结合实际比原计划提前2天完成任务,即可得出关于y的分式方程,解之经检验后即可得出结论.22.答案:证明:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB//CD,∴∠4=∠1=30°,∴∠BOC=60°,∴∠BOC=∠COD,∵OB=OD,OC=OC,∴△BOC≌△DOC,∴∠OBC=∠ODC=90°,∴BC是⊙O的切线.解析:本题考查了圆的切线的性质与判定,三角形全等的性质与判定以及等腰三角形的性质与判定的知识,熟练掌握这些知识是解决本题的关键.(1)先判断∠2+∠3=90°,再判断出∠1=∠2,即可得出结论;(2)先判断出∠COD=60°,再判断∠BOC=60°,证出△BOC≌△DOC,即可得出结论.23.答案:解:(1)∵A(2,0),∴OA=2,∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,∴OC=OA⋅tan60°=2√3,AC=2OA=4,∴AB=2AC=8,∴OB=8−2=6,∴B(−6,0).(2)如图1,过P作PG⊥x轴于G,由题意得:BP=2t,Rt△BPG中,∠B=30°,∴PG=12BP=t,∴S=12⋅OB⋅PG=12×6×t=3t;(3)如图2,连接PN、CM∵BP=2t,BC=4√3,∴PC=4√3−2t,∵D是PC的中点,∴PD=CD,∵DN⊥PC,∴PN=CN,∵∠PCN=60°,∴△PCN是等边三角形,∴PC=PN=CN=4√3−2t,∠NPC=60°,∵△PQM是等边三角形,∴PM=PQ,∠MPQ=60°,∴∠MPC=∠QPN,∴△MPC≌△QPN(SAS),∴QN=CM,∠MCP=∠QNP=60°,∵∠PCN=60°,∴∠MCE=60°,∵OC=2√3,OQ=2t,∴CQ=2√3−2t,∴QN=CN−CQ=4√3−2t−(2√3−2t)=2√3,∴CM=QN=2√3,Rt△MCE中,∠MCE=60°,∴CE=12CM=√3,∵CE=BP=2t=√3,∴ON=QN−OQ=2√3−2t=2√3−√3=√3,∴N(0,−√3).解析:(1)解直角三角形求出AB即可解决问题;(2)如图1,作高线PG,根据直角三角形30度角的性质可得PG的长为t,利用三角形面积公式可得S;(3)如图2,作辅助线,证明△PCN是等边三角形,再证明△MPC≌△QPN(SAS),得QN=CM,∠MCP=∠QNP=60°,得到30度的直角△MCE,并求得CM=QN=2√3,根据CE=BP可得结论.本题属于三角形综合题,考查了解直角三角形,锐角三角函数,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会作辅助线,构建全等三角形思考问题,属于中考压轴题.24.答案:解:(1)①AD⊥BD;②4;(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=√21,BC=√7,CD=√3,CE=1.∴∠ACD=∠BCE,ACBC =√3=CDCE,∴△ACD∽△BCE,∴∠ADC=∠BEC,∵CD =√3,CE =1, ∴DE =√DC 2+CE 2=2,∵∠ADC =∠BEC ,∠DCE =∠CFD =90°,∴△DCE∽△CFD ,,即2√3=√3CF =1DF , ∴CF =32,DF =√32, ∴AF =√AC 2−CF 2=5√32, ∴AD =DF +AF =3√3;若点D 在BC 左侧,如图,过点C 作CF ⊥AD ,交AD 的延长线于点F ,∵∠ACB =∠DCE =90°,AC =√21,BC =√7,CD =√3,CE =1.∴∠ACD =∠BCE ,AC BC =√3=CDCE ,∴△ACD∽△BCE ,∴∠ADC =∠BEC ,∵CD =√3,CE =1,,∵∠CED =∠CDF ,∠DCE =∠CFD =90°,∴△DCE∽△CFD ,∴DE DC =DC CF =CE DF , 即√3=√3CF =1DF ,∴CF =32,DF =√32, ∴AF =√AC 2−CF 2=5√32, ∴AD =AF −DF =2√3.解析:本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线.(1)①由“SAS ”可证△ACD ≌△BCE ,可得∠ADC =∠BEC =45°,可得AD ⊥BD ;②过点C 作CF ⊥AD 于点F ,由勾股定理可求DF ,CF ,AF 的长,即可求AD 的长;(2)分点D 在BC 左侧和BC 右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解. 解:(1)①∵△ABC 和△DEC 均为等腰直角三角形,∴AC =BC ,CE =CD ,∠ABC =∠DEC =45°=∠CDE ,∵∠ACB =∠DCE =90°,又AC=BC,CE=CD,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC=45°,∴∠ADE=∠ADC+∠CDE=90°,∴AD⊥BD,故答案为:AD⊥BD;②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=√2,∴DF=CF=1,,∴AD=AF+DF=4,故答案为:4;(2)见答案.25.答案:解:(1)如图,过点B作BH⊥x轴,垂足为点H,∵点B(1,3)∴BH=3,OH=1,∵∠BAO=45°,∠BHA=90°∴AH=BH=3,∴OA=4∴点A(4,0)∵抛物线过原点O、点A、B,∴设抛物线的表达式为y=ax2+bx(a≠0)∴{0=16a+4ba+b=3解得:a=−1,b=4∴抛物的线表达式为:y=−x2+4x(2)如图,∵PM//OB∴∠PMB+∠OBM=180°,且∠BMP=∠AOB,∴∠AOB+∠OBM=180°∴BM//OA,设点M(m,3),且点M 在抛物线y =−x 2+4x 上,∴3=−m 2+4m ,∴m =1(舍去),m =3∴点M(3,3),∵点O(0,0),点A(4,0),点B(1,3)∴直线OB 解析式为y =3x ,直线AB 解析式为y =−x +4,∵PM//OB ,∴设PM 解析式为y =3x +n ,且过点M(3,3)∴3=3×3+n ,∴n =−6∴PM 解析式为y =3x −6∴{y =3x −6y =−x +4解得:x =52,y =32∴点P(52,32)(3)如图,延长MP 交x 轴于点D ,作PG ⊥MN 于点G ,∵PG ⊥MN ,MC ⊥AD∴PG//AD∴∠MPG =∠MDC ,∠GPN =∠BAO =45°,又∵∠PGC =90°,∠ACG =90°,∴AC =CN ,PG =NG ,∵PM//OB,∴∠BOA=∠MDC,∴∠MPG=∠BOA ∵点B坐标(1,3)∴tan∠BOA=3=tan∠MPG=MG PG∴MG=3PG=3NG,∴MN=4PG,∵△ANC的面积等于△PMN的面积的2倍,∴12×AC×NC=2×12×MN×PG,∴NC2=2×MN×14MN=12MN2,∴MNNC=√2解析:(1)过点B作BH⊥x轴,垂足为点H,根据等腰直角三角形的性质可求点A(4,0),用待定系数法可求抛物线的表达式;(2)根据平行线的性质可得BM//OA,可求点M坐标,用待定系数法可求直线BO,直线AB,直线PM的解析式,即可求点P坐标;(3)延长MP交x轴于点D,作PG⊥MN于点G,根据等腰直角三角形的性质可得AC=CN,PG=NG,根据锐角三角函数可得tan∠BOA=3=tan∠MPG=MGPG,可得MG=3PG=3NG,根据面积关系可求MNNC的值.本题是二次函数综合题,考查了待定系数法可求函数解析式,平行线的性质,锐角三角函数等知识,正确作出辅助线是解题的关键.。

辽宁省沈阳市苏家屯区2020年中考数学一模试卷含解析

辽宁省沈阳市苏家屯区2020年中考数学一模试卷含解析

辽宁省沈阳市苏家屯区2020年中考数学一模试卷一、选择题1.如果m=﹣1,那么m的取值范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<52.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.计划今年9月底开工建设的沈阳地铁6号线,全长36000米,成为首条进入苏家屯的地铁线路,在苏家屯设高楼村、葵松路、苏家屯、香杨路、迎春街5个站点,将数据36000用科学记数法表示为()A.0.36×105B.36×103C.3.6×104D.3.6×1054.如图,Rt△ABC中,∠B=90°,∠A=55°,45°的直三角板DEF的锐角顶点D在斜边AC上,直角边DE∥BC,则∠FDC的度数为()A.10°B.15°C.20°D.25°5.下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.一个游戏的中奖概率是,则做10次这样的游戏一定会中奖C.雨后见彩虹D.任意画一个三角形,其外角和是360°6.下列计算正确的是()A.a3+a3=2a6B.a4•(a3)2=a10C.a6÷a2=a3D.(a﹣b)2=a2﹣b27.如图,A,B两景点相距20km,C景点位于A景点北偏东60°方向上,位于B景点北偏西30°方向上,则A,C两景点相距()A.10km B.10km C.10km D.km8.新型冠状病毒疫情期间,根据某地2月1日至5日这5天确诊病例增加数目得到一组数据:3,5,3,0,7,下列说法正确的是()A.众数是2 B.平均数是3.5C.中位数是3 D.方差是139.如图,⊙O是四边形ABCD的外接圆,连接OB、OD,若四边形ABOD是平行四边形,则∠ABO的度数是()A.50°B.55°C.60°D.65°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2,与x轴的一个交点(﹣1,0),则下列结论正确的个数是()①当x<﹣1或x>5时,y>0;②a+b+c>0;③当x>2时,y随x的增大而增大;④abc>0.A.3 B.2 C.1 D.0二.填空题(请将正确答案写在答题卡上,每小题3分,共18分)11.分解因式:a3﹣2a2+a=.12.关于x的一元二次方程(a﹣2)x2﹣2x﹣4+a2=0有一个根是0,则a的值为.13.如图,△ABC与△DEF位似,位似中心为点O,且BC:EF=3:2,则S△ABC:S△DEF=.14.将抛物线y=3(x﹣2)2+1向左平移2个单位,再向下平移1个单位,则所得抛物线的表达式为.15.在平面直角坐标系中,点A的坐标为(2,1),点B的坐标为(2,9),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.16.如图,正方形ABCD中,点E、F分别在边BC、CD上,连接AE、EF、AF,且∠EAF=45°,下列结论:①△ABE≌△ADF;②∠AEB=∠AEF;③正方形ABCD的周长=2△CEF的周长;④S△ABE+S△ADF=S△CEF,其中正确的是.(只填写序号)三、解答题(第17题6分,第18、19小题各8分,共22分)17.先化简,再求值:﹣÷,其中x=tan60°+(﹣)﹣2.18.为了庆祝防控新冠肺炎疫情的胜利,某校举行班级抗击疫情优秀歌曲歌咏比赛,歌曲有:《逆行英雄》,《中国一定强》,《爱的承诺》(分别用字母A,B,C,依次表示这三首歌曲),比赛时,将A,B,C,这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,九年一班班长先从中随机抽取一张卡片,放回后洗匀,再由九年二班班长从中随机抽取一张卡片,进行歌咏比赛.(1)九年一班抽中歌曲《中国一定强》的概率是;(2)试用画树状图或列表的方法表示所有可能的结果,并求出九年一班和九年二班抽中相同歌曲的概率.19.如图,四边形ABCD中,AD∥BC,∠A=90°,CD=CB,过点C作∠DCB的平分线CE交AB于点E,连接DE,过点D作DF∥AB,且交CE于F点,连接BF.(1)求证:四边形DEBF是菱形;(2)若AB=5,BC=13,求tan∠AED的值.四、(每小题8分,共16分)20.为丰富学生的文体生活,某校计划开设五门选修课程:声乐、足球、舞蹈、书法、演讲.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如图不完整的统计图.请根据统计图解答下列问题.(1)本次接受问卷调查的学生有名;(2)补全条形统计图;(3)扇形统计图中选修“演讲”课程所对应扇形的圆心角的度数为;(4)该校有800名学生,请你估计选修“足球”课程的学生有多少名.21.某物业公司计划对所管理的小区3000m2区域进行绿化,经投标由甲、乙两个工程队来完成,甲、乙两个工程队每天共完成绿化面积150m2,甲队完成600m2区域的绿化面积与乙队完成300m2区域的绿化面积所用的天数相同.(1)求甲、乙两个工程队每天各能完成多少面积的绿化?(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用是0.2万元,该物业公司要使这次绿化总费用不超过17万元,则至少安排乙工程队绿化多少天?22.如图,在⊙O中,AB为⊙O的直径,过O点作OC⊥AB且交⊙O于C点,延长AB到D,过点D作⊙O的切线DE,切点为E,连接CE交AB于F点.(1)求证:DE=DF;(2)若⊙O的半径为2,求CF×CE的值;(3)若⊙O的半径为2,∠D=30°,则阴影部分的面积.六、(本题10分)23.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.24.已知,把45°的直三角板的直角顶点E放在边长为6的正方形ABCD的一边BC上,直三角板的一条直角边经过点D,以DE为一边作矩形DEFG,且GF过点A,得到图1.(1)求矩形DEFG的面积;(2)若把正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC的直角顶点B重合,直三角板夹这个45°角的两边分别交CA和CA的延长线于点H、P,得到图2.猜想:CH、PA、HP之间的数量关系,并说明理由;(3)若把边长为6的正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,点M是Rt△ABC内一个动点,连接MA、MB、MC,设MA+MB+MC=y,直接写出y2的最小值.25.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与y轴交于点A,与x轴交于点B(3,0)、C(﹣1,0)两点.(1)求直线AB和抛物线的表达式;(2)当点F为直线AB上方抛物线上一动点(不与A、B重合),过点F作FP∥x轴交直线AB于点P;过点F作FR∥y轴交直线AB于点R,求PR的最大值;(3)把射线BA绕着点B逆时针旋转90°得到射线BM,点E在射线BM运动(不与点B 重合),以BC、BE为邻边作平行四边形BCDE,点H为DE边上动点,连接CH,请直接写出CH+HE的最小值.参考答案一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案涂在答题卡上,每小题2分,共20分)1.如果m=﹣1,那么m的取值范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5【分析】首先确定的取值范围,然后可得﹣1的取值范围.解:∵3<<4,∴2<﹣1<3,∵m=﹣1,∴2<m<3,故选:B.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看共有3列两层,从左到右第一列底层是一个正方形,第二列是两个正方形,第三列上层是一个正方形.故选:C.3.计划今年9月底开工建设的沈阳地铁6号线,全长36000米,成为首条进入苏家屯的地铁线路,在苏家屯设高楼村、葵松路、苏家屯、香杨路、迎春街5个站点,将数据36000用科学记数法表示为()A.0.36×105B.36×103C.3.6×104D.3.6×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:36000=3.6×104,故选:C.4.如图,Rt△ABC中,∠B=90°,∠A=55°,45°的直三角板DEF的锐角顶点D在斜边AC上,直角边DE∥BC,则∠FDC的度数为()A.10°B.15°C.20°D.25°【分析】根据∠CDF=∠EDF﹣∠EDC,求出∠EDC即可解决问题.解:∵∠B=90°,∠A=55°,∴∠C=35°,∵DE∥BC,∴∠C=∠EDC=35°,∵∠EDF=45°,∴∠CDF=∠EDF﹣∠EDC=45°﹣35°=10°,故选:A.5.下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.一个游戏的中奖概率是,则做10次这样的游戏一定会中奖C.雨后见彩虹D.任意画一个三角形,其外角和是360°【分析】根据事件发生的可能性大小判断.解:A、射击运动员射击一次,命中靶心是随机事件,不符合题意;B、一个游戏的中奖概率是,则做10次这样的游戏不一定会中奖是随机事件,不符合题意;C、雨后见彩虹是随机事件,不符合题意;D、任意画一个三角形,其外角和是360°是必然事件,符合题意;故选:D.6.下列计算正确的是()A.a3+a3=2a6B.a4•(a3)2=a10C.a6÷a2=a3D.(a﹣b)2=a2﹣b2【分析】各项计算得到结果,即可作出判断.解:A、原式=2a3,不符合题意;B、原式=a4•a6=a10,符合题意;C、原式=a4,不符合题意;D、原式=a2﹣2ab+b2,不符合题意.故选:B.7.如图,A,B两景点相距20km,C景点位于A景点北偏东60°方向上,位于B景点北偏西30°方向上,则A,C两景点相距()A.10km B.10km C.10km D.km【分析】根据题意可得,∠CAB=30°,∠CBA=60°,所以∠ACB=90°,根据AB=20km,和特殊角三角函数即可求出A,C两景点距离.解:根据题意可知:∠CAB=30°,∠CBA=60°,∴∠ACB=60°+30°=90°,AB=20km,∴AC=AB×cos30°=20×=10(km).∴A,C两景点相距10km.故选:B.8.新型冠状病毒疫情期间,根据某地2月1日至5日这5天确诊病例增加数目得到一组数据:3,5,3,0,7,下列说法正确的是()A.众数是2 B.平均数是3.5C.中位数是3 D.方差是13【分析】将数据重新排列,再根据众数、平均数、中位数及方差的定义求解可得.解:将数据重新排列为0、3、3、5、7,则这组数据的众数是3,平均数为=3.6,中位数为3,方差为×[(0﹣3.6)2+2×(3﹣3.6)2+(5﹣3.6)2+(7﹣3.6)2]=5.44,故选:C.9.如图,⊙O是四边形ABCD的外接圆,连接OB、OD,若四边形ABOD是平行四边形,则∠ABO的度数是()A.50°B.55°C.60°D.65°【分析】由四边形ABOD是平行四边形,推出∠A=∠BOD,由∠BOD=2∠C,∠A+∠C=180°,推出∠C=60°,∠A=∠BOD=120°即可解决问题.解:∵四边形ABOD是平行四边形,∴∠A=∠BOD,∵∠BOD=2∠C,∠A+∠C=180°,∴∠C=60°,∠A=∠BOD=120°,∵AD∥OB,∴∠ABO+∠DAB=180°,∴∠ABO=60°,故选:C.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2,与x轴的一个交点(﹣1,0),则下列结论正确的个数是()①当x<﹣1或x>5时,y>0;②a+b+c>0;③当x>2时,y随x的增大而增大;④abc>0.A.3 B.2 C.1 D.0【分析】由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结进而结合图形分析得出答案.解:①根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(5,0),从图象上看,x<﹣1或x>5时,y>0,故①正确,符合题意;②从图象看,当x=1时,y=a+b+c<0,故②错误,不符合题意;③从图象看x>2时,y随x的增大而增大,故③正确,符合题意;④从图象看,a>0,b<0,c<0,故abc>0,故④正确,符合题意;故选:A.二.填空题(请将正确答案写在答题卡上,每小题3分,共18分)11.分解因式:a3﹣2a2+a=a(a﹣1)2.【分析】此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.12.关于x的一元二次方程(a﹣2)x2﹣2x﹣4+a2=0有一个根是0,则a的值为﹣2 .【分析】把x=0代入方程(a﹣2)x2﹣2x﹣4+a2=0得﹣4+a2=0,再解关于a的方程,然后利用一元二次方程的定义得到a﹣2≠0,从而确定a的值.解:把x=0代入方程(a﹣2)x2﹣2x﹣4+a2=0得﹣4+a2=0,解得a=2或a=﹣2,因为a﹣2≠0,所以a的值为﹣2.故答案为﹣2.13.如图,△ABC与△DEF位似,位似中心为点O,且BC:EF=3:2,则S△ABC:S△DEF=9:4 .【分析】根据位似图形的概念得到△ABC∽△DEF,根据相似三角形的性质计算即可.解:∵△ABC与△DEF位似,∴△ABC∽△DEF,∵BC:EF=3:2,∴=()2=,故答案为:9:4.14.将抛物线y=3(x﹣2)2+1向左平移2个单位,再向下平移1个单位,则所得抛物线的表达式为y=3x2.【分析】直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式.解:∵将抛物线y=3(x﹣2)2+1向左平移2个单位,再向下平移1个单位,∴平移后的抛物线的解析式为:y=3(x﹣2+2)2+1﹣1,即y=3x2.故答案为y=3x2.15.在平面直角坐标系中,点A的坐标为(2,1),点B的坐标为(2,9),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有 6 个.【分析】当∠A=90°时,满足条件的C点2个;当∠B=90°时,满足条件的C点2个;当∠C=90°时,满足条件的C点2个.所以共有6个.解:∵点A,B的横坐标坐标相等,∴AB∥y轴,∵点C到直线AB的距离为4,∴点C在平行于AB的两条直线上.∴过点A的垂线与那两条直线有2个交点,过点B的垂线与那两条直线有2个交点,以AB为直径的圆与那两条直线有2个交点.∴满足条件的C点共6个.故答案为:6.16.如图,正方形ABCD中,点E、F分别在边BC、CD上,连接AE、EF、AF,且∠EAF=45°,下列结论:①△ABE≌△ADF;②∠AEB=∠AEF;③正方形ABCD的周长=2△CEF的周长;④S△ABE+S△ADF=S△CEF,其中正确的是②③.(只填写序号)【分析】①E、F不分别是BC和CD的中点时,BE≠DF,则△ABE和△ADF的三边全部对应相等,由此得出判断;②延长CD至G,使得DG=BE,证明△ABE≌△ADG和△AEF≌△AGF,便可判断正误;③通过周长公式计算,再由BE+DF=EF,得出判断;④证明S△ABE+S△ADF=S△AGF,再由三角形的底与高的数量关系得S△AGF>S△CEF,进而得出判断.解:①当E、F不分别是BC和CD的中点时,BE≠DF,则△ABE≌△ADF不成立,故①错误;②延长CD至G,使得DG=BE,如图1,∵AB=AD,∠ABE=∠ADG=90°,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,∠AEB=∠G,AE=AG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠GAF=∠DAG+∠DAF=45°,∴∠EAF=∠FAG,∵AF=AF,∴△AEF≌△AGF(SAS),∴∠AEF=∠G,∴∠AEB=∠AEF,故②正确;③∵△AEF≌△AGF,∴EF=GF=DG+DF=BE+DF,∴△CEF的周长=CE+CF+EF=CE+CF+BE+DF=BC+CD=2BC,∵正方形ABCD的周长=4BC,∴正方形ABCD的周长=2△CEF的周长,故③正确;④∵△ABE≌△ADG,∴S△ABE=S△ADG,∴S△ABE+S△ADF=S△AGF,∵GF=EF>CF,AD≥CE,∴,即S△AGF>S△CEF,∴S△ABE+S△ADF≠S△CEF,故④错误;故答案为:②③.三、解答题(第17题6分,第18、19小题各8分,共22分)17.先化简,再求值:﹣÷,其中x=tan60°+(﹣)﹣2.【分析】先把除法变成乘法,算乘法,算减法,最后代入求出即可.解:﹣÷=﹣•=﹣==,当x=tan60°+(﹣)﹣2=+4时,原式==.18.为了庆祝防控新冠肺炎疫情的胜利,某校举行班级抗击疫情优秀歌曲歌咏比赛,歌曲有:《逆行英雄》,《中国一定强》,《爱的承诺》(分别用字母A,B,C,依次表示这三首歌曲),比赛时,将A,B,C,这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,九年一班班长先从中随机抽取一张卡片,放回后洗匀,再由九年二班班长从中随机抽取一张卡片,进行歌咏比赛.(1)九年一班抽中歌曲《中国一定强》的概率是;(2)试用画树状图或列表的方法表示所有可能的结果,并求出九年一班和九年二班抽中相同歌曲的概率.【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.解:(1)因为有A,B,C3种等可能结果,所以九年一班抽中歌曲《中国一定强》的概率=;故答案为:;(2)画树状图如图所示:共有9种可能,其中九年一班和九年二班抽中相同歌曲有3种(A,A),(B,B),(C,C),∴九年一班和九年二班抽中相同歌曲的概率==.19.如图,四边形ABCD中,AD∥BC,∠A=90°,CD=CB,过点C作∠DCB的平分线CE交AB于点E,连接DE,过点D作DF∥AB,且交CE于F点,连接BF.(1)求证:四边形DEBF是菱形;(2)若AB=5,BC=13,求tan∠AED的值.【分析】(1)证明△CDE≌△CBE,根据全等三角形的性质得到ED=EB,∠DEC=∠BEC,根据平行线的性质、等腰三角形的判定定理得到DE=DF,根据菱形的判定定理证明;(2)根据矩形的性质得到∠BGD=90°,DG=AB=5,AD=BG,根据勾股定理求出GC,求出AD,根据勾股定理列方程求出AE,根据正切的定义计算,得到答案.【解答】(1)证明:∵CE平分∠DCB,∴∠DCE=∠BCE,在△CDE和△CBE中,,∴△CDE≌△CBE(SAS),∴ED=EB,∠DEC=∠BEC,∵DF∥AB,∴∠DFE=∠BEC,∴∠DFE=∠DEC,∴DE=DF,∴DF=BE,又DF∥AB,DE=DF,∴四边形DEBF为菱形;(2)解:∵AD∥BC,AB∥DF,∴四边形ABGD为平行四边形,∵∠A=90°,∴四边形ABGD为矩形,∴∠BGD=90°,DG=AB=5,AD=BG,在Rt△DGC中,GC==12,∴AD=BG=BC﹣GC=13﹣12=1,设AE=x,则DE=BE=5﹣x,在Rt△ADE中,DE2=AE2+AD2,即(5﹣x)2=x2+12,解得,x=,∴tan∠AED==.四、(每小题8分,共16分)20.为丰富学生的文体生活,某校计划开设五门选修课程:声乐、足球、舞蹈、书法、演讲.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如图不完整的统计图.请根据统计图解答下列问题.(1)本次接受问卷调查的学生有100 名;(2)补全条形统计图;(3)扇形统计图中选修“演讲”课程所对应扇形的圆心角的度数为18°;(4)该校有800名学生,请你估计选修“足球”课程的学生有多少名.【分析】(1)根据舞蹈的人数和所占的百分比即可求出本次接受问卷调查的学生数;(2)用总人数减去其它课程的人数,求出喜欢书法的人数,从而补全统计图;(3)用360°乘以选修“演讲”的人数所占的百分比即可;(4)用该校的总人数乘以选修“足球”人数所占的百分比即可得出答案.解:(1)本次接受问卷调查的学生有:35÷35%=100(名);故答案为:100;(2)喜欢书法的人数有:100﹣9﹣21﹣35﹣5=30(人),补全统计图如下:(3)扇形统计图中选修“演讲”课程所对应扇形的圆心角的度数为:360°×=18°;故答案为:18°;(4)根据题意得:800×=168(名),答:估计选修“足球”课程的学生有168名.21.某物业公司计划对所管理的小区3000m2区域进行绿化,经投标由甲、乙两个工程队来完成,甲、乙两个工程队每天共完成绿化面积150m2,甲队完成600m2区域的绿化面积与乙队完成300m2区域的绿化面积所用的天数相同.(1)求甲、乙两个工程队每天各能完成多少面积的绿化?(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用是0.2万元,该物业公司要使这次绿化总费用不超过17万元,则至少安排乙工程队绿化多少天?【分析】(1)根据题意结合甲队完成600m2与乙队完成300m2区域的绿化面积所用的天数相同,得出等式即可;(2)根据要使这次绿化总费用不超过17万元,得出不等式进而求出答案.解:(1)设乙工程队每天能完成xm2的绿化的面积,则甲工程队每天能完成(150﹣x)m2的绿化的面积,根据题意可得:=,解得:x=50,经检验得:x=50是所列方程的解,150﹣x=150﹣50=100,答:乙工程队每天能完成50m2的绿化的面积,甲工程队每天能完成100m2的绿化的面积;(2)设安排乙工程队绿化y天,根据题意可得:×0.6+0.2y≤17,解得:y≥10,答:至少安排乙工程队绿化10天.五、(本题10分)22.如图,在⊙O中,AB为⊙O的直径,过O点作OC⊥AB且交⊙O于C点,延长AB到D,过点D作⊙O的切线DE,切点为E,连接CE交AB于F点.(1)求证:DE=DF;(2)若⊙O的半径为2,求CF×CE的值;(3)若⊙O的半径为2,∠D=30°,则阴影部分的面积2﹣π.【分析】(1)欲证明DE=DF,只要证明∠DEF=∠EFD即可.(2)延长CO交⊙O于H,连接EH.证明△COF∽△CEH,推出=,可得CE•CF=CO •CH解决问题.(3)根据S阴=S△EDO﹣S扇形OEB,只要求出DE,∠EOB即可解决问题.【解答】(1)证明:连接OE.∵DE是⊙O的切线,∴DE⊥OE,∴∠OED=90°,∴∠DEF+∠OEC=90°,∵OC⊥AB,∴∠COB=90°,∴∠C+∠OFC=90°,∵OE=OC,∴∠OEC=∠C,∵∠OFC=∠DFE,∴∠DEF=∠EFD,∴DE=DF.(2)解:延长CO交⊙O于H,连接EH.∵CH为直径,∴∠CEH=90°,∵OC⊥AB,∴∠COF=90°,∴∠COF=∠CEH,∵∠C=∠C,∴△COF∽△CEH,∴=,∴CE•CF=CO•CH=2×4=8.(3)解:∵∠OED=90°,∠D=30°,OE=3,∴OD=2OE=4,∠EOB=60°,DE===2,∴S阴=S△EDO﹣S扇形OEB=•OE•DE﹣=×2×2﹣π=2﹣π.故答案为2﹣π.六、(本题10分)23.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)根据题意得到点A,点B关于原点对称,求得点B的横坐标为1,于是得到当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,求得OA=OB,得到∠OAC=∠OCA,根据角平分线的定义得到∠OAC=∠DAC,推出AD∥OC,求得S△AEO=S△ACE=,于是得到结论;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,求得DF=FH,根据三角形中位线定理得到EF=AH,求得y=﹣,得到A(﹣1,2),于是得到P(﹣2,﹣2),根据直角三角形的性质即可得到结论.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO=S△ACE=,∵AD=2DE,∴AE=DE,∴S△AOD=2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF=S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH=S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).七、(本题12分)24.已知,把45°的直三角板的直角顶点E放在边长为6的正方形ABCD的一边BC上,直三角板的一条直角边经过点D,以DE为一边作矩形DEFG,且GF过点A,得到图1.(1)求矩形DEFG的面积;(2)若把正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC的直角顶点B重合,直三角板夹这个45°角的两边分别交CA和CA的延长线于点H、P,得到图2.猜想:CH、PA、HP之间的数量关系,并说明理由;(3)若把边长为6的正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,点M是Rt△ABC内一个动点,连接MA、MB、MC,设MA+MB+MC=y,直接写出y2的最小值.【分析】(1)根据正方形的性质得到∠ADC=∠DCE=90°,根据矩形的性质得到∠AGD =∠GDE=90°,根据相似三角形的性质和矩形的面积公式即可得到结论;(2)根据旋转的性质得到BK=BP,∠PBA=∠KBC,∠BCK=∠BAP=180°﹣45°=135°,由勾股定理得到CH2+PA2=KH2,求得∠PBA+∠ABE=45°,等量代换得到∠KBC+∠ABE=45°,根据全等三角形的性质得到HK=HP,根据勾股定理即可得到结论;(3)根据旋转的性质得到MC=KN,BM=BK,根据等边三角形的性质得到MK=BM,于是得到MA+MB+MC=AM+MK+KN,当A,M,K,N四点共线时,AN就是所求的MA+MB+MC的最小值,过N作NQ⊥AB交AB的延长线于Q,求得AQ=AB+BQ=6+3,根据勾股定理即可得解:(1)∵四边形ABCD是正方形,∴∠ADC=∠DCE=90°,∵四边形DEFG是矩形,∴∠AGD=∠GDE=90°,∴∠DCE=∠AGD=90°,∠ADC=∠GDE=90°,∴∠ADC﹣∠ADE=∠GDE﹣∠ADE,∴∠EDC=∠ADG,∵∠EDC=∠ADG,∠DCE=∠AGD=90°,∴△ECD∽△AGD,∴=,∴DG•DE=DC•DA=6×6=36,∴矩形DEFG的面积=DG•DE=36;(2)CH2+PA2=HP2,证明:把△BAP绕着点B顺时针旋转90°得到△BCK,连接KH,由旋转得△BAP≌△BCK,∴BK=BP,∠PBA=∠KBC,∠BCK=∠BAP=180°﹣45°=135°,∴∠HCK=∠BCK﹣∠BCA=135°﹣45°=90°,∴由勾股定理得,CH2+PA2=KH2,∵∠PBE=45°,∴∠PBA+∠ABE=45°,∵∠PBA=∠KBC,∴∠KBC+∠ABE=45°,∵∠ABC=90°,∴∠HBK=45°,∵∠PBE=45°,∴∠HBK=∠PBE=45°,∵BK=BP,∠HBK=∠PBE,BH=BH,∴△BHP≌△BHK(SAS),∵CH2+PA2=HK2,∴CH2+PA2=HP2;(3)把△BMC绕着点B顺时针旋转60°得到△BKN,连接MK,BN,NC,由旋转得,△BMC≌△BKN,∴MC=KN,BM=BK,∵BM=BK,∠MBK=60°,∴△BKM是等边三角形,∴MK=BM,∴MA+MB+MC=AM+MK+KN,当A,M,K,N四点共线时,AN就是所求的MA+MB+MC的最小值,过N作NQ⊥AB交AB的延长线于Q,∵∠NBQ=180°﹣90°﹣60°=30°,∠BQN=90°,∴QN=BN•sin30°=6×=3,BQ=BN•cos30°=6×=3,∴AQ=AB+BQ=6+3,在Rt△AQN中,由勾股定理得,AN2=AQ2+QN2=(6+3)2+32=72+36,∴y2的最小值为72+36.八、(本题12分)25.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与y轴交于点A,与x轴交于点B(3,0)、C(﹣1,0)两点.(1)求直线AB和抛物线的表达式;(2)当点F为直线AB上方抛物线上一动点(不与A、B重合),过点F作FP∥x轴交直线AB于点P;过点F作FR∥y轴交直线AB于点R,求PR的最大值;(3)把射线BA绕着点B逆时针旋转90°得到射线BM,点E在射线BM运动(不与点B 重合),以BC、BE为邻边作平行四边形BCDE,点H为DE边上动点,连接CH,请直接写出CH+HE的最小值.【分析】(1)将点B,C坐标代入抛物线解析式中,即可求出a,c,进而求出点A的坐标,再用待定系数法求出直线AB的解析式;(2)先判断出∠OBA=∠OAB=45°,进而判断出∠FPR=∠FRP=45°,得出∠PFR=90°,PF=FR,进而得出PR=FR,再设点R(t,﹣t+3),得出点F(t,﹣t2+2t+3),进而得出PR=FR=﹣(t﹣)2+,即可得出结论;(3)先判断出∠DEG=∠CBE=45°,进而判断出HG=HE,即可得出结论.解:(1)∵抛物线y=ax2+2x+c经过点B(3,0)、C(﹣1,0),∴,∴,∴抛物线的解析式为y=﹣x2+2x+3,令0=0,则y=3,∴A(0,3),∴设直线AB的解析式为y=kx+b(k≠0),∵直线AB经过点A(0,3)、B(3,0),∴,∴,∴直线AB的解析式为y=﹣x+3;(2)∵A(0,3),B(3,0),∴OA=OB=3,∵∠AOB=90°,∴∠OBA=∠OAB=45°,∵FP∥x轴,FR∥y轴,∴∠FPR=∠OBA=45°,∠FRP=∠OAB=45°,∴∠FPR=∠FRP=45°,∴∠PFR=90°,PF=FR,根据勾股定理得,PR=FR,∵点R在直线AB上,∴设点R(t,﹣t+3),∵FR∥y轴,∴点F的横坐标为t,∵点F在抛物线y=﹣x2+2x+3上,∴点F(t,﹣t2+2t+3),∴PR=FR=[(﹣t2+2t+3)﹣(﹣t+3)]=﹣(t﹣)2+,∵a=﹣<0,抛物线的开口向下,二次函数有最大值,当t=时,PR有最大值,PR的最大值为;(3)如图,过点C作CG⊥BM于G,交DE于点H,∵把射线BA绕着点B逆时针旋转90°得到射线BM,∴∠ABM=90°,∵∠OBA=45°,∴∠CBE=∠ABM﹣∠OBA=45°,∵DE∥CB,∴∠DEG=∠CBE=45°,在Rt△HGE中,HG=HE•sin45°=HE,根据垂线段最短得,(CH +HE)最小=CG,∴CH +HE=CG=CB•sin45°=2,即CH +HE的最小值为2.31。

辽宁省沈阳市沈阳2020年数学中考模拟试卷(一)及参考答案

辽宁省沈阳市沈阳2020年数学中考模拟试卷(一)及参考答案
EF翻折,点B落在B'处,当DB'的长度最小时,BF的长度为________.
三、解答题 17. 计算: 18. 如图, ABCD中,点E是BC边的一点,延长AD至点F,使∠DFC=∠DEC. 求证:四边形DECF是平行四边形.
19. 中雅培粹学校举办运动会,全校有3000名同学报名参加校运会,为了解各类运动赛事的分布情况,从中抽取了部 分同学进行统计:A.田径类,B.球类,C.团体类,D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.


进价(元/袋) 售价(元/袋)
m
m﹣2
20
13
(1) 求m的值; (2) 假如购进的甲、乙两种绿色袋装食品全部卖出,所获总利润不少于5200元,且不超过5280元,问该超市有几种
进货方案?(利润=售价﹣进价)
22. 如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于 点E,交AB的延长线于点F.
(1) 求抛物线的解析式; (2) F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;
(3) 在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为
?若存在,求出点P的坐标;若不存
在,请说明理由;
(4) 矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面 积时,求抛物线平移的距离.
14. 如图,四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°,则∠OCB=________°.
15. 一男生推铅球,铅球行进高度y与水平距离x之间的关系是
,则铅球推出的距离是________.

2020年辽宁省沈阳市沈河区中考数学一模试卷(含解析和答案)

2020年辽宁省沈阳市沈河区中考数学一模试卷(含解析和答案)

2020年辽宁省沈阳市沈河区中考数学一模试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题2分,共20分)1.(2分)﹣2020的倒数是()A.2020B.±12020C.﹣12020D.120202.(2分)2020年初全球处于新型冠状病毒引起的巨变之中,中国有2万名以上的医护人员在短时间就集结完毕,他们是我们心中的“最美逆行者”!其中数据2万用科学记数法表示为()A.2×103B.2×104C.0.2×105D.20×1033.(2分)如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形的俯视图是()A.B.C.D.4.(2分)“2019武汉军运会”部分体育项目的示意图中是轴对称图形的是()A.B.C.D.5.(2分)不等式组23451020aa+>⎧⎨+<⎩的解集为()A.B.C.D.6.(2分)如图,将一张矩形纸片折叠,若∠1=78°,则∠2的度数是()A.51°B.56°C.61°D.78°7.(2分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩8.(2分)为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如表:每天使用零花钱(单位:元)2345人数14532关于这15名同学每天使用零花钱的情况,下列说法正确的是()A .中位数是3元B .众数是5元C.平均数是2.5元D .方差是49.(2分)如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(图中阴影部分)的面积是32,那么sin α的值为()A .12B .23C .34D .4510.(2分)使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度可能为()A .18°B .37°C .54°D .58°二、填空题(每小题3分,共18分)11.(3分)分解因式:9ax 2﹣ay 2=.12.(3分)若一个圆内接正六边形的边长是4cm ,则这个正六边形的边心距=.13.(3分)关于x 的一元二次方程x 2﹣2x +k ﹣1=0没有实数根,则k 的取值范围是.14.(3分)如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数3yx的图象上,则菱形的面积为.15.(3分)某服装商预测一种应季衬衫能畅销市场,就用4000元购进一批衬衫,面市后果然供不应求,该服装商又用9000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了5元.则该服装商第一批进货的单价是元.16.(3分)如图,在网格纸中,每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,点A,B,C,D均落在格点上,点E是AB的中点,过点E作EF∥AD,交BC于点F,作AG⊥EF,交FE延长线于点G,则线段EG的长度是.三、解答题(第17小题6分,18、19小题各8分,共22分)17.(6﹣2|﹣2×cos30°+(12)﹣1.18.(8分)某商场开业,为了活跃气氛,用红、黄、蓝三色均分的转盘设计了两种抽奖方案,凡来商场消费的顾客都可以选择一种抽奖方案进行抽奖(若指针恰好停在分割线上则重转).方案一:转动转盘一次,指针落在红色区域可领取一份奖品;方案二:转动转盘两次,指针落在不同颜色区域可领取一份奖品.(1)若选择方案一,则可领取一份奖品的概率是;(2)选择哪个方案可以使领取一份奖品的可能性更大?请用列表法或画树状图法说明理由.19.(8分)我校为了了解九年级学生身体素质测试情况,随机抽取了本校九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如图不完整的统计图,请你结合图表所给信息解答下列问题:(1)请在答题卡上直接将条形统计图补充完整;(2)扇形统计图中“B”部分所对应的圆心角的度数是°;(3)若我校九年级共有1500名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.四、(每小题8分,共16分)20.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=12,AD=13,则线段OE的长度是.21.(8分)如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,求A,C两地相距多少千米?(结果保留根号)五、(本题10分)22.(10分)如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cos∠DAB=34,BE=1,则线段AD的长是.六、(本题10分)23.(10分)如图,在平面直角坐标系中,矩形OABC边OA,OC分别在x轴,y的正半轴上,且OA=8,OC=6,连接AC,点D为AC中点,点E从点C出发以每秒1个单位长度运动到点O停止,设运动时间为t秒(0<t<6),连接DE,作DF⊥DE交OA于点F,连接EF.(1)当t的值为时,四边形DEOF是矩形;(2)用含t的代数式表示线段OF的长度,并说明理由;(3)当△OEF面积为132时,请直接写出直线DE的解析式.七、(本题12分)24.(12分)思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度八、(本题12分)25.(12分)在平面直角坐标系中,抛物线y=ax2+bx+2与x轴分别交于点A(﹣1,0),B(3,0),点C是顶点.(1)求抛物线的解析式;(2)如图1,线段DE 是射线AC 上的一条动线段(点D 在点E 的下方),且DE =2,点D 从点A 出发沿着射线AC 的方向以每秒2个单位长度的速度运动,以DE 为一边在AC 上方作等腰Rt △DEF ,其中∠EDF =90°,设运动时间为t 秒.①点D 的坐标是(用含t 的代数式表示);②当直线BC 与△DEF 有交点时,请求出t 的取值范围;(3)如图2,点P 是△ABC 内一动点,BP =52,点M ,N 分别是AB ,BC 边上的两个动点,当△PMN 的周长最小时,请直接写出四边形PNBM 面积的最大值.2020年辽宁省沈阳市沈河区中考数学一模试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。

2020年辽宁省沈阳市沈河区中考数学一模试卷(含解析答案)

2020年辽宁省沈阳市沈河区中考数学一模试卷(含解析答案)

2020年辽宁省沈阳市沈河区中考数学一模试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题2分,共20分)1.(2分)﹣2020的倒数是()A.2020B.±12020C.﹣12020D.120202.(2分)2020年初全球处于新型冠状病毒引起的巨变之中,中国有2万名以上的医护人员在短时间就集结完毕,他们是我们心中的“最美逆行者”!其中数据2万用科学记数法表示为()A.2×103B.2×104C.0.2×105D.20×1033.(2分)如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形的俯视图是()A.B.C.D.4.(2分)“2019武汉军运会”部分体育项目的示意图中是轴对称图形的是()A.B.C.D.5.(2分)不等式组23451020aa+>⎧⎨+<⎩的解集为()A.B.C.D.6.(2分)如图,将一张矩形纸片折叠,若∠1=78°,则∠2的度数是()A.51°B.56°C.61°D.78°7.(2分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩8.(2分)为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如表:每天使用零花钱(单位:元)02345人数14532关于这15名同学每天使用零花钱的情况,下列说法正确的是()A.中位数是3元B.众数是5元C.平均数是2.5元D.方差是49.(2分)如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(图中阴影部分)的面积是32,那么sinα的值为()A.12B.23C.34D.4510.(2分)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x (单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度可能为()A.18°B.37°C.54°D.58°二、填空题(每小题3分,共18分)11.(3分)分解因式:9ax2﹣ay2=.12.(3分)若一个圆内接正六边形的边长是4cm,则这个正六边形的边心距=.13.(3分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是.14.(3分)如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数3yx的图象上,则菱形的面积为.15.(3分)某服装商预测一种应季衬衫能畅销市场,就用4000元购进一批衬衫,面市后果然供不应求,该服装商又用9000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了5元.则该服装商第一批进货的单价是元.16.(3分)如图,在网格纸中,每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,点A,B,C,D均落在格点上,点E是AB的中点,过点E作EF∥AD,交BC于点F,作AG⊥EF,交FE延长线于点G,则线段EG的长度是.三、解答题(第17小题6分,18、19小题各8分,共22分)17.(62|﹣2×cos30°+(12)﹣1.18.(8分)某商场开业,为了活跃气氛,用红、黄、蓝三色均分的转盘设计了两种抽奖方案,凡来商场消费的顾客都可以选择一种抽奖方案进行抽奖(若指针恰好停在分割线上则重转).方案一:转动转盘一次,指针落在红色区域可领取一份奖品;方案二:转动转盘两次,指针落在不同颜色区域可领取一份奖品.(1)若选择方案一,则可领取一份奖品的概率是;(2)选择哪个方案可以使领取一份奖品的可能性更大?请用列表法或画树状图法说明理由.19.(8分)我校为了了解九年级学生身体素质测试情况,随机抽取了本校九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如图不完整的统计图,请你结合图表所给信息解答下列问题:(1)请在答题卡上直接将条形统计图补充完整;(2)扇形统计图中“B”部分所对应的圆心角的度数是°;(3)若我校九年级共有1500名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.四、(每小题8分,共16分)20.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=12,AD=13,则线段OE的长度是.21.(8分)如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,求A,C两地相距多少千米?(结果保留根号)五、(本题10分)22.(10分)如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cos∠DAB=34,BE=1,则线段AD的长是.六、(本题10分)23.(10分)如图,在平面直角坐标系中,矩形OABC边OA,OC分别在x轴,y的正半轴上,且OA=8,OC=6,连接AC,点D为AC中点,点E从点C出发以每秒1个单位长度运动到点O停止,设运动时间为t秒(0<t<6),连接DE,作DF⊥DE交OA于点F,连接EF.(1)当t的值为时,四边形DEOF是矩形;(2)用含t的代数式表示线段OF的长度,并说明理由;(3)当△OEF面积为132时,请直接写出直线DE的解析式.七、(本题12分)24.(12分)思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度八、(本题12分)25.(12分)在平面直角坐标系中,抛物线y=ax2+bx+与x轴分别交于点A(﹣1,0),2B(3,0),点C是顶点.(1)求抛物线的解析式;(2)如图1,线段DE是射线AC上的一条动线段(点D在点E的下方),且DE=2,点D从点A出发沿着射线AC的方向以每秒2个单位长度的速度运动,以DE为一边在AC上方作等腰Rt△DEF,其中∠EDF=90°,设运动时间为t秒.①点D的坐标是(用含t的代数式表示);②当直线BC与△DEF有交点时,请求出t的取值范围;(3)如图2,点P是△ABC内一动点,BP=52,点M,N分别是AB,BC边上的两个动点,当△PMN的周长最小时,请直接写出四边形PNBM面积的最大值.2020年辽宁省沈阳市沈河区中考数学一模试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。

2020年辽宁省沈阳市中考数学一模试卷(含答案解析)

2020年辽宁省沈阳市中考数学一模试卷(含答案解析)

2020年辽宁省沈阳市中考数学一模试卷一、选择题(本大题共10小题,共20.0分)1. 在12,−√3,0.667,π2,2−√2,3.14中,无理数的个数是( ) A. 2 B. 3 C. 4 D. 52. 如图所示的几何体是由五个小正方体组合而成的,则它的左视图是( )A.B.C.D.3. 下列运算正确的是( )A. 2a −3a =aB. 3x 2⋅4xy 3=12x 2y 3C. 6x 3y ÷3x 2=2xyD. (2x 3)4=8x 124. 光速约为300000千米/秒,用科学记数法表示为( )A. 3×104千米/秒B. 3×105千米/秒C. 3×106千米/秒D. 30×104千米/秒5. 如图,AB 是⊙O 的直径,点C 在⊙O 上,BC =1,AC =2,则sin∠D 的值等于A. √55B. 12C. 2√55D. √256.如图,四边形OABC是矩形,四边形ADEF是边长为3的正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx(x>0)的图象上,且BF=5,则k值为()A. 15B. 714C. 725D. 177.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,设原计划平均每天生产x个零件,根据题意可列方程为()A. 600x−25=450xB. 600x=450x−25C. 600x+25=450xD. 600x=450x+258.如图,一科珍贵的乌稔树被台风“山竹”吹歪了,处于对它的保护,需要测量它的高度.现采取以下措施:在地面选取一点C,测得∠BCA=45°,AC=20米,∠BAC=60°,则这棵乌稔树的高AB约为()(参考数据:√2≈1.4,√3≈1.7)A. 7米B. 14米C. 20米D. 40米9.一个半径为2cm的圆内接正六边形的面积等于()A. 24cm2B. 6√3cm2C. 12√3cm2D. 8√3cm210.小聪和小慧参加某健身房的半年卡促销活动,若设该半年卡的定价为x元,可列方程:0.8(2x−100)=2×500,则该健身房的促销活动可能是()A. 两人一起办卡每人立减100元,再打八折,优惠后每人只需500元B. 两人一起办卡总价立减100元,再打八折,优惠后每人只需500元C. 两人一起办卡可打八折,折后每人再减100元,优惠后每人只需500元D. 两人一起办卡可打八折,折后总价再减100元,优惠后每人只需500元二、填空题(本大题共6小题,共18.0分)11.当m=__________时,分式的值为0.当x______时,分式xx−3有意义.12.阳阳的身高是1.6m,他在阳光下的影长是1.2m,在同一时刻测得某棵树的影长为3.6m,则这棵树的高度约为______m.13.不等式组{x2≤−1−x+7>4的解集是______.14.在▱ABCD中,∠BAD的平分线AE交BC于点E,BE=3,若▱ABCD的周长是16,则EC=______.15.甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(ℎ)之间的函数关系,且OP与EF相交于点M.则经过______小时,甲、乙两人相距3km.16.正方形ABCD中,E为DC边上一点,且DE=1,将AE绕点E顺时针旋转90°得到EF,连接AF,FC,则FC=______.三、计算题(本大题共1小题,共6.0分)17.计算:(−2016)0+(−12)−1+|1−√3|−8sin60°+√27.四、解答题(本大题共8小题,共76.0分)18.2019年3月24日无锡马拉松赛在盛大的樱花雨中鸣枪起跑.无锡马拉松赛的赛事共有三项:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小华、小红和小明参与该项赛事的志愿者服务工作,组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为____________;(2)已知小明被分配到A(全程马拉松),请利用树状图或列表法求三人被分配到不同项目组的概率.19.如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是______;(2)EB与ED相等吗?证明你的结论.20.某学校为了解学生课外阅读的情况,对学生“平均每天课外阅读的时间”进行了随机抽样调查,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)平均每天课外阅读的时间为“0.5~1小时”部分的扇形图的圆心角为______度;(2)本次一共调查了______名学生;(3)将条形图补充完整;(4)若该校有1680名学生,请估计该校有多少名学生平均每天课外阅读的时间在0.5小时以下.21.为了迎接“五⋅一”小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.(1)甲种服装每件的成本是多少元?(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价−进价)不少于21100元,且不超过21700元,问小王有几种进货方案?22.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.23.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,在点P的运动过程中,① 求当P,E,B三点在同一直线上时对应的t的值.②求当点A与点E距离最近时t的值,并求出该最近距离.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,求符合条件的m的取值范围.24.在△ABC中,点D、E分别在AB、AC上,BE、CD相交于点O,且∠DCB=∠EBC=1∠A.2(1)如图1,若AB=AC,则BD与CE的数量关系是______;(2)如图2,若AB≠AC,请你补全图2,思考BD与CE是否仍然具有(1)中的数量关系,并说明理由;(3)如图3,∠BDC=105°,BD=3,且BE平分∠ABC,请写出求BE长的思路.(不用写出计算结果)x2+bx+c交25.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B(3,5),抛物线y=−12 x轴于点C,D两点,且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F,使得△ACF的面积等于5,若存在,求出点F的坐标;若不存在,说明理由;(3)点M(4,k)在抛物线上,连接CM,求出在坐标轴的点P,使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形,请直接写出P点的坐标.【答案与解析】1.答案:B解析:本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.根据无理数是无限不循环小数,可得答案.,2−√2是无理数,共有3个.解:−√3,π2故选B.2.答案:D解析:解:此几何体的左视图有两列,左边一列有2个小正方形,右边一列有1个小正方体,故选:D.找出几何体从左边看所得到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.3.答案:C解析:解;A、2a−3a=−a,故此选项错误;B、3x2⋅4xy3=12x3y3,故此选项错误;C、6x3y÷3x2=2xy,故此选项正确;D、(2x3)4=16x12,故此选项错误;故选:C.分别利用合并同类项以及单项式除以单项式和整式的除法运算进而判断得出即可.此题主要考查了合并同类项以及单项式除以单项式和整式的除法运算等知识,熟练应用相关定义是解题关键.4.答案:B解析:解:300000千米/秒,用科学记数法表示为3×105千米/秒,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.答案:A解析:本题考查了圆周角定理的应用和勾股定理、锐角三角函数的应用,掌握直径所对的圆周角是直角和同弧所对的圆周角相等是解题的关键.根据AB是⊙O的直径,求出∠ACB=90º,根据勾股定理,求出AB的长,再由∠D=∠A,运用锐角三角函数的定义即可求出结论.解:∵AB是⊙O的直径,∴∠ACB=90º,BC=1,AC=2,由勾股定理得:AB=√5,∵∠D=∠A,∴sin∠D=sin∠A=BCAB =√5=√55.故选A.6.答案:C解析:解:设AO=a,∵四边形ADEF是边长为3的正方形,BF=5,∴AB=8,OD=a+3,∴B(a,8),E(a+3,3),又∵点B、E在反比例函数y=kx(x>0)的图象上,∴8a=3(a+3),解得a=95,∴B(95,8),∴k=95×8=725,故选:C.。

2020年沈阳市和平区中考数学一模试卷 (含答案解析)

2020年沈阳市和平区中考数学一模试卷 (含答案解析)

2020年沈阳市和平区中考数学一模试卷一、选择题(本大题共10小题,共20.0分)1.下列四个实数中最小的是()A. √3B. 2C. √2D. 1.42.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形3.一种登革热病毒的直径约为0.00000005m,数据0.00000005m可用科学记数法表示为()A. 5×10−7mB. 5×10−8mC. 0.5×10−7mD. −5×108m4.如图是由若干个正方体组成的几何体的俯视图,数字表示该位置上小正方体的个数,则该几何体左视图可能是()A.B.C.D.5.十二边形的内角和为()A. 180°B. 360°C. 1800°D. 无法计算6.如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC相似的是()A.B.C.D.7.下列说法正确的是()A. 掷一枚质地均匀的骰子,“向上一面的点数是6”是必然事件B. 了解一批电视机的使用寿命,适合用普查的方式C. “明天降雨的概率为1”,表示明天有半天都在降雨2D. 在统计中,样本的方差可以近似地反映总体的波动大小8.一元二次方程x2−2x−3=0的根的情况是()A. 无实根B. 有两相等实根C. 有两不等实根D. 无法判断9.计算(−2a3)2÷a2的结果是()A. −2a3B. −2a4C. 4a3D. 4a410.如图,四边形ABCD是⊙O的内接正方形,点P是CD⏜上不同于点C的任意一点,则∠BPC的大小是()A. 22.5°B. 45°C. 30°D. 50°二、填空题(本大题共6小题,共18.0分)11.一组数据:2,5,3,1,6,则这组数据的中位数是.12.分解因式:4x3−x=______ .13.如图所示,直线AB//CD,∠A=23°,则∠C=______.14.如图,在平行四边形ABCD中,AB=m,BC=n,AC的垂直平分线交AD于点E,则△CDE的周长是_______.15.一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=________m时,矩形土地ABCD的面积最大.16.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是______.三、解答题(本大题共9小题,共82.0分)17.先化简,再求值:⋅−(),其中x=.18.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:(1)从中任取一球,小球上的数字为偶数;(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y=3的图象上.x19.如图,在矩形ABCD中,对角线AC,BD交于点O,过点B作BE//AC,过点C作CE//BD,两直线交于点E.(1)求证:四边形BOCE为菱形.(2)若BE=AB=1,求矩形ABCD的面积.20.某校开展“阳光体育”活动,决定开设乒乓球、篮球、跑步、跳绳这四种运动项目,学生只能选择其中一种,为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成两张不完整的统计图,请你结合图中的信息解答下列问题:(1)样本中喜欢篮球项目的人数百分比是______;其所在扇形统计图中的圆心角的度数是______;(2)把条形统计图补画完整并注明人数;(3)已知该校有1000名学生,根据样本估计全校喜欢乒乓球的人数是多少?21.某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?22.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在AD⏜上.(1)求∠AED的度数:(2)若⊙O的半径为3,则AD⏜的长为多少?x+b 23.如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(6,8),一次函数y=−23的图象与边OC、AB分别交于点D、E,并且满足OD=BE.点M是线段DE上的一个动点.(1)求b的值;(2)连接OM,若三角形ODM的面积与四边形OAEM的面积之比为1︰3,求点M的坐标;(3)设点N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点M的坐标.24.如图,射线AN上有一点B,AB=5,tan∠MAN=4,点C从点A3出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.(3)当△AFD是轴对称图形时,直接写出t的值.x2+bx+c经过A(3,0)、C(−1,0)两点,与y轴交于B点.25.如图,抛物线y=−43(1)求抛物线的解析式;(2)D为第一象限抛物线上的一点,连接CD交AB于E,当CE=2ED时,求点D的坐标;(3)点P以每秒3个单位长度的速度从点O出发,沿O→B→A匀速运动,同时点Q以每秒1个单位长度的速度从点C出发,沿C→A匀速运动,运动时间为t秒,当一个点到达终点时,另一个点也随之停止运动,是否存在t,使以A、P、Q为顶点的三角形为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案与解析】1.答案:D解析:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:根据实数比较大小的方法,可得1.4<√2<√3<2,∴四个实数中最小的是1.4.故选D.2.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.答案:B解析:本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000005=5×10−8.故选B.4.答案:B解析:由已知条件可知,左视图有2列,每列小正方形数目分别为1,2.据此可画出图形.本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.解:如图所示:该几何体左视图可能是:.故选B.5.答案:C解析:解:(12−2)⋅180°=1800°.故选C.根据多边形的内角和公式(n−2)⋅180°,列式计算即可得解.本题考查了多边形的内角和定理,熟记多边形内角和公式是解题的关键.6.答案:A解析:利用两组对应边的比相等且夹角对应相等的两个三角形相似对各选项进行判断.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.解:∠ACB=90°,AC=2,BC=1,AC:BC=2,A选项中,三条线段的长为√2,2√2,√10,因为(√2)2+(2√2)2=(√10)2,此三角形为直角三角形,长直角边与短直角边的比为2,所以A选项的方格中所画格点三角形(阴影部分)与△ABC相似;而B 选项中长直角边与短直角边的比为3,C、D选项中的两直角边的比为1:1.故选A.7.答案:D解析:解:A、掷一枚质地均匀的骰子,“向上一面的点数是6”是随机事件,故此选项错误;B、了解一批电视机的使用寿命,适合用抽样调查的方式,故此选项错误;C、“明天降雨的概率为1”,表示明天50%的可能降雨,故此选项错误;2D、在统计中,样本的方差可以近似地反映总体的波动大小,正确.故选:D.分别利用概率的意义以及抽样调查的意义以及方差的性质和随机事件的定义分别分析得出答案.此题主要考查了概率的意义以及抽样调查的意义以及方差的性质和随机事件的定义,正确把握相关性质是解题关键.8.答案:C解析:此题考查了根的判别式,一元二次方程根的情况与判别式Δ的关系:(1)Δ>0方程有两个不相等的实数根;(2)Δ=0方程有两个相等的实数根;(3)Δ<0方程没有实数根.先求出Δ的值,再判断出其符号即可.解:∵Δ=(−2)2−4×1×(−3)=16>0,∴方程有两个不相等的实数根.故选C.9.答案:D解析:【试题解析】解:原式=4a6÷a2=4a4.故选:D.直接利用积的乘方运算化简,再利用整式的除法运算法则化简即可.此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.10.答案:B解析:本题主要考查了正方形的性质和圆周角定理的应用.这里注意:根据90°的圆周角所对的弦是直径,知正方形对角线的交点即为其外接圆的圆心.连接OB、OC,首先根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得∠BPC=45°.解:∵四边形ABCD是⊙O的内接正方形,∴O为正方形ABCD的中心,如图,连接OB、OC,则∠BOC=90°,∠BOC=45°.根据圆周角定理,得:∠BPC=12故选:B.11.答案:3解析:本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.根据中位数的定义求解可得.解:将这5个数据按从小到大的顺序排列为1,2,3,5,6,故这组数据的中位数是3.12.答案:x(2x+1)(2x−1)解析:此题主要考查了提取公因式法、公式法分解因式,正确找出公因式是解题关键.首先直接提取公因式x,进而利用平方差公式分解因式得出答案.解:4x3−x=x(4x2−1)=x(2x+1)(2x−1).故答案为:x(2x+1)(2x−1).13.答案:23°解析:本题考查了平行线的性质,熟练运用平行线的性质是本题的关键,属于基础题.由平行线的性质可解.解:∵AB//CD,∴∠C=∠A=23°.故答案为:23°.14.答案:m+n解析:本题考查了平行四边形的性质,线段垂直平分线性质,解此题的关键是求出AD、CD的长和求出△CDE的周长=AD+CD,根据平行四边形的性质求出AD、CD的长,根据线段垂直平分线性质求出AE=CE,求出△CDE的周长=AD+CD,代入求出即可.解:∵四边形ABCD是平行四边形,AB=m,BC=n,∴AD=BC=n,CD=AB=m,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长为DE+CE+DC=DE+AE+CD=AD+CD=m+n.故答案为m+n.15.答案:150解析:本题考查二次函数的应用,根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题. 解:设AB =xm ,则BC =12(900−3x),由题意可得,S =AB ×BC =x ·12(900−3x)=−32(x 2−300x)=−32(x −150)2+33750, ∴当x =150时,S 取得最大值,此时,S =33750,∴AB =150m ,故答案为150. 16.答案:90°解析:解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中{AB =AD∠ABE =∠DAF BE =AF,∴△ABE≌△DAF ,∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.根据全等三角形的判定与性质,可得∠ODA 与∠BAE 的关系,根据余角的性质,可得∠ODA 与∠OAD 的关系,根据直角三角形的判定,可得答案.本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.17.答案:解:原式=x−3(x−1)(x+1)·(x+1)2x−3−x x−1, =x+1x−1−x x−1,=1x−1,当x =√2+1时,原式=√2+1−1=√22.解析:本题主要考查了分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.先将原分式进行化简,再代入数值计算即可.18.答案:解:(1)∵在一个不透明的口袋里装有分别标有数字1、2、3三个小球,小球除数字不同外,其它无任何区别,∴从中任取一球,球上的数字为偶数的概率是:13;(2)列表得:则点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),积为3的有2种,所以点A(x,y)在函数y=3x 的图象上概率为:29.解析:(1)由在一个不透明的口袋里装有分别标有数字1、2、3三个小球,小球除数字不同外,其它无任何区别,直接利用概率公式求解即可求得答案;(2)列表得出所有等可能的情况数,找出点(x,y)落在函数y=3x的图象上的情况数,即可求出所求的概率.考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.正确的列表或树状图是解答本题的关键,难度不大.19.答案:(1)证明:∵BE//AC,CE//BD,∴四边形BOCE是平行四边形.∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.(2)解:∵四边形BOCE是菱形,∴OC=BE=1.∵四边形ABCD是矩形,∴OA=OC=1,∠ABC=90°.∴AC=1+1=2,∴BC=√AC2−AB2=√3,∴矩形ABCD的面积为√3×1=√3.解析:本题考查矩形的性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)先根据BE//AC,CE//BD得到四边形BOCE为平行四边形,又因为矩形的对角线相互平分且相等,得到OB=OC,最后根据邻边相等的平行四边形是菱形即可判断;(2)先利用BE=AB=1,可得到AC=2,利用勾股定理求出BC=√3的长即可解决问题.20.答案:(1)20%;72°;(2)调查的总人数是:44÷44%=100(人),则喜欢篮球的人数是:100×20%=20(人),;(3)全校喜欢乒乓球的人数是1000×44%=440(人).答:根据样本估计全校喜欢乒乓球的人数是440人.解析:解:(1)1−44%−8%−28%=20%,所在扇形统计图中的圆心角的度数是:360×20%=72°,故答案为:20%,72°;(2)见答案;(3)见答案.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)利用1减去其它各组所占的比例即可求得喜欢篮球的人数百分比,利用百分比乘以360度即可求得扇形的圆心角的度数;(2)根据喜欢A乒乓球的有44人,占44%即可求得调查的总人数,乘以对应的百分比即可求得喜欢篮球的人数,补全统计图即可;(3)总人数1000乘以喜欢乒乓球的人数所占的百分比即可求解.21.答案:解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:300x+10=100x,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80−m)个,依题意,得:{80−m≥4m15(80−m)+5m≥1000 15(80−m)+5m≤1050,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.解析:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,根据数量=总价÷单价结合花费300元购买A商品和花费100元购买B商品的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B商品m个,则购买A商品(80−m)个,根据A商品的数量不少于B商品数量的4倍并且购买A、B商品的总费用不低于1000元且不高于1050元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可找出各购买方案.本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.答案:解:(1)连接BD,如图1所示:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=120°,∴∠BAD=60°,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,∴∠AED=120°;(2)∵∠AOD=2∠ABD=120°,=2π.∴AD⏜的长为:120×π×3180解析:此题考查了圆的内接四边形的性质、圆周角定理以及等边三角形的判定与性质.注意准确作出辅助线是解此题的关键.(1)连接BD,根据圆的内接四边形的性质得出∠BAD的度数,由AB=AD,可证得△ABD是等边三角形,求得∠ABD=60°,再利用圆的内接四边形的性质,即可求得∠AED的度数;(2)连接OA,由圆周角定理求出∠AOD的度数,由弧长公式即可得出AD⏜的长.23.答案:解:(1)y=−23x+b中,令x=0,解得y=b,则D的坐标是(0,b),OD=b,∵OD=BE,∴BE=b,则E的坐标是(6,8−b),把E的坐标代入y=−23x+b得8−b=−23×6+b,解得:b=6,∴y=−23x+6;(2)设M(a,−23a+6),S△ODM=12×6×a=3a,S四边形AEDO =8×62=24,∵三角形ODM的面积与四边形OAEM的面积之比为1:3,∴3a:24=1:4,∴a=2,则M的坐标是(2,143);(3)当四边形OMDN是菱形时,如图(1),M的纵坐标是3,把y=3代入y=−23x+6,得−23x+6=3,解得:x=92,则M的坐标是(92,3),当四边形OMND是菱形时,如图(2),OM=OD=6,设M的横坐标是m,则纵坐标是−23m+6,则m2+(−23m+6)2=36,解得:m=7213或0(舍去).则M的坐标是(92,3)或(7213,3013).解析:本题是一次函数与菱形的判定与性质的综合题,主要考查了菱形的判定方法,正确根据菱形的性质求得M的坐标是解决本题的关键.(1)首先在一次函数的解析式中令x=0,即可求得D的坐标,则OD的长度即可求得,OD=b,则E的坐标即可利用b表示出来,然后代入一次函数解析式即可得到关于b的方程,求得b的值;(2)首先设M(a,−23a+6),根据题意可得S△ODM=3a,S四边形AEDO=24,再根据三角形ODM的面积与四边形OAEM的面积之比为1:3 可得3a:24=1:4,得出a的值,从而求出M的坐标;(3)分成四边形OMDN是菱形和四边形OMND是菱形两种情况进行讨论,四边形OMDN是菱形时,M是OD的中垂线与DE的交点;四边形OMND是菱形时,设出M的坐标,根据OM=OD即可求得M的坐标.24.答案:解:(1)在Rt△ACD中,AC=3t,tan∠MAN=43,∴CD=4t.∴AD=√AC2+CD2=√(3t)2+(4t)2=5t,当点C在点B右侧时,CB=3t−5,∴CF=CB.∴DF=4t−(3t−5)=t+5.(2)当0<t<53时,S=12⋅(5−3t)⋅4t=−6t2+10t.当t>53时,S=12⋅(3t−5)⋅4t=6t2−10t.(3)①如图1中,当DF=AD时,△ADF是轴对称图形.则有5−3t−4t=5t,解得t=512,②如图2中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=52t,由cos∠FDH=45,可得52t4t−(5−3t)=45,解得t=4031.③如图3中,当AF=DF时,△ADF是轴对称图形.作FH ⊥AD .∵FA =DF ,∴AH =DH =52t ,由cos∠FDH =45,可得52t 4t−(3t−5)=45,解得t =4017. 综上所述,满足条件的t 的值为512或4031或4017.解析:(1)解直角三角形求出AD ,DC ,DF 即可.(2)分两种情形:当0<t <53时,当t >53时,分别求解即可解决问题.(3)分三种情形分别画出图形,构建方程即可解决问题.本题属于三角形综合题,考查了解直角三角形,轴对称图形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 25.答案:解:(1)∵抛物线y =−43x 2+bx +c 经过A(3,0)、C(−1,0)两点,{−34×32+3b +c =0−34−b +c =0 解得{b =83c =4 ∴抛物线的解析式是y =−43x 2+83x +4;(2)如图1所示:作DF//AC 交AB 于F .设直线AB的解析式为y=kx+b,将点A、B的坐标代入得:{b=43k+b=0,解得:k=−43,b=4.∴直线AB的解析式为y=−43x+4.∵FD//AC,∴△ACE∽△FDE,∴FDAC =DECE=DE2DE=12,∵AC=4∴FD=2.设D(a,−43a2+83a+4),则F(a−2,−43a2+83a+4),将点F的坐标代入直线AB的解析式得:−43a2+83a+4=−43(a−2)+4,解得a=1或a=2.当a=1时,−43a2+83a+4=163,即点D(1,163).当a=2时,−43a2+83a+4=4,即点D(2,4).综上所述点D的坐标为(1,163)或(2,4).(3)存在.如图2所示:当∠APA=90°时.∵∠QPO+∠OPA=90°,∠QPO+∠PQO=90°,∴∠OPA=∠PQO.又∵∠POQ=∠POA=90°,∴△PQO∽△APO.∴POOQ =OAOP,即3t1−2t=33t,解得t=−1+√136或t=−1−√136(舍去).如图3所示:当点Q与点O重合时,△PQP为直角三角形.∵OC=1,∴t=1.如图4所示:当∠PQA=90°时.由题意可知QA=4−t,AP=9−3t.∵cos∠BAO=OAAB =AQAP=35,∴4−t9−3t =35,解得:t=74.如图5所示:当∠QPA=90°时.由题意可知QA =4−t ,AP =9−3t .∵cos∠BAO =AP QA =OA AB ═35,∴9−3t 4−t =35,解得:t =114.综上所述,当t 的值为−1+√136或1或74或=114时,△PAQ 为直角三角形.解析:(1)由A 、C 两点的坐标,利用待定系数法可求得抛物线解析式;(2)作DF//AC 交AB 于F ,可证得△ACE∽△FDE ,根据相似三角形的性质可求得FD ,设出设D(a,−43a 2+83a +4),则F(a −2,−43a 2+83a +4),然后求得直线AB 的解析式,将点B 的坐标代入直线AB 的解析式可求得a 的值;(3)先依据题意分析可出可能出现的情况,然后画出相应的图形,最后利用相似三角形的性质求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、相似三角形的性质和判定,利用相似三角形的性质表示出点F 的坐标是解答问题(2)的关键,根据题意画出符合题意的所有图形是解答问题(3)的关键.。

辽宁省沈阳市2019-2020学年中考数学一模考试卷含解析

辽宁省沈阳市2019-2020学年中考数学一模考试卷含解析

辽宁省沈阳市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .162.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()22a b a b a b -=+- 3.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(a+4)cmD .(a+8)cm4.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+5.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A .480480420x x-=- B .480480204x x -=+ C .480480420x x -=+ D .480480204x x -=- 6.某公园有A 、B 、C 、D 四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()A.12B.14C.16D.187.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD 的长为()A.4 B.5 C.8 D.108.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB9.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是A.B.C.D.10.下列各式正确的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣2018 11.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是( )A.甲乙都对B.甲乙都不对C.甲对,乙不对D.甲不对,已对12.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A(3,n)在双曲线y=3x上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是.14.如图,点P(3a,a)是反比例函kyx(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.15.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角α为60o时,两梯角之间的距离BC的长为3m.周日亮亮帮助妈妈整理换季衣服,先使α为60o,后又调整α为45o,则梯子顶端离地面的高度AD下降了______m(结果保留根号).16.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F 是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)17.不等式组()3241213x xxx⎧--<⎪⎨+-≤⎪⎩的解集为______.18.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程已知:线段a、b,求作:Rt ABC∆.使得斜边AB=b,AC=a作法:如图.(1)作射线AP,截取线段AB=b;(2)以AB为直径,作⊙O;(3)以点A为圆心,a的长为半径作弧交⊙O于点C;(4)连接AC、CB.ABC∆即为所求作的直角三角形.请回答:该尺规作图的依据是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:2(x-3)=3x(x-3).20.(6分)如图,已知在梯形ABCD 中,355AD BC AB DC AD sinB ∥,===,=,P 是线段BC 上一点,以P 为圆心,PA 为半径的P e 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP x =.(1)求证:ABP ECP V V ∽;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设APQ V 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果QED V与QAP V 相似,求BP 的长. 21.(6分)如图,在Rt △ABC 中,∠C=90°,以AC 为直径作⊙O ,交AB 于D ,过点O 作OE ∥AB ,交BC 于E .(1)求证:ED 为⊙O 的切线;(2)若⊙O 的半径为3,ED=4,EO 的延长线交⊙O 于F ,连DF 、AF ,求△ADF 的面积.22.(8分)如图,在平行四边形ABCD 中,DB ⊥AB ,点E 是BC 边的中点,过点E 作EF ⊥CD ,垂足为F ,交AB 的延长线于点G .(1)求证:四边形BDFG 是矩形;(2)若AE 平分∠BAD ,求tan ∠BAE 的值.23.(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m³)与干旱持续时间x (天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m³)与时间(天)的关系如图中线段l 2所示(不考虑其他因素).(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.24.(10分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?25.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?26.(12分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC 面积的最大值;(3)当t >2时,是否存在点P ,使以A 、P 、Q 为顶点的三角形与△AOB 相似?若存在,求出此时t 的值;若不存在,请说明理由.27.(12分)已知:在△ABC 中,AC=BC ,D ,E ,F 分别是AB ,AC ,CB 的中点.求证:四边形DECF 是菱形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°.所以AFI BGC DHE GHI V V V V 、、、都是等边三角形.所以31AI AF BG BC ====,.3317GI GH AI AB BG ∴==++=++=,7232DE HE HI EF FI ==--=--=,7124CD HG CG HD .=--=--=所以六边形的周长为3+1+4+2+2+3=15;故选C .2.D【解析】【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【详解】阴影部分的面积相等,即甲的面积=a 2﹣b 2,乙的面积=(a+b )(a ﹣b ).即:a 2﹣b 2=(a+b )(a ﹣b ).所以验证成立的公式为:a 2﹣b 2=(a+b )(a ﹣b ).故选:D .【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.3.B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【详解】∵原正方形的周长为acm , ∴原正方形的边长为4a cm , ∵将它按图的方式向外等距扩1cm , ∴新正方形的边长为(4a +2)cm , 则新正方形的周长为4(4a +2)=a+8(cm ), 因此需要增加的长度为a+8﹣a=8cm ,故选B .【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 4.C【解析】【分析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .5.C【解析】【分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.6.B【解析】【分析】画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为416=14,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式求事件A或B的概率.7.D【解析】【分析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.【详解】解:∵矩形ABCD的对角线AC,BD相交于点O,∴∠BAD=90°,点O是线段BD的中点,∵点M是AB的中点,∴OM是△ABD的中位线,∴AD=2OM=1.∴在直角△ABD中,由勾股定理知:.故选:D.【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.8.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.9.D【解析】【分析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.10.A【解析】【分析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=12018,故选项D错误.故选A.【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.11.A【解析】【分析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.【详解】证明:(1)如图1,连接OM,OA.∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;(1)如图1.∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.故两位同学的作法都正确.故选A.【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.12.B【解析】【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2.【解析】【分析】先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.【详解】由点A(3,n)在双曲线y=3x上得,n=2.∴A(3,2).∵线段OA的垂直平分线交OC于点B,∴OB=AB.则在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周长的值是2.14.y=12 x【解析】设圆的半径是r ,根据圆的对称性以及反比例函数的对称性可得: 14πr 2=10π 解得:r=210.∵点P(3a ,a)是反比例函y=k x(k>0)与O 的一个交点, ∴3a 2=k. 22(3)a a r +=∴a 2=21(210)10⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键. 15.()3322-【解析】【分析】根据题意画出图形,进而利用锐角三角函数关系得出答案.【详解】解:如图1所示:过点A 作AD BC ⊥于点D ,由题意可得:B C 60∠∠==o ,则ABC V 是等边三角形,故BC AB AC 3m ===,则33AD 3sin60m 2o ==,如图2所示:过点A 作AE BC ⊥于点E ,由题意可得:B C 60∠∠==o ,则ABC V 是等腰直角三角形,BC AB 3m ==, 则32AE 3sin45m 2==o, 故梯子顶端离地面的高度AD 下降了()332m.2-故答案为:()3322-.【点睛】 此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键. 16.①②④【解析】【分析】①根据ASA 可证△BOE ≌△COF ,根据全等三角形的性质得到BE=CF ,根据等弦对等弧得到»»AE BF= ,可以判断①;②根据SAS 可证△BOG ≌△COH ,根据全等三角形的性质得到∠GOH=90°,OG=OH ,根据等腰直角三角形的判定得到△OGH 是等腰直角三角形,可以判断②;③通过证明△HOM ≌△GON ,可得四边形OGBH 的面积始终等于正方形ONBM 的面积,可以判断③; ④根据△BOG ≌△COH 可知BG=CH ,则BG+BH=BC=4,设BG=x ,则BH=4-x ,根据勾股定理得到GH=22BG BH +=()224x x +- ,可以求得其最小值,可以判断④.【详解】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF ,在△BOE 与△COF 中,OB OC BOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△COF ,∴BE=CF ,∴»»AE BF= ,①正确; ②∵OC=OB ,∠COH=∠BOG ,∠OCH=∠OBG=45°,∴△BOG ≌△COH ;∴OG=OH ,∵∠GOH=90°,∴△OGH 是等腰直角三角形,②正确.③如图所示,∵△HOM ≌△GON ,∴四边形OGBH 的面积始终等于正方形ONBM 的面积,③错误;④∵△BOG ≌△COH ,∴BG=CH ,∴BG+BH=BC=4,设BG=x ,则BH=4-x ,则22BG BH +()224x x +-∴其最小值为2故答案为:①②④【点睛】考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强.17.1<x≤1【解析】解不等式x ﹣3(x ﹣2)<1,得:x >1,解不等式1213x x +-≤,得:x≤1, 所以不等式组解集为:1<x≤1,故答案为1<x≤1.18.等圆的半径相等,直径所对的圆周角是直角,三角形定义【解析】【分析】根据圆周角定理可判断△ABC 为直角三角形.【详解】根据作图得AB 为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC 满足条件.故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1223,3x x ==. 【解析】【分析】先进行移项,在利用因式分解法即可求出答案.【详解】 ()()2333x x x -=-,移项得:()()23330x x x ---=,整理得:()()3230x x --=,30x -=或230x -=,解得:13x =或223x =. 【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键. 20.(1)见解析;(2)312(4 6.5)y x x =-<<;(3)当5PB =或8时,QED V与QAP V 相似. 【解析】【分析】(1)想办法证明B C APB EPC ∠∠∠∠=,=即可解决问题;(2)作A AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.想办法求出AQ 、PN 的长即可解决问题;(3)因为DQ PC P ,所以EDQ ECP V V ∽,又ABP ECP V V ∽,推出EDQ ABP V V ∽,推出ABP △相似AQP V 时,QED V与QAP V 相似,分两种情形讨论即可解决问题; 【详解】(1)证明:Q 四边形ABCD 是等腰梯形,B C ∴∠∠=,PA PQ Q =,PAQ PQA ∴∠∠=,AD BC ∵∥,PAQ APB PQA EPC ∴∠∠∠∠=,=,APB EPC ∴∠∠=,ABP ECP ∴V V ∽.(2)解:作AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.在Rt ABM V 中,3sin ,55AM B AB AB ===Q , 34AM BM ∴=,=,43PM AN x AM PN ∴==﹣,==,PA PQ PN AQ ⊥Q =,,224AQ AN x ∴==(﹣),1312(4 6.5)2y AQ PN x x ∴=⋅⋅=-<<. (3)解:DQ PC Q P ,EDQ ECP ABP ECP ∴V V QV V ∽,∽,EDQ ABP ∴V V ∽,ABP ∴V 相似AQP V 时,QED V与QAP V 相似, PQ PA APB PAQ ∠∠Q =,=,∴当BA BP =时,BAP PAQ V V ∽,此时5BP AB ==,当AB AP =时,APB PAQ V V ∽,此时28PB BM ==,综上所述,当PB=5或8时,QED V与△QAP V 相似. 【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.21.(1)见解析;(2)△ADF的面积是108 25.【解析】试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC =810BC OMAB OA==,求出OM,根据cos∠BAC=35AC AMAB OA==,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.试题解析:(1)证明:连接OD,CD,∵AC是⊙O的直径,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中DE CEEO EOOC OD⎧⎪⎨⎪⎩===,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD过圆心O,∴ED为⊙O的切线.(2)过O作OM⊥AB于M,过F作FN⊥AB于N,则OM∥FN,∠OMN=90°,∵OE∥AB,∴四边形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴OC OE AC AB=,∴356AB =,∴AB=10,在Rt△BCA中,由勾股定理得:22106+=8,sin∠BAC=810 BC OMAB OA==,即435 OM=,OM=125=FN,∵cos∠BAC=35 AC AMAB OA==,∴AM=9 5由垂径定理得:AD=2AM=185,即△ADF的面积是12AD×FN=12×185×125=10825.答:△ADF的面积是108 25.【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.22.(1)见解析;(2)tan 3BAE ∠=【解析】【分析】(1)根据矩形的判定证明即可; (2)根据平行四边形的性质和等边三角形的性质解答即可.【详解】证明:(1)∵BD ⊥AB ,EF ⊥CD ,∴∠ABD =90°,∠EFD =90°,根据题意,在▱ABCD 中,AB ∥CD ,∴∠BDC =∠ABD =90°,∴BD ∥GF ,∴四边形BDFG 为平行四边形,∵∠BDC =90°,∴四边形BDFG 为矩形;(2)∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∵AD ∥BC ,∴∠BEA =∠DAE ,∴∠BAE =∠BEA ,∴BA =BE ,∵在Rt △BCD 中,点E 为BC 边的中点,∴BE =ED =EC ,∵在▱ABCD 中,AB =CD ,∴△ECD 为等边三角形,∠C =60°, ∴1302BAE BAD ∠=∠=︒,∴tan 3BAE ∠=. 【点睛】本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.23.(1)y 1=-20x+1200, 800;(2)15≤x≤40.【解析】【分析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y 2=kx+b ,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y 1=kx+b ,把(0,1200)和(60,0)代入得1200600b k b =⎧⎨+=⎩解得201200k b =-⎧⎨=⎩,所以y 1=-20x+1200,当x=20时,y 1=-20×20+1200=800, (2)设y 2=kx+b ,把(20,0)和(60,1000)代入得200601000k b k b +=⎧⎨+=⎩则25500k b =⎧⎨=-⎩,所以y 2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y 1+y 2=-20x+1200+25x-500=5x+700,由题意2012009005700900x x -+≤⎧⎨+≤⎩解得该不等式组的解集为15≤x≤40所以发生严重干旱时x 的范围为15≤x≤40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.24.(2)证明见试题解析;(2【解析】【分析】(2)过点O 作OM ⊥AB 于M ,证明OM=圆的半径OD 即可;(2)过点O 作ON ⊥BE ,垂足是N ,连接OF ,得到四边形OMBN 是矩形,在直角△OBM 中利用三角函数求得OM 和BM 的长,进而求得BN 和ON 的长,在直角△ONF 中利用勾股定理求得NF ,则BF 即可求解.【详解】解:(2)过点O 作OM ⊥AB ,垂足是M .∵⊙O 与AC 相切于点D ,∴OD ⊥AC ,∴∠ADO=∠AMO=90°.∴OM=OD,∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.∵O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=12OB=2,OM=3BM =3,∵BE⊥AB,∴四边形OMBN是矩形,∴ON=BM=2,BN=OM=3.∵OF=OM=3,由勾股定理得NF=2.∴BF=BN+NF=32.考点:2.切线的判定与性质;2.勾股定理;3.解直角三角形;4.综合题.25.(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.26.(1);(2)12;(3)t=或t=或t=1.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考点:二次函数综合题.27.见解析【解析】【详解】证明:∵D、E是AB、AC的中点∵D、F是AB、BC的中点∴DF=AC,FC=BC∴DE=FC=BC,EC=DF=AC ∵AC=BC∴DE=EC=FC=DF∴四边形DECF是菱形。

辽宁省沈阳市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省沈阳市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省沈阳市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O 的半径为6,直径CD 过弦EF 的中点G ,若∠EOD =60°,则弦CF 的长等于( )A .6B .63C .33D .92.给出下列各数式,①2?--() ②2-- ③2 2- ④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个3.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm ,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )A .12cmB .122cmC .24cmD .242cm4.不等式组73357x x x -+<+⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D .5.已知抛物线y=ax 2+bx+c 与x 轴交于(x 1,0)、(x 2,0)两点,且0<x 1<1,1<x 2<2与y 轴交于(0,-2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )A .1个B .2个C .3个D .4个6.估计40的值在 ( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间7.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,将周长为8的△ABC 沿BC 方向平移1个单位长度得到DEF ∆,则四边形ABFD 的周长为( )A .8B .10C .12D .169.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤D .122a ≤≤ 10.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是( )A .B .C .D .11.若分式242x x -+的值为0,则x 的值为( )A .-2B .0C .2D .±212.某圆锥的主视图是一个边长为3cm 的等边三角形,那么这个圆锥的侧面积是() A .4.5πcm 2 B .3cm 2 C .4πcm 2 D .3πcm 2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ABC 中,∠ACB=90°,将边BC 沿斜边上的中线CD 折叠到CB′,若∠B=48°,则∠ACB′=_____.14.如图,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为_____度.15.方程1223x x =+的解为__________. 16.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.17.若点M (1,m )和点N (4,n )在直线y=﹣12x+b 上,则m___n (填>、<或=) 18.分解因式:32816a a a -+=__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知AB 是O e 上一点,4,60OC OAC =∠=︒.如图①,过点C 作O e 的切线,与BA 的延长线交于点P ,求P ∠的大小及PA 的长; 如图②,P 为AB 上一点,CP 延长线与O e 交于点Q ,若AQ CQ =,求APC ∠的大小及PA 的长.20.(6分)如图,在△ABC 中,∠A =45°,以AB 为直径的⊙O 经过AC 的中点D ,E 为⊙O 上的一点,连接DE ,BE ,DE 与AB 交于点F.求证:BC 为⊙O 的切线;若F 为OA 的中点,⊙O 的半径为2,求BE 的长.21.(6分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.22.(8分)先化简再求值:212xx-+÷(12x+﹣1),其中x=13.23.(8分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.(1)求点A、B的坐标;(2)若BN=MN,且S△MBC=274,求a的值;(3)若∠BMC=2∠ABM,求MNNB的值.24.(10分)已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若 AB=2,求 AC 和 AH 的长;(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明.25.(10分)为了预防“甲型H 1N 1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (mg )与时间x (min )成正比例,药物燃烧后,y 与x 成反比例,如图所示,现测得药物8min 燃毕,此时室内空气每立方米的含药量为6mg ,请你根据题中提供的信息,解答下列问题: 药物燃烧时,求y 关于x 的函数关系式?自变量x 的取值范围是什么?药物燃烧后y 与x 的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg 时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?26.(12分)如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF 是⊙O 的切线;若,且,求⊙O 的半径与线段的长.27.(12分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】连接DF,根据垂径定理得到»»DE DF=, 得到∠DCF=12∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴»»DE DF=,∴∠DCF=12∠EOD=30°, ∵CD 是⊙O 的直径,∴∠CFD=90°,∴CF=CD•cos ∠DCF=12×3 =63 , 故选B .【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.2.B【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=;∴上述各式中计算结果为负数的有2个.故选B.3.D【解析】【分析】过A 作AD ⊥BF 于D,根据45°角的三角函数值可求出AB 的长度,根据含30°角的直角三角形的性质求出斜边AC 的长即可.【详解】如图,过A 作AD ⊥BF 于D ,∵∠ABD=45°,AD=12,∴sin 45AD AB ︒==122, 又∵Rt △ABC 中,∠C=30°,∴AC=2AB=242,故选:D .【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.4.C【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x >2,解不等式3x ﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.A【解析】【分析】【详解】如图,120112x x <<,<< 且图像与y 轴交于点()0,2-,可知该抛物线的开口向下,即0a <,2c =-①当2x =时,4220y a b =+-<422a b +< 21a b +<故①错误.②由图像可知,当1x =时,0y >∴20a b +->∴2a b +>故②错误.③∵120112x x <<,<< ∴1213x x +<<, 又∵12b x x a+=-,∴13b a -<<, ∴3a b a <<-﹣,∴30a b +<,故③错误;④∵1202x x <<,122c x x a =<, 又∵2c =-,∴1a <-. 故④正确.故答案选A.【点睛】本题考查二次函数2y ax bx c =++系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.6.C【解析】【分析】40,可以估算出位于哪两个整数之间,从而可以解答本题.【详解】364049< 即6407<<故选:C .【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.7.D【解析】分析:依据AB ∥CD ,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB ∥CD ,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D .点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.8.B【解析】根据平移的基本性质,得出四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案. 根据题意,将周长为8个单位的△ABC 沿边BC 向右平移1个单位得到△DEF ,∴AD=1,BF=BC+CF=BC+1,DF=AC ;又∵AB+BC+AC=8,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选C .“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.9.B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤< 故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小,0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.10.C 【解析】 【分析】根据左视图是从物体的左面看得到的视图解答即可. 【详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的 长方形, 故选C . 【点睛】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图. 11.C 【解析】由题意可知:24020x x =⎧-⎨+≠⎩,解得:x=2, 故选C. 12.A 【解析】 【分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可. 【详解】∵圆锥的轴截面是一个边长为3cm 的等边三角形, ∴底面半径=1.5cm ,底面周长=3πcm , ∴圆锥的侧面积=×3π×3=4.5πcm 2,【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.6° 【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC 是中线,所以∠BCD=∠B=48°, ∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°. 14.1. 【解析】 【分析】首先根据垂径定理得到OA=AB ,结合等边三角形的性质即可求出∠AOC 的度数. 【详解】解:∵弦AC 与半径OB 互相平分, ∴OA=AB , ∵OA=OC ,∴△OAB 是等边三角形, ∴∠AOB=60°, ∴∠AOC=1°, 故答案为1. 【点睛】本题主要考查了垂径定理的知识,解题的关键是证明△OAB 是等边三角形,此题难度不大. 15.1x = 【解析】 【分析】两边同时乘2(3)x x +,得到整式方程,解整式方程后进行检验即可. 【详解】解:两边同时乘2(3)x x +,得34x x +=,解得1x =,检验:当1x =时,2(3)x x +≠0, 所以x=1是原分式方程的根, 故答案为:x=1.本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.16.【解析】【分析】首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故答案为:.【点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.17.>【解析】【分析】根据一次函数的性质,k<0时,y随x的增大而减小.【详解】因为k=﹣12<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n. 故答案为:> 【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数的性质. 18.a(a -4)2 【解析】 【分析】首先提取公因式a ,进而利用完全平方公式分解因式得出即可. 【详解】32816a a a -+22816()4.)(a a a a a =-+=-故答案为:2()4.a a - 【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(Ⅰ)30P ∠=︒,PA =4;(Ⅱ)45APC ∠=︒,2PA +=【解析】 【分析】(Ⅰ)易得△OAC 是等边三角形即∠AOC=60°,又由PC 是○O 的切线故PC ⊥OC ,即∠OCP=90°可得∠P 的度数,由OC=4可得PA 的长度(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,易得∠APC=45°;过点C 作CD ⊥AB 于点D ,易得AD=12AO=12CO ,在Rt △DOC 中易得CD 的长,即可求解 【详解】解:(Ⅰ)∵AB 是○O 的直径,∴OA 是○O 的半径. ∵∠OAC=60°,OA=OC ,∴△OAC 是等边三角形. ∴∠AOC=60°.∵PC 是○O 的切线,OC 为○O 的半径, ∴PC ⊥OC ,即∠OCP=90°∴∠P=30°. ∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC 是等边三角形, ∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°. ∵AQ=CQ ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°. ∴∠APC=∠AQC+∠QAO=45°. 如图②,过点C 作CD ⊥AB 于点D.∵△OAC是等边三角形,CD⊥AB于点D,∴∠DCO=30°,AD=12AO=12CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=23∴PD=CD=23∴AP=AD+DP=2+23【点睛】此题主要考查圆的综合应用20.(1)证明见解析;(2)610 5【解析】【分析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB为⊙O的直径,∴BD⊥AC,∵D是AC的中点,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)连接OD,由(1)可得∠AOD=90°,∴OF=1, BF=3,AD ==∴DF ==,∵»»BDBD =, ∴∠E=∠A , ∵∠AFD=∠EFB , ∴△AFD ∽△EFB ,∴DF BFAD BE =3BE =,∴BE =【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.21.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:(22+,32-)或(22,32-)【解析】 【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标; (2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标. 【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩,解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =, ∴点B 的坐标为(﹣1,0). 故答案为﹣2;﹣1;(﹣1,0).①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0). 设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1, ∴直线AC 的解析式为y=x ﹣1, ∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去), ∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b . ∵将x=1,y=0代入得:﹣1+b=0,解得b=1, ∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去), ∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5). (1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC , ∴D 是AC 的中点. 又∵DF ∥OC , ∴DF=12OC=32, ∴点P 的纵坐标是32-,∴23232x x --=-,解得:x=22±,∴当EF 最短时,点P 的坐标是:,32-)或(,32-).22.23【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 详解:原式=111222x x x x x +---÷++()()=112•21x x x x x ()()()+-++-+=1x --() =1x - 当13x =时,原式=113-=23. 点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法. 23.(1)A (﹣4,0),B (3,0);(2)14-;(3)56.【解析】 【分析】(1)设y=0,可求x 的值,即求A ,B 的坐标;(2)作MD ⊥x 轴,由CO ∥MD 可得OD=3,把x=-3代入解析式可得M 点坐标,可得ON 的长度,根据S △BMC =274,可求a 的值; (3)过M 点作ME ∥AB ,设NO=m ,MNNB=k ,可以用m ,k 表示CO ,EO ,MD ,ME ,可求M 点坐标,代入可得k ,m ,a 的关系式,由CO=2km+m=-12a ,可得方程组,解得k ,即可求结果. 【详解】(1)设y=0,则0=ax 2+ax ﹣12a (a <0), ∴x 1=﹣4,x 2=3,∴A(﹣4,0),B(3,0)(2)如图1,作MD⊥x轴,∵MD⊥x轴,OC⊥x轴,∴MD∥OC,∴MBMN=OBOD且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴当x=﹣3时,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴12 ON OBMD BD==,∴ON=﹣3a,根据题意得:C(0,﹣12a),∵S△MBC=274,∴12(﹣12a+3a)×6=274,a=﹣14,(3)如图2:过M点作ME∥AB,∵ME∥AB,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,设NO=m,MNNB=k(k>0),∵ME∥AB,∴ENON=MN MENB OB==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即1221 ma k-=+,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×ma=(k+1)(9k﹣12),∴1221k-+=9k-12,∴k=56,∴5=6 MNNB.【点睛】本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大.24.(1)①45°,②2(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明见解析. 【解析】【分析】(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得DE=1,在Rt△CDE 中,由∠ACD=45°,DE=1,可得EC=1,AC= ,同理可得AH 的长;(2)如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【详解】(1)①∵AD 平分∠BAC,∠BAC=60°,∴∠B=180302︒︒-=75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过D 作DE⊥AC 交AC 于点E,在Rt△ADE 中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=3,在Rt△CDE 中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=3+1,在Rt△ACH 中,∵∠DAC=30°,∴CH=12AC=3+1∴AH=222231(31)2AC CH⎛⎫+-=+- ⎪⎝⎭=33+;(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明:如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AB+AC=AB+AF=2AB+BF=2(AB+BG )=2AG=2AH .【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.25.(1)()3084{?48(8)x x y x x≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的. 【解析】【分析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48 ∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x =(x >8) ∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩ (2)结合实际,令48y x =中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入3y x 4=,得:x=4 把y=3代入48y x=,得:x=16∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.26.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】 【分析】 (1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长. 【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.27.(1)1000 (2)200 (3)54°(4)4000人 【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360°乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解.试题解析:(1)被调查的同学的人数是400÷40%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;(4)×200=4000(人).答:校20000名学生一餐浪费的食物可供4000人食用一餐.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

2020年辽宁省沈阳市和平区中考数学一模试卷 (解析版)

2020年辽宁省沈阳市和平区中考数学一模试卷 (解析版)

2020年中考数学一模试卷一、选择题1.下列各数中比1大的数是()A.B.0.5C.0D.﹣22.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣84.由若干个相同的小正方体搭成的一个几何体的俯视图如图所示,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.5.六边形的内角和是()A.540°B.720°C.900°D.1080°6.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P 所在的格点为()A.P1B.P2C.P3D.P47.下列说法正确的是()A.“三角形任意两边之差小于第三边”是必然事件B.在连续5次的测试中,两名同学的平均分相同,方差较大的同学成绩更稳定C.某同学连续10次抛掷质量均匀的硬币,6次正面向上,因此正面向上的概率是60%D.检测某品牌笔芯的使用寿命,适宜用普查8.方程x2﹣2x﹣1=0根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根9.计算:(﹣x2y)2÷(﹣2xy)=()A.x B.x3y C.﹣x3y D.﹣2x3y10.在圆内接正方形ABCD中,正方形的边长AB是8,则这个正方形的中心角和边心距是()A.90°,4B.90°,1C.45°,4D.45°,1二、填空题(每小题3分,共18分)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,直线a∥b,若∠1=139°,则∠2=.14.如图,在平行四边形ABCD中,AB=3cm,BC=2cm,连接BD,作BD的垂直平分线交CD于点E,交BD于点F,连接BE,则△BCE的周长是cm.15.如图,假设篱笆(虚线部分)的长度是8m,则所围成矩形ABCD的最大面积是.16.正方形ABCD,点P为正方形内一点,且满足PA=3,PB=2,PC=5,则∠APB 的度数为度.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.先化简,再求值:(﹣1)•(),其中x=(﹣2)2,y=.18.在一个不透明的盒子中放有三张卡片,每张卡片上写有1个实数,分别为1,2,3.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是2的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为点P的横坐标,卡片不放回,再随机抽取一张卡片,将卡片上的实数作为点P的纵坐标,两次抽取的卡片上的实数分别作为点P的横纵坐标.请你用列表法或树状图法,求出点P在反比例函数y=上的概率.19.已知:如图,在矩形ABCD中,AD=2,对角线AC与BD相交于点O,BD=4,过点C作BD的平行线,过点D作AC的平行线,两线相交于点E.(1)求DE的长;(2)直接写出四边形OCED的面积为.四、(每小题8分,共16分)20.某中学准备开展“体育活动”,决定开设篮球、足球、乒乓球和羽毛球四种项目的活动,为了了解学生对这四项活动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择这四项活动中的一种),并将调查结果绘制成如下的不完整的统计图:根据以上统计图提供的信息,解答下列问题:(1)a=,b=,c=;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计该校1000名学生中有多少名学生最喜爱打篮球.21.一个批发兼零售的文具店规定:凡一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,小明来该店购买铅笔,如果给学校九年级学生每人购买1支,那么只能按零售价付款,需用150元;如果多购买60支,那么可以按批发价付款,同样需用150元.(1)这个学校九年级的学生总数在什么范围内?(2)如果按批发价购买360支与按零售价购买300支所付款相同,那么这个学校九年级学生有多少人?五、(本题10分)22.如图,四边形ABCD是⊙O的内接四边形,四边形ABCD两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=50°,连接BD.(1)求∠A的度数;(2)当⊙O的半径等于2时,请直接写出的长(结果保留π)六、(本题10分)23.在平面直角坐标系中,一次函数y=﹣x+3图象与x轴交于点A,与y轴交于点B.(1)请直接写出点A坐标,点B坐标;(2)点C是直线AB上一个动点,当△AOC的面积是△BOC的面积的2倍时,求点C 的坐标;(3)点D为直线AB上的一个动点,在平面内找另一个点E,且以O、B、D、E为顶点的四边形是菱形,请直接写出满足条件的菱形的周长.七、(本题12分)24.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.八、(本题12分)25.如图,在平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx经过A(﹣5,0),B (﹣,)两点,连接AB,BO.(1)求抛物线表达式;(2)点C是第三象限内的一个动点,若△AOC与△AOB全等,请直接写出点C坐标;(3)若点D从点O出发沿线段OA向点A作匀速运动,速度为每秒1个单位长度,同时线段OA上另一个点H从点A出发沿线段AO向点O作匀速运动,速度为每秒2个单位长度(当点H到达点O时,点D也同时停止运动).过点D作x轴的垂线,与直线OB交于点E,延长DE到点F,使得EF=DE,以DF为边,在DF左侧作等边三角形DGF(当点D运动时点G、点F也随之运动).过点H作x轴的垂线,与直线AB交于点L,延长HL到点M,使得LM=HL,以HM为边,在HM的右侧作等边三角形HMN (当点H运动时,点M、点N也随之运动).当点D运动t秒时,△DGF有一条边所在直线恰好过△HMN的重心,直接写出此刻t的值.参考答案一、选择题(每小题2分,共20分)1.下列各数中比1大的数是()A.B.0.5C.0D.﹣2【分析】根据实数比较大小的法则进行比较即可.解:A、比1大,故此选项符合题意;B、0.5比1小,故此选项不合题意;C、0比1小,故此选项不合题意;D、﹣2比1小,故此选项不合题意;故选:A.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解:A、此图形不是中心对称图形,是轴对称图形,故此选项不合题意;B、此图形不是中心对称图形,是轴对称图形,故此选项不合题意;C、此图形是中心对称图形,不是轴对称图形,故此选项不合题意;D、此图形是中心对称图形,也是轴对称图形,故此选项符合题意.故选:D.3.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000001=1×10﹣7,故选:C.4.由若干个相同的小正方体搭成的一个几何体的俯视图如图所示,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,1,2个正方形.解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,1,2个正方形.故选:B.5.六边形的内角和是()A.540°B.720°C.900°D.1080°【分析】多边形内角和定理:n边形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.6.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4【分析】由于∠BAC=∠PED=90°,而=,则当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABC∽△EPD,然后利用DE=4,所以EP=6,则易得点P落在P3处.解:∵∠BAC=∠PED,而=,∴=时,△ABC∽△EPD,∵DE=4,∴EP=6,∴点P落在P3处.故选:C.7.下列说法正确的是()A.“三角形任意两边之差小于第三边”是必然事件B.在连续5次的测试中,两名同学的平均分相同,方差较大的同学成绩更稳定C.某同学连续10次抛掷质量均匀的硬币,6次正面向上,因此正面向上的概率是60%D.检测某品牌笔芯的使用寿命,适宜用普查【分析】分别利用概率的意义以及抽样调查的意义以及方差的意义分别分析得出答案.解:A、三角形任意两边之差小于第三边,是必然事件,正确;B、在连续5次的测试中,两名同学的平均分相同,方差较小的同学成绩更稳定,故本选项错误;C、某同学连续10次抛掷质量均匀的硬币,6次正面向上,并不能说明正面向上的概率是60%,而是正面朝上的概率是50%,故本选项错误;D、检测某品牌笔芯的使用寿命,适宜用抽样调查,故本选项错误;故选:A.8.方程x2﹣2x﹣1=0根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.解:∵△=(﹣2)2﹣4×(﹣1)=8>0,∴方程有两个不相等的实数根.故选:D.9.计算:(﹣x2y)2÷(﹣2xy)=()A.x B.x3y C.﹣x3y D.﹣2x3y【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.解:(﹣x2y)2÷(﹣2xy)=x4y2÷(﹣2xy)=﹣x3y.故选:C.10.在圆内接正方形ABCD中,正方形的边长AB是8,则这个正方形的中心角和边心距是()A.90°,4B.90°,1C.45°,4D.45°,1【分析】运用正方形的性质,以及与外接圆的关系,可分别求出中心角,边心距.解:∵正方形的边长为8,由中心角只有四个可得出=90°,∴中心角是90°,正方形的外接圆半径是:sin∠AOC=,∵AC==4,∠AOC=45°,∴OC=AC=4,∴边心距为:4.故选:A.二、填空题(每小题3分,共18分)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,直线a∥b,若∠1=139°,则∠2=41°.【分析】由平行线的性质可得∠1+∠2=180°,即可求解.解:∵直线a∥b,∴∠1+∠2=180°,∵∠1=139°,∴∠2=180°﹣139°=41°,故答案为:41°.14.如图,在平行四边形ABCD中,AB=3cm,BC=2cm,连接BD,作BD的垂直平分线交CD于点E,交BD于点F,连接BE,则△BCE的周长是5cm.【分析】根据线段垂直平分线的性质和平行四边形的性质解答即可.解:∵BD的垂直平分线交CD于点E,交BD于点F,∴DE=BE,∵四边形ABCD是平行四边形,∴DC=AB=3(cm),∴△BCE的周长=BE+CE+BC=DE+CE+BC=CD+BC=3+2=5(cm),故答案为:5.15.如图,假设篱笆(虚线部分)的长度是8m,则所围成矩形ABCD的最大面积是16.【分析】首先设围成矩形ABCD的长是xm,则宽为(8﹣x)m,利用面积公式写出矩形的面积表达式,再配方,将其写成顶点式,然后根据二次函数的性质可得答案.解:设围成矩形ABCD的长是xm,则宽为(8﹣x)m,矩形的面积为:S矩形ABCD=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16.∵二次项系数为﹣1<0,∴当x=4时,S矩形ABCD有最大值,最大值为16.故答案为:16.16.正方形ABCD,点P为正方形内一点,且满足PA=3,PB=2,PC=5,则∠APB 的度数为135度.【分析】根据题意可以画出相应的图形,然后画出△APB绕点B旋转90°得到的△AP′C,然后根据正方形的性质和旋转的性质可以求得∠BP′P和∠BP′P的度数,然后即可得到∠∠BP′C,从而可以得到∠APB的度数.解:将△APB绕点B旋转90°得到△AP′C,则∠PBP′=90°,BP=BP′,AP=P′C,∠APB=∠CP′B,∵PB=2,∴BP′=2,∴PP′=4,∠BP′P=45°,∵PA=3,PC=5,∴P′C=3,∵PP′2+P′C2=42+32=52=PC2,∴△PP′C是直角三角形,∠PP′C=90°,∴∠BP′C=∠BP′P+∠PP′C=135°,∴∠APB=135°,故答案为:135.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.先化简,再求值:(﹣1)•(),其中x=(﹣2)2,y=.【分析】先把括号内通分,再把分子分解因式后约分得到原式=x﹣y,接着利用乘方的意义和算术平方根的定义求出x、y的值,然后把x、y的值代入计算即可.解:原式=•=x﹣y,当x=(﹣2)2=4,y==2时,原式=4﹣2=2.18.在一个不透明的盒子中放有三张卡片,每张卡片上写有1个实数,分别为1,2,3.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是2的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为点P的横坐标,卡片不放回,再随机抽取一张卡片,将卡片上的实数作为点P的纵坐标,两次抽取的卡片上的实数分别作为点P的横纵坐标.请你用列表法或树状图法,求出点P在反比例函数y=上的概率.【分析】(1)根据题意可以直接写出卡片上的实数是2的概率;(2)根据题意可以写出所有的可能性,从而可以得到点P在反比例函数y=上的概率.解:(1)由题意可得,卡片上的实数是2的概率是;(2)由树状图可知,一共有六种可能性,其中横坐标和纵坐标的积等于2的有2中可能性,点P在反比例函数y=上的概率是=.19.已知:如图,在矩形ABCD中,AD=2,对角线AC与BD相交于点O,BD=4,过点C作BD的平行线,过点D作AC的平行线,两线相交于点E.(1)求DE的长;(2)直接写出四边形OCED的面积为2.【分析】(1)根据四边形OCED是平行四边形,CO=DO,即可得到四边形OCED是菱形,进而得到DE=DO=BD=2;(2)根据勾股定理即可得到AB的长,再根据矩形和菱形的性质,即可得到四边形OCED 的面积.解:(1)∵DE∥OC,CE∥DO,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴CO=DO,∴四边形OCED是菱形,∴DE=DO=BD=2;(2)∵矩形ABCD中,AD=2,BD=4,∴AB===2,∴S△COD=S矩形ABCD=×2×2=,∴S菱形OCED=2S△COD=2.故答案为:2.四、(每小题8分,共16分)20.某中学准备开展“体育活动”,决定开设篮球、足球、乒乓球和羽毛球四种项目的活动,为了了解学生对这四项活动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择这四项活动中的一种),并将调查结果绘制成如下的不完整的统计图:根据以上统计图提供的信息,解答下列问题:(1)a=100,b=20,c=15;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计该校1000名学生中有多少名学生最喜爱打篮球.【分析】(1)篮球30人占30%,可得总人数,由此可以计算出a;(2)求出羽毛球人数=100﹣30﹣35﹣20=15人,补全条形统计图即可;(3)用样本估计总体的思想即可解决问题.解:(1)30÷30%=100(人),=20%,1﹣35%﹣20%﹣30%=15%,∴a=100,b=20,c=15,故答案为:100,20,15;(2)喜欢羽毛球的人数为:100﹣35﹣30﹣20=15,补全条形统计图如图所示;(3)估计该校1000名学生中有1000×30%=300名学生最喜爱打篮球.21.一个批发兼零售的文具店规定:凡一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,小明来该店购买铅笔,如果给学校九年级学生每人购买1支,那么只能按零售价付款,需用150元;如果多购买60支,那么可以按批发价付款,同样需用150元.(1)这个学校九年级的学生总数在什么范围内?(2)如果按批发价购买360支与按零售价购买300支所付款相同,那么这个学校九年级学生有多少人?【分析】(1)设这个学校九年级学生有x人,根据“如果给学校九年级学生每人购买1支,那么只能按零售价付款;如果多购买60支,那么可以按批发价付款”,即可得出关于x的一元一次不等式组,解之即可得出结论;(2)设铅笔的零售价为y元,则批发价为y元,根据数量=总价÷单价结合150元按批发价比按零售价多购买60支,即可得出关于y的分式方程,解之经检验后即可得出y值,再将其代入中即可求出结论.解:(1)设这个学校九年级学生有x人,依题意,得:,解得:240<x≤300.答:这个学校九年级的学生总数大于240且小于等于300.(2)设铅笔的零售价为y元,则批发价为y元,依题意,得:﹣=60,解得:y=,经检验,y=是原分式方程的解,且符合题意,∴=300.答:这个学校九年级学生有300人.五、(本题10分)22.如图,四边形ABCD是⊙O的内接四边形,四边形ABCD两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=50°,连接BD.(1)求∠A的度数;(2)当⊙O的半径等于2时,请直接写出的长(结果保留π)【分析】(1)根据圆内接四边形的性质得到∠DCE=∠A,根据三角形外角性质得到∠EDF=∠A+50°,然后根据三角形内角和定理得到∠A+50°+∠A+40°=180°,从而解方程得到∠A的度数;(2)连接OB、OD,如图,根据圆周角定理得到∠BOD=2∠A=90°,然后利用弧长公式计算的长.解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠DCE=∠A,∵∠EDF=∠A+∠F=∠A+50°,而∠EDF+∠DCE+∠E=180°,∴∠A+50°+∠A+40°=180°,∴∠A=45°;(2)连接OB、OD,如图,∵∠BOD=2∠A=90°,∴的长==π.六、(本题10分)23.在平面直角坐标系中,一次函数y=﹣x+3图象与x轴交于点A,与y轴交于点B.(1)请直接写出点A坐标(3,0),点B坐标(0,3);(2)点C是直线AB上一个动点,当△AOC的面积是△BOC的面积的2倍时,求点C 的坐标;(3)点D为直线AB上的一个动点,在平面内找另一个点E,且以O、B、D、E为顶点的四边形是菱形,请直接写出满足条件的菱形的周长12或6.【分析】(1)依据一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,即可得到A点和B点的坐标;(2)求出S△AOB=,分两种情况,由面积关系可求出点C的坐标;(3)分OB为边和为对角线两种情况,利用菱形的性质及直角三角形的性质即可得出结论.解:(1)在y=﹣x+3中,令x=0,则y=3;令y=0,则x=3;∴A(3,0),B(0,3);故答案为:(3,0);(0,3).(2)∵A(3,0),B(0,3),∴OA=3,OB=3,∴S△AOB=OA×OB=×3×3=,设C(m,n),①当点C在线段AB上时,如图1,∵△AOC的面积是△BOC的面积的2倍,∴S△AOC=,∴∴m=2或m=﹣2(舍去),∵点C在直线y=﹣x+3上,∴﹣2+3=n,∴n=1,∴C(2,1).②当点C在线段AB的延长线上时,如图2,∵△AOC的面积是△BOC的面积的2倍,∴S△BOC=S△AOB,∴×OB×|m|=,∴m=﹣3或m=3(舍去),∴C(﹣3,6).综合以上可得点C的坐标为(2,1)或(﹣3,6).(3)如图3,以OB为边的菱形OBDE中,∵OB=3,∴周长为3×4=12,如图4,以OB边的菱形OBDE中,同理周长为12.如图5,以OB为对角线的菱形ODBE中,∵OB=OA=3,∴∠OBA=45°,∴∠DBE=90°,∴四边形ODBE为正方形,∴BD=3×.∴四边形ODBE的周长为4×.综上可得以O、B、D、E为顶点的菱形的周长为12或6.故答案为:12或6.七、(本题12分)24.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.八、(本题12分)25.如图,在平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx经过A(﹣5,0),B (﹣,)两点,连接AB,BO.(1)求抛物线表达式;(2)点C是第三象限内的一个动点,若△AOC与△AOB全等,请直接写出点C坐标(﹣,)或(﹣,﹣)或(﹣,﹣);(3)若点D从点O出发沿线段OA向点A作匀速运动,速度为每秒1个单位长度,同时线段OA上另一个点H从点A出发沿线段AO向点O作匀速运动,速度为每秒2个单位长度(当点H到达点O时,点D也同时停止运动).过点D作x轴的垂线,与直线OB交于点E,延长DE到点F,使得EF=DE,以DF为边,在DF左侧作等边三角形DGF(当点D运动时点G、点F也随之运动).过点H作x轴的垂线,与直线AB交于点L,延长HL到点M,使得LM=HL,以HM为边,在HM的右侧作等边三角形HMN (当点H运动时,点M、点N也随之运动).当点D运动t秒时,△DGF有一条边所在直线恰好过△HMN的重心,直接写出此刻t的值1s或s.【分析】(1)利用待定系数法求二次函数的解析式;(2)先根据勾股定理的逆定理证明△AOB是直角三角形,且∠ABO=90°,当△AOC 与△AOB全等,如图1,分两种情况:由对称性可得点C的坐标;(3)分两种情况:①当直线DF经过△HMN的重心P时,如图2,先根据特殊的三角函数值计算∠BAO =60°,根据OA=AH+DH+OD=5,列方程2t+2t+t=5,可得t的值;②当直线DG经过△HMN的重心P时,如图3,根据平行线分线段成比例定理可得结论.解:(1)把A(﹣5,0),B(﹣,)两点代入抛物线y=ax2+bx中得:,解得:,∴y=﹣;(2)如图1,∵A(﹣5,0),B(﹣,),∴AO2=52=25,AB2===,OB2==,∴AB2+OB2=OA2,∴△AOB是直角三角形,且∠ABO=90°,当△AOC与△AOB全等,如图1,分两种情况:①在x轴的上方,由对称得:C1(﹣,);②在x轴的下方,同理得:C2(﹣,﹣),C3(﹣,﹣);综上,点C的坐标是(﹣,)或(﹣,﹣)或(﹣,﹣);(3)分两种情况:①当直线DF经过△HMN的重心P时,如图2,连接NL,∵LM=LH,且△HMN是等边三角形,∴P在LN上,由题意得:OD=t,AH=2t,由(2)知:AB=,OA=5,∴cos∠BAO==,∴∠BAO=60°,Rt△LAH中,∴LH=2t,HN=4t,∴LN=6t,∵FD⊥x轴,HM⊥x轴,∴∠LHD=∠PDH=∠PLH=90°,∴四边形PLHD是矩形,∵P是重心,∴PL=DH=2t,∵OA=AH+DH+OD=5,∴2t+2t+t=5,解得:t=1;②当直线DG经过△HMN的重心P时,如图3,∵DP∥MN,∴,∵LH=LM,∴,∵LP∥DH,∴,∴,解得:t=,综上,t的值是1s或s.故答案为:1s或s.。

2020年辽宁省沈阳市沈北新区中考数学一模试卷(详解版)

2020年辽宁省沈阳市沈北新区中考数学一模试卷(详解版)

2020年辽宁省沈阳市沈北新区中考数学一模试卷一、选择题(每题2分,共20分)1.(2分)下列各数中最大的数是()A.5B C.πD.﹣82.(2分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×1073.(2分)如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱4.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.(2分)下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y26.(2分)点P(4,3)关于y轴的对称点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(2分)已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系()A.y1>y2B.y1<y2C.y1=y2D.无法确定8.(2分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152°C.142°D.128°9.(2分)某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是()A.90 分B.85 分C.95 分D.100 分10.(2分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是()A.当x<2时,y随x增大而增大B.a+b+c<0C.抛物线过点(﹣4,0)D.4a+2b+c=0二、填空题(每题3分,共18分)11.(3分)分解因式:x4﹣2x2y2+y4=.12.(3分)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.13.(3分)如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是 度.14.(3分)口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .15.(3分)已知:如图,AB 是⊙O 的直径,C 是⊙O 上的一点,∠BAC 的平分线交⊙O 于D ,若∠ABC =40°,则∠ABD = 度.16.(3分)如图,在矩形ABCD 中,AB =4,BC =6,将△ABE 沿着AE 折叠至△AB 'E ,若BE =CE ,连接B 'C ,则B ′C 的长为 .三、解答题17.(6分)(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣2. 18.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查. (1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率. 19.(8分)某中学为了提高学生的综合素质,成立了以下社团A :机器人,B :围棋,C :羽毛球,D :电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.20.(8分)如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.21.(6分)九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?22.(10分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.23.(12分)如图,平面直角坐标系中,直线y A、B.点C 在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.24.(12分)猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE 在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.25.(12分)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.2020年辽宁省沈阳市沈北新区中考数学一模试卷参考答案与试题解析一、选择题(每题2分,共20分)1.(2分)下列各数中最大的数是()A.5B C.πD.﹣8【解答】解:根据实数比较大小的方法,可得- <5所以各数中最大的数是5.故选:A.2.(2分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×107【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.3.(2分)如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.4.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【解答】解:∵x+1≥2,∴x≥1.故选:A.5.(2分)下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y2【解答】解:∵x4+x4=2x4,故选项A错误;∵x3•x2=x5,故选项B错误;∵(x2y)3=x6y3,故选项C正确;∵(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故选项D错误;故选:C.6.(2分)点P(4,3)关于y轴的对称点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(4,3)关于y轴的对称点坐标为:(﹣4,3),则此点在第二象限.故选:B.7.(2分)已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系()A.y1>y2B.y1<y2C.y1=y2D.无法确定【解答】解:∵反比例函数y=kx(k>0)中,k>0,∴在每个象限内,y随x的增大而减小,∵点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,且﹣2>﹣4∴y1<y2,故选:B.8.(2分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152°C.142°D.128°【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵矩形ABCD的对边平行,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°,故选:C.9.(2分)某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是()A.90 分B.85 分C.95 分D.100 分【解答】解:这组数据中90出现了两次,次数最多,所以这组数据的众数为90分.故选:A.10.(2分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是()A.当x<2时,y随x增大而增大B.a+b+c<0C.抛物线过点(﹣4,0)D.4a+2b+c=0【解答】解:∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴当x<2时,y随x增大而减小,故选项A错误;该抛物线过点(0,0),当x=1时,y=a+b+c<0,故选项B正确;当x=2时,y=4a+2b+c<0,故选项D错误;当x=﹣4时,y>0,故选项C错误;故选:B.二、填空题(每题3分,共18分)11.(3分)分解因式:x4﹣2x2y2+y4=(x+y)2(x﹣y)2.【解答】解:x4﹣2x2y2+y4=(x2﹣y2)2=(x+y)2(x﹣y)2.故答案为:(x+y)2(x﹣y)2.12.(3分)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为85.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5×BD,∴12×5×BD=4,解得:BD=85.故答案为:8 513.(3分)如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是67.5度.【解答】解:∵四边形ABCD是正方形,∴∠BAC=45°,∵AE=AB,∴∠BEA=∠ABE=°°180-452=67.5°.故答案为:67.5.14.(3分)口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是0.3.【解答】解:根据概率公式摸出黑球的概率是1﹣0.2﹣0.5=0.3.15.(3分)已知:如图,AB是⊙O的直径,C是⊙O上的一点,∠BAC的平分线交⊙O于D,若∠ABC=40°,则∠ABD=65度.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°;∴∠BAC=50°;∵AD平分∠BAC,∴∠DAC=12∠BAC=25°;∴∠DBC=∠DAC=25°;故∠ABD=∠ABC+∠DBC=65°.16.(3分)如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C的长为185.【解答】解:∵将△ABE 沿着AE 折叠至△AB 'E ,∴S △ABE =S △AB 'E ,BE =B 'E ,∵BE =CE ,∴BE =EC =B 'E =3,∴∠BB 'C =90°,在Rt △ABE 中,AE 5, ∵12×AE ×BB '=2××AB ×BE , ∴BB '=2435⨯⨯=245,∴B 'C 185, 故答案为:185. 三、解答题17.(6分)(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣2.【解答】解:原式═1+39+=.18.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A 小区的概率是 14; (2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率.【解答】解:(1)甲组抽到A 小区的概率是14, 故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.19.(8分)某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×60200=300(人), 答:这1000名学生中有300人参加了羽毛球社团.20.(8分)如图,已知点E 、F 在四边形ABCD 的对角线延长线上,AE =CF ,DE ∥BF ,∠1=∠2.(1)求证:△AED ≌△CFB ;(2)若AD ⊥CD ,四边形ABCD 是什么特殊四边形?请说明理由.【解答】(1)证明:∵DE ∥BF ,∴∠E =∠F ,在△AED 和△CFB 中,E=F 1=2AE CF ⎧⎪⎨⎪=⎩∠∠∠∠,∴△AED ≌△CFB (AAS );(2)解:四边形ABCD 是矩形.理由如下:∵△AED ≌△CFB ,∴AD =BC ,∠DAE =∠BCF ,∴∠DAC =∠BCA ,∴AD ∥BC ,∴四边形ABCD 是平行四边形,又∵AD ⊥CD ,∴四边形ABCD 是矩形.21.(6分)九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?【解答】解:设慢车与快车的速是xkm /h ,则快车的速度是1.2xkm /h ,根据题意得15011502 1.2x x-=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.22.(10分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.【解答】(1)证明:如图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN=.23.(12分)如图,平面直角坐标系中,直线y A、B.点C 在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)对于直线y x当y=0 时,0,解得:x=1,∴A(1,0),∴OA=1,当x=0 时,y,∴B(0,∴OB,∵∠AOB=90°,∴AB2,∵AB:AC=1:2,∴AC=4,∴OC=3,∴C(﹣3,0);(2)如图所示,∵OA=1,OBAB=2,∴∠ABO=30°,同理:BC=OCB=30°,∴∠OBC=60°,∴∠ABC=90°,分两种情况考虑:①若M在线段BC上时,BC=,CM=t,可得BM=BC﹣CM=t,此时S△ABM=12BM•AB=12×(﹣t)×2=t(0≤t<;②若M在BC延长线上时,BC=2,CM=t,可得BM=CM﹣BC=t﹣此时S△ABM=12BM•AB=12×(t﹣2=t﹣t≥);综上所述,S=(0t tt t⎧≤<⎪⎨-≥⎪⎩;(3)存在.若AB是菱形的边,如图2所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),综上,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0).24.(12分)猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE 在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=ME,DM⊥ME.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【解答】猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD 和CEFG 是矩形,∴AD ∥EF ,∴∠EFM =∠HAM ,又∵∠FME =∠AMH ,FM =AM ,在△FME 和△AMH 中,EFM=HAM FME=AMH FM AM⎧⎪=⎨⎪⎩∠∠∠∠ ∴△FME ≌△AMH (ASA )∴HM =EM ,在RT △HDE 中,HM =EM ,∴DM =HM =ME ,∴DM =ME .(1)如图1,延长EM 交AD 于点H ,∵四边形ABCD 和CEFG 是正方形,∴AD ∥EF ,∴∠EFM =∠HAM ,又∵∠FME =∠AMH ,FM =AM ,在△FME 和△AMH 中,EFM=HAM FME=AMH FM AM⎧⎪=⎨⎪⎩∠∠∠∠ ∴△FME ≌△AMH (ASA )∴HM =EM ,在RT △HDE 中,HM =EM ,∴DM =HM =ME ,∴DM=ME.∵四边形ABCD和CEFG是正方形,∴AD=CD,CE=EF,∵△FME≌△AMH,∴EF=AH,∴DH=DE,∴△DEH是等腰直角三角形,又∵MH=ME,故答案为:DM=ME,DM⊥ME.(2)如图2,连接AC,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AC和EC在同一条直线上,在Rt△ADF中,AM=MF,∴DM=AM=MF,∠MDA=∠MAD,∴∠DMF=2∠DAM.在Rt△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.∵∠MDA=∠MAD,∠MAE=∠MEA,∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.∴DM⊥ME.25.(12分)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.【解答】解:(1)∵二次函数y=ax2+bx+c的图象经过A(﹣1,0),C(0,5),(1,8),则有:85a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得145abc=-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x2+4x+5.(2)令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,∴B(5,0).由y=﹣x2+4x+5=﹣(x﹣2)2+9,得顶点M(2,9)如图1中,作ME⊥y轴于点E,可得S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC=12(2+5)×9﹣12×4×2﹣12×5×5=15.(3)存在.如图2中,∵OC=OB=5,∴△BOC是等腰直角三角形,①当C为直角顶点时,N1(﹣5,0).②当B为直角顶点时,N2(0,﹣5).③当N为直角顶点时,N3(0,0).综上所述,满足条件的点N坐标为(0,0)或(0,﹣5)或(﹣5,0).。

2020年辽宁省沈阳市铁西区一模数学试卷(详解版)

2020年辽宁省沈阳市铁西区一模数学试卷(详解版)

(2)图中线段 AD、BD 和 AB 围成的阴影部分的面积=

六、(本题 10 分) 23.(10 分)如图,在平面直角坐标系中,直线 y=kx+b 与 x 轴交于点 A(5,0),与 y 轴交
4
于点 B;直线 y═ x+6 过点 B 和点 C,且 AC⊥x 轴.点 M 从点 B 出发以每秒 2 个单位
x y 7
A.
x
2
y
2
x y 7
B
y
2x
2

x y 7
C.
x
2
y
2
x y 7
D.
x
2
y
2
【解答】解:设甲数为 x,乙数为 y,
x y 7
根据题意可列方程组:
x
2
y
2

故选:A.
6.(2 分)关于“可能性是 1%的事件在 100 次试验中发生的次数”,下列说法错误的是( )
三角形
二、填空题(每小题 3 分,共 18 分)
11.(3 分)因式分解:ab2﹣4a=

2
12.(3 分)分别写有数字 、
5 、﹣4、0、﹣
2 的五张大小和质地均相同的卡片,从中
3
任意抽取一张,抽到无理数的概率是

13.(3 分)在平面直角坐标系中,点 P 在直线 y=x+b 的图象上,且点 P 在第二象限,PA
第 3页(共 26页)
(1)求抽取的学生总人数;
(2)抽取的学生中,等级为“优秀”的人数为
人;扇形统计图中等级为“不合
格”部分的圆心角的度数为
°;
(3)补全条形统计图;
(4)若该校有学生 3500 人,请根据以上统计结果估计成绩等级为“优秀”和“良好”

2020年辽宁省沈阳市中考数学一模试卷

2020年辽宁省沈阳市中考数学一模试卷

2020年辽宁省沈阳市中考数学一模试卷一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()02.(2分)如图是由6个大小相同的小正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(2分)下列计算正确的是()A.2a2﹣4a2=﹣2B.3a+a=3a2C.3a•a=3a2D.4a6÷2a3=2a24.(2分)已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是()A.3.1536×106B.3.1536×107C.31.536×106D.0.31536×1085.(2分)如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O 的半径是13,BD=24,则sin∠ACD的值是()A.B.C.D.6.(2分)如图,矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,若点A的坐标为(3,4),AB=2,AD∥x轴,则点C的坐标为()A.(6,2)B.(8,)C.(4,3)D.(12,1)7.(2分)某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=58.(2分)如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200D.3009.(2分)如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2C.2D.()a210.(2分)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元二.填空题(每小题3分,共18分)11.(3分)若分式的值为0,则x的值为.12.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为m.13.(3分)不等式组的解集是.14.(3分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD 于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.15.(3分)一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇:③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min时两人相距2km.其中正确的有.(填序号)16.(3分)如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.18.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.19.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.四.解答题(每小题8分,共16分)20.(8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是,类别D所对应的扇形圆心角的度数是度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.(8分)某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?五.解答题(本题10分)22.(10分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.六、解答题(本题10分)23.(10分)如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,过点P作PE⊥AO交AB于点E,一点到达,另一点即停.设点P的运动时间为t秒(t>0).(1)填空:用含t的代数式表示下列各式AP=,CQ=.(2)①当PE=时,求点Q到直线PE的距离.②当点Q到直线PE的距离等于时,直接写出t的值.(3)在动点P、Q运动的过程中,点H是矩形AOBC(包括边界)内一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出点H的横坐标.七、解答题(本题12分)24.(12分)如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.八、解答题(本题12分)25.(12分)如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.2020年辽宁省沈阳市中考数学一模试卷参考答案与试题解析一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.【解答】解:π是无理数,故选:C.2.【解答】解:左视图有2列,每列小正方形数目分别为2,2.故选:D.3.【解答】解:A、原式=﹣2a2,错误;B、原式=4a,错误;C、原式=3a2,正确;D、原式=2a3,错误.故选:C.4.【解答】解:将31536000用科学记数法表示为3.1536×107.故选:B.5.【解答】解:∵AB是直径,∴∠ADB=90°,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B===,∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选:D.6.【解答】解:∵点A的坐标为(3,4),AB=2,∴B(3,2),∵四边形ABCD是矩形,∴AD∥BC,∵AD∥x轴,∴BC∥x轴,∴C点的纵坐标为2,设C(x,2),∵矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,∴k=2x=3×4,∴x=6,∴C(6,2),故选:A.7.【解答】解:由题意可得,,故选:C.8.【解答】解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选:A.9.【解答】解:∵正六边形的边长为a,∴⊙O的半径为a,∴⊙O的面积为π×a2=πa2,∵空白正六边形为六个边长为a的正三角形,∴每个三角形面积为×a×a×sin60°=a2,∴正六边形面积为a2,∴阴影面积为(πa2﹣a2)×=(﹣)a2,故选:B.10.【解答】解:设小慧同学不买卡直接购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.12.【解答】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为90m,∴=,解得h=54(m).故答案为:54.13.【解答】解:解不等式3x+4≤x+10,得:x≤3,解不等式﹣1>4x,得:x<,则不等式组的解集为x<,故答案为:x<.14.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.15.【解答】解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b代入得,解得∴s=8t+10当s=2时,得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min,故④正确.故答案为:①②③④.16.【解答】解:过点A作AM⊥BC于M,∵BD=DC=2,∴DC=4,∴BC=BD+DC=2+4=6,∵△ABC是等边三角形,∴AB=AC=BC=6,∵AM⊥BC,∴BM=BC=×6=3,∴DM=BM﹣BD=3﹣2=1,在Rt△ABM中,AM===3,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADM中,AD===2,∴在Rt△ADG中,AG===8;故答案为:8.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.【解答】解:原式=4×+1﹣2+2=4﹣1.18.【解答】解:(1)甲组抽到A小区的概率是,故答案为:.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为.19.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).四.解答题(每小题8分,共16分)20.【解答】解:(1)本次共调查了10÷20%=50(人),故答案为50;(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°,故答案为32,57.6;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名),答:估计该校有448名学生寒假在家做家务的总时间不低于20小时.21.【解答】解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:=×,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,∴y最大值=112答:该超市用不超过2100元最多可以采购甲玩具112件.五.解答题(本题10分)22.【解答】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.六、解答题(本题10分)23.【解答】解:(1)∵矩形AOBC的顶点C的坐标是(2,4),∴OA=BC=4,OB=AC=2,AO⊥OB由题意得:AP=t,BQ=t,∴CQ=BC﹣BQ=4﹣t;故答案为:t,4﹣t;(2)①延长PE交BC于F,如图1所示:则PF⊥BC,CF=AP=t,∵PE⊥AO,AO⊥OB,∴PE∥OB,∴△APE∽△AOB,∴=,即=,解得:t=1,∴BQ=1,CF=1,∴CQ=4﹣1=3,∴FQ=CQ﹣CF=2;即点Q到直线PE的距离为2;②延长PE交BC于F,如上图1,则PF⊥BC,CF=AP=t,①当Q在P的下方时,由题意得:t++t=4,解得:t=;②当Q在P的上方时,如图2所示:由题意得:4﹣t+=t,解得:t=;故当点Q到直线PE的距离等于时,t的值为秒或秒.(3)∵PE⊥AO,AO⊥OB,∴PE∥OB,∴△APE∽△AOB,∴=,即=,解得:PE=t,∵OP=4﹣t,∴E(t,4﹣t),Q(2,t),①当QE=EB时,四边形EQBH是菱形,如图3所示:延长PE交BC于F,则PF⊥BC,CF=AP=t,则(2﹣t)2+(4﹣2t)2=t2,解得:t=,或t=4(舍去),∴t=,即点H的横坐标为;②当QE=EB时,四边形BQHE是菱形,如图4所示:则BE=BQ=t,∵∠AOB=90°,OB=2,OA=4,∴AB==2,∵△APE∽△AOB,∴=,即=,∴AE=t,∴BE=AB﹣AE=2﹣t,∴2﹣t=t,解得:t=20﹣8,∴t=4=10﹣4,即点H的横坐标为10﹣4;综上所述,点H的横坐标为或10﹣4.七、解答题(本题12分)24.【解答】(1)证明:∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.八、解答题(本题12分)25.【解答】解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∴点C(0,2),∵S=S四边形ADCP=S△APO+S△CPO﹣S△ODC=×AO×y P+×OC×|x P|﹣×CO×OD=4,∴×3×(﹣x2﹣x+2)+×2×(﹣x)﹣×1×2=4,∴x1=﹣1,x2=﹣2,∴点P(﹣1,)或(﹣2,2);(3)①如图2,若点M在CD左侧,连接AM,∵∠MDC=90°,∴∠MDA+∠CDO=90°,且∠CDO+∠DCO=90°,∴∠MDA=∠CDO,且AD=CO=2,MD=CD,∴△MAD≌△DOC(SAS)∴AM=DO,∠MAD=∠DOC=90°,∴点M坐标(﹣3,1),若点M在CD右侧,同理可求点M'(1,﹣1);②如图3,∵抛物线的表达式为:y=﹣x2﹣x+2=﹣(x+1)2+;∴对称轴为:直线x=﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).。

辽宁省沈阳市2020年中考数学一模试卷解析版

辽宁省沈阳市2020年中考数学一模试卷解析版
,x>0的)图象上,若点 A 的坐标为(3,4),AB=2,AD∥x 轴,则点 C 的坐标为( )
A. (6,2)
B. (8, )
C. (4,3) D. (12,1)
7. 某工厂计划生产 300 个零件,由于采用新技术,实际每天生产零件的数量是原计划 的 2 倍,因此提前 5 天完成任务.设原计划每天生产零件 x 个,根据题意,所列方 程正确的是( )
第 4 页,共 21 页
21. 某超市用 1200 元购进一批甲玩具,用 800 元购进一批乙玩具,所购甲玩具件数是 乙玩具件数的 ,已知甲玩具的进货单价比乙玩具的进货单价多 1 元. (1)求:甲、乙玩具的进货单价各是多少元? (2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变), 购进乙玩具的件数比甲玩具件数的 2 倍多 60 件,求:该超市用不超过 2100 元最多 可以采购甲玩具多少件?
根据统计图提供的信息,解答下列问题: (1)本次共调查了______名学生; (2)请根据以上信息直接在答题卡中补全条形统计图; (3)扇形统计图中 m 的值是______,类别 D 所对应的扇形圆心角的度数是______ 度; (4)若该校有 800 名学生,根据抽样调查的结果,请你估计该校有多少名学生寒 假在家做家务的总时间不低于 20 小时.
16. 如图,△ABC 是等边三角形,点 D 为 BC 边上一点,BD= DC=2
,以点 D 为顶点作正方形 DEFG,且 DE=BC,连接 AE,AG .若将正方形 DEFG 绕点 D 旋转一周,当 AE 取最小值时, AG 的长为______.
三、计算题(本大题共 1 小题,共 6.0 分) 17. 计算:4sin60°+(-2019)0-( )-1+|-2 |.

2020年沈阳市大东区中考数学一模试卷 (含答案解析)

2020年沈阳市大东区中考数学一模试卷 (含答案解析)

2020年沈阳市大东区中考数学一模试卷一、选择题(本大题共10小题,共20.0分)1.−2的相反数是()A. −2B. 0C. 2D. 42.下列各种标志中,不是轴对称图形的是()A. B. C. D.3.在如图所示的四个几何体中,俯视图是矩形的是()A. B. C. D.4.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学记数法表示为()A. 2.8×105B. 2.8×106C. 28×105D. 0.28×1075.下列各运算中,计算正确的是()A. (x−2)2=x2−4B. (3a2)3=9a6C. x6÷x2=x3D. x3⋅x2=x56.如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为().A. 50°;B. 60°;C. 70°;D. 80°.7.某校要从甲、乙、丙、丁四名学生中选出一名学生参加数学竞赛,对这四名学生进行了10次数学测试,经过数据分析4人的平均成绩均为95分,S甲2=0.028,S乙2=0.06,S丙2=0.015,S丁2=0.32.则应该选择()A. 甲B. 乙C. 丙D. 丁8.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A. 227B. 14C. 154D. 129.如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于12AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A. CD⊥lB. 点A,B关于直线CD对称C. 点C,D关于直线l对称D. CD平分∠ACB10.已知反比例函数y=−2x的图象上有三个点(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,则下列关系是正确的是()A. y1<y2<y3B. y2<y1<y3C. y3<y2<y1D. y2<y3<y1二、填空题(本大题共6小题,共18.0分)11.因式分解:x2y−9y3=______.12.在Rt△ABC中,若∠C=90°,CB=√3,AC=3,则sinA=______.13.某钢铁厂今年1月份钢产量为4万吨,三月份钢产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是______.14.如图,直线l1:y=x+1与直线l2:y=kx+b相交于点P(a,2),则关于x的不等式x+1<kx+b的解集为______.15.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有______个,第n幅图中共有______个.16.如图,在▱ABCD中,∠BCD=60°,AB=2BC=4.将▱ABCD绕点B逆时针旋转一定角度后得到▱A′BC′D′,其中点C的对应点C′落在边CD上,则图中阴影部分的面积是______.三、解答题(本大题共9小题,共82.0分))−117.计算:|1−√2|+√8+(1218.如图,点E、F在AB上,且AF=BE,AC=BD,AC//BD.求证:∠C=∠D.19.某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E F上学方式电动车私家车公共交通自行车步行其他根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有______人,其中选择B类的人数有______人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.20.袋中有一个红球和两个自球,它们除颜色外其余都相同,任意摸出一球,记下球的颜色,放回袋中,搅匀后再任意摸出一球,记下它的颜色.(1)请把树状图填写完整.(2)根据树状图求出两次都摸到白球的概率.21.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价−进价−销售成本).22.如图,已知AB是⊙O的直径,CD与⊙O相切于点D,且AD//OC.(1)求证:BC是⊙O的切线;(2)延长CO交⊙O于点E.若∠CEB=30°,⊙O的半径为2,求BD⏜的长.(结果保留π)23.如图,在平面直角坐标系中,直线y=−3x与直线y=3相交于点A,点P(x,y)为直线y=3上一动点,作直线OP(1)若点P的横坐标为2,求△AOP的面积;(2)若△AOP的面积为6,求点P的坐标;(3)若点P运动到点A的右侧,且∠AOP=45°,求直线OP的函数解析式.24.如图,在矩形ABCD中,AB=8,BC=6,点P、点E分别是边AB、BC上的动点,连结DP、PE.将△ADP与△BPE分别沿DP与PE折叠,点A与点B分别落在点A′,B′处.(1)当点P运动到边AB的中点处时,点A′与点B′重合于点F处,过点C作CK⊥EF于K,求CK的长;(2)当点P运动到某一时刻,若P,A′,B′三点恰好在同一直线上,且A′B′=4,试求此时AP的长.x2+bx−2与x轴交于A,B两点,与y轴交于C点,且25.如图,抛物线y=12A(−1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.【答案与解析】1.答案:C解析:本题考查相反数.根据相反数的概念:只有符号不同的两个数,叫互为相反数,特别地,0的相反数是0,求解即可.解:−2的相反数是2,故选C.2.答案:D解析:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的知识求解.解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选D.3.答案:D解析:解:A、圆柱俯视图是圆,故此选项错误;B、圆锥俯视图是带圆心的圆,故此选项错误;C、三棱柱俯视图是三角形,故此选项错误;D、长方体俯视图是矩形,故此选项正确.故选:D.俯视图是分别从物体上面看,所得到的图形.本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.答案:B解析:解:280万=2.8×106,故选:B.颗学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.答案:D解析:解:(A)原式=x2−4x+4,故A错误;(B)原式=27a6,故B错误;(C)原式=x4,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.答案:D解析:[分析]如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数.[详解]∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∠1+60∘=180∘,∴32∴∠1=80°.故选D.[点睛]本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.7.答案:C解析:本题主要考查了方差的含义和性质的应用.解答此题根据方差的含义解答即可.解:∵这4人的平均成绩相等,而S丙2<S甲2<S乙2<S丁2,∴这4人中丙的成绩最稳定,∴应该选择丙,故选C.8.答案:A解析:解:从一副(54张)扑克牌中任意抽取一张,正好为K的概率=454=227.故选:A.直接根据概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.答案:C解析:【试题解析】解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以D选项正确;因为AD不一定等于AC,所以C选项错误.故选:C.利用基本作图可对A进行判断;利用CD垂直平分AB可对B、D进行判断;利用AC与AD不一定相等可对C进行判断.本题考查了作图−基本作图:掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).10.答案:B解析:本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.解:∵反比例函数y=−2x,∴函数图象在第二、四象限,且在每个象限内,y随x的增大而增大,∵函数的图象上有三个点(x1,y1),(x2,y2)、(x3,y3),且x1>x2>0>x3,∴y3>0,0>y1>y2,∴y2<y1<y3,故选B.11.答案:y(x+3y)(x−3y)解析:解:原式=y(x2−9y2)=y(x+3y)(x−3y).故答案是:y(x+3y)(x−3y).首先提公因式y,然后利用平方差公式分解即可.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.答案:12解析:【试题解析】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.根据勾股定理求出AB,根据正弦的定义计算即可.解:由勾股定理得,AB=√BC2+AC2=2√3,则sinA=BCAB =12,故答案为:12.13.答案:10%解析:解:设2、3月份平均每月的增长率是x万吨,则二月份钢产量为4(1+x)万吨,三月份钢产量为4(1+x)2万吨,由题意可得:4(1+x)2=4.84,解得:x1=0.1=10%,x2=−2.1(不合题意舍去),故答案为10%.要求平均每月的增长率,需设每月增长率为x,据题意可知:三月份钢产量=4.84万吨,依此等量关系列出方程,求解即可.解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份钢产量的代数式.14.答案:x<1解析:解:∵直线l1:y=x+1过点P(a,2),∴2=a+1,解得:a=1,则不等式x+1<kx+b的解集为x<1,故答案为:x<1.根据y=x+1确定a的值,进而可得P点坐标,由图象可得在直线x=1的左边x+1<kx+b,进而可得不等式解集.此题主要考查了一次函数与一元一次不等式,关键是正确确定a的值.15.答案:7 2n−1解析:解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2−1=3个.第3幅图中有2×3−1=5个.第4幅图中有2×4−1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n−1)个.故答案为:7;2n−1.根据题意分析可得:第1幅图中有1个,第2幅图中有2×2−1=3个,第3幅图中有2×3−1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.16.答案:2π3解析:解:如图,连接BD、BD′,∵▱A′BC′D′是由▱ABCD绕点B旋转得到的,∴∠ABA′=∠CBC′=∠DBD′,AB=A′B,CB=C′B,BD=BD′,∵∠BCD=60°,AB=2BC=4,∴BC′=BC=2=12AB=12CD,∴△BCD是直角三角形,∠ABA′=∠CBC′=∠DBD′=60°,∴BD=√CD2−BC2=2√3,则阴影部分的面积=S扇形BAA′−S扇形BDD′=60⋅π⋅42360−60⋅π⋅(2√3)2360=23π.故答案为:23π由旋转可得CB=C′B,根据∠C=60°可得△BCC′为等边三角形、△BCD为直角三角形,继而可得旋转角∠ABA′=∠DBD′=∠CBC′=60°,BD=2√3,最后根据阴影部分的面积=S扇形BAA′−S扇形BDD′计算可得.本题主要考查旋转的性质、平行四边形的性质、勾股定理、等边三角形等知识点,根据已知条件求得旋转半径和旋转角是求扇形面积的关键.17.答案:解:原式=√2−1+2√2+2=3√2+1.解析:直接利用绝对值的性质、二次根式的性质、负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.答案:证明:∵AC//BD,∴∠A=∠B,在△ACF和△BDE中{AC=BD ∠A=∠B AF=BE,∴△ACF≌△BDE(SAS),∴∠C=∠D.解析:本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.由平行可得∠A=∠B,可证明△ACF≌△BDE,可证得结论.19.答案:解:(1)450;63;(2)E类对应的扇形圆心角α的度数360°×(1−36%−14%−20%−16%−4%)=36°,C方式的人数为450×20%=90人、D方式人数为450×16%=72人、E方式的人数为450×10%=45人,F方式的人数为450×4%=18人,补全条形图如下:(3)估计该校每天“绿色出行”的学生人数为3000×(1−14%−4%)=2460人.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)由A方式人数及其所占百分比求得总人数,总人数乘以B方式的百分比求得其人数即可得;(2)用360°乘以E方式对应的百分比可得;(3)总人数乘以A、C、D、E这四类上学方式的百分比之和可得.解:(1)参与本次问卷调查的学生共有162÷36%=450人,其中选择B类的人数有450×14%=63人,故答案为:450、63;(2)见答案;(3)见答案.20.答案:解:(1)画树状图为:(2)由树状图知,共有9种等可能的结果数,其中两次都摸到白球的结果数为4,所以两次都摸到白球的概率=49.解析:(1)利用画树状图展示所有9种等可能的结果数,(2)找出两次都是白球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.21.答案:解:(1)设B型丝绸的进价为x元,则A型丝绸的进价为(x+100)元根据题意得:10000x+100=8000x解得x=400经检验,x=400为原方程的解∴x+100=500答:一件A型、B型丝绸的进价分别为500元,400元.(2)①根据题意得:{m≤50−mm≥16∴m的取值范围为:16≤m≤25②设销售这批丝绸的利润为y根据题意得:y =(800−500−2n)m +(600−400−n)⋅(50−m)=(100−n)m +10000−50n∵50≤n ≤150∴(Ⅰ)当50≤n <100时,100−n >0m =25时,销售这批丝绸的最大利润w =25(100−n)+10000−50n =−75n +12500(Ⅱ)当n =100时,100−n =0,销售这批丝绸的最大利润w =5000(Ⅲ)当100<n ≤150时,100−n <0当m =16时,销售这批丝绸的最大利润w =−66n +11600.综上所述:w ={−75n +12500(50≤n <100)5000n =100−66n +11600(100<n ≤150).解析:(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m 的不等式组,求m 的取值范围;②本问中,首先根据题意,可以先列出销售利润y 与m 的函数关系,通过讨论所含字母n 的取值范围,得到w 与n 的函数关系.本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.22.答案:(1)证明:连接OD ,∵CD 与⊙O 相切于点D ,∴∠ODC =90°,∵OD =OA ,∴∠OAD =∠ODA ,∵AD//OC ,∴∠COB =∠OAD ,∠COD =∠ODA ,∴∠COB =∠COD ,在△COD 和△COB 中{OD=OB∠COD=∠COB OC=OC,∴△COD≌△COB(SAS),∴∠ODC=∠OBC=90°,∴BC是⊙O的切线;(2)解:∵∠CEB=30°,∴∠COB=60°,∵∠COB=∠COD,∴∠BOD=120°,∴BD⏜的长:120π⋅2180=43π.解析:(1)根据切线的性质和平行线的性质从而证得△COD≌△COB,得到∠ODC=∠OBC=90°,即可证得结论;(2)根据圆周角定理得到∠BOD=120°,然后根据弧长公式求得即可.本题考查了切线的判定和性质,平行线的性质,圆周角定理以及三角形全等的判定和性质,熟练掌握性质定理是解题的关键.23.答案:解:(1)∵直线y=−3x与直线y=3相交于点A,∴点A(−1,3),∵点P的横坐标为2,∴点P(2,3),∴AP=3,∴△AOP的面积=12×3×3=92,(2)∵△AOP的面积为6,∴12×|x+1|×3=6,∴x=3或−5∴点P(3,3)或(−5,3)(3)如图,过点A作AE⊥OP于点E,∵点A(−1,3),∴OA=√10,∵AE⊥OE,∠AOP=45°,∴AE=OE=√5,∵S△APO=12AP×3=12OP×√5,∴OP=3√55AP,∵AP2=AE2+EP2,∴AP2=5+(3√55AP−√5)2,∴AP=52或5(不合题意舍去)∴点P(32,3)设直线OP解析式为:y=kx,∴3=3 2 k∴k=2∴直线OP解析式为:y=2x解析:(1)先求点A坐标,由三角形面积公式可求解;(2)由三角形面积公式可求解;(3)过点A作AE⊥OP于点E,先求出OA的长,由直角三角形的性质可得AE=OE=√5,由面积法可求OP=3√55AP,由勾股定理可求AP的长,可求点P坐标,由待定系数法可求解析式.本题是一次函数综合题,考查了待定系数法求解析式,三角形面积公式,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.24.答案:解:(1)∵四边形ABCD 为矩形,将 △ADP 与 △BPE 分别沿DP 与PE 折叠,∴∠PFD =∠PFE =90°,∴∠PFD +∠PFE =180°,即:E ,F ,D 三点在同一直线上,设BE =EF =x ,则EC =6−x ,∵DC =AB =8,DF =AD =6,在Rt △DEC 中,∵DE =DF +FE =6+x ,EC =6−x ,DC =8,∴(6+x)2=(6−x)2+82,解得:x =83, 即BE =EF =83,∴DE =263,EC =103, ∵S △DCE =12⋅DC ⋅CE =12×DE ×CK ,∴CK =4013;(2)①如图2中,设AP =x ,则PB =8−x ,由折叠可知:PA′=PA =x ,PB′=PB =8−x ,∵A′B′=4,∴8−x −x =4,∴x =2,即AP =2;②如图3中,∵A′B′=4,∴x−(8−x)=4,∴x=6,即AP=6,综上所述:PA的长为2或6.解析:本题考查四边形综合题、翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.(1)首先根据矩形和折叠的性质求出BE=EF=83,然后根据三角形的面积求得CK即可;(2)运用分类讨论的方法分别求得AP的长即可.25.答案:解:(1)∵点A(−1,0)在抛物线y=12x2+bx−2上,∴12×(−1)2+b×(−1)−2=0,解得:b=−32,∴抛物线的解析式为:y=12x2−32x−2.∵y=12x2−32x−2=12(x2−3x)−2=12(x−32)2−258,∴顶点D的坐标为(32,−258);(2)由抛物线的性质可知:点A和B是对称点,设BC与抛物线对称轴交于点M,连接AM,则此时CM+AM值最小,如图,当x=0时,y=−2,∴C(0,−2),∴OC=2,当y=0时,0=12x2−32x−2,解得:x=4或−1,∴B(4,0),∴OB=4,∴BC=√OC2+OB2=√22+42=2√5,由抛物线的性质可知:点A和B是对称点,∴AM=BM,∴AM+CM=BC=2√5,∴CM+AM的最小值为2√5.解析:本题考查二次函数的综合应用.注意掌握待定系数法求函数的解析式是解此题的关键,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.(1)由点A(−1,0)在抛物线y=12x2+bx−2上,即可得12×(−1)2+b×(−1)−2=0,继而求得b的值,利用配方法即可求得顶点D的坐标;(2)由抛物线的性质可知:点A和B是对称点,设BC与抛物线对称轴交于点M,连接AM,则此时CM+AM值最小,先求出点C、点B的坐标,再由勾股定理求出BC长,即可得出答案.。

2020年辽宁省沈阳市沈北新区中考数学一模试卷(详解版)

2020年辽宁省沈阳市沈北新区中考数学一模试卷(详解版)

2020年辽宁省沈阳市沈北新区中考数学一模试卷一、选择题(每题2分,共20分)1.(2分)下列各数中最大的数是()A.5B C.πD.﹣82.(2分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×1073.(2分)如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱4.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.(2分)下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y26.(2分)点P(4,3)关于y轴的对称点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(2分)已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系()A.y1>y2B.y1<y2C.y1=y2D.无法确定8.(2分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152°C.142°D.128°9.(2分)某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是()A.90 分B.85 分C.95 分D.100 分10.(2分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是()A.当x<2时,y随x增大而增大B.a+b+c<0C.抛物线过点(﹣4,0)D.4a+2b+c=0二、填空题(每题3分,共18分)11.(3分)分解因式:x4﹣2x2y2+y4=.12.(3分)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.13.(3分)如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是 度.14.(3分)口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .15.(3分)已知:如图,AB 是⊙O 的直径,C 是⊙O 上的一点,∠BAC 的平分线交⊙O 于D ,若∠ABC =40°,则∠ABD = 度.16.(3分)如图,在矩形ABCD 中,AB =4,BC =6,将△ABE 沿着AE 折叠至△AB 'E ,若BE =CE ,连接B 'C ,则B ′C 的长为 .三、解答题17.(6分)(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣2. 18.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查. (1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率. 19.(8分)某中学为了提高学生的综合素质,成立了以下社团A :机器人,B :围棋,C :羽毛球,D :电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.20.(8分)如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.21.(6分)九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?22.(10分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.23.(12分)如图,平面直角坐标系中,直线y A、B.点C 在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.24.(12分)猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE 在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.25.(12分)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.2020年辽宁省沈阳市沈北新区中考数学一模试卷参考答案与试题解析一、选择题(每题2分,共20分)1.(2分)下列各数中最大的数是()A.5B C.πD.﹣8【解答】解:根据实数比较大小的方法,可得- <5所以各数中最大的数是5.故选:A.2.(2分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×107【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.3.(2分)如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.4.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【解答】解:∵x+1≥2,∴x≥1.故选:A.5.(2分)下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y2【解答】解:∵x4+x4=2x4,故选项A错误;∵x3•x2=x5,故选项B错误;∵(x2y)3=x6y3,故选项C正确;∵(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故选项D错误;故选:C.6.(2分)点P(4,3)关于y轴的对称点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(4,3)关于y轴的对称点坐标为:(﹣4,3),则此点在第二象限.故选:B.7.(2分)已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系()A.y1>y2B.y1<y2C.y1=y2D.无法确定【解答】解:∵反比例函数y=kx(k>0)中,k>0,∴在每个象限内,y随x的增大而减小,∵点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,且﹣2>﹣4∴y1<y2,故选:B.8.(2分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152°C.142°D.128°【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵矩形ABCD的对边平行,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°,故选:C.9.(2分)某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是()A.90 分B.85 分C.95 分D.100 分【解答】解:这组数据中90出现了两次,次数最多,所以这组数据的众数为90分.故选:A.10.(2分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是()A.当x<2时,y随x增大而增大B.a+b+c<0C.抛物线过点(﹣4,0)D.4a+2b+c=0【解答】解:∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴当x<2时,y随x增大而减小,故选项A错误;该抛物线过点(0,0),当x=1时,y=a+b+c<0,故选项B正确;当x=2时,y=4a+2b+c<0,故选项D错误;当x=﹣4时,y>0,故选项C错误;故选:B.二、填空题(每题3分,共18分)11.(3分)分解因式:x4﹣2x2y2+y4=(x+y)2(x﹣y)2.【解答】解:x4﹣2x2y2+y4=(x2﹣y2)2=(x+y)2(x﹣y)2.故答案为:(x+y)2(x﹣y)2.12.(3分)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为85.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5×BD,∴12×5×BD=4,解得:BD=85.故答案为:8 513.(3分)如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是67.5度.【解答】解:∵四边形ABCD是正方形,∴∠BAC=45°,∵AE=AB,∴∠BEA=∠ABE=°°180-452=67.5°.故答案为:67.5.14.(3分)口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是0.3.【解答】解:根据概率公式摸出黑球的概率是1﹣0.2﹣0.5=0.3.15.(3分)已知:如图,AB是⊙O的直径,C是⊙O上的一点,∠BAC的平分线交⊙O于D,若∠ABC=40°,则∠ABD=65度.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°;∴∠BAC=50°;∵AD平分∠BAC,∴∠DAC=12∠BAC=25°;∴∠DBC=∠DAC=25°;故∠ABD=∠ABC+∠DBC=65°.16.(3分)如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C的长为185.【解答】解:∵将△ABE 沿着AE 折叠至△AB 'E ,∴S △ABE =S △AB 'E ,BE =B 'E ,∵BE =CE ,∴BE =EC =B 'E =3,∴∠BB 'C =90°,在Rt △ABE 中,AE 5, ∵12×AE ×BB '=2××AB ×BE , ∴BB '=2435⨯⨯=245,∴B 'C 185, 故答案为:185. 三、解答题17.(6分)(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣2.【解答】解:原式═1+39+=.18.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A 小区的概率是 14; (2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率.【解答】解:(1)甲组抽到A 小区的概率是14, 故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.19.(8分)某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×60200=300(人), 答:这1000名学生中有300人参加了羽毛球社团.20.(8分)如图,已知点E 、F 在四边形ABCD 的对角线延长线上,AE =CF ,DE ∥BF ,∠1=∠2.(1)求证:△AED ≌△CFB ;(2)若AD ⊥CD ,四边形ABCD 是什么特殊四边形?请说明理由.【解答】(1)证明:∵DE ∥BF ,∴∠E =∠F ,在△AED 和△CFB 中,E=F 1=2AE CF ⎧⎪⎨⎪=⎩∠∠∠∠,∴△AED ≌△CFB (AAS );(2)解:四边形ABCD 是矩形.理由如下:∵△AED ≌△CFB ,∴AD =BC ,∠DAE =∠BCF ,∴∠DAC =∠BCA ,∴AD ∥BC ,∴四边形ABCD 是平行四边形,又∵AD ⊥CD ,∴四边形ABCD 是矩形.21.(6分)九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?【解答】解:设慢车与快车的速是xkm /h ,则快车的速度是1.2xkm /h ,根据题意得15011502 1.2x x-=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.22.(10分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.【解答】(1)证明:如图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN=.23.(12分)如图,平面直角坐标系中,直线y A、B.点C 在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)对于直线y x当y=0 时,0,解得:x=1,∴A(1,0),∴OA=1,当x=0 时,y,∴B(0,∴OB,∵∠AOB=90°,∴AB2,∵AB:AC=1:2,∴AC=4,∴OC=3,∴C(﹣3,0);(2)如图所示,∵OA=1,OBAB=2,∴∠ABO=30°,同理:BC=OCB=30°,∴∠OBC=60°,∴∠ABC=90°,分两种情况考虑:①若M在线段BC上时,BC=,CM=t,可得BM=BC﹣CM=t,此时S△ABM=12BM•AB=12×(﹣t)×2=t(0≤t<;②若M在BC延长线上时,BC=2,CM=t,可得BM=CM﹣BC=t﹣此时S△ABM=12BM•AB=12×(t﹣2=t﹣t≥);综上所述,S=(0t tt t⎧≤<⎪⎨-≥⎪⎩;(3)存在.若AB是菱形的边,如图2所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),综上,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0).24.(12分)猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE 在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=ME,DM⊥ME.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【解答】猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD 和CEFG 是矩形,∴AD ∥EF ,∴∠EFM =∠HAM ,又∵∠FME =∠AMH ,FM =AM ,在△FME 和△AMH 中,EFM=HAM FME=AMH FM AM⎧⎪=⎨⎪⎩∠∠∠∠ ∴△FME ≌△AMH (ASA )∴HM =EM ,在RT △HDE 中,HM =EM ,∴DM =HM =ME ,∴DM =ME .(1)如图1,延长EM 交AD 于点H ,∵四边形ABCD 和CEFG 是正方形,∴AD ∥EF ,∴∠EFM =∠HAM ,又∵∠FME =∠AMH ,FM =AM ,在△FME 和△AMH 中,EFM=HAM FME=AMH FM AM⎧⎪=⎨⎪⎩∠∠∠∠ ∴△FME ≌△AMH (ASA )∴HM =EM ,在RT △HDE 中,HM =EM ,∴DM =HM =ME ,∴DM=ME.∵四边形ABCD和CEFG是正方形,∴AD=CD,CE=EF,∵△FME≌△AMH,∴EF=AH,∴DH=DE,∴△DEH是等腰直角三角形,又∵MH=ME,故答案为:DM=ME,DM⊥ME.(2)如图2,连接AC,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AC和EC在同一条直线上,在Rt△ADF中,AM=MF,∴DM=AM=MF,∠MDA=∠MAD,∴∠DMF=2∠DAM.在Rt△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.∵∠MDA=∠MAD,∠MAE=∠MEA,∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.∴DM⊥ME.25.(12分)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.【解答】解:(1)∵二次函数y=ax2+bx+c的图象经过A(﹣1,0),C(0,5),(1,8),则有:85a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得145abc=-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x2+4x+5.(2)令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,∴B(5,0).由y=﹣x2+4x+5=﹣(x﹣2)2+9,得顶点M(2,9)如图1中,作ME⊥y轴于点E,可得S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC=12(2+5)×9﹣12×4×2﹣12×5×5=15.(3)存在.如图2中,∵OC=OB=5,∴△BOC是等腰直角三角形,①当C为直角顶点时,N1(﹣5,0).②当B为直角顶点时,N2(0,﹣5).③当N为直角顶点时,N3(0,0).综上所述,满足条件的点N坐标为(0,0)或(0,﹣5)或(﹣5,0).。

辽宁省沈阳市铁西区2020年中考数学一模试卷(含解析) (1)

辽宁省沈阳市铁西区2020年中考数学一模试卷(含解析) (1)

辽宁省沈阳市铁西区2020年中考数学一模试卷一、选择题1.(3分)﹣的相反数是()A.3 B.﹣3 C.D.﹣2.(3分)如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是()A.B.C.D.3.(3分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为()A.30°B.50°C.80°D.100°4.(3分)下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b25.(3分)如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD =60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°6.(3分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>﹣1 B.x<-1 C.x>2 D.x<27.(3分)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)8.(3分)如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将▱OABC分割成面积相等的两部分,则直线l的函数解析式是()A.y=x+1 B.C.y=3x﹣3 D.y=x﹣19.(3分)如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4,则⊙O的直径等于()A.B.3C.5D.710.(3分)若将二次函数y=x2﹣4x+3的图象绕着点(﹣1,0)旋转180°,得到新的二次函数y=ax2+bx+c(a≠0),那么c的值为()A.﹣15 B.15 C.17 D.﹣17二、填空题11.计算:2a3÷a=_________.12.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7 8 8 7s2 1 1.2 1 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是__________.13.若关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围为________.14.如图,AB∥CD,点E是线段CD上的一点,BE交AD于点F,EF=BF,CD=10,AB=8,CE=____.15.不等式组的所有整数解的和是__________-.16.如图,在平面直角坐标系中,矩形OABC的顶点A.C分别在x轴和y轴上,点B的坐标为(﹣2,﹣3),直线y=x﹣1与OC.AB分别交于点D.E,点P在矩形的边AB或BC上,作PF⊥ED于点F,连接PD,当△PFD是等腰三角形时,点P的坐标为_________.三、(6分、8分、8分)17.已知x,y满足方程组,求代数式(x﹣y)2﹣(x+2y)(x﹣2y)的值.18.如图,在△ABC中,∠ACB=90°,M、N分别是AB.AC的中点,延长BC至点D,使CD=BD,连接DN、MN.若AB=6.(1)求证:MN=CD;(2)求DN的长.19.甲、乙两个不透明的口袋,甲口袋中装有2个分别标有数字1,2的小球,乙口袋中装有3个分别标有数字3,4,5的小球,它们的形状、大小完全相同,(1)随机从乙口袋中摸出一个小球,上面数字是奇数的概率为__________(2)现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.请用列表或树状图的方法,求出两个数字之和能被5整除的概率.四、(8分、8分)20.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点).请你根据统计图解答下列问题:(1)此次抽样调查的总户数是_____户;扇形图中“10吨﹣15吨”部分的圆心角的度数是_____度;(2)求“15吨﹣20吨”部分的户数,并补全频数分布直方图;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区120万用户中约有多少用户的用水全部享受基本价格?21.某水果批发商计划用8辆汽车装运甲、乙两种水果共22吨(每种水果不少于一车)到外地销售,每辆汽车载满时能装甲种水果2吨或乙种水果3吨,每辆汽车规定满载,并且只能装一种水果,求装运甲、乙两种水果的汽车各多少辆?五、(10分、10分、12分、12分)22.如图,以▱ABCD的边AB为直径作⊙O,边CD与⊙O相切于点E,边AD与⊙O相交于点F,已知AB=12,∠C=60°(1)求弧EF的长;(2)线段CE的长为_______.23.如图,在平面直角坐标系中,直线y=x+3与x轴交于点B,与直线CD交于点A(﹣,a),点D的坐标为(0,),点C在x轴上(1)求a的值;(2)求直线CD的解析式;(3)若点E是直线CD上一动点(不与点C重合),当△CBE∽△COD时,求点E的坐标.24.△ABC中,∠ACB<90°,以AB为一边作等边△ABD,且点D与点C在直线AB同侧,平面内有一点E与点D分别在直线AB两侧,且BE=BC,∠ABE=∠DBC,连接CD.AE,AC=5,BC=3.(1)求证:CD=AE;(2)点E关于直线AB的对称点为点F,判断△BFC的形状,并说明理由;(3)在(2)的条件下,当线段CD最短时,请直接写出四边形AEBF的面积.25.在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点A(﹣1,0)和点B(2,﹣1),交y轴于点C,BD⊥x轴于点D,连接AB.AC.(1)求抛物线的函数表达式;(2)点P是抛物线上在直线AB下方的动点,直线PH⊥x轴,交AB于点H,当PH=时,求点P的坐标;(3)将△AOC沿y轴向上平移,将△ABD沿x轴向左平移,两个三角形同时开始平移,且平移的速度相同.设△AOC平移的距离为t,平移过程中两个三角形重叠部分的面积为S,当0<t<时,请直接写出S与t的函数表达式及自变量t的取值范围.参考答案一、选择题1.(3分)﹣的相反数是()A.3 B.﹣3 C.D.﹣【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是()A.B.C.D.【分析】从正面观察几何体看一看可观察到几个面,并依据各之间的位置关系进行判断即可.【解答】解:该几何体的主视图为:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的概念是解题的关键.3.(3分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为()A.30°B.50°C.80°D.100°【分析】根据平角的定义即可得到∠4的度数,再根据平行线的性质即可得到∠3的度数.【解答】解:∵∠1=50°,∠2=30°,∴∠4=100°,∵a∥b,∴∠3=∠4=100°,故选:D.【点评】本题考查平行线的性质,解题的关键是熟练掌握平行线的性质.4.(3分)下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b2【分析】根据积的乘方和幂的乘方、合并同类项的法则、完全平方公式进行计算即可.【解答】解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.【点评】本题考查了积的乘方和幂的乘方,合并同类项,完全平方公式,掌握运算法则是解题的关键.5.(3分)如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD =60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°【分析】根据直角三角形的性质得到BE=CE,求得∠CBE=60°,得到∠DBF=30°,根据等腰直角三角形的性质得到∠ABD=45°,求得∠ABF=75°,根据三角形的内角和即可得到结论.【解答】解:∵∠DBC=90°,E为DC中点,∴BE=CE=CD,∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°﹣90°﹣75°=15°,故选:B.【点评】本题考查了直角三角形的性质,等腰直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.6.(3分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>﹣1 B.x<-1 C.x>2 D.x<2【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故选:B【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.7.(3分)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.【点评】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.8.(3分)如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将▱OABC分割成面积相等的两部分,则直线l的函数解析式是()A.y=x+1 B.C.y=3x﹣3 D.y=x﹣1【分析】首先根据条件l经过点D(1,0),且将▱OABC分割成面积相等的两部分,求出E点坐标,然后设出函数关系式,再利用待定系数法把D,E两点坐标代入函数解析式,可得到答案.【解答】解:设D(1,0),∵线l经过点D(1,0),且将▱OABC分割成面积相等的两部分,∴OD=BE=1,∵顶点B的坐标为(6,4).∴E(5,4)设直线l的函数解析式是y=kx+b,∵图象过D(1,0),E(5,4),∴,解得:,∴直线l的函数解析式是y=x﹣1.故选:D.【点评】此题主要考查了待定系数法求一次函数解析式,解题的关键是求出E点坐标.9.(3分)如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4,则⊙O的直径等于()A.B.3C.5D.7【分析】作直径AE,连接BE构造直角三角形,利用同弧圆周角相等,半圆上的圆周角是直角证明△ADC∽△ABE,根据相似比可求得AE长,即直径.【解答】解:作直径AE,连接BE,∵AD⊥BC,∴△ADC是直角三角形,由勾股定理得AD==4.∵∠ACD=∠AEB,(同弧圆周角相等)∠ABE=90°,(半圆上的圆周角是直角)∴△ADC∽△ABE,AE:AC=AB:AD,∴AE==5,则直径AE=5.故选:C.【点评】主要考查了圆中的有关性质.注意:利用直径所对的圆周角是90度构造直角三角形是常用的辅助线方法.10.(3分)若将二次函数y=x2﹣4x+3的图象绕着点(﹣1,0)旋转180°,得到新的二次函数y=ax2+bx+c(a≠0),那么c的值为()A.﹣15 B.15 C.17 D.﹣17【分析】由于图象绕定点旋转180°,得到顶点坐标改变,而抛物线开口方向相反,然后根据顶点式写出解析式.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣2)2﹣1的顶点坐标为(2,﹣1),∴绕(﹣1,0)旋转180°后的抛物线的顶点坐标为(﹣4,1),∴所得到的图象的解析式为y=﹣(x+4)2+1=﹣x2﹣8x﹣15.∴c的值为﹣15.故选:A.【点评】本题考查了二次函数变换的知识点,应根据开口方向,开口度,对称轴,与y 轴交点3方面进行考虑.二、填空题11.计算:2a3÷a=2a2 .【分析】根据同底数幂的除法法则即可求出答案.【解答】解:原式=2a2,故答案为:2a2,【点评】本题考查整式的除法,解题的关键是正确理解整式除法的法则,本题属于基础题型.12.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7 8 8 7s2 1 1.2 1 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是丙组.【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【解答】解:∵乙组、丙组的平均数比甲组、丁组大,∴应从乙和丙组中选,∵丙组的方差比乙组的小,∴丙组的成绩较好且状态稳定,应选的组是丙组;故答案为:丙组.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.若关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围为m <4 .【分析】根据判别式的意义得到△=(﹣4)2﹣4m>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根,∴△=(﹣4)2﹣4m>0,解得:m<4.故答案为:m<4.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.如图,AB∥CD,点E是线段CD上的一点,BE交AD于点F,EF=BF,CD=10,AB=8,CE= 2 .【分析】首先证明△ABF≌△DEF,利用全等三角形的性质可得DE=AB,易得CE的长.【解答】解:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AB=DE=8.∵CD=10,∴CE=CD﹣DE=10﹣8=2,故答案为:2.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.15.不等式组的所有整数解的和是﹣1 .【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.【解答】解:∵解不等式①得;x>﹣2,解不等式②得;x≤,∴不等式组的解集为﹣2<x≤,∴不等式组的整数解为﹣1,0,﹣1+0=﹣1,故答案为﹣1.【点评】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.16.如图,在平面直角坐标系中,矩形OABC的顶点A.C分别在x轴和y轴上,点B的坐标为(﹣2,﹣3),直线y=x﹣1与OC.AB分别交于点D.E,点P在矩形的边AB或BC上,作PF⊥ED于点F,连接PD,当△PFD是等腰三角形时,点P的坐标为(﹣,﹣3)或(﹣2,﹣).【分析】由于点P的位置不确定,所以需要分情况讨论,一是点P在AB边上,二是点P在BC边上,然后根据等腰三角形的性质即可求出P的坐标.【解答】解:当P在AB上时,设直线ED与x轴交于点G,设PF=DF=x,令y=0和x=﹣2代入y=x﹣1∴x=2和y=﹣2∴G(2,0),E(﹣2,﹣2),∴AG=4,AE=2,∴tan∠PEF==,∴EF=,∴ED=x+=,令x=0代入y=x﹣1,∴D(0,﹣1)∴ED==∴=,∴x=∴由勾股定理可知:PE==,∴AP=AE﹣PE=2﹣=此时P的坐标为(﹣2,﹣)当点P在BC边上时,过点D作P′D⊥PD,垂足为D,过点P作PH⊥y轴,垂足为H,易证:△PDH∽△P′DC∴∵PH=2,DH=OD﹣OH=1﹣=CD=OC﹣OD=3﹣1=2∴∴P′C=,∴P′的坐标为(﹣,﹣3)故答案为:(﹣,﹣3)或(﹣2,﹣)【点评】本题考查等腰三角形的性质,涉及相似三角形的判定与性质,勾股定理等知识,综合程度较高,需要学生灵活运用知识.三、(6分、8分、8分)17.已知x,y满足方程组,求代数式(x﹣y)2﹣(x+2y)(x﹣2y)的值.【分析】先求出方程组的解,再算乘法,合并同类项,最后代入求出即可.【解答】解:解方程组得:,所以(x﹣y)2﹣(x+2y)(x﹣2y)=x2﹣2xy+y2﹣x2+4y2=﹣2xy+5y2=﹣2×3×(﹣1)+5×(﹣1)2=11.【点评】本题考查了解二元一次方程组、整式的混合运算和求值等知识点,能正确根据整式的运算法则进行化简是解此题的关键.18.如图,在△ABC中,∠ACB=90°,M、N分别是AB.AC的中点,延长BC至点D,使CD=BD,连接DN、MN.若AB=6.(1)求证:MN=CD;(2)求DN的长.【分析】(1)根据三角形中位线定理得到MN=BC,根据题意证明;(2)根据平行四边形的判定定理得到四边形MCDN是平行四边形,得到DN=CM,直角三角形的性质计算即可.【解答】(1)证明:∵M、N分别是AB.AC的中点,∴MN=BC,MN∥BC,∵CD=BD,∴CD=BC,∴MN=CD;(2)解:连接CM,∵MN∥CD,MN=CD,∴四边形MCDN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB,∴DN=AB=3.【点评】本题考查的是三角形中位线定理的应用、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.19.甲、乙两个不透明的口袋,甲口袋中装有2个分别标有数字1,2的小球,乙口袋中装有3个分别标有数字3,4,5的小球,它们的形状、大小完全相同,(1)随机从乙口袋中摸出一个小球,上面数字是奇数的概率为(2)现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.请用列表或树状图的方法,求出两个数字之和能被5整除的概率.【分析】(1)用数字为奇数的球的个数除以球的总个数即可得;(2)画树状图列出所有情况,依据概率公式求解可得.【解答】解:(1)乙口袋中共有3个小球,其中数字为奇数的有2个,∴上面数字是奇数的概率为,故答案为:;(2)画树状图如下:∴两个数字之和能被5整除的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、(8分、8分)20.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点).请你根据统计图解答下列问题:(1)此次抽样调查的总户数是100 户;扇形图中“10吨﹣15吨”部分的圆心角的度数是36 度;(2)求“15吨﹣20吨”部分的户数,并补全频数分布直方图;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区120万用户中约有多少用户的用水全部享受基本价格?【分析】(1)根据统计图可知“10吨~15吨”的用户10户占10%,从而可以求得此次调查抽取的户数,进而求得扇形图中“15吨~20吨”部分的圆心角的度数;(2)根据(1)中求得的用户数与条形统计图可以得到“15吨~20吨”的用户数;(3)根据前面统计图的信息可以得到该地区120万用户中约有多少用户的用水全部享受基本价格.【解答】解:(1)此次抽样调查的总户数是10÷10%=100(户),扇形图中“10吨﹣15吨”部分的圆心角的度数是360°×10%=36°,故答案为:100,36;(2)“15吨﹣20吨”部分的户数为100﹣(10+38+24+8)=20(户),补全图形如下:(3)120×=81.6(万户),答:该地区120万用户中约有81.6万用户的用水全部享受基本价格.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.21.某水果批发商计划用8辆汽车装运甲、乙两种水果共22吨(每种水果不少于一车)到外地销售,每辆汽车载满时能装甲种水果2吨或乙种水果3吨,每辆汽车规定满载,并且只能装一种水果,求装运甲、乙两种水果的汽车各多少辆?【分析】设装运甲种水果的汽车有x辆,装运乙种水果的汽车有y辆,根据8辆汽车装运甲、乙两种水果共22吨,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设装运甲种水果的汽车有x辆,装运乙种水果的汽车有y辆,依题意,得:,解得:.答:装运甲种水果的汽车有2辆,装运乙种水果的汽车有6辆.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.五、(10分、10分、12分、12分)22.如图,以▱ABCD的边AB为直径作⊙O,边CD与⊙O相切于点E,边AD与⊙O相交于点F,已知AB=12,∠C=60°(1)求弧EF的长;(2)线段CE的长为2+6 .【分析】(1)首先证明△AOF是等边三角形.求出扇形的圆心角∠EOF即可解决问题.(2)作BM⊥CD于M.易证四边形OEMB是正方形,OE=EM=BM=OB=6,在Rt△CBM中,求出CM即可.【解答】解:(1)如图,连接OF、OE.∵四边形ABCD是平行四边形,∴∠A=∠C=60°,CD∥AB,∵OA=OF,∴△AOF是等边三角形,∴∠AOF=60°,∵CD是⊙O切线,∴OE⊥CD,∵CD∥AB,∴OE⊥AB,∴∠AOE=90°,∴∠EOF=30°,∴的长为=π.(2)作BM⊥CD于M.易证四边形OEMB是正方形,OE=EM=BM=OB=6,在Rt△CBM中,∵∠C=60°,BM=6,∴tan60°=,∴=,∴CM=2,∴CE=CM+EM=2+6,故答案为2+6.【点评】本题考查切线的性质、平行四边形的性质、等边三角形的判定和性质、扇形的面积公式、解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用知识解决问题,属于中考常考题型.23.如图,在平面直角坐标系中,直线y=x+3与x轴交于点B,与直线CD交于点A(﹣,a),点D的坐标为(0,),点C在x轴上(1)求a的值;(2)求直线CD的解析式;(3)若点E是直线CD上一动点(不与点C重合),当△CBE∽△COD时,求点E的坐标.【分析】(1)将点A的横坐标代入直线y=x+3中即可求出a;(2)用待定系数法直接求出直线CD的解析式;(3)先由两三角形相似即可得出∠CBE=90°,进而得出点E的横坐标,再代入直线CD的解析式中,即可得出结论.【解答】解:(1)∵点A(﹣,a)在直线y=x+3上,∴﹣+3=a,∴a=,(2)∵D(0,),∴设直线CD的解析式为y=kx+(k≠0),由(1)知,a=,∴A(﹣,),∵点A在直线CD上,∴=﹣k+,∴k=﹣,∴直线CD的解析式为y=﹣x+;(3)∵点B是直线y=x+3与x轴的交点,∴B(﹣3,0),∵△CBE∽△COD,∴∠CBE=∠COD=90°,∴点E的横坐标为﹣3,当x=﹣3时,y=﹣×(﹣3)+=,∴E(﹣3,).【点评】此题是一次函数综合题,主要考查了待定系数法求直线解析式,相似三角形的性质,解本题的关键是求出直线CD的解析式,是一道比较简单的题目.24.△ABC中,∠ACB<90°,以AB为一边作等边△ABD,且点D与点C在直线AB同侧,平面内有一点E与点D分别在直线AB两侧,且BE=BC,∠ABE=∠DBC,连接CD.AE,AC=5,BC=3.(1)求证:CD=AE;(2)点E关于直线AB的对称点为点F,判断△BFC的形状,并说明理由;(3)在(2)的条件下,当线段CD最短时,请直接写出四边形AEBF的面积.【分析】(1)根据SAS判定△ABE≌△DBC,即可得出CD=AE;(2)根据轴对称的性质以及全等三角形的性质,即可得出BF=BC,∠CBF=60°,进而判定△BCF是等边三角形;(3)根据AF+FC≥AC,即可得到AF+3≥5,即AF≥2,因而得到AF的最小值为2,即CD的最小值为2,此时AF+FC=AC,即点F在AC上,再过B作BG⊥AC于G,则Rt△BFG中,∠FBG=30°,求得△ABF的面积,即可得到四边形AEBF的面积.【解答】解:(1)如图,∵△ABD是等边三角形,∴AB=DB,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴CD=AE;(2)△BFC是等边三角形,理由:如图,∵点E关于直线AB的对称点为点F,∴AB垂直平分EF,∴BF=BE,∠ABE=∠ABF,又∵BC=BE,∠ABE=∠DBC,∴BF=BC,∠ABF=DBC,∵∠ABD=∠ABF+∠DBF=60°,∴∠DBC+∠DBF=60°,即∠CBF=60°,∴△BCF是等边三角形;(3)∵点E关于直线AB的对称点为点F,△ABE≌△DBC,∴AF=AE,AE=DC,∴AF=CD,由(2)可得,等边三角形BCF中,FC=BC=3,∵AF+FC≥AC,∴AF+3≥5,即AF≥2,∴AF的最小值为2,即CD的最小值为2,此时AF+FC=AC,即点F在AC上,如图所示,过B作BG⊥AC于G,则Rt△BFG中,∠FBG=30°,∴FG=BF=,∴BG=FG=,∴△ABF的面积=AF×BG=×2×=,∴四边形AEBF的面积=2×△ABF的面积=3.【点评】本题属于四边形综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称的性质以及含30°角的直角三角形的性质综合应用,解决问题的关键是画出图形,根据两点之间,线段最短,得到AF的最小值为2,即CD的最小值为2.25.在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点A(﹣1,0)和点B(2,﹣1),交y轴于点C,BD⊥x轴于点D,连接AB.AC.(1)求抛物线的函数表达式;(2)点P是抛物线上在直线AB下方的动点,直线PH⊥x轴,交AB于点H,当PH=时,求点P的坐标;(3)将△AOC沿y轴向上平移,将△ABD沿x轴向左平移,两个三角形同时开始平移,且平移的速度相同.设△AOC平移的距离为t,平移过程中两个三角形重叠部分的面积为S,当0<t<时,请直接写出S与t的函数表达式及自变量t的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)如图1中,设P(m, m2﹣m﹣3),求出BC的解析式为,可得点H的坐标,求出PH(用t表示),列出方程即可解决问题;(3)首先说明重叠部分是四边形EOFH,构建一次函数求出点H坐标,根据S=S△EOH+S△OFH计算即可解决问题;【解答】解:(1)把点A(﹣1,0)和点B(2,﹣1)代入y=ax2+bx﹣3得到,解得,∴抛物线的解析式为y=x2﹣x﹣3.(2)如图1中,设P(m, m2﹣m﹣3),∵A(﹣1,0),B(2,﹣1),∴直线AB的解析式为y=﹣x﹣,∵直线PH⊥x轴,交AB于点H,∴H(m,﹣ m﹣),∴PH=﹣m﹣﹣(m2﹣m﹣3)=,解得m=或﹣,∴P(,﹣)或(﹣,﹣).(3)如图2中,设A2C1交A1B1于H,交x轴于E,A1B1交y轴于F,连接OH.∵OF∥B1D1,∴=,∴=∴OF=,当OF=OC1时,=3﹣t,t=2,∴当0<t<2时,重叠部分是四边形EOFH.易知A1(﹣1﹣t,0),B1(2﹣t,﹣1),A2(﹣1,t),C1(0,﹣3+t),∴直线A1B1的解析式为y=﹣x﹣,直线A2C1的解析式为y=﹣3x﹣3+t,由解得,∴H(.﹣),∴S=S△EOH+S△OFH=••t+(1+t)•=﹣t2+t+.(0<t<2).当2≤t<时,重叠部分是三角形.S=•(3﹣t)•3(3﹣t)=t2﹣12t+.【点评】本题考查二次函数综合题、待定系数法、一元二次方程、一次函数的应用、四边形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,学会利用一次函数确定两直线的交点坐标,学会利用分割法求四边形的面积,属于中考压轴题.。

2020年辽宁省沈阳市沈北新区中考数学一模试卷 (Word 含解析)

2020年辽宁省沈阳市沈北新区中考数学一模试卷 (Word 含解析)

2020年中考数学一模试卷一、选择题1.下列各数中最大的数是( ) A .5B .3C .πD .8-2.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )A .58.210⨯B .58210⨯C .68.210⨯D .78210⨯3.如图是某几何体的三视图,该几何体是( )A .三棱柱B .三棱锥C .圆锥D .圆柱4.不等式12x +…的解集在数轴上表示正确的是( ) A . B . C .D .5.下列计算正确的是( ) A .4482x x x += B .326x x x =gC .2363()x y x y =D .22()()x y y x x y --=-6.点(4,3)P 关于y 轴的对称点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知点1(2,)A y -,2(4,)B y -都在反比例函数(0)ky k x=>的图象上,则1y ,2y 的大小关系( ) A .12y y >B .12y y <C .12y y =D .无法确定8.如图,分别过矩形ABCD 的顶点A 、D 作直线1l 、2l ,使12//l l ,2l 与边BC 交于点P ,若138∠=︒,则BPD ∠为( )A .162︒B .152︒C .142︒D .128︒9.某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是( ) A .90 分B .85 分C .95 分D .100 分10.已知抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A .当2x <时,y 随x 增大而增大B .0a b c ++<C .抛物线过点(4,0)-D .420a b c ++=二、填空题(每题3分,共18分) 11.分解因式:42242x x y y -+= .12.如图,每个小正方形边长为1,则ABC ∆边AC 上的高BD 的长为 .13.如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE AB =,则BEA ∠的度数是 度.14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .15.已知:如图,AB 是O e 的直径,C 是O e 上的一点,BAC ∠的平分线交O e 于D ,若40ABC ∠=︒,则ABD ∠= 度.16.如图,在矩形ABCD 中,4AB =,6BC =,将ABE ∆沿着AE 折叠至△AB E ',若BE CE =,连接B C ',则B C '的长为 .三、解答题17.021( 3.14)|tan 603|()273π--+︒--+18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查. (1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率. 19.某中学为了提高学生的综合素质,成立了以下社团A :机器人,B :围棋,C :羽毛球,D :电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A 所占扇形的圆心角为36︒.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.20.如图,已知点E、F在四边形ABCD的对角线延长线上,AE CF∠=∠.=,//DE BF,12(1)求证:AED CFB∆≅∆;(2)若AD CD⊥,四边形ABCD是什么特殊四边形?请说明理由.21.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?22.如图,在Oe上的一点,点C是直径AB延长线上一点,连接BD,CD,e中,点D是O且A BDC∠=∠.(1)求证:直线CD是Oe的切线;(2)若CM平分ACDDM=时,求MN的长.∠,且分别交AD,BD于点M,N,当223.如图,平面直角坐标系中,直线33y=-A、B.点C在x轴的负半轴上,且:1:2AB AC =. (1)求A 、C 两点的坐标;(2)若点M 从点C 出发,以每秒1个单位的速度沿射线CB 运动,连接AM ,设ABM ∆的面积为S ,点M 的运动时间为t ,写出S 关于t 的函数关系式,并写出自变量的取值范围; (3)点P 是y 轴上的点,在坐标平面内是否存在点Q ,使以A 、B 、P 、Q 为顶点,且以AB 为边的四边形是菱形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.24.猜想与证明:如图1,摆放矩形纸片ABCD 与矩形纸片ECGF ,使B 、C 、G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM 、ME ,试猜想DM 与ME 的关系,并证明你的结论. 拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为 .(2)如图2摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.25.已知:如图,二次函数2y ax bx c =++的图象与x 轴交于A 、B 两点,其中A 点坐标为(1,0)-,点(0,5)C ,另抛物线经过点(1,8),M 为它的顶点.(1)求抛物线的解析式; (2)求MCB ∆的面积MCB S ∆.(3)在坐标轴上,是否存在点N ,满足BCN ∆为直角三角形?如存在,请直接写出所有满足条件的点N.参考答案一、选择题(每题2分,共20分) 1.下列各数中最大的数是( ) A .5B .3C .πD .8-【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可. 解:根据实数比较大小的方法,可得 835π-<<<,所以各数中最大的数是5. 故选:A .2.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )A .58.210⨯B .58210⨯C .68.210⨯D .78210⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 解:将8200000用科学记数法表示为:68.210⨯. 故选:C .3.如图是某几何体的三视图,该几何体是( )A .三棱柱B .三棱锥C .圆锥D .圆柱【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥. 故选:C .4.不等式12x +…的解集在数轴上表示正确的是( ) A . B . C .D .【分析】先求出原不等式的解集,再根据解集即可求出结论.解:12x +Q …, 1x ∴….故选:A .5.下列计算正确的是( ) A .4482x x x += B .326x x x =gC .2363()x y x y =D .22()()x y y x x y --=-【分析】先计算出各个选项中式子的正确结果,即可得到哪个选项是正确的,本题得以解决.解:4442x x x +=Q ,故选项A 错误; 325x x x =Q g ,故选项B 错误;2363()x y x y =Q ,故选项C 正确;22()()2x y y x x xy y --=-+-Q ,故选项D 错误;故选:C .6.点(4,3)P 关于y 轴的对称点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】利用关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点(,)P x y 关于y 轴的对称点P '的坐标是(,)x y -,进而得出答案. 解:点(4,3)P 关于y 轴的对称点坐标为:(4,3)-, 则此点在第二象限.故选:B .7.已知点1(2,)A y -,2(4,)B y -都在反比例函数(0)ky k x=>的图象上,则1y ,2y 的大小关系( ) A .12y y >B .12y y <C .12y y =D .无法确定【分析】直接利用反比例函数的增减性分析得出答案. 解:Q 反比例函数(0)ky k x=>中,0k >, ∴在每个象限内,y 随x 的增大而减小,Q 点1(2,)A y -,2(4,)B y -都在反比例函数(0)ky k x=>的图象上,且24->- 12y y ∴<,故选:B .8.如图,分别过矩形ABCD 的顶点A 、D 作直线1l 、2l ,使12//l l ,2l 与边BC 交于点P ,若138∠=︒,则BPD ∠为( )A .162︒B .152︒C .142︒D .128︒【分析】先根据平行线的性质,得到ADP ∠的度数,再根据平行线的性质,即可得到BPD ∠的度数.解:12//l l Q ,138∠=︒, 138ADP ∴∠=∠=︒,Q 矩形ABCD 的对边平行, 180BPD ADP ∴∠+∠=︒, 18038142BPD ∴∠=︒-︒=︒,故选:C .9.某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是( )A .90 分B .85 分C .95 分D .100 分【分析】根据众数的定义即可解决问题. 解:这组数据中90出现了两次,次数最多, 所以这组数据的众数为90分. 故选:A .10.已知抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A .当2x <时,y 随x 增大而增大B .0a b c ++<C .抛物线过点(4,0)-D .420a b c ++=【分析】根据题意和二次函数的性质,可以判断出各个选项中的说法是否正确,从而可以解答本题.解:Q 抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =,与x 轴的一个交点坐标为(4,0), ∴当2x <时,y 随x 增大而减小,故选项A 错误;该抛物线过点(0,0),当1x =时,0y a b c =++<,故选项B 正确; 当2x =时,420y a b c =++<,故选项D 错误; 当4x =-时,0y >,故选项C 错误; 故选:B .二、填空题(每题3分,共18分)11.分解因式:42242x x y y -+= 22()()x y x y +- .【分析】直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可. 解:42242x x y y -+222()x y =-22()()x y x y =+-.故答案为:22()()x y x y +-.12.如图,每个小正方形边长为1,则ABC ∆边AC 上的高BD 的长为 85 .【分析】根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长. 解:根据勾股定理得:22345AC =+=,由网格得:12442ABC S ∆=⨯⨯=,且11522ABC S AC BD BD ∆==⨯g , ∴1542BD ⨯=, 解得:85BD =. 故答案为:8513.如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE AB =,则BEA ∠的度数是 67.5 度.【分析】直接利用正方形的性质得出45BAC ∠=︒,再利用等腰三角形的性质得出答案. 解:Q 四边形ABCD 是正方形,45BAC ∴∠=︒,AE AB =Q ,1804567.52BEA ABE ︒-︒∴∠=∠==︒. 故答案为:67.5.14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 0.3 .【分析】让1减去摸出红球和白球的概率即为所求的概率.解:根据概率公式摸出黑球的概率是10.20.50.3--=.15.已知:如图,AB 是O e 的直径,C 是O e 上的一点,BAC ∠的平分线交O e 于D ,若40ABC ∠=︒,则ABD ∠= 65 度.【分析】首先根据AB 是直径,由圆周角定理得出ACB ∠是直角,进而可求出BAC ∠、DAC ∠的度数;然后根据同弧所对的圆周角相等,求得DBC ∠的度数,从而由ABD ABC DBC ∠=∠+∠得到ABD ∠的度数.解:AB Q 是O e 的直径,90ACB ∴∠=︒,即90BAC ABC ∠+∠=︒;50BAC ∴∠=︒;AD Q 平分BAC ∠,1252DAC BAC ∴∠=∠=︒; 25DBC DAC ∴∠=∠=︒;故65ABD ABC DBC ∠=∠+∠=︒.16.如图,在矩形ABCD 中,4AB =,6BC =,将ABE ∆沿着AE 折叠至△AB E ',若BE CE =,连接B C ',则B C '的长为 185.【分析】由折叠的性质可得ABE AB E S S '∆=V ,BE B E '=,可证90BB C '∠=︒,由勾股定理可求AE 的长,由面积法可求BB '的长,由勾股定理可求解.解:Q 将ABE ∆沿着AE 折叠至△AB E ',ABE AB E S S '∆∴=V ,BE B E '=,BE CE =Q ,3BE EC B E '∴===,90BB C '∴∠=︒,在Rt ABE ∆中,5AE ===, Q 11222AE BB AB BE '⨯⨯=⨯⨯⨯, 2432455BB ⨯⨯'∴==,185B C '∴===, 故答案为:185. 三、解答题17.021( 3.14)|tan 603|()3π--+︒--+ 【分析】直接利用特殊角的三角函数值以及绝对值的性质、负整数指数幂的性质分别化简得出答案.解:原式139==+-+5=-.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A 小区的概率是 4; (2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率.【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.解:(1)甲组抽到A 小区的概率是14, 故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为112.19.某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36︒.根据以上信息,解答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.【分析】(1)由A类有20人,所占扇形的圆心角为36︒,即可求得这次被调查的学生数;(2)首先求得C项目对应人数,即可补全统计图;(3)该校1000学生数⨯参加了羽毛球社团的人数所占的百分比即可得到结论.解:(1)AQ类有20人,所占扇形的圆心角为36︒,∴这次被调查的学生共有:3620200360÷=(人);故答案为:200;(2)C项目对应人数为:20020804060---=(人);补充如图.(3)601000300200⨯=(人), 答:这1000名学生中有300人参加了羽毛球社团.20.如图,已知点E 、F 在四边形ABCD 的对角线延长线上,AE CF =,//DE BF ,12∠=∠.(1)求证:AED CFB ∆≅∆;(2)若AD CD ⊥,四边形ABCD 是什么特殊四边形?请说明理由.【分析】(1)根据两直线平行,内错角相等可得E F ∠=∠,再利用“角角边”证明AED ∆和CFB ∆全等即可;(2)根据全等三角形对应边相等可得AD BC =,DAE BCF ∠=∠,再求出DAC BCA ∠=∠,然后根据内错角相等,两直线平行可得//AD BC ,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.【解答】(1)证明://DE BF Q ,E F ∴∠=∠,在AED ∆和CFB ∆中,12E F AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AED CFB AAS ∴∆≅∆;(2)解:四边形ABCD是矩形.理由如下:AED CFB∆≅∆Q,AD BC∴=,DAE BCF∠=∠,DAC BCA∴∠=∠,//AD BC∴,∴四边形ABCD是平行四边形,又AD CD⊥Q,∴四边形ABCD是矩形.21.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?【分析】设慢车与快车的速是/xkm h,则快车的速度是1.2/xkm h,根据题意列方程即可得到结论.解:设慢车与快车的速是/xkm h,则快车的速度是1.2/xkm h,根据题意得15011502 1.2x x-=,解得:50x=,检验:经检验50x=是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.22.如图,在Oe中,点D是Oe上的一点,点C是直径AB延长线上一点,连接BD,CD,且A BDC∠=∠.(1)求证:直线CD是Oe的切线;(2)若CM平分ACD∠,且分别交AD,BD于点M,N,当2DM=时,求MN的长.【分析】(1)如图,连接OD.欲证明直线CD是Oe的切线,只需求得90ODC∠=︒即可;(2)由角平分线及三角形外角性质可得A ACM BDC DCM∠+∠=∠+∠,即DMN DNM∠=∠,根据勾股定理可求得MN的长.【解答】(1)证明:如图,连接OD.Q为OABe的直径,∠+∠=︒,∴∠=︒,即90A ABD90ADB又OD OBQ,=ABD ODB∴∠=∠,Q;A BDC∠=∠∠=︒.ODC∴∠+∠=︒,即9090CDB ODBQ是圆O的半径,ODe的切线;∴直线CD是O(2)解:CMQ平分ACD∠,∴∠=∠,DCM ACM又A BDCQ,∠=∠∴∠+∠=∠+∠,即DMN DNM∠=∠,A ACM BDC DCMDM=,Q,2∠=︒90ADBDN DM∴==,22222∴=+=.MN DM DN23.如图,平面直角坐标系中,直线33y=-A、B.点C在x轴的负半轴上,且:1:2AB AC=.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设ABM∆的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)求出A ,B 两点的坐标,求出2AB =,则OC 可求出,则点C 的坐标可求出;(2)先求出90ABC ∠=︒,分两种情况考虑:当M 在线段BC 上;当M 在线段BC 延长线上;表示出BM ,利用三角形面积公式分别表示出S 与t 的函数关系式即可;(3)点P 是y 轴上的点,在坐标平面内存在点Q ,使以A 、B 、P 、Q 为顶点的四边形是菱形,如图所示,利用菱形的性质,根据AQ 与y 轴平行或垂直,求出满足题意Q 得坐标即可.解:(1)对于直线33y x =-+当0y = 时,330-=,解得:1x =,(1,0)A ∴,1OA ∴=,当0x = 时,3y =3)B ∴,3OB ∴=,90AOB ∠=︒Q ,22132AB OA OB ∴=+=+=,:1:2AB AC =Q ,4AC ∴=,3OC ∴=,(3,0)C ∴-;(2)如图所示,1OA =Q ,3OB =,2AB =,30ABO∴∠=︒,同理:23BC=,30OCB∠=︒,60OBC∴∠=︒,90ABC∴∠=︒,分两种情况考虑:①若M在线段BC上时,3BC=,CM t=,可得23BM BC CM t=-=-,此时11(23)223(023)22ABMS BM AB t t t∆==⨯-⨯=<g„;②若M在BC延长线上时,23BC=,CM t=,可得3BM CM BC t=-=-,此时11(23)23(23)22ABMS BM AB t t t∆==⨯-⨯=-g…;综上所述,23(023)23(23)t tSt t⎧-<⎪=⎨-⎪⎩„…;(3)存在.若AB是菱形的边,如图2所示,在菱形11APQ B 中,11Q O AO ==,所以1Q 点的坐标为(1,0)-,在菱形22ABP Q 中,22AQ AB ==,所以2Q 点的坐标为(1,2),在菱形33ABP Q 中,32AQ AB ==,所以3Q 点的坐标为(1,2)-,综上,满足题意的点Q 的坐标为(1,2)或(1,2)-或(1,0)-.24.猜想与证明:如图1,摆放矩形纸片ABCD 与矩形纸片ECGF ,使B 、C 、G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM 、ME ,试猜想DM 与ME 的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为 DM ME =,DM ME ⊥ .(2)如图2摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.【分析】猜想:延长EM 交AD 于点H ,利用FME AMH ∆≅∆,得出HM EM =,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM 交AD 于点H ,利用FME AMH ∆≅∆,得出HM EM =,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC ,AC 和EC 在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【解答】猜想:DM ME =证明:如图1,延长EM 交AD 于点H ,Q 四边形ABCD 和CEFG 是矩形,//AD EF ∴,EFM HAM ∴∠=∠,又FME AMH ∠=∠Q ,FM AM =,在FME ∆和AMH ∆中,EFM HAM FM AMFME AMH ∠=∠⎧⎪=⎨⎪∠=∠⎩()FME AMH ASA ∴∆≅∆HM EM ∴=,在RT HDE ∆中,HM EM =,DM HM ME ∴==,DM ME ∴=.(1)如图1,延长EM 交AD 于点H ,Q 四边形ABCD 和CEFG 是正方形,//AD EF ∴,EFM HAM ∴∠=∠,又FME AMH ∠=∠Q ,FM AM =,在FME ∆和AMH ∆中,EFM HAM FM AMFME AMH ∠=∠⎧⎪=⎨⎪∠=∠⎩()FME AMH ASA ∴∆≅∆HM EM ∴=,在RT HDE ∆中,HM EM =,DM HM ME ∴==,DM ME ∴=.Q 四边形ABCD 和CEFG 是正方形,AD CD ∴=,CE EF =,FME AMH ∆≅∆Q ,EF AH ∴=,DH DE ∴=,DEH ∴∆是等腰直角三角形,又MH ME =Q ,故答案为:DM ME =,DM ME ⊥.(2)如图2,连接AC ,Q 四边形ABCD 和ECGF 是正方形,45FCE ∴∠=︒,45FCA ∠=︒,AC ∴和EC 在同一条直线上,在Rt ADF ∆中,AM MF =,DM AM MF ∴==,MDA MAD ∠=∠,2DMF DAM ∴∠=∠.在Rt AEF ∆中,AM MF =,AM MF ME ∴==,DM ME ∴=.MDA MAD ∠=∠Q ,MAE MEA ∠=∠,2()224590DME DMF FME MDA MAD MAE MEA DAM MAE DAC ∴∠=∠+∠=∠+∠+∠+∠=∠+∠=∠=⨯︒=︒.DM ME ∴⊥.25.已知:如图,二次函数2y ax bx c =++的图象与x 轴交于A 、B 两点,其中A 点坐标为(1,0)-,点(0,5)C ,另抛物线经过点(1,8),M 为它的顶点.(1)求抛物线的解析式;(2)求MCB ∆的面积MCB S ∆.(3)在坐标轴上,是否存在点N ,满足BCN ∆为直角三角形?如存在,请直接写出所有满足条件的点N .【分析】(1)把(1,0)A -,(0,5)C ,(1,8)三点代入二次函数解析式,解方程组即可.(2)先求出M 、B 、C 的坐标,根据MCB MCE OBC MEOB S S S S ∆∆∆=--梯形即可解决问题.(3)分三种情①C 为直角顶点;②B 为直角顶点;③N 为直角顶点;分别求解即可. 解:(1)Q 二次函数2y ax bx c =++的图象经过(1,0)A -,(0,5)C ,(1,8),则有:085a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为245y x x =-++.(2)令0y =,得(5)(1)0x x -+=,15x =,21x =-, (5,0)B ∴.由2245(2)9y x x x =-++=--+,得顶点(2,9)M 如图1中,作ME y ⊥轴于点E ,可得()111259425515222MCB MCE OBC MEOB S S S S ∆∆∆=--=+⨯-⨯⨯-⨯⨯=梯形.(3)存在.如图2中,5OC OB ==Q ,BOC ∴∆是等腰直角三角形, ①当C 为直角顶点时,1(5,0)N -.②当B 为直角顶点时,2(0,5)N -.③当N 为直角顶点时,3(0,0)N .综上所述,满足条件的点N 坐标为(0,0)或(0,5)-或(5,0)-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年辽宁省沈阳市中考数学一模试卷一.选择题(共10小题)1.下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()02.如图是由6个大小相同的小正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.3.下列计算正确的是()A.2a2﹣4a2=﹣2B.3a+a=3a2C.3a•a=3a2D.4a6÷2a3=2a24.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是()A.3.1536×106B.3.1536×107C.31.536×106D.0.31536×1085.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A.B.C.D.6.如图,矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,若点A 的坐标为(3,4),AB=2,AD∥x轴,则点C的坐标为()A.(6,2)B.(8,)C.(4,3)D.(12,1)7.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=58.如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200D.3009.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2C.2D.()a2 10.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元二.填空题(共6小题)11.若分式的值为0,则x的值为.12.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为m.13.不等式组的解集是.14.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.15.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇:③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min时两人相距2km.其中正确的有.(填序号)16.如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE 取最小值时,AG的长为.三.解答题(共9小题)17.计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.19.如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G 处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.20.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是,类别D所对应的扇形圆心角的度数是度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?22.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.23.如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,过点P作PE⊥AO交AB于点E,一点到达,另一点即停.设点P的运动时间为t秒(t>0).(1)填空:用含t的代数式表示下列各式AP=,CQ=.(2)①当PE=时,求点Q到直线PE的距离.②当点Q到直线PE的距离等于时,直接写出t的值.(3)在动点P、Q运动的过程中,点H是矩形AOBC(包括边界)内一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出点H的横坐标.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.25.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.参考答案与试题解析一.选择题(共10小题)1.下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()0【分析】根据无理数是无限不循环小数,可得答案.【解答】解:π是无理数,故选:C.2.如图是由6个大小相同的小正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2列,每列小正方形数目分别为2,2.故选:D.3.下列计算正确的是()A.2a2﹣4a2=﹣2B.3a+a=3a2C.3a•a=3a2D.4a6÷2a3=2a2【分析】A、原式合并同类项得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;D、原式利用单项式除以单项式法则计算得到结果,即可做出判断.【解答】解:A、原式=﹣2a2,错误;B、原式=4a,错误;C、原式=3a2,正确;D、原式=2a3,错误.故选:C.4.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是()A.3.1536×106B.3.1536×107C.31.536×106D.0.31536×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将31536000用科学记数法表示为3.1536×107.故选:B.5.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A.B.C.D.【分析】首先利用直径所对的圆周角为90°得到△ABD是直角三角形,然后利用勾股定理求得AD边的长,然后求得∠B的正弦即可求得答案.【解答】解:∵AB是直径,∴∠ADB=90°,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B===,∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选:D.6.如图,矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,若点A 的坐标为(3,4),AB=2,AD∥x轴,则点C的坐标为()A.(6,2)B.(8,)C.(4,3)D.(12,1)【分析】根据矩形的性质和A点的坐标,即可得出C的纵坐标为2,设C(x,2),根据反比例函数图象上点的坐标特征得出k=2x=3×4,解得x=6,从而得出C的坐标为(6,2).【解答】解:∵点A的坐标为(3,4),AB=2,∴B(3,2),∵四边形ABCD是矩形,∴AD∥BC,∵AD∥x轴,∴BC∥x轴,∴C点的纵坐标为2,设C(x,2),∵矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,∴k=2x=3×4,∴x=6,∴C(6,2),故选:A.7.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=5【分析】根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:C.8.如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200D.300【分析】作BD⊥AC于点D,在Rt△ABD中利用三角函数求得AD的长,在Rt△BCD 中,利用三角函数求得CD的长,则AC即可求得,进而求得速度.【解答】解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选:A.9.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2C.2D.()a2【分析】利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×,即可得出结果.【解答】解:∵正六边形的边长为a,∴⊙O的半径为a,∴⊙O的面积为π×a2=πa2,∵空白正六边形为六个边长为a的正三角形,∴每个三角形面积为×a×a×sin60°=a2,∴正六边形面积为a2,∴阴影面积为(πa2﹣a2)×=(﹣)a2,故选:B.10.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设出未知数,根据题中的关键描述语列出方程求解.【解答】解:设小慧同学不买卡直接购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.二.填空题(共6小题)11.若分式的值为0,则x的值为﹣3.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.12.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为54m.【分析】根据同一时刻物高与影长成正比即可得出结论.【解答】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为90m,∴=,解得h=54(m).故答案为:54.13.不等式组的解集是x<.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≤x+10,得:x≤3,解不等式﹣1>4x,得:x<,则不等式组的解集为x<,故答案为:x<.14.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.15.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇:③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min时两人相距2km.其中正确的有①②③④.(填序号)【分析】根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.【解答】解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b 代入得,解得∴s=8t+10当s=2时,得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min,故④正确.故答案为:①②③④.16.如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE 取最小值时,AG的长为8.【分析】过点A作AM⊥BC于M,由已知得出DC=4,得出BC=BD+DC=6,由等边三角形的性质得出AB=AC=BC=6,BM=BC=×6=3,得出DM=BM﹣BD=1,在Rt△ABM中,由勾股定理得出AM==3,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,AD+AE=DE,即此时AE取最小值,在Rt△ADM 中,由勾股定理得出AD==2,在Rt△ADG中,由勾股定理即可得出AG ==8.【解答】解:过点A作AM⊥BC于M,∵BD=DC=2,∴DC=4,∴BC=BD+DC=2+4=6,∵△ABC是等边三角形,∴AB=AC=BC=6,∵AM⊥BC,∴BM=BC=×6=3,∴DM=BM﹣BD=3﹣2=1,在Rt△ABM中,AM===3,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADM中,AD===2,∴在Rt△ADG中,AG===8;故答案为:8.三.解答题(共9小题)17.计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.【分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=4×+1﹣2+2=4﹣1.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)甲组抽到A小区的概率是,故答案为:.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为.19.如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G 处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).20.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了50名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是32,类别D所对应的扇形圆心角的度数是57.6度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.【分析】(1)本次共调查了10÷20%=50(人);(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),根据此信息补全条形统计图即可;(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名).【解答】解:(1)本次共调查了10÷20%=50(人),故答案为50;(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°,故答案为32,57.6;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名),答:估计该校有448名学生寒假在家做家务的总时间不低于20小时.21.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?【分析】(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据数量=总价÷单价结合“用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的”,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据进货的总资金不超过2100元,即可得出关于y的一元一次不等式,解之取其中的整数,即可得出结论.【解答】解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:=×,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,∴y最大值=112答:该超市用不超过2100元最多可以采购甲玩具112件.22.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.【分析】(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OCF,得到∠OFC=∠DBC,推出∠OFG =90°,于是得到结论;(2)连接DF,根据勾股定理得到BC==4,根据圆周角定理得到∠DFC=90°,根据三角函数的定义即可得到结论.【解答】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.23.如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,过点P作PE⊥AO交AB于点E,一点到达,另一点即停.设点P的运动时间为t秒(t>0).(1)填空:用含t的代数式表示下列各式AP=t,CQ=4﹣t.(2)①当PE=时,求点Q到直线PE的距离.②当点Q到直线PE的距离等于时,直接写出t的值.(3)在动点P、Q运动的过程中,点H是矩形AOBC(包括边界)内一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出点H的横坐标.【分析】(1)由矩形的性质得出OA=BC=4,OB=AC=2,AO⊥OB,由题意得AP=t,BQ=t,得出CQ=BC﹣BQ=4﹣t;(2)①延长PE交BC于F,则PF⊥BC,CF=AP=t,证明△APE∽△AOB,得出=,解得t=1,得出BQ=1,CF=1,CQ=3,求出FQ=CQ﹣CF=2即可;②延长PE交BC于F,则PF⊥BC,CF=AP=t,当Q在P的下方时,由题意得t++t =4,解得t=;当Q在P的上方时,由题意得4﹣t+=t,解得t=.(3)求出E(t,4﹣t),Q(2,t),①当QE=EB时,延长PE交BC于F,则PF⊥BC,CF=AP=t,则(2﹣t)2+(4﹣2t)2=t2,解得t=,或t=4(舍去),得出t =即可;②当QE=EB时,则BE=BQ=t,由△APE∽△AOB,得出=,求出AE=t,得出BE=AB﹣AE=2﹣t=t,解得t=20﹣8,即可得出答案.【解答】解:(1)∵矩形AOBC的顶点C的坐标是(2,4),∴OA=BC=4,OB=AC=2,AO⊥OB由题意得:AP=t,BQ=t,∴CQ=BC﹣BQ=4﹣t;故答案为:t,4﹣t;(2)①延长PE交BC于F,如图1所示:则PF⊥BC,CF=AP=t,∵PE⊥AO,AO⊥OB,∴PE∥OB,∴△APE∽△AOB,∴=,即=,解得:t=1,∴BQ=1,CF=1,∴CQ=4﹣1=3,∴FQ=CQ﹣CF=2;即点Q到直线PE的距离为2;②延长PE交BC于F,如上图1,则PF⊥BC,CF=AP=t,①当Q在P的下方时,由题意得:t++t=4,解得:t=;②当Q在P的上方时,如图2所示:由题意得:4﹣t+=t,解得:t=;故当点Q到直线PE的距离等于时,t的值为秒或秒.(3)∵PE⊥AO,AO⊥OB,∴PE∥OB,∴△APE∽△AOB,∴=,即=,解得:PE=t,∵OP=4﹣t,∴E(t,4﹣t),Q(2,t),①当QE=EB时,四边形EQBH是菱形,如图3所示:延长PE交BC于F,则PF⊥BC,CF=AP=t,则(2﹣t)2+(4﹣2t)2=t2,解得:t=,或t=4(舍去),∴t=,即点H的横坐标为;②当QE=EB时,四边形BQHE是菱形,如图4所示:则BE=BQ=t,∵∠AOB=90°,OB=2,OA=4,∴AB==2,∵△APE∽△AOB,∴=,即=,∴AE=t,∴BE=AB﹣AE=2﹣t,∴2﹣t=t,解得:t=20﹣8,∴t=4=10﹣4,即点H的横坐标为10﹣4;综上所述,点H的横坐标为或10﹣4.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;(2)结论:BD2+FC2=DF2.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题;(3)过点A作AG⊥BC于G,在Rt△ADG中,想办法求出AG、DG即可解决问题;【解答】(1)证明:∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.25.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.【分析】(1)由交点式可求a的值,即可求解;(2)由S四边形ADCP=S△APO+S△CPO﹣S△ODC,即可求解;(3)①分两种情况讨论,通过证明△MAD≌△DOC,可得AM=DO,∠MAD=∠DOC =90°,可求解;②可证点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,延长M'C交对称轴与N'',可证∠MM'C=∠MN''C=45°,即【解答】解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∴点C(0,2),∵S=S四边形ADCP=S△APO+S△CPO﹣S△ODC=×AO×y P+×OC×|x P|﹣×CO×OD=4,∴×3×(﹣x2﹣x+2)+×2×(﹣x)﹣×1×2=4,∴x1=﹣1,x2=﹣2,∴点P(﹣1,)或(﹣2,2);(3)①如图2,若点M在CD左侧,连接AM,∵∠MDC=90°,∴∠MDA+∠CDO=90°,且∠CDO+∠DCO=90°,∴∠MDA=∠CDO,且AD=CO=2,MD=CD,∴△MAD≌△DOC(SAS)∴AM=DO,∠MAD=∠DOC=90°,∴点M坐标(﹣3,1),若点M在CD右侧,同理可求点M'(1,﹣1);②如图3,∵抛物线的表达式为:y=﹣x2﹣x+2=﹣(x+1)2+;∴对称轴为:直线x=﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).。

相关文档
最新文档