用霍尔效应测量螺线管磁场的数据处理_物理实验报告

合集下载

实验11利用霍尔效应测量螺线管磁场

实验11利用霍尔效应测量螺线管磁场

实验11 利用霍尔效应测量螺线管磁场实验讲义用霍尔传感器测量通电螺线管内励磁电流与输出霍尔电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法.【实验目的】1. 了解霍尔效应现象,掌握其测量磁场的原理。

2. 学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。

【实验原理】长直通电螺线管中心点磁感应强度理论值根据电磁学毕奥-萨伐尔)Savat Biot (-定律,通电长直螺线管轴线上中心点的磁感应强 度为:: 22M DL I N B +∙∙μ=中心 (1)螺线管轴线上两个端面上的磁感应强度为: 22M DL I N 21B 21B +∙∙μ∙==中心端面(2)式中,μ为磁介质的磁导率,真空中的磁导率()A /m T 10470∙⨯π=μ-,N 为螺线管的总匝数,M I 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。

【实验仪器】FB510型霍尔效应实验仪, FB510型霍尔效应组合测试仪【实验内容】1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合测试仪正确连接。

把励磁电流接到螺线管M I 输入端。

按下实验项目转换按钮,使测量功能指向螺线管磁场测量。

响应的指示灯亮。

2. 把测量探头调节到螺线管轴线中心,即刻度尺读数为cm 0.13处,调节恒流源2,使mA 00.4I S =,不按()S H V /V (即测H V ,依次调节励磁电流为,mA 1000~0I M ±=每次改变mA 100±,测量霍尔电压,并证明霍尔电势差与螺线管内磁感应强度成正比。

3. 放置测量探头于螺线管轴线中心,即cm 0.13刻度处,固定励磁电流mA 1000±,调节霍尔工作电流为:,mA 00.4~0I S ±=每次改变mA 50.0±,测量对应的霍尔电压H V ,证明霍尔电势差与霍尔电流成正比。

霍尔效应和霍尔效应法测量螺线管磁场

霍尔效应和霍尔效应法测量螺线管磁场

——形成‚具有‘控制变量法’特征的采集实验数 据‛的实验步骤;
•通电螺旋管的磁感应强度的分布
保持激磁电流为 250mA 不变 按照表二要求改变传感器的位置测出对应的 U H 值
霍尔效应和霍尔效应法测量螺线管磁场
五、实验操作 六、数据处理
•霍尔效应的特性研究
解读表1实验数据所能揭示的学科现象
作 U H I B 图,分析现象特征及计算斜率 依据实验数据运用公式计算霍尔元件的灵敏度
U H KH I H B
mA
工作电源


双刀开关 螺线管
V- V+ OUT
霍尔元件
读数视窗
霍尔效应和霍尔效应法测量螺线管磁场
四、实验步骤的策划
依据实验原理的依存条件
——形成‚使霍尔元件处于能满足实验原理所要求
的条件‛的实验步骤
霍尔工作电流的调整
U H KB
V 2.50V
V+
——无磁场状态下,使霍尔元件处于标准工作条件; 通过调节霍尔工作电源,使之 U H
使霍尔元件处于正常工作状态 将霍尔元件放置在长直通电螺线管中(保持螺线管电流不变) 改变霍尔元件在螺线管中的位置,用电压表测量霍尔电压 利用霍尔电压与磁感应强度之间的关系测量B的分布特征
霍尔效应和霍尔效应法测量螺线管磁场
三、实验系统的构建 主要实验部件 —— 基于问题元素:霍尔元件 霍尔元件 ——半导体元件 电路特征—— V+、V-、OUT
霍尔效应和霍尔效应法测量螺线管磁场
四、实验步骤的策划
依据实验参量的因果关系
——形成‚具有‘控制变量法’特征的采集实验数 据‛的实验步骤;
•霍尔效应及其特性研究
按表一要求依次改变螺线管电流:每次改变量 50mA 测出对应的 U H 值

霍尔效应法测量螺线管磁场

霍尔效应法测量螺线管磁场

研胳wZprtf霍尔效应法测量螺线管磁场实验报告【实验目的】1•了解霍尔器件的工作特性。

2•掌握霍尔器件测量磁场的工作原理。

3•用霍尔器件测量长直螺线管的磁场分布。

4.考查一对共轴线圈的磁耦合度。

【实验仪器】长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。

【实验原理】1•霍尔器件测量磁场的原理图1霍尔效应原理如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。

将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速ur ir u度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累urn过量的负电荷,2侧积累过量的正电荷。

因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由数显电压表测量并显示出来。

如果半导体中电流I是稳定而均匀的,可以推导出式中,R H为霍耳系数,通常定义K H R H /d ,由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下,U H R HU H满足:世K H IB , dK H称为灵敏度。

研島加吋与B有一一对应关系。

2•误差分析及改进措施由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B、丨方向。

如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等势电势差,而且还可以测出不等势电势差的大小。

用霍耳传感器测量螺线管磁场

用霍耳传感器测量螺线管磁场

4、 如何测量不同长度的螺线管的磁场分布,考察均匀区与长度的关 系?(可以设计一下实验。)
七、数据记录
八、数据处理
九、实验结果与分析
十、实验小结与体会
换 向 前 换 向 后
换 向 前 换 向 后
六、预习思考题
1、 什么是霍尔效应?在科研中有什么用途?
2、 如果螺线管在绕制中两边单位长度的匝数不同或者绕制不均匀,会 引起什么情况?
3、 在螺线管中电流恒定(例如100mA)的条件下,移动传感器在螺线管 上的位置,测量关系。的范围是0~30cm,为什么两端的测量数据因 该比中心位置附近的测量数据点密集些?
换 向 前 换 向 后
换 向 前 换 向 后
7.0 8.0 9.0 10.0 12.0 14.0 16.0 18.0 20.0 21.0 22.0 23.0
换 向 前 换 向 后
换 向 前 换 向 后
24.0 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0
实验总评 成绩
重庆科技学院大学物理 实验报告
第 个实验报告
课程名 大学物 称 理实验
实验项目名称
用霍尔传感器测量螺 线管磁场
开课院系及 数理学院大学物理实验 实验日期
实验室
教学中心

姓名
专业 班级
学号
导 教

教师评语:
改时间: 在实验室预习 的时间
1、 实验目的
评阅教师签字:

在实验室预习好后 指导教师签字
2、或仪器误差等)
4、
实验内容及步骤
五、数据记录表格
1、 霍尔传感器的灵敏度的测定 0 50 100 150 200 250 300 350 400 450 500

大学物理实验报告 螺线管磁场的测量

大学物理实验报告 螺线管磁场的测量

实验报告螺线管磁场的测量霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。

1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。

后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。

随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。

在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。

近年来,霍尔效应实验不断有新发现。

1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。

目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。

在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。

本实验采取电放大法,应用霍尔效应对螺线管磁场进行测量。

关键词:霍尔效应;霍尔元件;电磁场;磁场一、实验目的1.了解螺线管磁场产生原理。

2.学习霍尔元件用于测量磁场的基本知识。

3.学习用“对称测量法”消除副效应的影响,测量霍尔片的UH -IS(霍尔电压与工作电流关系)曲线和UH -IM,B-IM(螺线管磁场分布)曲线。

二、实验原理霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛伦兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如图所示,磁场B位于Z轴的正向,与之垂直的半导体薄片上沿X轴正向通以电流IS(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流IS相反的X轴负向运动。

由于洛伦兹力fL作用,电子即向图中虚线箭头所指的位于Y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。

用霍尔元件测螺线管磁场实验报告

用霍尔元件测螺线管磁场实验报告

竭诚为您提供优质文档/双击可除用霍尔元件测螺线管磁场实验报告篇一:用霍尔元件测螺线管磁场.实验三十用霍尔元件测螺旋磁场【实验目的】1.学习用霍尔效应测量磁场的原理和方法。

2.学习用霍尔元件测绘长直螺线管的轴向磁场分布。

【实验仪器】Th—h型霍尔效应实验组合仪。

【实验原理】1.霍尔效应霍尔效应从本质上讲是运动的带电粒子在磁场中受洛伦兹力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场eh。

如图*1*所示的半导体试样,若在x方向通以电流Is,在Z方向加磁场b,则在Y方向即试样A-A电极两侧就开始聚集异号电荷而产生相应的附加电场。

电场的指向取决于式样的导电类型。

对于图*1a*所示的n型试样,霍尔元件逆Y方向,图*1b*的p型试样则沿Y方向。

即有eh(Y)?0?(n型)eh(Y)?0?(p型)*(注(a)载流子为电子(n型)(b)载流子为空穴(p 型))显然,霍尔电场eh是阻止载流电子继续向侧面偏移,当载流电子所受的横向电场力eeh洛伦兹力evb相等时,样品两侧电荷的积累就达到动态平衡,故有eeh?evb式中,eh为霍尔电场;v是载流电子在电流方向上的平均漂流速度。

设试样的宽为b,厚度d,载流子浓度为n,则Is?nevbd由式(1)、式(2)可得Vh?ehb?Ib1Isb?Rhsnedd即霍尔电压Vh(A、A电极之间的电压)与Isb乘积成正比与试样厚度d成反比。

比例系数Rh?称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。

只要测出Vh(V)以及3d(cm)知道I(和,可按下式计算A)、b(gs)R(cm/c)sh Rh?8Vhd?108Isb上式中的10是由于磁感应强度b用电磁单位高斯(gs),d用厘米(cm)单位,而其他各量均采用国际制单位引入。

2.霍尔系数Rh与其他参数之间的关系根据Rh可进一步确定以下参数:(1)由Rh的符号(或霍尔电压的正负)判断样品的导电类型。

大学物理实验报告 螺线管磁场的测量

大学物理实验报告 螺线管磁场的测量

实验报告螺线管磁场得测量霍尔效应就就是导电材料中得电流与磁场相互作用而产生电动势得效应。

1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。

后来曾有人利用霍尔效应制成测量磁场得磁传感器,但因金属得霍尔效应太弱而未能得到实际应用。

随着半导体材料与制造工艺得发展,人们又利用半导体材料制成霍尔元件,由于它得霍尔效应显著而得到实用与发展,现在广泛用于非电量得测量、电动控制、电磁测量与计算装置方面。

在电流体中得霍尔效应也就就是目前在研究中得“磁流体发电”得理论基础。

近年来,霍尔效应实验不断有新发现。

1980年原西德物理学家冯·克利青研究二维电子气系统得输运特性,在低温与强磁场下发现了量子霍尔效应,这就就是凝聚态物理领域最重要得发现之一。

目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻得自然基准,可以极为精确地测量光谱精细结构常数等。

在磁场、磁路等磁现象得研究与应用中,霍尔效应及其元件就就是不可缺少得,利用它观测磁场直观、干扰小、灵敏度高、效果明显。

本实验采取电放大法,应用霍尔效应对螺线管磁场进行测量。

关键词:霍尔效应;霍尔元件;电磁场;磁场一、实验目得1、了解螺线管磁场产生原理。

2、学习霍尔元件用于测量磁场得基本知识。

3、学习用“对称测量法”消除副效应得影响,测量霍尔片得UH -IS(霍尔电压与工作电流关系)曲线与UH -IM,B-IM(螺线管磁场分布)曲线。

二、实验原理霍尔效应从本质上讲,就就是运动得带电粒子在磁场中受洛伦兹力得作用而引起得偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷在不同侧得聚积,从而形成附加得横向电场。

如图所示,磁场B位于Z轴得正向,与之垂直得半导体薄片上沿X轴正向通以电流IS(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流IS相反得X轴负向运动。

霍尔效应测磁场实验报告[共7篇]

霍尔效应测磁场实验报告[共7篇]

篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。

由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。

六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。

利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。

由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。

此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。

近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。

在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。

了解这一富有实用性的实验,对今后的工作将大有益处。

教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。

2. 掌握用霍尔元件测量磁场的原理和方法。

3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。

教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。

实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。

这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。

大学物理实验报告 螺线管磁场的测量

大学物理实验报告 螺线管磁场的测量

实验报告螺线管磁场的测量霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。

1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。

后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。

随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。

在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。

近年来,霍尔效应实验不断有新发现。

1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。

目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。

在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。

本实验采取电放大法,应用霍尔效应对螺线管磁场进行测量。

关键词:霍尔效应;霍尔元件;电磁场;磁场一、实验目的1.了解螺线管磁场产生原理。

2.学习霍尔元件用于测量磁场的基本知识。

3.学习用“对称测量法”消除副效应的影响,测量霍尔片的UH -IS(霍尔电压与工作电流关系)曲线和UH -IM,B-IM(螺线管磁场分布)曲线。

二、实验原理霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛伦兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如图所示,磁场B位于Z轴的正向,与之垂直的半导体薄片上沿X轴正向通以电流IS(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流IS相反的X轴负向运动。

由于洛伦兹力fL作用,电子即向图中虚线箭头所指的位于Y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。

用霍尔效应测量螺线管磁场

用霍尔效应测量螺线管磁场

用霍尔效应测量螺线管磁场
在物理学中,霍尔效应是一种重要的电学现象,它是由当电流通过一条带电体时在该体内部磁场的作用下产生的电压差所引起的。

此现象可用于精确测量磁场及用于测量导电性的材料的电子和空穴浓度。

在实际应用中,霍尔效应的测量原理可以被应用在测量螺线管磁场中。

螺线管被用于创建强磁场,通常用于 MRI、医学诊断和其他磁性物质的研究。

霍尔效应可通过测量设备中的磁场,确定螺线管的磁场大小。

在霍尔效应的测量中,一个带有霍尔元件的电路用于测量电压差。

电路通过螺线管并测量其中的磁场。

在此过程中,载流子被引导进入螺线管并在霍尔元件中产生电压差。

电压差取决于电路之间的磁场强度和载流子的密度。

在霍尔元件中,电流在由霍尔靴子和蓝宝石芯片构成的三维结构中流动。

当电流通过靴子时,在霍尔晶片上形成一个单独的电场强度,与磁场垂直。

在磁场和电场耦合的情况下,电子和空穴的流动方向相反,从而产生一个电压信号。

通过测量霍尔元件中的电压差,可以确定磁场的大小。

霍尔元件的电压大小仅取决于电流和磁场的强度,因此可以用于精确测量螺线管的磁场大小。

然而,在霍尔效应测量的实际应用中,存在一些问题。

例如,《美国物理学会》指出,电子和空穴浓度的变化、体积效应和噪音会影响测量结果的准确性。

另外,虽然霍尔效应可以用于测量静态磁场,但对于快速变化的磁场,该方法并不适用。

总的来说,霍尔效应是精确测量螺线管磁场的一种有效方法。

通过了解霍尔效应的基本原理和其应用,可以更好地理解螺线管和磁场的特性。

大学物理实验报告螺线管磁场的测量

大学物理实验报告螺线管磁场的测量

⼤学物理实验报告螺线管磁场的测量实验报告螺线管磁场的测量霍尔效应是导电材料中的电流与磁场相互作⽤⽽产⽣电动势的效应。

1879年美国霍普⾦斯⼤学研究⽣霍尔在研究⾦属导电机理时发现了这种电磁现象,故称霍尔效应。

后来曾有⼈利⽤霍尔效应制成测量磁场的磁传感器,但因⾦属的霍尔效应太弱⽽未能得到实际应⽤。

随着半导体材料和制造⼯艺的发展,⼈们⼜利⽤半导体材料制成霍尔元件,由于它的霍尔效应显著⽽得到实⽤和发展,现在⼴泛⽤于⾮电量的测量、电动控制、电磁测量和计算装置⽅⾯。

在电流体中的霍尔效应也是⽬前在研究中的“磁流体发电”的理论基础。

近年来,霍尔效应实验不断有新发现。

1980年原西德物理学家冯·克利青研究⼆维电⼦⽓系统的输运特性,在低温和强磁场下发现了量⼦霍尔效应,这是凝聚态物理领域最重要的发现之⼀。

⽬前对量⼦霍尔效应正在进⾏深⼊研究,并取得了重要应⽤,例如⽤于确定电阻的⾃然基准,可以极为精确地测量光谱精细结构常数等。

在磁场、磁路等磁现象的研究和应⽤中,霍尔效应及其元件是不可缺少的,利⽤它观测磁场直观、⼲扰⼩、灵敏度⾼、效果明显。

本实验采取电放⼤法,应⽤霍尔效应对螺线管磁场进⾏测量。

关键词:霍尔效应;霍尔元件;电磁场;磁场⼀、实验⽬的1.了解螺线管磁场产⽣原理。

2.学习霍尔元件⽤于测量磁场的基本知识。

3.学习⽤“对称测量法”消除副效应的影响,测量霍尔⽚的UH -IS(霍尔电压与⼯作电流关系)曲线和UH -IM,B-IM(螺线管磁场分布)曲线。

⼆、实验原理霍尔效应从本质上讲,是运动的带电粒⼦在磁场中受洛伦兹⼒的作⽤⽽引起的偏转。

当带电粒⼦(电⼦或空⽳)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的⽅向上产⽣正负电荷在不同侧的聚积,从⽽形成附加的横向电场。

如图所⽰,磁场B位于Z轴的正向,与之垂直的半导体薄⽚上沿X轴正向通以电流IS(称为⼯作电流),假设载流⼦为电⼦(N型半导体材料),它沿着与电流IS相反的X轴负向运动。

螺线管磁场的测量实验报告

螺线管磁场的测量实验报告

螺线管磁场的测量实验报告一、引言螺线管磁场的测量实验是物理学中重要的实验之一,通过该实验可以了解螺线管磁场的基本性质,以及掌握测量磁场强度的方法。

本文将详细介绍螺线管磁场的测量实验过程和结果分析。

二、实验原理1. 螺线管磁场螺线管是由导体绕成的一种电器元件,具有产生磁场的特性。

当通过螺线管中通电时,会产生一个沿轴向方向的磁场,其大小与电流强度、导线圈数和导线半径等因素有关。

2. 磁场测量方法常用的测量磁场强度的方法包括霍尔效应法、法拉第电流法和平衡法等。

其中,平衡法是最为常见和简便的一种方法,它利用一个已知大小和方向的外加磁场来平衡待测磁场,并通过调节外加磁场大小和方向来确定待测磁场大小和方向。

三、实验步骤1. 实验器材准备:螺线管、直流电源、万用表、直角坐标仪等。

2. 搭建实验装置:将螺线管固定在直角坐标仪上,使其轴线与坐标轴垂直,并接通直流电源,调节电流大小为一定值。

3. 测量外加磁场大小和方向:将万用表调至磁场测量档位,用其测量外加磁场的大小和方向。

4. 调节外加磁场:通过调节外加磁场的大小和方向,使待测磁场与外加磁场平衡。

5. 测量待测磁场强度:通过记录外加磁场的大小和方向以及调节次数等信息,计算出待测磁场的强度。

四、实验结果分析1. 实验数据处理根据实验步骤所得到的数据,可以计算出待测磁场的强度。

在计算过程中需要注意单位换算和误差分析等问题。

2. 实验误差分析由于实验中存在各种因素的影响,如仪器精度、环境温度、电源稳定性等因素都会对实验结果产生一定影响。

因此,在进行数据处理时需要进行误差分析,并采取相应措施减小误差。

3. 结果讨论根据实验结果分析,可以得出螺线管磁场的强度与电流强度成正比,与导线圈数成正比,与导线半径的平方成反比。

此外,还可以讨论螺线管磁场的方向性和分布等问题。

五、实验结论通过本次实验,我们成功地测量了螺线管磁场的强度,并掌握了测量磁场强度的方法。

同时,还深入了解了螺线管磁场的基本性质和特点。

大学物理实验报告螺线管磁场的测量

大学物理实验报告螺线管磁场的测量

⼤学物理实验报告螺线管磁场的测量实验报告螺线管磁场得测量霍尔效应就就是导电材料中得电流与磁场相互作⽤⽽产⽣电动势得效应。

1879年美国霍普⾦斯⼤学研究⽣霍尔在研究⾦属导电机理时发现了这种电磁现象,故称霍尔效应。

后来曾有⼈利⽤霍尔效应制成测量磁场得磁传感器,但因⾦属得霍尔效应太弱⽽未能得到实际应⽤。

随着半导体材料与制造⼯艺得发展,⼈们⼜利⽤半导体材料制成霍尔元件,由于它得霍尔效应显著⽽得到实⽤与发展,现在⼴泛⽤于⾮电量得测量、电动控制、电磁测量与计算装置⽅⾯。

在电流体中得霍尔效应也就就是⽬前在研究中得“磁流体发电”得理论基础。

近年来,霍尔效应实验不断有新发现。

1980年原西德物理学家冯·克利青研究⼆维电⼦⽓系统得输运特性,在低温与强磁场下发现了量⼦霍尔效应,这就就是凝聚态物理领域最重要得发现之⼀。

⽬前对量⼦霍尔效应正在进⾏深⼊研究,并取得了重要应⽤,例如⽤于确定电阻得⾃然基准,可以极为精确地测量光谱精细结构常数等。

在磁场、磁路等磁现象得研究与应⽤中,霍尔效应及其元件就就是不可缺少得,利⽤它观测磁场直观、⼲扰⼩、灵敏度⾼、效果明显。

本实验采取电放⼤法,应⽤霍尔效应对螺线管磁场进⾏测量。

关键词:霍尔效应;霍尔元件;电磁场;磁场⼀、实验⽬得1、了解螺线管磁场产⽣原理。

2、学习霍尔元件⽤于测量磁场得基本知识。

3、学习⽤“对称测量法”消除副效应得影响,测量霍尔⽚得UH -IS(霍尔电压与⼯作电流关系)曲线与UH -IM,B-IM(螺线管磁场分布)曲线。

⼆、实验原理霍尔效应从本质上讲,就就是运动得带电粒⼦在磁场中受洛伦兹⼒得作⽤⽽引起得偏转。

当带电粒⼦(电⼦或空⽳)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得⽅向上产⽣正负电荷在不同侧得聚积,从⽽形成附加得横向电场。

如图所⽰,磁场B位于Z轴得正向,与之垂直得半导体薄⽚上沿X轴正向通以电流IS(称为⼯作电流),假设载流⼦为电⼦(N型半导体材料),它沿着与电流IS相反得X轴负向运动。

用霍尔元件测螺线管轴线磁场分布-精选文档

用霍尔元件测螺线管轴线磁场分布-精选文档
V
新型螺线管磁场测定仪—电 源 mA
数字电流表
ON
数字电压表
mV
+
励磁恒流输出
2.4V~2.6V
4.8V~5.2V
+
电压输入
上海复旦天欣科教仪器有限公司
2 K2 K1 0
1
V+和V- :给霍 尔元件提供 工作电流
V_
3 2 1
集成霍耳元件
V+ VOUT
外接2.500V 补偿电压
位置读数
Vout和V- :输 出霍尔电压
调节励 磁电流
K2
2 K1 0
1
显示霍尔 元件输出 电压.
V_
集成霍耳元件
3 2 1
V+ VOUT
位置读数
集成霍尔元件
霍尔元件位置读数
双刀换向开关K2 用于改变励磁电 流的方向.
实验内容:仪器调节
二. 将霍尔元件的工作电流调节为标准工作电流 断开开关K2,使集成霍耳传感器处于零磁场条件下. 将开关K1指向位置1,调节4.8V—5.2V电源输出电压,使 数字电压表显示的“Vout” 和“V-”间的电压为2.500V,此 时集成霍尔元件达到标准化工作状态,即流过霍尔元件的 电流为标准工作电流,且剩余电压恰好补偿,V0=0V. 三. 对传感器输出的2.500V电位差进行补偿 K2仍断开,保持V+和V-电压不变,把开关K1指向2,调节 2.4V—2.6V的外接补偿电压,使数字电压表在mV档的示 值为0,即用一个外接2.500V电位差对传感器输出的 2.500V电位差进行补偿,以便可直接读出V’ .
VOUT
实验内容:仪器调节
一. 需连接以下电路:
连接给螺线管提供励磁电流的电路. 连接给霍尔元件提供工作电流(IS)的电路. 连接输出霍尔电压的电路. 连接外接补偿电压(2.500V)的电路.

霍尔效应测量螺纹管磁场

霍尔效应测量螺纹管磁场

a ) 将霍尔控制棒移到螺旋管中间位置(探测棒
上标有标记线),调节IM =1000 mA ,Is =5.00mA,测量相应的VH 。 b) 将霍尔元件从中心向边缘移动每隔10mm选
B VH KH IS
一个点测出相应的VH ,填入表3。
c)由以上所测 VH 值,由公式VH =KHISB计算
出各点的磁感应强度,并绘出B-X图,显示螺
图5 FH2601实验用数字源表平面图
3、测量用稳压源、恒流源
FH4512A霍尔效应螺旋管实验仪
1、 螺 旋 管 线 包
2、 霍 尔 传 感 器 3、 移 动 探 测 杆
FHtech富 阳 华 盛 FH4512 型 螺 旋 管 磁 场 实 验 仪
控制电源 输入




换向
Is/Vs输 入




换向
测量输出





换向
直流励磁输入
5、 被 测 电 压 输 出 端 4、 测 量 电 压 /电 流 输 入 端
图4 FH4512A 螺旋管磁场实验仪
6、 励 磁 电 流 输 入 端
【实验原理 】
1、霍耳元件测磁场原理
霍尔效应从本质上讲是运动的带电粒子在磁场中 受洛仑兹力的作用而引起的偏转。当带电粒子(电 子或空穴)被约束在固体材料中,这种偏转就导致 在垂直电流和磁场的方向上产生正负电荷在不同侧 的聚积,从而形成附加的横向电场。
3、研究霍尔效应与霍尔元件特性 a) 测量霍尔元件的零位(不等位)电势 V0 和不
等电阻 R0 (1)短路之间霍尔电压输入端,调节调零旋纽
使电压表显示00.00mv; (2)断开励磁电流IM。 (3)调节霍尔控制(工作)电流Is =2.00mA,开

霍尔法测螺线管磁场实验报告

霍尔法测螺线管磁场实验报告
霍尔元件的线性范围
在一定磁场强度范围内,霍尔元件的输出电压与磁场强度呈线性关 系。
03 实验步骤
搭建实验装置
准备实验器材
01
螺线管、霍尔元件、电源、测量仪表等。
搭建实验装置
02
将螺线管放置在测量台上,将霍尔元件与测量仪表连接,并将
电源接入螺线管。
检查装置
03
ቤተ መጻሕፍቲ ባይዱ
确保所有连接正确无误,电源正常工作,测量仪表处于校准状
误差来源
实验中可能存在的误差来源包括测量 设备的精度问题、环境因素等。
误差分析
我们对误差来源进行了详细分析,并 计算了误差对实验结果的影响程度。 结果显示,误差对实验结果的影响较 小,实验结果可靠。
05 实验结论与建议
实验结论
01
霍尔效应法能够准确测量螺线管磁场强度,测量结果与理论值 基本一致。
掌握霍尔元件的使用方法
霍尔元件的安装
将霍尔元件放置在螺线管内部 导体上,确保连接牢固,避免
接触不良。
霍尔元件的校准
在测量前需要对霍尔元件进行 校准,以确保测量结果的准确 性。
霍尔元件的读数
根据霍尔元件的输出电压,可 以计算出磁场强度的大小。
注意事项
使用霍尔元件时要避免过载和 高温,以免损坏元件。
02 实验原理
磁场方向与电流方向的关系: 右手定则,即四指环绕电流方 向,大拇指指向即为磁场方向。
磁场强度与电流大小的关系: 电流越大,磁场强度越大。
霍尔元件的工作原理
霍尔元件的构造
通常由半导体材料制成,具有两个平行的电极,当电流通过时, 在电极之间产生电势差。
霍尔元件的输出信号
当霍尔元件处于磁场中时,由于霍尔效应产生的电势差会使得电极 之间产生电压输出。

大学物理实验报告 螺线管磁场的测量

大学物理实验报告 螺线管磁场的测量

实验报告螺线管磁场的测量霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。

1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。

后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。

随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。

在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。

近年来,霍尔效应实验不断有新发现。

1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。

目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。

在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。

本实验采取电放大法,应用霍尔效应对螺线管磁场进行测量。

关键词:霍尔效应;霍尔元件;电磁场;磁场一、实验目的1.了解螺线管磁场产生原理。

2.学习霍尔元件用于测量磁场的基本知识。

3.学习用“对称测量法”消除副效应的影响,测量霍尔片的UH -IS(霍尔电压与工作电流关系)曲线和UH -IM,B-IM(螺线管磁场分布)曲线。

二、实验原理霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛伦兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如图所示,磁场B位于Z轴的正向,与之垂直的半导体薄片上沿X轴正向通以电流IS(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流IS相反的X轴负向运动。

由于洛伦兹力fL作用,电子即向图中虚线箭头所指的位于Y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档