高考数学一轮复习8.4直线与圆、圆与圆的位置关系随堂训练文

合集下载

高考数学一轮复习 8.4直线与圆、圆与圆的位置关系课件

高考数学一轮复习 8.4直线与圆、圆与圆的位置关系课件

对任意实数 m 方程成立,

2 x
x y 7 0,,解得
y40
x y
3,
.
1
∴对任意实数 m,直线 l 恒过定点 P(3,1).
又|PC|= 5 <5,∴P 点在圆 C 内.∴直线 l 与圆 C 必相交.
6/30/2020
(2)当 l⊥PC 时,所截得的弦长最短. 此时,|PC|= (3 1)2 (1 2)2 = 5 .
即 kx-y-k+
3=0,∴|2k-kk2++1
3|=2,解得
k=
3 3.
∴切线方程为 y- 3= 33(x-1),
即 x- 3y+2=0. 【答案】 D
6/30/2020
3.若圆 C: x2 y2 2x 4y 3 0 关于直线 2ax by 6 0
对称,则由点(a,b)向圆所作的切线长的最小值是( )
6/30/2020
4.过点 A(11,2)作圆 x2+y2+2x-4y-164=0 的弦,其中弦长为
整数的共有 ( )
A.16 条
B.17 条
C.32 条
D.34 条
【解析】 由题意可知过点 A(11,2)的最短的弦长为 10,最长的弦长为 26,且分别只有一条.还有长度为 11,12,……,25 的各 2 条,所以弦长为整数的共有 2+2×15=32 条. 【答案】 C
A.2
B.3
C.4
D.6
【 解 析 】 直 线 2ax by 6 0 过 圆 心 C ( -1,2 ), a b 3 0,当点 M(a,b)到圆心距离最小时,切线长 最短. MC (a 1)2 (b 2)2 2a2 8a 26 ,a=2 时最 小,b=-1,此时切线长等于 4. 【答案】 C

2021年高考数学一轮总复习 8.4直线与圆、圆与圆的位置关系练习

2021年高考数学一轮总复习 8.4直线与圆、圆与圆的位置关系练习

2021年高考数学一轮总复习 8.4直线与圆、圆与圆的位置关系练习一、选择题1.圆x 2+y 2-2x +4y -4=0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( )A .相离B .相切C .相交D .以上都有可能解析 ∵圆的方程可化为(x -1)2+(y +2)2=9, ∴圆心为(1,-2),半径r =3.又圆心在直线2tx -y -2-2t =0上, ∴圆与直线相交. 答案 C2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切D .内切解析 圆O 1的圆心坐标为(1,0),半径为r 1=1,圆O 2的圆心坐标为(0,2),半径r 2=2,故两圆的圆心距|O 1O 2|=5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.答案 B3.(xx·浙江卷)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8解析 圆的方程可化为(x +1)2+(y -1)2=2-a ,因此圆心为(-1,1),半径r =2-a . 圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,又弦长为4,因此由勾股定理可得(2)2+⎝ ⎛⎭⎪⎫422=(2-a )2,解得a =-4.故选B.答案 B4.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1 D .(x -2)2+(y -2)2=1解析 C 1:(x +1)2+(y -1)2=1的圆心为(-1,1),它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1.答案 B5.若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( )A .-1B .0C .1D .6解析 由题意可知,圆心C (3,3)到直线AB :x -y +2=0的距离为d =|3-3+2|12+12= 2.又因为sin ∠BAC =d r =22,所以∠BAC =45°,又因为CA =CB ,所以∠BCA =90°.故CA →·CB →=0.答案 B6.(xx·河南南阳三联)动圆C 经过点F (1,0),并且与直线x =-1相切,若动圆C 与直线y =x +22+1总有公共点,则圆C 的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π解析 设圆心为C (a ,b ),半径为r ,r =|CF |=|a +1|,即(a -1)2+b 2=(a +1)2,即a =14b 2,∴圆心为⎝ ⎛⎭⎪⎫14b 2,b ,r =14b 2+1,圆心到直线y =x +22+1的距离为d =⎪⎪⎪⎪⎪⎪b 24-b +22+12≤b24+1,∴b ≤-2(22+3)或b ≥2,当b =2时,r min =14×4+1=2,∴S min =πr 2=4π.答案 D 二、填空题7.以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0公共弦为直径的圆的方程为______________.解析 将两圆方程相减得公共弦所在直线方程为4x +3y -2=0.由⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0.解得两交点坐标A (-1,2),B (5,-6).∵所求圆以AB 为直径,∴所求圆的圆心是AB 的中点M (2,-2),圆的半径为r =12|AB |=5,∴圆的方程为(x-2)2+(y +2)2=25.答案 (x -2)2+(y +2)2=258.(xx·湖北卷)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.解析 由题意,得圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,即|a |2=|b |2,|a |2=cos45°=22,所以a 2=b 2=1,故a 2+b 2=2.答案 29.设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析 ∵l 与圆相交所得弦的长为2, ∴1m 2+n 2=4-1.∴m 2+n 2=13≥2|mn |,∴|mn |≤16.l 与x 轴交点A ⎝ ⎛⎭⎪⎫1m ,0,与y 轴交点B ⎝ ⎛⎭⎪⎫0,1n ,∴S △AOB =12·⎪⎪⎪⎪⎪⎪1m ⎪⎪⎪⎪⎪⎪1n =12·1|mn |≥12×6=3.答案 3三、解答题10.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 将圆C 的方程x 2+y 2-8y +12=0配方,得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.11.已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解 (1)设点P 的坐标为(x ,y ), 则x +32+y 2=2x -32+y 2,化简可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图.则直线l 2是此圆的切线,连接CQ , 则|QM |=|CQ |2-|CM |2=|CQ |2-16, 当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.培 优 演 练1.直线y =x +m 与圆x 2+y 2=16交于不同的两点M ,N ,且|MN →|≥3|OM →+ON →|,其中O 是坐标原点,则实数m 的取值范围是( )A .(-22,-2]∪[2,22)B .(-42,-22]∪[22,42)C .[-2,2]D .[-22,22]解析 设MN 的中点为D ,则OM →+ON →=2OD →,|MN →|≥23|OD →|,由|OD →|2+14|MN →|2=16,得16=|OD →|2+14|MN →|2≥|OD →|2+14(23|OD →|)2,从而得|OD →|≤2,由点到直线的距离公式可得|OD→|=|m |2≤2,解得-22≤m ≤2 2.答案 D2.过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( ) A. 3 B .2 C. 2D .4解析 如图所示,∵PA ,PB 分别为圆O :x 2+y 2=1的切线, ∴OA ⊥AP .∵P (1,3),O (0,0), ∴|OP |=1+3=2.又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12,∴∠AOP =60°,∴|AB |=2|AO |sin ∠AOP = 3.故选A. 答案 A3.设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},则M ∩N ≠∅时,a 的最大值与最小值分别为________、________.解析 因为集合M ={(x ,y )|y =2a 2-x 2,a >0},所以集合M 表示以O (0,0)为圆心,半径为r 1=2a 的上半圆. 同理,集合N 表示以O ′(1,3)为圆心,半径为r 2=a 的圆上的点. 这两个圆的半径随着a 的变化而变化,但|OO ′|=2.如图所示, 当两圆外切时,由2a +a =2,得a =22-2; 当两圆内切时,由2a -a =2,得a =22+2. 所以a 的最大值为22+2,最小值为22-2. 答案 22+2 22-24.过点Q (-2,21)作圆O :x 2+y 2=r 2(r >0)的切线,切点为D ,且|QD |=4. (1)求r 的值;(2)设P 是圆O 上位于第一象限内的任意一点,过点P 作圆O 的切线l ,且l 交x 轴于点A ,交y 轴于点B ,设OM →=OA →+OB →,求|OM →|的最小值(O 为坐标原点).解 (1)圆O :x 2+y 2=r 2(r >0)的圆心为O (0,0), 于是|QO |2=(-2)2+(21)2=25.由题设知,△QDO 是以D 为直角顶点的直角三角形,故有r =|OD |=|QO |2-|QD |2=25-42=3.(2)设直线l 的方程为x a +y b=1(a >0,b >0),即bx +ay -ab =0,则A (a,0),B (0,b ),∴OM →=(a ,b ), ∴|OM →|=a 2+b 2.∵直线l 与圆O 相切,∴|-ab |a 2+b 2=3⇒a 2b 2=9(a 2+b 2)≤⎝ ⎛⎭⎪⎫a 2+b 222.∴a 2+b 2≥36,∴|OM →|≥6.当且仅当a =b =32时取到“=”.∴|OM →|取得最小值为6.3TP23113 5A49 婉29280 7260 牠31874 7C82 粂38572 96AC 隬20796 513C 儼28025 6D79 浹 29642 73CA 珊33829 8425 营323217E41 繁 36062 8CDE 賞。

高三数学人教版a版数学(理)高考一轮复习教案:8.4 直线与圆、圆与圆的位置关系 word版含答案

高三数学人教版a版数学(理)高考一轮复习教案:8.4 直线与圆、圆与圆的位置关系 word版含答案

第四节 直线与圆、圆与圆的位置关系直线与圆、圆与圆的位置关系(1)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(2)能用直线和圆的方程解决一些简单的问题. (3)初步了解用代数方法处理几何问题的思想.知识点一 直线与圆的位置关系直线与圆的位置关系(半径r ,圆心到直线的距离为d ) 相离相切相交图形量化方程观点 Δ<0 Δ=0 Δ>0 几何观点 d >rd =rd <r易误提醒 对于圆的切线问题,尤其是圆外一点引圆的切线,易忽视切线斜率k 不存在情形.必备方法 求圆的弦长的常用方法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用根与系数的关系及弦长公式. |AB |=1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2].注意:常用几何法研究圆的弦的有关问题.[自测练习]1.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=1的位置关系是( ) A .相交 B .相切C .相离D .与m 的取值有关解析:圆心到直线的距离d =|-1-m +1|m 2+1=|m |m 2+1<1=r ,故选A.答案:A2.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D. 2解析:因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. 答案:D3.过点(2,3)与圆(x -1)2+y 2=1相切的直线的方程为________.解析:设圆的切线方程为y =k (x -2)+3,由圆心(1,0)到切线的距离为半径1,得k =43,所以切线方程为4x -3y +1=0,又直线x =2也是圆的切线,所以直线方程为4x -3y +1=0或x =2.答案:x =2或4x -3y +1=0 知识点二 圆与圆的位置关系圆与圆的位置关系(两圆半径r 1,r 2,d =|O 1O 2|) 相离外切相交内切内含图形量的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|易误提醒 两圆相切问题易忽视分两圆内切与外切两种情形.[自测练习]4.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切D .内切解析:圆O 1的圆心坐标为(1,0),半径r 1=1,圆O 2的圆心坐标为(0,2),半径r 2=2,故两圆的圆心距d =5,而r 2-r 1=1,r 1+r 2=3,则r 2-r 1<d <r 1+r 2,故两圆相交.答案:B考点一 直线与圆的位置关系|1.对任意的实数k ,直线y =kx -1与圆C :x 2+y 2-2x -2=0的位置关系是( ) A .相离 B .相切C .相交D .以上三个选项均有可能解析:直线y =kx -1恒经过点A (0,-1),圆x 2+y 2-2x -2=0的圆心为C (1,0),半径为3,而|AC |=2<3,故直线y =kx -1与圆x 2+y 2-2x -2=0相交,故选C.答案:C2.(2015·皖南八校联考)若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( )A.12,-4 B .-12,4C.12,4 D .-12,-4解析:因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,所以直线y =kx 与直线2x +y +b =0垂直,且直线2x +y +b =0过圆心,所以⎩⎪⎨⎪⎧k =12,2×2+0+b =0,解得k =12,b =-4.答案:A3.若直线x -my +1=0与圆x 2+y 2-2x =0相切,则m 的值为( ) A .1 B .±1 C .±3D. 3解析:由x 2+y 2-2x =0,得圆心坐标为(1,0),半径为1,因为直线与圆相切,所以圆心到直线的距离等于半径,即|1-0+1|1+m 2=1,解得m =±3. 答案:C判断直线与圆的位置关系常见的两种方法(1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.考点二 切线、弦长问题|(1)(2015·高考重庆卷)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210(2)(2016·太原一模)已知在圆x 2+y 2-4x +2y =0内,过点E (1,0)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A .3 5B .6 5C .415D .215[解析] (1)由题意得圆C 的标准方程为(x -2)2+(y -1)2=4,所以圆C 的圆心为(2,1),半径为2.因为直线l 为圆C 的对称轴,所以圆心在直线l 上,则2+a -1=0,解得a =-1,所以|AB |2=|AC |2-|BC |2=(-4-2)2+(-1-1)2-4=36,所以|AB |=6,故选C.(2)将圆的方程化为标准方程得(x -2)2+(y +1)2=5,圆心坐标为F (2,-1),半径r =5,如图,显然过点E 的最长弦为过点E 的直径,即|AC |=25,而过点E 的最短弦为垂直于EF 的弦,|EF |=(2-1)2+(-1-0)2=2,|BD |=2r 2-|EF |2=23,∴S 四边形ABCD=12|AC |×|BD |=215. [答案] (1)C (2)D处理切线、弦长问题的策略(1)处理直线与圆的弦长问题时多用几何法,即弦长一半、弦心距、半径构成直角三角形.(2)圆的切线问题的处理要抓住圆心到直线的距离等于半径建立关系解决问题.1.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为( )A .x +y -3=0B .x +y -1=0C .x -y +5=0D .x -y -5=0解析:设直线的斜率为k ,又弦AB 的中点为(-2,3),所以直线l 的方程为kx -y +2k +3=0,由x 2+y 2+2x -4y +a =0得圆的圆心坐标为(-1,2),所以圆心到直线的距离为2,所以|-k -2+2k +3|k 2+1=2,解得k =1,所以直线l 的方程为x -y +5=0,故选C.答案:C2.(2016·云南名校联考)已知圆O :x 2+y 2=1,直线x -2y +5=0上动点P ,过点P 作圆O 的一条切线,切点为A ,则|P A |的最小值为________.解析:过O 作OP 垂直于直线x -2y +5=0,过P 作圆O 的切线P A ,连接OA (图略),易知此时|P A |的值最小.由点到直线的距离公式,得|OP |=|1×0-2×0+5|1+22= 5.又|OA |=1,所以|P A |=|OP |2-|OA |2=2.答案:2考点三 圆与圆的位置关系|1.(2016·惠州调研)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切D .相离解析:两圆的圆心距离为17,两圆的半径之差为1、半径之和为5,而1<17<5,所以两圆相交.答案:B2.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:如图,分别以A ,B 为圆心,1,2为半径作圆.依题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).答案:C3.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________. 解析:两圆的方程相减,得公共弦所在的直线方程为(x 2+y 2+2ay -6)-(x 2+y 2)=0-4⇒y =1a ,又a >0,结合图象(图略),再利用半径、弦长的一半及弦心距所构成的直角三角形,可知1a=22-(3)2=1⇒a =1.答案:1求解两圆位置关系问题的两种方法(1)两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.19.直线与圆的位置关系中的易错问题【典例】对于任意实数m,直线l:y=m(x-1)+b恒与圆O:x2+y2=a2(a>0)有两个交点,则a,b满足的条件是________.[易错点析]对直线l方程分析不彻底,盲目利用Δ法或几何法无法判断导致失误.[解析]由题意知,①直线l经过定点M(1,b).又直线l恒与圆O:x2+y2=a2(a>0)有两个交点,所以,②点M在圆的内部,所以,12+b2<a2,即a2-b2>1.[答案]a2-b2>1[方法点评]点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.点与圆的位置关系法适用于动直线问题.[跟踪练习](2016·大连双基)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.解析:法一:将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)<0,解得k∈(-3,3).法二:圆心(0,0)到直线y=kx+2的距离d=2k2+1,直线与圆没有公共点的充要条件是d>1,即2k2+1>1,解得k∈(-3,3).答案:(-3,3)A组考点能力演练1.(2016·洛阳二练)已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y =4与圆C的位置关系为()A.相离B.相切C.相交D.不能确定解析:由题意:圆C的圆心到直线l的距离d=4x20+y20,∵点P(x0,y0)在圆x2+y2=4外,∴x20+y20>4,∴d=4x20+y20<2,∴直线l与圆相交.答案:C2.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:C 1:(x +1)2+(y -1)2=1的圆心为(-1,1),所以它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1.答案:B3.(2015·长春二模)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .(-∞,2-22]∪[2+22,+∞)B .(-∞,-22]∪[22,+∞)C .[2-22,2+22]D .(-∞,-2]∪[2,+∞) 解析:由直线与圆相切可知 |m +n |=(m +1)2+(n +1)2, 整理得mn =m +n +1,由mn ≤⎝⎛⎭⎫m +n 22可知m +n +1≤14(m +n )2,解得m +n ∈(-∞,2-22]∪[2+22,+∞),故选A. 答案:A4.过点(-2,3)的直线l 与圆x 2+y 2+2x -4y =0相交于A ,B 两点,则|AB |取得最小值时l 的方程为( )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .2x +y +1=0解析:本题考查直线与圆的位置关系.由题意得圆的标准方程为(x +1)2+(y -2)2=5,则圆心C (-1,2),过圆心与点(-2,3)的直线l 1的斜率为k =3-2-2-(-1)=-1.当直线l 与l 1垂直时,|AB |取得最小值,故直线l 的斜率为1,所以直线l 的方程为y -3=x -(-2),即x -y +5=0,故选A.答案:A5.在平面直角坐标系xOy 中,设点P 为圆C :(x -2)2+y 2=5上的任意一点,点Q (2a ,a +2),其中a ∈R ,则线段PQ 长度的最小值为( )A.55B. 5C.355D.655解析:设点Q (x ,y ),则x =2a ,y =a +2,∴x -2y +4=0,∴点Q 在直线x -2y +4=0上.由于圆心(2,0)到直线x -2y +4=0的距离为d =|2-0+4|1+4=655,所以PQ 长度的最小值为d -5=655-5=55,故选A.答案:A6.圆x 2+y 2+x -2y -20=0与圆x 2+y 2=25相交所得的公共弦长为________. 解析:公共弦的方程为(x 2+y 2+x -2y -20)-(x 2+y 2-25)=0,即x -2y +5=0,圆x 2+y 2=25的圆心到公共弦的距离d =|0-2×0+5|5=5,而半径为5,故公共弦长为252-(5)2=4 5.答案:4 57.(2016·泰安调研)已知直线3x -y +2=0及直线3x -y -10=0截圆C 所得的弦长均为8,则圆C 的面积是________.解析:因为已知的两条直线平行且截圆C 所得的弦长均为8,所以圆心到直线的距离d 为两平行直线距离的一半,即d =12×|2+10|3+1=3.又直线截圆C 所得的弦长为8,所以圆的半径r =32+42=5,所以圆C 的面积是25π.答案:25π8.(2016·福州质检)若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A 、B 两点,则CA →·CB →的值为________.解析:依题意得,点C 的坐标为(3,3).由⎩⎪⎨⎪⎧ y =x +2,(x -3)2+(y -3)2=4,解得⎩⎪⎨⎪⎧ x =3y =5或⎩⎪⎨⎪⎧x =1,y =3, 可令A (3,5),B (1,3),∴CA →=(0,2),CB →=(-2,0), ∴CA →·CB →=0. 答案:09.如图,已知圆C 与y 轴相切于点T (0,2),与x 轴的正半轴交于两点M ,N (点M 在点N 的左侧),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一直线与圆O :x 2+y 2=4相交于A ,B 两点,连接AN ,BN ,求证:k AN +k BN 为定值.解:(1)因为圆C 与y 轴相切于点T (0,2),可设圆心的坐标为(m,2)(m >0),则圆C 的半径为m ,又|MN |=3,所以m 2=4+⎝⎛⎭⎫322=254,解得m =52,所以圆C 的方程为⎝⎛⎭⎫x -522+(y -2)2=254. (2)由(1)知M (1,0),N (4,0),当直线AB 的斜率为0时,易知k AN =k BN =0,即k AN +k BN=0.当直线AB 的斜率不为0时,设直线AB :x =1+ty ,将x =1+ty 代入x 2+y 2-4=0,并整理得,(t 2+1)y 2+2ty -3=0.设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧y 1+y 2=-2tt 2+1,y 1y 2=-3t 2+1,则k AN +k BN =y 1x 1-4+y 2x 2-4=y 1ty 1-3+y 2ty 2-3=2ty 1y 2-3(y 1+y 2)(ty 1-3)(ty 2-3)=-6t t 2+1+6tt 2+1(ty 1-3)(ty 2-3)=0.综上可知,k AN +k BN 为定值.10.已知圆M 的圆心M 在x 轴上,半径为1,直线l :y =43x -12被圆M 截得的弦长为3,且圆心M 在直线l 的下方.(1)求圆M 的方程;(2)设A (0,t ),B (0,t +6)(-5≤t ≤-2),若圆M 是△ABC 的内切圆,求△ABC 的面积S 的最大值和最小值.解:(1)设圆心M (a,0),由已知得点M 到直线l :8x -6y -3=0的距离为12-⎝⎛⎭⎫322=12,∴|8a -3|82+62=12.又点M 在直线l 的下方,∴8a -3>0,∴8a -3=5,a =1,∴圆M 的方程为(x -1)2+y 2=1.(2)设直线AC 的斜率为k 1,直线BC 的斜率为k 2,则直线AC 的方程为y =k 1x +t ,直线BC 的方程为y =k 2x +t +6.由方程组⎩⎪⎨⎪⎧y =k 1x +t ,y =k 2x +t +6,解得C 点的横坐标为6k 1-k 2.∵|AB |=t +6-t =6,∴S =12×⎪⎪⎪⎪6k 1-k 2×6=18|k 1-k 2|.∵圆M 与AC 相切,∴1=|k 1+t |1+k 21,∴k 1=1-t 22t ;同理,k 2=1-(t +6)22(t +6).∴k 1-k 2=3(t 2+6t +1)t 2+6t,∴S =6(t 2+6t )t 2+6t +1=6⎝⎛⎭⎫1-1t 2+6t +1,∵-5≤t ≤-2,∴-8≤t 2+6t +1≤-4, ∴S max =6×⎝⎛⎭⎫1+14=152,S min =6×⎝⎛⎭⎫1+18=274. B 组 高考题型专练1.(2014·高考浙江卷)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8解析:由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2= 2.由r 2=d 2+⎝⎛⎭⎫422得2-a =2+4,所以a =-4.答案:B2.(2014·高考重庆卷)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:易知△ABC 是边长为2的等边三角形,故圆心C (1,a )到直线AB 的距离为3,即|a +a -2|a 2+1=3,解得a =4±15.经检验均符合题意,则a =4±15.答案:4±153.(2014·高考山东卷)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.解析:依题意,设圆心的坐标为(2b ,b )(其中b >0),则圆C 的半径为2b ,圆心到x 轴的距离为b ,所以24b 2-b 2=23,b >0,解得b =1,故所求圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=44.(2015·高考山东卷)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________.解析:在平面直角坐标系xOy 中作出圆x 2+y 2=1及其切线P A ,PB ,如图所示.连接OA ,OP ,由图可得|OA |=|OB |=1,|OP |=2,|P A →|=|PB →|=3,∠APO =∠BPO =π6,则P A →,PB →的夹角为π3,所以P A →·PB →=|P A →|·|PB →|·cos π3=32. 答案:325.(2015·高考重庆卷)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.解析:由题意,得k OP =2-01-0=2,则该圆在点P 处的切线方程的斜率为-12,所以所求切线方程为y -2=-12(x -1),即x +2y -5=0. 答案:x +2y -5=0。

高三数学(文)一轮复习讲解与练习8.4直线与圆、圆与圆的位置关系(含答案解析)

高三数学(文)一轮复习讲解与练习8.4直线与圆、圆与圆的位置关系(含答案解析)

第四节直线与圆、圆与圆的位置关系[备考方向要明了][归纳·知识整合]1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),设d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.[探究] 1.在求过一定点的圆的切线方程时,应注意什么?提示:应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,则切线不存在.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).[探究] 2.若两圆相交时,公共弦所在直线方程与两圆的方程有何关系?提示:两圆的方程作差,消去二次项得到关于x,y的二元一次方程,就是公共弦所在的直线方程.[自测·牛刀小试]1.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D.不确定解析:选A法一:圆心(0,1)到直线的距离d=|m|m2+1<1< 5.法二:直线mx-y+1-m=0过定点(1,1),又因为点(1,1)在圆x2+(y-1)2=5的内部,所以直线l与圆C是相交的.2.(2012·山东高考)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离解析:选B两圆的圆心距离为17,两圆的半径之差为1,之和为5,而1<17<5,所以两圆相交.3.已知p:“a=2”,q:“直线x+y=0与圆x2+(y-a)2=1相切”,则p是q的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A a=2,则直线x+y=0与圆x2+(y-a)2=1相切,反之,则有a=±2.因此p是q的充分不必要条件.4.已知圆x2+y2=4与圆x2+y2-6x+6y+14=0关于直线l对称,则直线l的方程是()A.x-2y+1=0 B.2x-y-1=0C.x-y+3=0 D.x-y-3=0解析:选D 法一:圆心O (0,0),C (3,-3)的中点P ⎝⎛⎭⎫32,-32在直线l 上,故可排除A 、B 、C.法二:两圆方程相减得,6x -6y -18=0,即x -y -3=0.5.(2012·重庆高考)设A ,B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |=( ) A .1 B. 2 C. 3D .2解析:选D 因为直线y =x 过圆x 2+y 2=1的圆心 (0,0),所以所得弦长|AB |=2.[例1] (1)(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞) (2)(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.[自主解答] (1)因为直线x -y +1=0与圆(x -a )2+y 2=2有公共点,所以圆心到直线的距离d =|a -0+1|2≤r =2,可得|a +1|≤2,即a ∈[-3,1].(2)圆C 方程可化为(x -4)2+y 2=1,圆心坐标为(4,0),半径为1,由题意,直线y =kx -2上至少存在一点(x 0,kx 0-2),以该点为圆心,1为半径的圆与圆C 有公共点,因为两个圆有公共点,故(x -4)2+(kx -2)2≤2,整理得(k 2+1)x 2-(8+4k )x +16≤0,此不等式有解的条件是Δ=(8+4k )2-64(k 2+1)≥0,解之得0≤k ≤43,故最大值为43.[答案] (1)C (2)43——————————————————— 判断直线与圆、圆与圆的位置关系的常用方法(1)判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.(2)判断两圆的位置关系,可根据圆心距与两圆半径的和与差的绝对值之间的关系求解.1.直线l :y -1=k (x -1)和圆x 2+y 2-2y -3=0的位置关系是________. 解析:将x 2+y 2-2y -3=0化为x 2+(y -1)2=4.由于直线l 过定点(1,1),且由于12+(1-1)2=1<4,即直线过圆内一点,从而直线l 与圆相交.答案:相交2.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆D .圆解析:选A 设圆心C (x ,y ),则题意得(x -0)2+(y -3)2=y +1(y >0),化简得x 2=8y -8.[例2] (1)(2012·北京高考)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________. (2)(2013·济南模拟)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________.[自主解答] (1)法一:几何法:圆心到直线的距离为d =|0-2|2=2,圆的半径r =2,所以弦长为l =2×r 2-d 2=24-2=2 2.法二:代数法:联立直线和圆的方程⎩⎪⎨⎪⎧y =x ,x 2+(y -2)2=4,消去y 可得x 2-2x =0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为2(2-0)2=2 2.(2)由题意,设所求的直线方程为x +y +m =0,设圆心坐标为(a,0),则由题意知⎝⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或a =-1,又因为圆心在x 轴的正半轴上,所以a =3,故圆心坐标为(3,0).因为圆心(3,0)在所求的直线上,所以有3+0+m =0,即m =-3,故所求的直线方程为x +y -3=0.[答案] (1)22 (2)x +y -3=0 ———————————————————求圆的弦长的常用方法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2;(2)代数方法:运用韦达定理及弦长公式:|AB ||x 1-x 2|=3.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( ) A .-1或3 B .1或3 C .-2或6D .0或4解析:选D 圆心(a,0)到直线x -y =2的距离d =|a -2|2,则(2)2+⎝ ⎛⎭⎪⎫|a -2|22=22, 所以a =0或a =4.4.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=10[例3] 已知圆C :x 2+y 2+2x -4y +3=0.(1)若不过原点的直线l 与圆C 相切,且在x 轴,y 轴上的截距相等,求直线l 的方程; (2)从圆C 外一点P ( x ,y )向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求点P 的轨迹方程.[自主解答] (1)将圆C 配方得(x +1)2+(y -2)2=2. 由题意知直线在两坐标轴上的截距不为零, 设直线方程为x +y -a =0,由|-1+2-a |2=2,得|a -1|=2,即a =-1或a =3.故直线方程为x +y +1=0或x +y -3=0. (2)由于|PC |2=|PM |2+|CM |2=|PM |2+r 2, ∴|PM |2=|PC |2-r 2.又∵|PM |=|PO |,∴|PC |2-r 2=|PO |2, ∴(x +1)2+(y -2)2-2=x 2+y 2.∴2x -4y +3=0即为所求的方程.若将本例(1)中“不过原点”的条件去掉,求直线l 的方程. 解:将圆C 配方得(x +1)2+(y -2)2=2.当直线在两坐标轴上的截距为零时,设直线方程为y =kx ,由直线与圆相切得y =(2±6)x ;当直线在两坐标轴上的截距不为零时,设直线方程为x +y -a =0,由直线与圆相切得x +y +1=0或x +y -3=0.综上可知,直线l 的方程为 (2+6)x -y =0或 (2-6)x -y =0或x +y +1=0或x +y -3=0.——————————————————— 求过一点的圆的切线方程的方法(1)若该点在圆上,由切点和圆心连线的斜率可确定切线的斜率,进而写出切线方程;若切线的斜率不存在,则可直接写出切线方程x =x 0.(2)若该点在圆外,则过该点的切线将有两条.若用设斜率的方法求解时只求出一条,则还有一条过该点且斜率不存在的切线.5.已知点M (3,1),直线ax -y +4=0及圆(x -1)2+(y -2)2=4. (1)求过M 点的圆的切线方程;(2)若直线ax -y +4=0与圆相切,求a 的值.解:(1)圆心C (1,2),半径为r =2,当直线的斜率不存在时,方程为x =3. 由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知,此时,直线与圆相切. 当直线的斜率存在时,设方程为y -1=k (x -3), 即kx -y +1-3k =0. 由题意知|k -2+1-3k |k 2+1=2,解得k =34.故方程为y -1=34(x -3),即3x -4y -5=0.故过M 点的圆的切线方程为x =3或3x -4y -5=0. (2)由题意有|a -2+4|a 2+1=2,解得a =0或a =43.2种方法——解决直线与圆位置关系的两种方法直线和圆的位置关系体现了圆的几何性质和代数方法的结合.(1)从思路来看,代数法侧重于“数”,更多倾向于“坐标”与“方程”;而“几何法”则侧重于“形”,利用了图形的性质.(2)从适用类型来看,代数法可以求出具体的交点坐标,而几何法更适合定性比较和较为简单的运算.3个注意点——直线与圆相切、相交的三个注意点(1)涉及圆的切线时,要考虑过切点的半径与切线垂直;(2)当直线与圆相交时,半弦、弦心距、半径所构成的直角三角形在解题中起到关键的作用,解题时要注意把它与点到直线的距离公式结合起来使用;(3)判断直线与圆相切,特别是过圆外一点求圆的切线时,应有两条.在解题中,若只求得一条,则说明另一条的斜率不存在,这一点经常忽视,应注意检验、防止出错.创新交汇——直线与圆的综合应用问题1.直线与圆的综合应用问题是高考中一类重要问题,常常以解答题的形式出现,并且常常是将直线与圆和函数、三角、向量、数列及圆锥曲线等相互交汇,求解参数、函数、最值、圆的方程等问题.2.对于这类问题的求解,首先要注意理解直线和圆等基础知识及它们之间的深入联系;其次要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘,再次要掌握解决问题常用的思想方法,如数形结合、化归与转化、待定系数及分类讨论等思想方法.[典例](2011·新课标全国卷)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.[解](1)曲线y=x2-6x+1与y轴的交点为(0,1),与x轴的交点为(3+22,0),(3-22,0).故可设圆C的圆心为(3,t),则有32+(t-1)2=(22)2+t2,解得t=1.则圆C的半径为32+(t-1)2=3.则圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组:⎩⎪⎨⎪⎧x -y +a =0,(x -3)2+(y -1)2=9. 消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0. 由已知可得,判别式Δ=56-16a -4a 2>0. 从而x 1+x 2=4-a ,x 1x 2=a 2-2a +12.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0,又y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0.②由①②得a =-1,满足Δ>0,故a =-1. [名师点评]1.本题有以下创新点(1)考查形式的创新,将轨迹问题、向量问题和圆的问题融为一体来考查.(2)考查内容的创新,本题摒弃以往考查直线和圆的位置关系的方式,而是借助于参数考查直线与圆的位置关系,同时也考查了转化与化归思想.2.解决直线和圆的综合问题要注意以下几点(1)求点的轨迹,先确定点的轨迹的曲线类型,再利用条件求得相关参数; (2)存在性问题的求解,即先假设存在,再由条件求解并检验. [变式训练]1.已知直线2ax +by =1(其中a ,b 是实数)与圆x 2+y 2=1相交于A ,B 两点,O 是坐标原点,且△AOB 是直角三角形,则点P (a ,b )与点M (0,1)之间的距离的最大值为( )A.2+1 B .2 C. 2D.2-1解析:选A 直线2ax +by =1(其中a ,b 是实数)与圆x 2+y 2=1相交于A ,B 两点,则依题意可知,△AOB 是等腰直角三角形,坐标原点O 到直线2ax +by =1的距离d =12a 2+b 2=22,即2a 2+b 2=2, ∴a 2=2-b 22(-2≤b ≤2),则|PM |=a 2+(b -1)2=b 22-2b +2=2|b -2|2,∴当b =-2时,|PM |max =2×|-2-2|2=2+1.2.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析:因为圆的半径为2,且圆上有且仅有四个点到直线12x -5y +c =0的距离为1,即要圆心到直线的距离小于1,即|c |122+(-5)2<1,解得-13<c <13.一、选择题(本大题共6小题,每小题5分,共30分) 1.圆(x -1)2+(y +3)2=1的切线方程中有一个是( ) A .x -y =0 B .x +y =0 C .x =0D .y =0解析:选C 圆心为(1,-3),半径为1,故x =0与圆相切.2.已知直线l :y =k (x -1)-3与圆x 2+y 2=1相切,则直线l 的倾斜角为( ) A.π6 B.π2 C.2π3D.56π 解析:选D 由题意知,|k +3|k 2+1=1,得k =-33,故直线l 的倾斜角为56π.3.(2012·陕西高考)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:选A 把点(3,0)代入圆的方程的左侧得32+0-4×3=-3<0,故点(3,0)在圆的内部,所以过点(3,0)的直线l 与圆C 相交.4.过点(1,1)的直线与圆(x -2)2+(y -3)2=9相交于A ,B 两点,则|AB |的最小值为( ) A .2 3 B .4 C .2 5D .5解析:选B 由圆的几何性质可知,当点(1,1)为弦AB 的中点时,|AB |的值最小,此时|AB |=2r 2-d 2=29-5=4.5.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0解析:选A 两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0.6.直线ax +by +c =0与圆x 2+y 2=9相交于两点M ,N ,若c 2=a 2+b 2,则OM ·ON(O为坐标原点)等于( )A .-7B .-14C .7D .14解析:选A 设OM ,ON的夹角为2θ.依题意得,圆心(0,0)到直线ax +by +c =0的距离等于|c |a 2+b 2=1,cos θ=13,cos 2θ=2cos 2 θ-1=2×⎝⎛⎭⎫132-1=-79,OM ·ON =3×3cos2θ=-7.二、填空题(本大题共3小题,每小题5分,共15分)7.设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33.答案:±338.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是(2,2).答案:(2,2)9.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:3三、解答题(本大题共3小题,每小题12分,共36分)10.求过点P (4,-1)且与圆C :x 2+y 2+2x -6y +5=0切于点M (1,2)的圆的方程.解:设所求圆的圆心为A (m ,n ),半径为r ,则A ,M ,C 三点共线,且有|MA |=|AP |=r ,因为圆C :x 2+y 2+2x -6y +5=0的圆心为C (-1,3),则 ⎩⎪⎨⎪⎧n -2m -1=2-31+1,(m -1)2+(n -2)2=(m -4)2+(n +1)2=r ,解得m =3,n =1,r =5,所以所求圆的方程为(x -3)2+(y -1)2=5.11.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A ,B .(1)求k 的取值范围; (2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1),B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k . 12.在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.解:(1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知O ,C 两点的斜率k OC =b a=-1,故b =-a ,则|OC |=22,即a 2+b 2=22,可解得⎩⎪⎨⎪⎧ a =-2,b =2,或⎩⎪⎨⎪⎧ a =2,b =-2,结合点C (a ,b )位于第二象限知⎩⎪⎨⎪⎧a =-2,b =2. 故圆C 的方程为(x +2)2+(y -2)2=8.(2)假设存在Q (m ,n )符合题意,则⎩⎪⎨⎪⎧ (m -4)2+n 2=42,m 2+n 2≠0,(m +2)2+(n -2)2=8,解得⎩⎨⎧ m =45,n =125.故圆C 上存在异于原点的点Q ⎝⎛⎭⎫45,125符合题意.1.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( )A .4B .4 2C .8D .8 2解析:选C 依题意,可设圆心坐标为(a ,a ),半径为r ,其中r =a >0,因此圆方程是(x -a )2+(y -a )2=a 2,由圆过点(4,1)得(4-a )2+(1-a )2=a 2,即a 2-10a +17=0,则该方程的两根分别是圆心C 1,C 2的横坐标,|C 1C 2|=2×102-4×17=8.2.(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)解析:选D 由题意可得|m +n |(m +1)2+(n +1)2=1,化简得mn =m +n +1≤(m +n )24,解得m +n ≤2-22或m +n ≥2+2 2.3.已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 与⊙O ′所引的切线长相等,则动点P 的轨迹方程是________.解析:⊙O 的圆心为(0,0),半径为2,⊙O ′的圆心为(4,0),半径为6,设点P 为(x ,y ),由已知条件和圆切线性质得x 2+y 2-2=(x -4)2+y 2-6,化简得x =32. 答案:x =324.已知圆C :x 2+y 2-2x +4y -4=0,问是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点.若存在,写出直线l 的方程;若不存在,说明理由.解:依题意,设l 的方程为y =x +b ,①x 2+y 2-2x +4y -4=0,②联立①②消去y 得2x 2+2(b +1)x +b 2+4b -4=0,设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 1+x 2=-(b +1),x 1x 2=b 2+4b -42,③ ∵以AB 为直径的圆过原点, ∴OA ⊥OB ,即x 1 x 2+y 1y 2=0,而y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2,∴2x 1x 2+b (x 1+x 2)+b 2=0,由③得b 2+4b -4-b (b +1)+b 2=0,即b 2+3b -4=0,∴b =1或b =-4.∴满足条件的直线l 存在,其方程为x -y +1=0或x -y -4=0.。

高中数学高考高三理科一轮复习资料第8章 8.4 直线与圆、圆与圆的位置关系

高中数学高考高三理科一轮复习资料第8章 8.4 直线与圆、圆与圆的位置关系

题型探究 题型一 直线和圆相交 例 1 已知圆 C:(x-1)2+(y-2)2=25,直线 l:(2m+1)x +(m+1)y-7m-4=0(m∈R). (1)证明:无论 m 取何实数,直线 l 与圆恒交于两点; (2)求直线 l 被圆 C 截得的线段的最短长度以及此时直线 l 的方程.
高中数学
8.4 直线与圆、圆与圆的位置关系
考纲点击 1.能根据给定直线、圆的方程判断直线与圆的位置关系; 能根据给定两个圆的方程判断两圆的位置关系. 2.能用直线和圆的方程解决一些简单的问题. 3.初步了解用代数方法处理几何问题的思想.
说基础
课前预习读教材
考点梳理 一、直线与圆的位置关系 1.直线与圆的位置关系有三种:相离、相切、相交. 判断直线与圆的位置关系常见的有两种方法: (1)代数法:利用判别式 Δ>0⇔① 判别式 Δ=0⇔② ――→ 2 Δ=b -4ac Δ<0⇔③ (2)几何法: 利用圆心到直线的距离 d 和圆半径 r 的大小关 系 d<r⇔④______;d=r⇔⑤______;d>r⇔⑥______.
说考点
拓展延伸串知识
疑点清源 一、圆的切线方程的求法 1.求过圆上的一点(x0,y0)的切线方程 先求切点与圆心连线的斜率 k,由垂直关系知切线斜率为 1 - k ,由点斜式方程可求切线方程.若切线斜率不存在,则由 图形写出切线方程 x=x0.
2.求过圆外一点(x0,y0)的圆的切线方程 (1)几何方法 当斜率存在时,设为 k,切线方程为 y-y0=k(x-x0),即 kx-y+y0-kx0=0.由圆心到直线的距离等于半径, 即可得出切 线方程. (2)代数方法 设切线方程为 y-y0=k(x-x0),即 y=kx-kx0+y0,代入 圆方程,得一个关于 x 的一元二次方程,由 Δ=0,求得 k,切 线方程即可求出. 【说明】 过圆外一点作圆的切线有两条, 若在解题过程中, 只解出一个答案,说明另一条直线的斜率不存在.

2025年高考数学一轮复习-8.4-直线与圆、圆与圆的位置关系-专项训练【含答案】

2025年高考数学一轮复习-8.4-直线与圆、圆与圆的位置关系-专项训练【含答案】

参考答案
1.C [由题意可得
=2,于是圆心 C 到直线 l 的距离 d=
==
=r,所以直线和圆相切. 故选 C.] 2.C [当切线的斜率不存在时,直线 x=2 是圆的切线. 当切线斜率存在时,设切线方程为 y-3=k(x-2), 由(0,0)到切线距离为 d= =2,得 k= ,
此时切线方程为 y-3= (x-2), 即 5x-12y+26=0.故选 C.] 3.D [令直线 l 与圆 C 交于点 A,B,依题意,∠ACB=120°,∠ABC=30°,而 圆 C 的圆心 C(2,0),半径 r=2,
可得

,整理得 x2+(y+1)2=4,则圆(x-a)2+(y-2a
+ 4)2 = 1 与 圆 x2 + (y + 1)2 = 4 有 公 共 点 , 则 2 -
1≤
≤2+1,
即 1≤5a2-12a+9≤9,解得 0≤a≤ .故选 D.]
9.AC [直线 l:m(2x+y-7)+x+y-4=0,由
=, =,
解得 k= ;当直线 l 过 B 点时,直线 l 的斜率 k= =1,则直线 l 与半圆有
两个不同的交点时,实数 k 的取值范围为 , .故选 A.]
5.D [点(-2,-3)关于 y 轴的对称点为(2,-3),由题意知,反射光线所在的 直线一定过点(2,-3).设反射光线所在直线的斜率为 k,则反射光线所在直线 的方程为 y+3=k(x-2),即 kx-y-2k-3=0.由反射光线与圆相切,得
=,

消去 y 并化简,得 x2-2x=0,

解得 x=0 或 x=2,所以点 P 的横坐标的取值范围为[0,2].] 14.x+2y+1=0 [⊙C:x2+y2-2x-2y-2=0 的标准方程为(x-1)2+(y-1)2

高考数学一轮复习 8.4 直线与圆、圆与圆的位置关系限

高考数学一轮复习 8.4 直线与圆、圆与圆的位置关系限

限时集训(四十九) 直线与圆、圆与圆的位置关系(限时:50分钟满分:106分)一、选择题(本大题共8个小题,每小题5分,共40分)1.圆(x-1)2+(y+3)2=1的切线方程中有一个是( )A.x-y=0 B.x+y=0C.x=0 D.y=02.(2012·清远质检)已知直线l:y=k(x-1)-3与圆x2+y2=1相切,则直线l的倾斜角为( )A.π6B.π2C.2π3D.56π3.(2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则( ) A.l与C相交 B.l与C相切C.l与C相离 D.以上三个选项均有可能4.已知点P(a,b)(ab≠0)是圆O:x2+y2=r2内一点,直线l的方程为ax+by+r2=0,那么直线l与圆O的位置关系是( )A.相离 B.相切C.相交 D.不确定5.(2012·广东高考)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于( )A.3 3 B.2 3C. 3 D.16.过点(1,1)的直线与圆(x-2)2+(y-3)2=9相交于A,B两点,则|AB|的最小值为( )A.2 3 B.4C.2 5 D.57.(2012·湖北高考)过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A.x+y-2=0 B.y-1=0C.x-y=0 D.x+3y-4=08.(2012·天津高考)设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)二、填空题(本大题共6个小题,每小题4分,共24分)9.直线l :x =my +2与圆M :x 2+2x +y 2+2y =0相切,则m 的值为________. 10.(2013·朝阳模拟)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.11.由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为________.12.直线2x -y =0与圆C :(x -2)2+(y +1)2=9交于A 、B 两点,则△ABC 的面积为________.13.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.14.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.三、解答题(本大题共3个小题,每小题14分,共42分)15.已知圆C 的圆心与点P (-2,1)关于直线y =x +1对称,直线3x +4y -11=0与圆C 相交于A ,B 两点,且|AB |=6,求圆C 的方程.16.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA u u u r +OB uuu r 与PQ uuu r 共线?如果存在,求k 值;如果不存在,请说明理由.17.(2013·揭阳模拟)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.答 案[限时集训(四十九)]1.C 2.D 3.A 4.A 5.B 6.B 7.A 8.D9.解析:由题意可知,圆M :x 2+2x +y 2+2y =0的圆心(-1,-1)到直线l :x =my +2的距离为圆的半径2,由点到直线的距离公式可知m =1或m =-7.答案:1或-710.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m2=1,解得m =±33. 答案:±3311.解析:如图,在Rt △PAB 中,要使切线PB 最小,只需圆心与直线y =x +1上的点的距离取得相应最小值即可,易知其最小值为圆心到直线的距离,即|AP |min =42=22,故|BP |min =222-12=7.答案:712.解析:由题意知圆C 的圆心坐标为(2,-1).圆心到直线2x -y =0的距离d =|4--1|22+-12=5,所以直线被圆截得的弦长|AB |=29-5=4,所以△ABC 的面积为S=12|AB |·d = 12×4×5=2 5. 答案:2 513.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP = x 20+-x 0+222=2,解得x 0= 2.故点P 的坐标是(2,2).答案:(2,2)14.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝ ⎛⎭⎪⎫1m ,0,B ⎝ ⎛⎭⎪⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:315.解:设点P 关于直线y =x +1的对称点为C (m ,n ), 则由⎩⎪⎨⎪⎧1+n 2=-2+m2+1,n -1m +2·1=-1⇒⎩⎪⎨⎪⎧m =0,n =-1.故圆心C 到直线3x +4y -11=0的距离d =|-4-11|9+16=3,所以圆C 的半径的平方r 2=d 2+|AB |24=18.故圆C 的方程为x 2+(y +1)2=18.16.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)= 42(-8k 2-6k )>0, 解得-34<k <0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2),则OA u u u r +OB uuu r=(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4k -31+k2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ uuu r=(6,-2),所以OA u u u r +OB uuu r 与PQ uuu r共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34.而由(1)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k . 17.解:(1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知O ,C 两点的斜率k OC =ba=-1,故b =-a ,则|OC |=22, 即a 2+b 2=22,可解得⎩⎪⎨⎪⎧a =-2,b =2,或⎩⎪⎨⎪⎧a =2,b =-2,结合点C (a ,b )位于第二象限知⎩⎪⎨⎪⎧a =-2,b =2.故圆C 的方程为 (x +2)2+(y -2)2=8.(2)假设存在Q (m ,n )符合题意,则⎩⎪⎨⎪⎧m -42+n 2=42,m 2+n 2≠0,m +22+n -22=8,解得⎩⎪⎨⎪⎧m =45,n =125.故圆C 上存在异于原点的点Q ⎝ ⎛⎭⎪⎫45,125符合题意.。

2021年高考数学一轮复习 8-4 直线与圆、圆与圆的位置关系课时作业 文

2021年高考数学一轮复习 8-4 直线与圆、圆与圆的位置关系课时作业 文

2021年高考数学一轮复习 8-4 直线与圆、圆与圆的位置关系课时作业 文一、选择题1.直线l :mx -y +1-m =0与圆C :x2+(y -1)2=1的位置关系是( )A .相交B .相切C .相离D .无法确定,与m 的取值有关解析:圆心到直线的距离d =|-1-m +1|m2+1=|m|m2+1<1=r ,故选A. 答案:A2.由直线y =x +1上的一点向圆x2-6x +y2+8=0引切线,则切线长的最小值为( )A .1B .2 2C.7 D .3解析:切线长的最小值在直线y =x +1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d =|3-0+1|2=22,圆的半径为1,故切线长的最小值为d2-r2=8-1=7. 答案:C3.(xx 年三明一模)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN|≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3 ] D.⎣⎡⎭⎫-23,0 解析:设弦心距为d ,则由题意知d =22-⎝⎛⎭⎫MN 22≤1,即|2k -3+3|k2+1≤1,解得-33≤k≤33. 答案:B4.(xx 年高考天津卷)已知过点P(2,2)的直线与圆(x -1)2+y2=5相切,且与直线ax -y +1=0垂直,则a =( )A .-12B .1C .2 D.12解析:由题意知圆心为(1,0),由圆的切线与直线ax -y +1=0垂直,可设圆的切线方程为x+ay +c =0,由切线x +ay +c =0过点P(2,2),∴c =-2-2a ,∴|1-2-2a|1+a2=5,解得a=2. 答案:C 5.(xx 年合肥二模)已知圆C1:(x -a)2+(y +2)2=4与圆C2:(x +b)2+(y +2)2=1外切,则ab 的最大值为( )A.62B.32C.94D .2 3 解析:由两圆外切可得圆心(a ,-2),(-b ,-2)之间的距离等于两圆半径之和,即(a +b)2=(2+1)2,即9=a2+b2+2ab≥4ab ,所以ab≤94,当且仅当a =b 时取等号,即ab 的最大值是94. 答案:C二、填空题6.(xx 年高考江苏卷)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:因为圆心(2,-1)到直线x +2y -3=0的距离d =|2-2-3|5=35,所以直线x +2y -3=0被圆截得的弦长为24-95=2555. 答案:25557.若圆x2+y2=4与圆x2+y2+2ay -6=0(a>0)的公共弦的长为23,则a =________. 解析:两圆的方程相减,得公共弦所在的直线方程为(x2+y2+2ay -6)-(x2+y2)=0-4⇒y =1a,又a>0,结合图象(图略),再利用半径、弦长的一半及弦心距所构成的直角三角形,可知1a = 22-32=1⇒a =1. 答案:18.(xx 年高考重庆卷)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:易知△ABC 是边长为2的等边三角形,故圆心C(1,a)到直线AB 的距离为3,即|a +a -2|a2+1=3,解得a =4±15.经检验均符合题意,则a =4±15. 答案:4±15三、解答题9.已知直线l :2mx -y -8m -3=0和圆C :x2+y2-6x +12y +20=0.(1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长.解析:(1)证明:直线的方程可化为y +3=2m(x -4),由点斜式可知,直线过点P(4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P 在圆内,故直线l 与圆C 总相交.(2)圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C(3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又kPC =-3--64-3=3,所以直线l 的斜率为-13, 则2m =-13,所以m =-16. 在Rt △APC 中,|PC|=10,|AC|=r =5, 所以|AB|=2|AC|2-|PC|2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215. 10.已知圆M :x2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q(1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB|=423,求直线MQ 的方程. 解析:(1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1,∴|2m +1|m2+1=1,∴m =-43或0, ∴QA ,QB 的方程分别为3x +4y -3=0和x =1. (2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA|·|QA|=|QA|=|MQ|2-|MA|2=|MQ|2-1≥|MO|2-1= 3.∴四边形QAMB 面积的最小值为 3. (3)设AB 与MQ 交于P ,则MP ⊥AB ,MB ⊥BQ ,∴|MP|= 1-⎝⎛⎭⎫2232=13. 在Rt △MBQ 中,|MB|2=|MP||MQ|,即1=13|MQ|, ∴|MQ|=3,∴x2+(y -2)2=9.设Q(x,0),则x2+22=9,∴x =±5,∴Q(±5,0),∴MQ 的方程为2x +5y -25=0或2x -5y +25=0.B 组 高考题型专练 1.若直线y =kx 与圆(x -2)2+y2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( )A.12,-4 B .-12,4C.12,4 D .-12,-4 解析:因为直线y =kx 与圆(x -2)2+y2=1的两个交点关于直线2x +y +b =0对称,所以直线y =kx 与直线2x +y +b =0垂直,且直线2x +y +b =0过圆心,所以⎩⎪⎨⎪⎧ k =12,2×2+0+b =0,解得k =12,b =-4. 答案:A2.(xx 年高考山东卷)过点(3,1)作圆(x -1)2+y2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0 解析:如图,圆心坐标为C(1,0),易知A(1,1),又kAB·kPC =-1,且kPC =1-03-1=12,∴kAB =-2.故直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.答案:A3.(xx 年泉州质检)若直线3x -4y =0与圆x2+y2-4x +2y -7=0相交于A ,B 两点,则弦AB 的长为( )A .2B .4C .2 2D .4 2解析:圆x2+y2-4x +2y -7=0的标准方程为(x -2)2+(y +1)2=12,则圆心为(2,-1),半径r =23,又圆心到直线3x -4y =0的距离d =|6+4|5=2,所以弦AB 的长为2r2-d2=212-4=4 2.答案:D4.两个圆C1:x2+y2+2ax +a2-4=0(a ∈R)与 C2:x2+y2-2by -1+b2=0(b ∈R)恰有三条公切线,则a +b 的最小值为( )A .-6B .-3C .-3 2D .3解析:圆C1:(x +a)2+y2=4,C2:x2+(y -b)2=1,∴圆C1的圆心C1(-a,0),半径r1=2,圆C2的圆心C2(0,b),半径r2=1.已知两圆恰有三条公切线,则两圆相外切,圆心距等于两圆半径之和,∴a2+b2=3,则|a +b|=a +b 2≤ 2a2+b2=32,∴-32≤a +b≤32,故a +b 的最小值为-3 2.答案:C 5.(xx 年高考安徽卷)直线x +2y -5+5=0被圆x2+y2-2x -4y =0截得的弦长为( )A .1B .2C .4D .4 6解析:圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C(1,2),半径R = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP|=|1+4-5+5|12+22=1.在Rt△ACP中,|AP|=R2-d2=2,故直线被圆截得的弦长|AB|=4.答案:C6.(xx年高考浙江卷)直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长等于________.解析:圆的方程可化为(x-3)2+(y-4)2=25.故圆心为(3,4),半径r=5.又直线方程为2x-y+3=0,所以圆心到直线的距离为d=|2×3-4+3|4+1=5,所以弦长为2r2-d2=2×25-5=220=4 5.答案:4 57.(xx年高考新课标全国卷Ⅱ)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.解析:由题意可知M在直线y=1上运动,设直线y=1与圆x2+y2=1相切于点P(0,1).当x0=0即点M与点P重合时,显然圆上存在点N(±1,0)符合要求;当x0≠0时,过M作圆的切线,切点之一为点P,此时对于圆上任意一点N,都有∠OMN≤∠OMP,故要存在∠OMN =45°,只需∠OMP≥45°.特别地,当∠OMP=45°时,有x0=±1.结合图形可知,符合条件的x0的取值范围为[-1,1].答案:[-1,1]8.已知圆C的方程为x2+(y-4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N两点.(1)求k的取值范围;(2)设Q(m,n)是线段MN上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n表示为m的函数.解析:(1)将y=kx代入x2+(y-4)2=4得(1+k2)x2-8kx+12=0,(*)由Δ=(-8k)2-4(1+k2)×12>0得k2>3.所以k的取值范围是(-∞,-3)∪(3,+∞).(2)因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1),(x2,kx2),则|OM|2=(1+k2)x21,|ON|2=(1+k2)x22,又|OQ|2=m2+n2=(1+k2)m2,由2|OQ|2=1|OM|2+1|ON|2得21+k2m2=11+k2x21+11+k2x22,所以2m2=1x21+1x22=x1+x22-2x1x2x21x22.由(*)知x1+x2=8k1+k2,x1x2=121+k2,所以m2=365k2-3.因为点Q在直线l上,所以k=n m,代入m2=365k2-3,可得5n2-3m2=36,由m2=365k2-3及k2>3得0<m2<3,即m∈(-3,0)∪(0,3).依题意,点Q在圆C内,则n>0,所以n=36+3m25=15m2+1805,于是,n与m的函数关系为n=15m2+1805(m∈(-3,0)∪(0,3)).o37763 9383 鎃+39911 9BE7 鯧n27771 6C7B 汻34469 86A5 蚥37594 92DA 鋚/Njfw384879657 陗31959 7CD7 糗。

高考数学一轮复习 8.4 直线与圆、圆与圆的位置关系备选练习 文 新人教A版

高考数学一轮复习 8.4 直线与圆、圆与圆的位置关系备选练习 文 新人教A版

- 1 - 【优化探究】2015届高考数学一轮复习 8.4 直线与圆、圆与圆的位
置关系备选练习 文 新人教A 版
[B 组 因材施教·备选练习]
1.若圆C: x 2+y 2+2x -4y +3=0关于直线2ax +by +6=0对称,则由点(a ,b )向圆所作的切线长的最小值是( )
A .2
B .3
C .4
D .6
解析:圆的标准方程为(x +1)2+(y -2)2=2,所以圆心为(-1,2),半径为 2.因为圆关于直线2ax +by +6=0对称,所以圆心在直线2ax +by +6=0上,所以-2 a +2b +6=0,即b =a -3,点(a ,b )到圆心的距离为d =
a +12+
b -22 =a +1
2+a -3-22 =2a 2-8a +26=2a -2
2+18.所以当a =2时,d 有最小值18=32,此时切线长最小,为322-22=16=4,所以选C.
答案:C
2.(2014年济南模拟)若双曲线x 29-y 216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16内,则实数m 的取值范围是________.
解析:双曲线的渐近线方程为y =±43
x ,即4x ±3y =0.要使渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16内,则有圆心(m, 0)到渐近线的距离d ≥4,即d =|4m |5=4|m |5
≥4,解得|m |≥5,即m ≥5或m ≤-5,所以实数m 的取值范围是(-∞,-5]∪[5,+∞).
答案:(-∞,-5]∪[5,+∞)。

高考数学一轮复习8.4直线与圆、圆与圆的位置关系课时跟踪训练文

高考数学一轮复习8.4直线与圆、圆与圆的位置关系课时跟踪训练文

【与名师对话】2016版高考数学一轮复习 8.4直线与圆、圆与圆的位置关系课时跟踪训练 文一、选择题1.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的最小值为( )A .- 3 B. 3 C .-33 D.33解析:设直线方程y =k (x -4),斜率最小在切线处取得,由|2k -4k |k 2+1=1,得k =±33.答案:C2.(2014·黑龙江二模)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被该圆所截得的弦长为22,则圆C 的标准方程为( )A .(x -3)2+y 2=4 B .(x -1)2+y 2=4 C .(x +1)2+y 2=4D .(x +3)2+y 2=4解析:设圆心坐标为(a,0),则由题意,知|a -1|22+2=(a -1)2,解得a =3或-1,又因为圆心在x 轴的正半轴上,所以a =3,故圆心坐标为(3,0),半径为r =|3-1|=2,故圆的方程为(x -3)2+y 2=4.答案:A3.(2015·陕西宝鸡质检(一))在平面直角坐标系xOy 中,过动点P 分别作圆C 1:x 2+y 2+2x +y +1=0和圆C 2:x 2+y 2-4x -6y +9=0的切线PA ,PB (A ,B 为切点),若|PA |=|PB |,则|OP |的最小值为( )A.52 B .2 C.35 D.45解析:C 1:(x +1)2+(y +1)2=1,C 2:(x -2)2+(y -3)2=4.∵PA 、PB 分别是C 1、C 2的切线,∴|PA |2=|PC 1|2-r 21,|PB |2=|PC 2|2-r 22. 设P (x ,y ),C 1(-1,-1),C 2(2,3),r 1=1,r 2=2, 又∵|PA |=|PB |,∴|PC 1|2-r 21=|PC 2|2-r 22, 即(x +1)2+(y +1)2-1=(x -2)2+(y -3)2-4 化简得3x +4y =4,即P 点轨迹方程为3x +4y -4=0.∴|OP |最小距离即(0,0)到直线3x +4y -4=0的距离d =|0+0-4|32+42=45,故选D. 答案:D4.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A .[-1,1+22]B .[1-22,1+22]C .[1-22,3]D .[1-22,3]解析:曲线y =3-4x -x 2表示圆(x -2)2+(y -3)2=4的下半圆,如图所示,当直线y =x +b 经过点(0,3)时,b 取最大值3,当直线与半圆相切时,b 取最小值,由|2-3+b |2=2⇒b =1-22或1+22(舍),故b min =1-22,b 的取值范围为[1-22,3].答案:C5.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:由题意可知,圆的圆心坐标是(1,3)、半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-2+22=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=102,选B.答案:B6.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则实数k 的最大值为( )A .0 B.43 C.32D .3解析:由已知,设P (x 0,y 0)为直线y =kx -2上一点.则⊙P 与⊙C 有公共点即两圆相交或相切.由|PC |≤2得|4k -2|1+k 2≤2,(2k -1)2≤1+k 2得3k 2-4k ≤0,∴0≤k ≤43,即k 的最大值为43.答案:B 二、填空题7.已知直线l :y =-3(x -1)与圆O :x 2+y 2=1在第一象限内交于点M ,且l 与y 轴交于点A ,则△MOA 的面积等于________.解析:直线y =-3(x -1)恒过N (1,0),k =-3,α=120°,故∠ANO =60°,又A (0,3),AN =2,又OM =1,故M 为AN 的中点,∴S △AOM =12S △AON =12×32=34.答案:348.若圆x 2+y 2=r 2(r >0)上仅有3个点到直线x -y -2=0的距离为1,则实数r 的值为__________.解析:计算得圆心到直线l 的距离为22=2>1,由题意知直线l :x -y -2=0与圆相交,作直线l 1,l 2与l 平行,且与直线l 的距离都为1,故可以看出,圆的半径为2+1.答案:2+19.若⊙O 1:x 2+y 2=5与⊙O 2:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.解析:由题知O 1(0,0),O 2(m,0), ∴两圆的圆心距为m ,且5<|m |<35,又O 1A ⊥AO 2,所以有m 2=(5)2+(25)2=25⇒m =±5, ∴AB =2×5×205=4. 答案:4 三、解答题10.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.解:已知圆(x -2)2+(y -2)2=1关于x 轴的对称圆C ′的方程为(x -2)2+(y +2)2=1,如图所示.可设光线l 所在直线方程为y -3=k (x +3),∵直线l 与圆C ′相切,∴圆心C ′(2,-2)到直线l 的距离d =|5k +5|1+k 2=1, 解得k =-34或k =-43.∴光线l 所在直线的方程为 3x +4y -3=0或4x +3y +3=0.11.已知点P 的坐标为(0,5),圆C 的方程为x 2+y 2+4x -12y +24=0,过P 的直线l 与圆交于A 、B .(1)若|AB |=43,求l 的方程; (2)求线段AB 的中点M 的轨迹方程.解:圆C 的标准方程为:(x +2)2+(y -6)2=16, ∴圆心坐标为C (-2,6),半径长为r =4.(1)设l 的斜率为k ,则l 的方程为y =kx +5.由|AB |=43得:弦AB 的弦心距为r 2-⎝⎛⎭⎪⎫|AB |22=2,即C 到l 的距离为2,∴|-2k -6+5|1+k2=2,∴(1+2k )2=4(1+k 2),解得k =34.∴l 的方程为y =34x +5,即3x -4y +20=0.另外,点C 到y 轴的距离也恰为2,∴当A 、B 为y 轴与圆C 的交点时,也适合题意, 即l 的方程也可以是x =0.综上所述,l 的方程为x =0或3x -4y +20=0.(2)据圆的垂径定理知,CM ⊥MP , 如图,∴CM →·MP →=0.设M 的坐标为(x ,y ),则CM →=(x +2,y -6),MP →=(-x,5-y ), 从而(x +2,y -6)·(-x,5-y )=0,整理得x 2+y 2+2x -11y +30=0, 即M 的轨迹方程为x 2+y 2+2x -11y +30=0.12.(2014·龙岩质检)已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx +1与圆C 相交于P 、Q 两点.(1)求圆C 的方程;(2)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.解:(1)设圆心C (a ,a ),半径为r ,因为圆C 经过点A (-2,0),B (0,2), 所以|AC |=|BC |=r ,即a +2+a -2=a -2+a -2=r ,解得a =0,r =2.故所求圆C 的方程为x 2+y 2=4.(2)设圆心C 到直线l 、l 1的距离分别为d 、d 1,四边形PMQN 的面积为S .因为直线l 、l 1都经过点(0,1),且l 1⊥l ,根据勾股定理,有d 21+d 2=1. 又|PQ |=2·4-d 2,|MN |=2·4-d 21, 所以S =12|PQ |·|MN |,即S =24-d 2·4-d 21 =216-d 21+d 2+d 21·d 2=212+d 21·d 2≤212+d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立,所以四边形PMQN 面积的最大值为7.。

高三数学一轮复习 8.4直线与圆的位置关系精讲精练 新人教版

高三数学一轮复习 8.4直线与圆的位置关系精讲精练 新人教版

第4课 直线与圆的位置关系【考点导读】能利用代数方法和几何方法判定直线与圆的位置关系;熟练运用圆的有关性质解决直线与圆、圆与圆的综合问题,运用空间直角坐标系刻画点的位置,了解空间中两点间的距离公式及其简单应用. 【基础练习】1.若直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同交点,则a 的取值范围是-6<a <42.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于223.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为 x =2或3x -4y -2=0 . 【范例导析】例1.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.分析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0.由27040x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=⎩即l 恒过定点A (3,1).∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点.(2)解:弦长最小时,l ⊥AC ,由k AC =-21, ∴l 的方程为2x -y -5=0. 点拨:直线与圆相交截得弦长的最小值时,可以从垂径定理角度考虑,充分利用圆的几何性质. 例2.已知圆O: 122=+y x ,圆C: 1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满足|PA|=|PB|.求实数a 、b 间满足的等量关系.解:连结PO 、PC ,∵|PA|=|PB|,|OA|=|CB|=1 ∴|PO|2=|PC|2,从而2222)4()2(-+-=+b a b a化简得实数a 、b 间满足的等量关系为: 052=-+b a .例3.已知圆C 与两坐标轴都相切,圆心C 到直线y x =-的距离等于2. 求圆C 的方程.例2解:设圆C 半径为r ,由已知得:22a b r a a b ⎧⎪=⎪⎪=⎨⎪+⎪=⎪⎩ ∴11a b r ==⎧⎨=⎩,或11a b r ==-⎧⎨=⎩∴圆C 方程为2222(1)(1)1,(1)(1)1x y x y -+-=+=或++.例4.如图,在平面直角坐标系x O y 中,平行于x 轴且过点A(33,2)的入射光线l 1被直线l :y =33x 反射.反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1, l 2都相切. (1)求l 2所在直线的方程和圆C 的方程;(2)设P ,Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最小值及此时点P 的坐标.解:(1)直线1:2,l y =设1232l l D D 交于点,则(,).l 的倾斜角为30,260l ∴的倾斜角为,2 3.k ∴=∴反射光线2l 所在的直线方程为 23(23)y x -=-. 即340x y --=.已知圆C 与1l A 切于点,设C (a,b),圆心C 在过点D 且与l 垂直的直线上,38b a ∴=-+ ,又圆心C 在过点A 且与1l 垂直的直线上,33a ∴=,381b a ∴=-+=-,圆C 的半径r=3, 故所求圆C 的方程为22(33)(1)9x y -++=.(2)设点()0,4B -关于l 的对称点00(,)B x y ',则00004323243y x y x ⎧-=⋅⎪⎪⎨+⎪=-⎪⎩,得(23,2)B '-,固定点Q 可发现,当B P Q '、、共线时,PB PQ +最小,xyO ABl 2l 1 l 例4故PB PQ +的最小值为32213B C '-=-.此时由13321233333y x y x ⎧+-=⎪+⎪--⎨⎪=⎪⎩,得31(,)22P .【反馈练习】1.圆x 2+y 2-4x=0在点P(1,3)处的切线方程为320x y -+=2.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是224-(,)43.设m>0,则直线2(x+y)+1+m=0与圆x 2+y 2=m 的位置关系为相切或相离解析:圆心到直线的距离为d=21m+,圆半径为m . ∵d-r=21m +-m =21(m-2m +1)=21(m -1)2≥0,∴直线与圆的位置关系是相切或相离.4.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有个数为3 5.点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为)23,21(- 6.若圆04122=-++mx y x 与直线1-=y 相切,且其圆心在y 轴的左侧,则m 的值为347.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 1 .8.已知平面区域00240x y x y ≥⎧⎪≥⎨⎪+-≤⎩恰好被面积最小的圆222:()()C x a y b r -+-=及其内部所覆盖.(1)试求圆C 的方程.(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满足CA CB ⊥,求直线l 的方程.解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是5,所以圆C 的方程是22(2)(1)5x y -+-=. (2)设直线l 的方程是:y x b =+. 因为CA CB ⊥,所以圆心C 到直线l 的距离是102, 即22|21|10211b -+=+ 解得:15b =-±.所以直线l 的方程是:15y x =-±.。

高考数学一轮总复习 第八章 平面解析几何 第四节 直线与圆、圆与圆的位置关系练习 文-人教版高三全册

高考数学一轮总复习 第八章 平面解析几何 第四节 直线与圆、圆与圆的位置关系练习 文-人教版高三全册

第四节直线与圆、圆与圆的位置关系【最新考纲】 1.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“k=1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (3)如果两圆的圆心距小于两半径之和,则两圆相交.( )(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程.( )答案:(1)× (2)× (3)× (4)√2.若直线x -y +1=0与圆(x -a)2+y 2=2有公共点,则实数a 的取值X 围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞) 解析:由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a≤1.答案:C3.(2015·某某卷)直线3x +4y =b 与圆x 2+y 2-2x -2y +1=0相切,则b 的值是( ) A .-2或12 B .2或-12 C .-2或-12 D .2或12解析:由圆x 2+y 2-2x -2y +1=0知圆心(1,1),半径为1,所以|3×1+4×1-b|32+42=1,解得b =2或12.答案:D4.(2015·某某卷)若直线3x -4y +5=0与圆x 2+y 2=r 2(r>0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =________.解析:画出图形,利用圆心到直线的距离求解. 如图,过点O 作OD⊥AB 于点D ,则|OD|=532+(-4)2=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB|=2|OD|=2,即r =2. 答案:25.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-⎝ ⎛⎭⎪⎫3552=2555.答案:2555一种思想直线与圆的位置关系体现了圆的几何性质和代数方程的结合,解题时要抓住圆的几何性质,重视数形结合思想方法的应用.两种方法计算直线被圆截得的弦长的常用方法:1.几何方法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.2.代数方法:弦长公式|AB|=1+k2|x A-x B|=(1+k2)[(x A+x B)2-4x A x B].三条性质解决直线与圆的问题时常用到的圆的三个性质:1.圆心在过切点且与切线垂直的直线上.2.圆心在任一弦的中垂线上.3.两圆内切或外切时,切点与两圆圆心三点共线.一、选择题1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( ) A.相切B.相交C.相离D.不确定解析:由题意知点在圆外,则a2+b2>1,圆心到直线的距离d=1a2+b2<1,故直线与圆相交.答案:B2.圆C:x2+y2-4x=0在点P(1,3)处的切线方程为( ) A.x+3y-2=0 B.x+3y-4=0C.x-3y+4=0 D.x-3y+2=0解析:易知圆心C坐标为(2,0),则k CP=31-2=-3,所以所求切线的斜率为33.故切线方程为y-3=33(x-1),即x-3y+2=0.答案:D3.已知圆C:(x-1)2+y2=1与直线l:x-2y+1=0相交于A,B两点,则|AB|=( )A.255B.55C.235D.35解析:圆C:(x-1)2+y2=1的圆心为C(1,0),半径为1,因为C(1,0)到直线l:x-2y+1=0的距离为25,所以|AB|=21-45=255.答案:A4.若圆C :x 2+y 2+2x -4y +3=0关于直线2ax +by +6=0对称,则由点M(a ,b)向圆所作的切线长的最小值是( )A .2B .3C .4D .6 解析:由题意知直线2ax +by +6=0过圆心C(-1,2), 所以a -b -3=0.当点M(a ,b)到圆心距离最小时,切线长最短. |MC|=(a +1)2+(b -2)2=2a 2-8a +26, ∴a =2时最小.此时b =-1,切线长等于|MC|2-r 2=4. 答案:C5.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 过点(1,0)且与直线x -y +1=0垂直.若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2 C .2 D .2 2解析:因为圆C 的标准方程为x 2+(y +1)2=4,圆心为C(0,-1),半径r =2,直线l 的斜率为-1,其方程为x +y -1=0.圆心C 到直线l 的距离d =|0-1-1|2=2, 弦长|AB|=2r 2-d 2=24-2=22,又坐标原点O 到AB 的距离为12,所以S △OAB =12×22×12=1.答案:A6.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33 B .-33 C .±33D .- 3 解析:由y =1-x 2,得x 2+y 2=1(y≥0). 直线l 与x 2+y 2=1(y≥0)交于A ,B 两点,如图.则S △AOB =12·sin ∠AOB ,当∠AOB=90°时,S △AOB 最大,此时AB = 2. ∴点O 到直线l 的距离d =12-⎝ ⎛⎭⎪⎫|AB|22=22, 因此∠OCB=30°,∴l 的斜率k =tan 150°=-33. 答案:B二、填空题7.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为________.解析:∵圆C 1的圆心C 1(3,0),圆C 2的圆心C 2(0,3), ∴直线C 1C 2的方程为x +y -3=0,AB 的中垂线即直线C 1C 2,故其方程为x +y -3=0. 答案:x +y -3=08.(2014·某某卷)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:圆心C(1,a)到直线ax +y -2=0的距离为|a +a -2|a 2+1. 因为△ABC 为等边三角形,所以|AB|=|BC|=2,所以⎝ ⎛⎭⎪⎫|a +a -2|a 2+12+12=22,解得a =4±15. 答案:4±159.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.解析:依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点,则∠AOB=90°. 如图,此时a =1,b =-1,满足题意,所以a 2+b 2=2.答案:2 三、解答题10.在直角坐标系xOy 中,以坐标原点O 为圆心的圆与直线:x -3y =4相切. (1)求圆O 的方程;(2)若圆O 上有两点M 、N 关于直线x +2y =0对称,且|MN|=23,求直线MN 的方程. 解:(1)依题意,圆O 的半径r 等于原点O 到直线x -3y =4的距离, 则r =41+3=2.所以圆O 的方程为x 2+y 2=4.(2)由题意,可设直线MN 的方程为2x -y +m =0. 则圆心O 到直线MN 的距离d =|m|5.由垂径分弦定理得:m 25+(3)2=22,即m =± 5.所以直线MN 的方程为:2x -y +5=0或2x -y -5=0.11.已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值X 围;(2)直线l 能否将圆C 分割成弧长的比为13的两段弧?若能,求出直线l 的方程;若不能,请说明理由.解:(1)将y =kx 代入圆C 的方程x 2+(y -4)2=4. 得(1+k 2)x 2-8kx +12=0. ∵直线l 与圆C 交于M ,N 两点,∴Δ=(-8k)2-4×12(1+k 2)>0,得k 2>3(*) 所以k 的取值X 围是(-∞,-3)∪(3,+∞). (2)假设直线l 将圆C 分割成弧长的比为13的两段弧,则劣弧MN ︵所对的圆心角∠M=90°,由圆C :x 2+(y -4)2=4知圆心C(0,4),半径r =2. 在Rt △M 中,可求弦心距d =r·sin 45°=2, 故圆心C(0,4)到直线kx -y =0的距离|0-4|1+k2=2,∴1+k 2=8,k =±7,经验证k =±7满足不等式(*),故l 的方程为y =±7x. 因此,存在满足条件的直线l ,其方程为y =±7x.直线(圆)的方程、直线与圆的位置关系本部分的主要内容是直线方程和两条直线的位置关系、圆的方程、直线与圆的位置关系.高考对本部分的考查主要涉及直线的倾斜角与斜率的关系、两直线的位置关系的判断;距离公式的应用、圆的方程的求法以及直线与圆的位置关系,常与向量、椭圆、双曲线、抛物线的几何性质相结合考查.另外,应认真体会数形结合思想的应用,能够充分利用直线、圆的几何性质简化运算.强化点1 直线方程与两直线的位置关系(1)(2015·某某卷)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34(2)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析:(1)由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k(x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1, 解得k =-43或k =-34.(2)设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号. 同理|MB|+|MD|=|BD|,当且仅当B ,M ,D 共线时取等号.连接AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求. ∵k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.① 又∵k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4).答案:(1)D (2)(2,4)直线方程常与直线垂直、平行、距离等知识交汇考查,考查直线方程的求法以及直线间的位置关系等.注意数形结合思想分类讨论思想的应用.【变式训练】 (2015·某某卷)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A .2x +y +5=0或2x +y -5=0B .2x +y +5=0或2x +y -5=0C .2x -y +5=0或2x -y -5=0D .2x -y +5=0或2x -y -5=0解析:∵所求直线与直线2x +y +1=0平行, ∴设所求的直线方程为2x +y +m =0. ∵所求直线与圆x 2+y 2=5相切, ∴|m|1+4=5,∴m =±5. 所求的直线方程为2x +y +5=0或2x +y -5=0. 答案:A强化点2 圆的方程(1)(2015·全国Ⅱ卷)过三点A(1,3),B(4,2),C(1,-7)的圆交y 轴于M ,N 两点,则|MN|=( )A .26B .8C .46D .10(2)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B .(x -1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2 D .(x +1)2+(y +1)2=2解析:(1)设圆的方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20. ∴圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,∴M(0,-2+26),N(0,-2-26)或M(0,-2-26),N(0,-2+26),∴|MN|=4 6.(2)法一 设圆心坐标为(a ,-a),则|a -(-a )|2=|a -(-a )-4|2,即 |a|=|a -2|,解得a =1. 故圆心坐标为(1,-1),半径r =22= 2.故圆C 的方程为(x -1)2+(y +1)2=2.法二 题目给出的圆的两条切线是平行线,故圆的直径就是这两条平行线之间的距离d =42=2 2. 圆心是直线x +y =0被这两条平行线所截线段的中点,直线x +y =0与直线x -y =0的交点坐标是(0,0),与直线x -y -4=0的交点坐标是(2,-2),故所求圆的圆心坐标是(1,-1).所求圆C 的方程是(x -1)2+(y +1)2=2. 答案:(1)C (2)B求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:1.几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:(1)圆心在过切点且垂直切线的直线上;(2)圆心在任一弦的中垂线上;(3)两圆内切或外切时,切点与两圆圆心三点共线;2.代数法,即设出圆的方程,用待定系数法求解.【变式训练】 (2015·课标全国Ⅰ卷)已知三点A(1,0),B(0,3),C(2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43解析:在坐标系中画出△ABC(如图),利用两点间的距离公式可得|AB|=|AC|=|BC|=2(也可以借助图形直接观察得出),所以△ABC 为等边三角形.设BC 的中点为D ,点E 为外心,同时也是重心. 所以|AE|=23|AD|=233,从而|OE|=|OA|2+|AE|2= 1+43=213. 答案:B强化点3 直线与圆的综合问题(多维探究)直线与圆的综合问题是高考中的命题重点、热点.考查涉及的内容是直线与圆的位置关系、切线与弦长问题、有时与函数、不等式、向量交汇命题.常见的命题角度有:(1)与圆的切线方程与弦长相关计算;(2)根据直线与圆的位置关系求相关字母参数的X 围、最值;(3)直线与圆、向量、不等式交汇等综合考查学生分析求解问题的能力.角度一 圆的切线与弦长问题1.(2015·某某卷)如图,已知圆C 与x 轴相切于点T(1,0),与y 轴正半轴交于两点A ,B(B 在A 的上方),且|AB|=2.(1)圆C 的标准方程为_______________________; (2)圆C 在点B 处的切线在x 轴上的截距为________.解析:(1)由题意知点C的坐标为(1,2),圆的半径r= 2.所以圆的方程为(x-1)2+(y-2)2=2.(2)在(x-1)2+(y-2)2=2中,令x=0,解得y=2±1,故B(0,2+1).直线BC的斜率为2+1-20-1=-1,故切线的斜率为1,切线方程为y=x+2+1.令y=0,解得x=-2-1,故所求截距为-2-1.答案:(1)(x-1)2+(y-2)2=2 (2)-2-1角度二根据直线与圆的位置关系解决有关最值与X围问题2.(1)过点(2,0)引直线l与曲线y=1-x2相交于A,B两点,O为坐标原点,当△AOB 的面积取最大值时,直线l的斜率等于( )A.33B.-33C.±33D.- 3(2)设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m +n的取值X围是( )A.[1-3,1+3]B.(-∞,1-3]∪[1+3,+∞)C.[2-22,2+22]D.(-∞,2-22]∪[2+22,+∞)解析:(1)由y=1-x2,得x2+y2=1(y≥0).直线l与x2+y2=1(y≥0)交于A,B两点,如图.则S △AOB =12·sin ∠AOB ,当∠AOB=90°时,S △AOB 最大,此时AB = 2.∴点O 到直线l 的距离d =12-⎝ ⎛⎭⎪⎫|AB|22=22, 因此∠OCB=30°,∴l 的斜率k =tan 150°=-33. (2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n|(m +1)2+(n +1)2=1,所以m +n +1=mn≤14(m +n)2,所以m +n≥2+22或m +n≤2-2 2. 答案:(1)B (2)D角度三 直线与圆和不等式、向量等知识的综合问题3.(2015·全国Ⅰ卷)已知过点A(0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值X 围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解:(1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k<4+73.所以k 的取值X 围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M(x 1,y 1),N(x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k)x +7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k(x 1+x 2)+1 =4k (1+k )1+k2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1, 所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN|=2.1.解决直线与圆综合问题的常用结论(1)圆与直线l 相切的情形:圆心到l 的距离等于半径,圆心与切点的连线垂直于l. (2)圆与直线l 相交的情形:①圆心到l 的距离小于半径,过圆心而垂直于l 的直线平分l 被圆截得的弦;②连接圆心与弦的中点的直线垂直于弦;③过圆内一点的所有弦中,最短的是垂直于过这点的直径的那条弦,最长的是过这点的直径.2.解决直线与圆综合问题的一般思路:分析题意,根据直线与圆位置关系列出相应关系式,然后求解.同时注意数形结合思想的应用.【变式训练】 (2014·卷)已知圆C :(x -3)2+(y -4)2=1和两点A(-m ,0),B(m ,0)(m>0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( )A .7B .6C .5D .4解析:根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB|=2m.因为∠APB=90°,连接OP ,易知|OP|=12|AB|=m.要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离. 因为|OC|=32+42=5,所以|OP|max =|OC|+r =6,即m 的最大值为6. 答案:BA 级 基础巩固一、选择题1.直线y =kx +2与圆x 2+y 2=1没有公共点的充要条件是( ) A .k ∈(-2,2)B .k ∈(-∞,-2)∪(2,+∞)C .k ∈(-3,3)D .k ∈(-∞,-3)∪(3,+∞)解析:由直线y =kx +2与圆x 2+y 2=1没有公共点可知,圆心(0,0)到直线y =kx +2的距离大于圆的半径,即|2|k 2+1>1,由此解得-3<k<3,因此,直线y =kx +2与圆x 2+y 2=1没有公共点的充要条件是k∈(-3,3).答案:C2.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( )A .k =12,b =-4B .k =-12,b =4C .k =12,b =4D .k =-12,b =-4解析:因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则y =kx 与直线2x +y +b =0垂直,且2x +y +b =0过圆心,所以解得k =12,b =-4.答案:A3.(2015·某某卷)若直线x a +yb =1(a>0,b>0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:将(1,1)代入直线x a +y b =1得1a +1b =1,a>0,b>0,故a +b =(a +b)⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2=4,等号当且仅当a =b 时取“=”. 答案:C4.若直线y =k(x -2)与曲线y =1-x 2有交点,则( ) A .k 有最大值33,最小值-33B .k 有最大值12,最小值-12C .k 有最大值0,最小值-33D .k 有最大值0,最小值-12解析:如图:当直线与半圆相切时,直线的斜率k 最小.此时|k ·0+0-2k|k 2+1=1,所以k =-33(舍去正值); 当直线过半圆圆心时,k 最大,为0. 答案:C5.(2015·某某卷)已知直线l :x +ay -1=0(a∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A(-4,a)作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .42C .6D .210解析:由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴, ∴圆心C(2,1)在直线x +ay -1=0上, ∴2+a -1=0,∴a =-1,∴A(-4,-1). ∴|AC|2=36+4=40.又r =2,∴|AB|2=40-4=36. ∴|AB|=6. 答案:C 二、填空题6.已知圆x 2+y 2=9与圆x 2+y 2-4x +4y -1=0关于直线l 对称,则直线l 的方程为________.解析:由题易知,直线l 是两圆圆心连线构成线段的垂直平分线,两圆的圆心坐标分别是(0,0),(2,-2),于是其中点坐标是(1,-1).又知过两圆圆心直线的斜率是-1,所以直线l 的斜率是1, 于是可得直线l 的方程为y +1=x -1,即x -y -2=0. 答案:x -y -2=07.已知圆C 1:(x -a)2+(y +2)2=4与圆C 2:(x +b)2+(y +2)2=1相外切,则ab 的最大值为________.解析:由两圆相外切可得圆心(a ,-2),(-b ,-2)之间的距离等于两圆半径之和,即(a +b)2=9=a 2+b 2+2ab≥4ab,所以ab≤94,即ab 的最大值是94(当且仅当a =b 时取等号)答案:948.过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:直线与圆的位置关系如图所示,设P(x ,y),则∠APO=30°,且OA =1.在直角三角形APO 中,OA =1,∠APO =30°,则OP =2. ∴x 2+y 2=4. 又x +y -22=0,联立解得x =y =2,即P(2,2). 答案:(2,2) 三、解答题9.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB|=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方,得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切, 则有|4+2a|a 2+1=2.解得a =-34. (2)过圆心C 作CD⊥AB,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD|=|4+2a|a 2+1,|CD|2+|DA|2=|AC|2=22,|DA|=12|AB|= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.10.如图所示,在平面直角坐标系xOy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值X 围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =kx +3. 由题意,得|3k +1|k 2+1=1,解得k =0或k =-34, 故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为MA =2MO , 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4, ∴点M 在以D(0,-1)为圆心,以2为半径的圆上. 由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD≤2+1,即1≤a 2+(2a -3)3≤3. 整理,得-8≤5a 2-12a≤0. 由5a 2-12a +8≥0,得a∈R; 由5a 2-12a≤0,得0≤a≤125.所以点C 的横坐标a 的取值X 围为⎣⎢⎡⎦⎥⎤0,125.B 级 能力提升1.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k=1”是“△OAB 的面积为12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:将直线l 的方程化为一般式得kx -y +1=0,所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1. 又弦长为21-1k 2+1=2|k|k 2+1, 所以S △OAB =12·1k 2+1·2|k|k 2+1=|k|k 2+1=12,解得k =±1. 因此可知“k=1”是“△OAB 的面积为12”的充分而不必要条件. 答案:A2.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为________.解析:∵∠AOB=90°,∴点O 在圆C 上.设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD|.又|OD|=|2×0+0-4|5=45, ∴圆C 的最小半径为25, ∴圆C 面积的最小值为π⎝ ⎛⎭⎪⎫252=45π. 答案:45π3.已知圆C :x 2+y 2-6x -4y +4=0,直线l 1被圆所截得的弦的中点为P(5,3).(1)求直线l 1的方程;(2)若直线l 2:x +y +b =0与圆C 相交,求b 的取值X 围;(3)是否存在常数b ,使得直线l 2被圆C 所截得的弦的中点落在直线l 1上?若存在,求出b 的值;若不存在,说明理由.解:(1)圆C 的方程化标准方程为:(x -3)2+(y -2)2=9,于是圆心C(3,2),半径r =3.若设直线l 1的斜率为k ,则k =-1k PC =-112=-2. 所以直线l 1的方程为y -3=-2(x -5),即2x +y -13=0.(2)因为圆的半径r =3,所以要使直线l 2与圆C 相交,则须有:|3+2+b|2<3, 所以|b +5|<32,于是b 的取值X 围是-32-5<b<32-5.(3)设直线l 2被圆C 截得的弦的中点为M(x 0,y 0),则直线l 2与CM 垂直,于是有y 0-2x 0-3=1,整理可得x 0-y 0-1=0. 又因为点M(x 0,y 0)在直线l 2上,所以x 0+y 0+b =0.所以由⎩⎪⎨⎪⎧x 0-y 0-1=0,x 0+y 0+b =0.解得⎩⎪⎨⎪⎧x 0=1-b 2,y 0=-1+b 2. 代入直线l 2的方程得:1-b -1+b 2-13=0, 于是b =-253∈(-32-5,32-5), 故存在满足条件的常数b.。

高考数学一轮练之乐 1.8.4直线与圆、圆与圆的位置关系 文

高考数学一轮练之乐 1.8.4直线与圆、圆与圆的位置关系 文

【师说系列】2014届高考数学一轮练之乐 1.8.4直线与圆、圆与圆的位置关系 文一、选择题1.点M(x0,y0)是圆x2+y2=a2(a >0)内不为圆心的一点,则直线x0x +y0y =a2与该圆的位置关系是( )A .相切B .相交C .相离D .相切或相交解析:由已知得x20+y20<a2,且x20+y20≠0,又∵圆心到直线的距离d =a2x20+y20>a , ∴直线与圆相离.答案:C2.设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=( )A .4B .4 2C .8D .8 2解析:依题意,可设圆心坐标为(a ,a)、半径为r ,其中r =a >0,因此圆方程是(x -a)2+(y -a)2=a2,由圆过点(4,1)得(4-a)2+(1-a)2=a2,即a2-10a +17=0,则该方程的两根分别是圆心C1,C2的横坐标,|C1C2|=2×102-4×17=8,选C. 答案:C3.若a 、b 、c 是直角三角形的三边(c 为斜边),则圆x2+y2=2截直线ax +by +c =0所得的弦长等于( )A .1B .2C. 3 D .2 3答案:B4.若圆x2+y2-4x -4y -10=0上至多有三个不同点到直线l :ax +by =0的距离为22,则直线l 的斜率的取值范围是( )A .(-∞,2-3]B .[2+3,+∞)C .(-∞,2-3]∪[2+3,+∞)D .[2-3,2+3]答案:C5.直线xsin θ+ycos θ=2+sin θ与圆(x -1)2+y2=4的位置关系是( )A .相离B .相切C .相交D .以上都有可能答案:B6.已知圆x2+y2+x -6y +3=0上的两点P 、Q 关于直线kx -y +4=0对称,且OP ⊥OQ(O 为坐标原点),则直线PQ 的方程为( )A .y =-12x +32B .y =-12x +32或y =-12x +54C .y =-12x +14D .y =-12x +12或y =-12x +54解析:由P 、Q 关于直线kx -y +4=0对称知直线kx -y +4=0过已知圆的圆心(-12,3),则k =2,直线PQ 的斜率kPQ =-12. 设直线PQ 的方程为y =-12x +b ,P(x1,y1)、Q(x2,y2),则P 、Q 两点的坐标是方程组⎩⎪⎨⎪⎧ y =-12x +b x2+y2+x -6y +3=0的解,消去y 得54x2+(4-b)x +b2-6b +3=0,故x1+x2=--5, ①x1x2=-6b +5, ② 由OP ⊥OQ ⇒x1x2+y1y2=0⇒x1x2+(-12x1+b)·(-12x2+b)=0, 54x1x2-b 2(x1+x2)+b2=0, 将①,②代入得b =32或b =54. 所以直线PQ 的方程为y =-12x +32或y =-12x +54.故选B. 答案:B二、填空题7.已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是__________.解析:设圆心为(a,0)(a <0),则|a|2=2,解得a =-2, 故圆O 的方程为(x +2)2+y2=2.答案:(x +2)2+y2=28.过原点的直线与圆x2+y2-2x -4y +4=0相交所得弦的长为2,则该直线的方程为__________.解析:设所求直线方程为y =kx ,即kx -y =0.由于直线kx -y =0被圆截得的弦长等于2,圆的半径是1,因此圆心到直线的距离等于12-22=0,即圆心位于直线kx -y =0上.于是有k -2=0,即k =2,因此所求直线方程是2x -y =0.答案:2x -y =09.若⊙O :x2+y2=5与⊙O1:(x -m)2+y2=20(m ∈R)相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是__________.解析:依题意得|OO1|=5+20=5,且△OO1A 是直角三角形,S △OO1A =12·|AB|2·|OO1|=12·|OA|·|AO1|,因此|AB|=2·|OA|·|AO1||OO1|=2×5×255=4. 答案:4三、解答题10.根据下列条件求圆的方程:(1)经过坐标原点和点P(1,1),并且圆心在直线2x +3y +1=0上;(2)已知一圆过P(4,-2),Q(-1,3)两点,且在y 轴上截得的线段长为4 3.解析:(1)显然,所求圆的圆心在OP 的垂直平分线上,OP 的垂直平分线方程为x +y -1=0.解方程组⎩⎪⎨⎪⎧ x +y -1=0,2x +3y +1=0,得圆心C 的坐标为(4,-3).又因为圆的半径r =|OC|=5,所以所求圆的方程为(x -4)2+(y +3)2=25.(2)设圆的方程为x2+y2+Dx +Ey +F =0,①将P ,Q 点的坐标分别代入①,得⎩⎪⎨⎪⎧ 4D -2E +F =-20, ②D -3E -F =10. ③令x =0,由①得y2+Ey +F =0,④由已知|y1-y2|=43,其中y1、y2是方程④的两根,所以(y1-y2)2=(y1+y2)2-4y1y2=E2-4F =48.⑤解②③⑤组成的方程组,得D =-2,E =0,F =-12,或D =-10,E =-8,F =4,故所求圆的方程为x2+y2-2x -12=0,或x2+y2-10x -8y +4=0.11.已知m ∈R ,直线-(m2+1)y =4m 和圆x2+y2-8x +4y +16=0.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为y =m m2+1x -4m m2+1, 直线l 的斜率k =m m2+1, 因为|m|≤12(m2+1), 所以|k|=|m|m2+1≤12, 当且仅当|m|=1时等号成立.所以,斜率k 的取值范围是[-12,12]. (2)不能.由(1)知l 的方程为y =k(x -4),其中|k|≤12. 圆C 的圆心为C(4,-2),半径r =2.圆心C 到直线l 的距离为d =21+k2. 由|k|≤12,得d≥45>1, 即d >r 2. 从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于2π3. 所以l 不能将圆C 分割成弧长的比值为12的两段弧. 12.已知直线l :y =x +m ,m ∈R.(1)若以点M(2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;(2)若直线l 关于x 轴对称的直线为l′,问直线l′与抛物线C :x2=4y 是否相切?说明理由.解析:方法一:(1)依题意,点P 的坐标为(0,m).因为MP ⊥l ,所以0-m 2-0×1=-1, 解得m =2,即点P 的坐标为(0,2). 从而圆的半径r =|MP|=-+-=22,故所求圆的方程为(x -2)2+y2=8.(2)因为直线l 的方程为y =x +m ,所以直线l′的方程为y =-x -m.由⎩⎪⎨⎪⎧ y =-x -m ,x2=4y得x2+4x +4m =0.Δ=42-4×4m=16(1-m).(1)当m =1,即Δ=0时,直线l′与抛物线C 相切;(2)当m≠1,即Δ≠0时,直线l′与抛物线C 不相切.综上,当m =1时,直线l′与抛物线C 相切;当m≠1时,直线l′与抛物线C 不相切. 方法二:(1)设所求圆的半径为r ,则圆的方程可设为(x -2)2+y2=r2.依题意,所求圆与直线l :x -y +m =0相切于点P(0,m),则⎩⎪⎨⎪⎧ 4+m2=r2,|2-0+m|2=r ,解得⎩⎨⎧ m =2,r =2 2.所以所求圆的方程为(x -2)2+y2=8.(2)同方法一.。

2022届高考数学一轮复习第八章第四节直线与圆圆与圆的位置关系课时作业理含解析北师大版2021070

2022届高考数学一轮复习第八章第四节直线与圆圆与圆的位置关系课时作业理含解析北师大版2021070

第四节 直线与圆、圆与圆的位置关系授课提示:对应学生用书第359页[A 组 基础保分练]1.(2021·某某某某模拟)直线ax -by =0与圆x 2+y 2-ax +by =0的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定解析:将圆的方程化为标准方程得⎝⎛⎭⎫x -a 22+⎝⎛⎭⎫y +b 22=a 2+b 24,所以圆心坐标为⎝⎛⎭⎫a 2,-b 2,半径r =a 2+b 22.因为圆心到直线ax -by =0的距离d =⎪⎪⎪⎪a 22+b 22a 2+b 2=a 2+b 22=r ,所以直线与圆相切. 答案:B 2.(2021·某某质检)圆x 2+y 2=4与圆x 2+y 2-4x +4y -12=0的公共弦所在直线和两坐标轴所围成图形的面积为( ) A .1 B .2 C .4 D .8 解析:由(x 2+y 2-4)-(x 2+y 2-4x +4y -12)=0得公共弦所在直线的方程为x -y +2=0,它与两坐标轴分别交于(-2,0),(0,2),所以直线和两坐标轴所围成图形的面积为12×2×2=2. 答案:B 3.(2021·某某十四校二联)已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A .6或- 6 B .5或- 5 C . 6 D . 5 解析:因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+(-2)2=1,所以a =±5. 答案:B 4.(2021·某某市第一次统考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件. 答案:A 5.(2021·某某一中模考)圆C 1:(x +1)2+(y -2)2=4与圆C 2:(x -3)2+(y -2)2=4的公切线的条数是( ) A .1 B .2 C .3 D .4解析:圆C 1:(x +1)2+(y -2)2=4的圆心为(-1,2),半径为2,圆C 2:(x -3)2+(y -2)2=4的圆心为(3,2),半径为2,两圆的圆心距|C 1C 2|=(-1-3)2+(2-2)2=4=2+2,即两圆的圆心距等于两圆的半径之和,故两圆相外切,故公切线的条数为3. 答案:C 6.(2021·某某调研)已知直线l :x +y -5=0与圆C :(x -2)2+(y -1)2=r 2(r >0)相交所得的弦长为22,则圆C 的半径r =( ) A . 2 B .2 C .2 2 D .4 解析:法一:依题意,得圆C 的圆心坐标为(2,1),圆心到直线l 的距离d =|2+1-5|1+1=2,因为弦长为22,所以2r 2-d 2=22,所以r =2.法二:联立得⎩⎪⎨⎪⎧x +y -5=0,(x -2)2+(y -1)2=r 2,整理得2x 2-12x +20-r 2=0,设直线l 与圆C 的两交点分别为A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=6,x 1x 2=20-r 22,所以|AB |=1+k 2|x 1-x 2|=2(x 1+x 2)2-4x 1x 2=22,所以r =2. 答案:B 7.(2021·某某天河模拟)已知圆C 的方程为x 2-2x +y 2=0,直线l :kx -y +2-2k =0与圆C 交于A ,B 两点,则当△ABC 面积最大时,直线l 的斜率k =_________.解析:由x 2-2x +y 2=0,得(x -1)2+y 2=1,则圆的半径r =1,圆心C (1,0), 直线l :kx -y +2-2k =0与圆C 交于A ,B 两点, 当CA 与CB 垂直时,△ABC 面积最大,此时△ABC 为等腰直角三角形,圆心C 到直线AB 的距离d =22, 则有|2-k |1+k 2=22,解得k =1或7. 答案:1或7 8.(2021·某某六校联考)已知直线y =ax 与圆C :x 2+y 2-2ax -2y +2=0相交于A ,B 两点,且△ABC 为等边三角形,则圆C 的面积为_________.解析:圆C :x 2+y 2-2ax -2y +2=0可化为(x -a )2+(y -1)2=a 2-1,因为直线y =ax 和圆C 相交,△ABC 为等边三角形,所以圆心C 到直线ax -y =0的距离为32·a 2-1,即d =|a 2-1|a 2+1=3(a 2-1)2,解得a 2=7,所以圆C 的面积为6π.答案:6π9.已知圆M 过C (1,-1),D (-1,1)两点,且圆心M 在直线x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A ,PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解析:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0),根据题意得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题意知,四边形P AMB 的面积为S =S △P AM +S △PBM =12(|AM |·|P A |+|BM |·|PB |).又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |,而|P A |2=|PM |2-|AM |2=|PM |2-4, 所以S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =3,所以四边形P AMB 面积的最小值为2|PM |2-4=25.10.已知圆O :x 2+y 2=r 2(r >0)与直线3x -4y +15=0相切. (1)若直线l :y =-2x +5与圆O 交于M ,N 两点,求|MN |; (2)设圆O 与x 轴的负半轴的交点为A ,过点A 作两条斜率分别为k 1,k 2的直线交圆O 于B ,C 两点,且k 1k 2=-3,试证明直线BC 恒过一点,并求出该点的坐标.解析:(1)由题意知,圆心O 到直线3x -4y +15=0的距离d =159+16=3=r ,所以圆O :x 2+y 2=9.又圆心O 到直线l :y =-2x +5的距离d 1=54+1=5,所以|MN |=29-d 21=4.(2)证明:易知A (-3,0),设B (x 1,y 1),C (x 2,y 2),则直线AB :y =k 1(x +3),由⎩⎪⎨⎪⎧y =k 1(x +3),x 2+y 2=9,得(k 21+1)x 2+6k 21x +9k 21-9=0, 所以-3x 1=9k 21-9k 21+1,即x 1=-3k 21+3k 21+1,所以y 1=k 1(x 1+3)=6k 1k 21+1,所以B ⎝ ⎛⎭⎪⎫3-3k 21k 21+1,6k 1k 21+1. 同理C ⎝ ⎛⎭⎪⎫3-3k 22k 22+1,6k 2k 22+1. 由k 1k 2=-3得k 2=-3k 1,将-3k 1代替k 2,可得C ⎝ ⎛⎭⎪⎫3k 21-27k 21+9,-18k 1k 21+9. 当3-3k 21k 21+1≠3k 21-27k 21+9,即k 1≠±3时,k BC =6k 1k 21+1+18k 1k 21+93-3k 21k 21+1-3k 21-27k 21+9=4k 13-k 21,k 1≠±3.从而直线BC :y -6k 1k 21+1=4k 13-k 21⎝⎛⎭⎪⎫x -3-3k 21k 21+1. 即y =4k 13-k 21⎣⎢⎡⎦⎥⎤x -3-3k 21k 21+1+9-3k 212(k 21+1), 化简得y =4k 13-k 21⎝⎛⎭⎫x +32. 所以直线BC 恒过一点,该点为⎝⎛⎭⎫-32,0. 当k 1=±3时,k 2=∓3,此时x B =-32=x C ,所以直线BC 的方程为x =-32,过点⎝⎛⎭⎫-32,0. 综上,直线BC 恒过定点⎝⎛⎭⎫-32,0. [B 组 能力提升练]1.(2021·某某马某某模拟)在平面直角坐标系xOy 中,若圆C :(x -3)2+(y -a )2=4上存在两点A ,B 满足:∠AOB =60°,则实数a 的最大值是( ) A .5 B .3 C .7 D .2 3 解析:根据题意,圆C 的圆心为(3,a ),在直线x =3上, 分析可得:当圆心距离x 轴的距离越远,∠AOB 越小,如图,当a >0时,圆心C 在x 轴上方,若OA ,OB 为圆的切线且∠AOB =60°,此时a 取得最大值,此时∠AOC =30°,有|OC |=2|AC |=4,即(3-0)2+(a -0)2=16,解得a =7,故实数a 的最大值是7. 答案:C 2.(2021·某某某某模拟)在平面直角坐标系xOy 中,圆C 经过点(0,1),(0,3),且与x 轴正半轴相切,若圆C 上存在点M ,使得直线OM 与直线y =kx (k >0)关于y 轴对称,则k 的最小值为( )A .233B . 3C .2 3D .4 3解析:如图,因为圆C 经过点(0,1),(0,3),且与x 轴正半轴相切, 所以圆心的纵坐标为2,半径为2,则圆心的横坐标为22-12=3,所以圆心坐标为(3,2),设过原点与圆相切的直线方程为y =k 1x ,由圆心到直线的距离等于半径,得|3k 1-2|k 21+1=2,解得k 1=0(舍去)或k 1=-43.所以若圆C 上存在点M ,使得直线OM 与直线y =kx (k >0)关于y 轴对称,则k 的最小值为43.答案:D 3.(2020·高考全国卷Ⅰ)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点.过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( )A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=0 解析:⊙M :(x -1)2+(y -1)2=4, 则圆心M (1,1),⊙M 的半径为2. 如图,由题意可知PM ⊥AB ,∴S 四边形P AMB =12|PM |·|AB |=|P A |·|AM |=2|P A |,∴|PM |·|AB |=4|P A |=4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l .故直线PM 的方程为y -1=12(x -1),即x -2y +1=0.由⎩⎪⎨⎪⎧x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0,∴P (-1,0). 又∵P A 与⊙M 相切,∴直线P A 的方程为x =-1(∵在⊙M 中,-1≤x ≤1), ∴P A ⊥x 轴,P A ⊥MA ,∴A (-1,1). 又直线AB 与l 平行,设直线AB 的方程为2x +y +m =0,将A (-1,1)的坐标代入2x +y +m =0,得m =1. ∴直线AB 的方程为2x +y +1=0. 答案:D4.已知圆的方程为x 2+(y -1)2=4,圆心为C ,若过点P ⎝⎛⎭⎫1,12的直线l 与此圆交于A ,B 两点,则当∠ACB 最小时,直线l 的方程为( )A .4x -2y -3=0B .x +2y -2=0C .4x +2y -3=0D .x -2y +2=0解析:圆心坐标为(0,1),当弦长|AB |最小时,∠ACB 最小,此时直线AB 与PC 垂直,k l =-11-120-1=2,所以直线l 的方程为y -12=2(x -1),即4x -2y -3=0.答案:A5.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=_________.解析:由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,所以圆心C (2,1)在直线x +ay -1=0上,所以2+a -1=0,所以a =-1,所以A (-4,-1).所以|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36.所以|AB |=6. 答案:6 6.(2021·某某启东中学检测)已知圆C 1:(x -1)2+(y +1)2=1,圆C 2:(x -4)2+(y -5)2=9,点M ,N 分别是圆C 1,圆C 2上的动点,P 为x 轴上的动点,则|PN |-|PM |的最大值是_________.解析:圆C 1:(x -1)2+(y +1)2=1的圆心为C 1(1,-1),半径为1,圆C 2:(x -4)2+(y -5)2=9的圆心为C 2(4,5),半径为3.要使|PN |-|PM |最大,需|PN |最大,且|PM |最小,|PN |的最大值为|PC 2|+3,|PM |的最小值为|PC 1|-1,故|PN |-|PM |的最大值是(|PC 2|+3)-(|PC 1|-1)=|PC 2|-|PC 1|+4,设C 2(4,5)关于x 轴的对称点为C ′2(4,-5),|PC 2|-|PC 1|=|PC ′2|-|PC 1|≤|C 1C ′2|=(4-1)2+(-5+1)2=5,故|PC 2|-|PC 1|+4的最大值为5+4=9,即|PN |-|PM |的最大值是9. 答案:97.已知圆O :x 2+y 2=9及点C (2,1).(1)若线段OC 的垂直平分线交圆O 于A ,B 两点,试判断四边形OACB 的形状,并给出证明;(2)过点C 的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,求直线l 的方程. 解析:(1)四边形OACB 为菱形,证明如下:易得OC 的中点为⎝⎛⎭⎫1,12,设A (x 1,y 1),B (x 2,y 2),易得OC 的垂直平分线的方程为y =-2x +52,代入x 2+y 2=9,得5x 2-10x -114=0,∴x 1+x 22=1,y 1+y 22=-2×1+52=12,∴AB 的中点为⎝⎛⎭⎫1,12,则四边形OACB 为平行四边形, 又OC ⊥AB ,∴四边形OACB 为菱形.(2)当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),∴S △OPQ =12×2×25=25.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎫k ≠12, 即kx -y +1-2k =0⎝⎛⎭⎫k ≠12, 则圆心O 到直线l 的距离d =|1-2k |k 2+1.由平面几何知识得|PQ |=29-d 2, ∴S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92.当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值为92.∵25<92,∴S △OPQ 的最大值为92,此时,令4k 2-4k +1k 2+1=92,解得k =-7或k =-1.故直线l 的方程为x +y -3=0或7x +y -15=0.[C 组 创新应用练]1.已知直线l :x +y -1=0截圆Ω:x 2+y 2=r 2(r >0)所得的弦长为14,点M ,N 在圆Ω上,且直线l ′:(1+2m )x +(m -1)y -3m =0过定点P ,若PM ⊥PN ,则|MN |的取值X 围为( )A .[2-2,2+ 3 ]B .[2-2,2+ 2 ]C .[6-2,6+ 3 ]D .[6-2,6+ 2 ]解析:由题意,2r 2-12=14,解得r =2,因为直线l ′:(1+2m )x +(m -1)y -3m =0过定点P ,故P (1,1),设MN 的中点为Q (x ,y ),则OM 2=OQ 2+MQ 2=OQ 2+PQ 2,即4=x 2+y 2+(x -1)2+(y -1)2,化简可得⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=32,所以点Q 的轨迹是以⎝⎛⎭⎫12,12为圆心,62为半径的圆,所以|PQ |的取值X 围为⎣⎢⎡⎦⎥⎤6-22,6+22,|MN |的取值X 围为[6-2,6+2].答案:D2.已知从圆C :(x +1)2+(y -2)2=2外一点P (x 1,y 1)向该圆引一条切线,切点为M ,且有|PM |=|PO |(O 为坐标原点),则当|PM |取得最小值时点P 的坐标为_________. 解析:如图所示,圆C 的圆心为C (-1,2),半径r =2,因为|PM |=|PO |,所以|PO |2+r 2=|PC |2,所以x 21+y 21+2=(x 1+1)2+(y 1-2)2,即2x 1-4y 1+3=0.要使|PM |最小,只要|PO |最小即可.当直线PO 垂直于直线2x -4y +3=0,即直线PO 的方程为2x +y =0时,|PM |最小,此时点P 即为两直线的交点,由⎩⎪⎨⎪⎧2x -4y +3=0,2x +y =0,得⎩⎨⎧x =-310,y =35,故当|PM |取得最小值时,点P 的坐标为⎝⎛⎭⎫-310,35.答案:⎝⎛⎭⎫-310,35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【与名师对话】2016版高考数学一轮复习 8.4直线与圆、圆与圆的
位置关系随堂训练 文
1.(2014·广州综合测试(二))直线y =kx +1与圆x 2+y 2
-2y =0的位置关系是( )
A .相交
B .相切
C .相离
D .取决于k 的值
解析:由直线y =kx +1,可知直线恒过定点(0,1),而点(0,1)为圆内一点且为圆心,故直线与圆相交.(另解:①可由圆心到直线的距离与半径r 的大小做比较;②可将直线与圆的方程联立,由Δ与0的大小比较).
答案:A
2.(2013·山东卷)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )
A .2x +y -3=0
B .2x -y -3=0
C .4x -y -3=0
D .4x +y -3=0 解析:根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是-2,只有选项A 中直线的斜率为-2. 答案:A
3.已知圆C :(x -1)2+(y -1)2
=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为( )
A.⎝ ⎛⎭
⎪⎫x -322+(y -2)2=54 B .(x -3)2+(y -1)2=5
C.⎝ ⎛⎭
⎪⎫x +322+(y -2)2=54 D .(x -1)2+(y -1)2=5
解析:解法一:设P (x ,y ),圆心C (1,1).
∵P 点是过点A 的弦的中点,∴PA →⊥PC →.
又∵PA →=(2-x,3-y ),PC →=(1-x,1-y ),
∴(2-x )·(1-x )+(3-y )·(1-y )=0,
∴P 点的轨迹方程为⎝ ⎛⎭
⎪⎫x -322+(y -2)2=54. 解法二:由已知,PA ⊥PC .由圆的性质可知,
点P 在以AC 为直径的圆上,圆心C (1,1), AC 中点为⎝ ⎛⎭⎪⎫32,2,|AC |= 2-12+3-12=5,
所以半径为52
. 故P 点的轨迹方程为⎝ ⎛⎭
⎪⎫x -322+(y -2)2=54. 答案:A
4.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.
解析:过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k C M =1-02-1
=1,∴最短弦所在直线的方程为y -0=-1(x -1),即x +y -1=0. 答案:x +y -1=0。

相关文档
最新文档