新人教版八年级(下)期末数学试卷(含解析) (8)
最新人教版2022-2022年八年级下期末考试数学试卷(含答案)
八年级(下)期末(qī mò)数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合(fúhé)题目要求的)1.下列(xiàliè)图形中,既是中心对称图形,又是轴对称图形的是()A.菱形(línɡ xínɡ)B.平行四边形C.等边三角形D.梯形2.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cm B.5cm C.8cm D.20cm3.如果n边形的内角和等于外角(wài jiǎo)和的3倍,那么n的值是()A.5 B.6 C.7 D.84.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形6.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC7.点P在x轴上,且到y轴的距离(jùlí)为5,则点P的坐标是()A.(5,0) B.(0,5) C.(5,0)或(﹣5,0) D.(0,5)或(0,﹣5)8.直线(zhíxiàn)y=kx+9k+10一定(yīdìng)经过点()A.(0,10)B.(1,19)C.(9,10)D.(﹣9,10)9.如图,线段(xiànduàn)AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4 B.4.5 C.4.8 D.510.在直角坐标系中,一只电子青蛙从原点出发,每次可以向上(xiàngshàng)或向下或向左或向右跳动一个单位,若跳三次,则到达的终点有几种可能()A.12 B.16 C.20 D.6411.如图,一次函数y=kx+b的图象与坐标轴的交点坐标分别为A(0,2),B(﹣3,0),下列说法:①y随x的增大而减小;②b=2;③关于x的方程kx+b=0的解为x=2;④关于x的不等式kx+b<0的解集x<﹣3.其中说法正确的有()A.1个B.2个C.3个D.4个12.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有()千米到达甲地.A.70 B.80 C.90 D.100二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.函数(hánshù)y=的自变量x的取值范围(fànwéi)是.14.默写角平分线的性质(xìngzhì)定理的逆定理:.15.点P(m﹣1,2m﹣4)在第三象限(xiàngxiàn),则m的取值范围是.16.已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.17.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE 折叠后,点B落在AD边的F点上,则DF的长为.18.点P(x,y)经过某种变换后得到点P′(﹣y+1,x+2),我们把点P′(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2021的坐标为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤19.(6分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充(bǔchōng)完整;(3)已知该校有1000人,请根据样本估计全校最喜欢足球(zúqiú)的人数是多少?20.(6分)已知函数(hánshù)y=kx+2k+1(k不为(bù wéi)零),(1)若函数(hánshù)图象经过点A(1,4),求k的值;(2)若这个一次函数图象不经过第一象限,求k的取值范围.21.(8分)如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.22.(8分)如图,在矩形ABCD中,AD>AB,过对角线的中点O作BD的垂线EF,交AD于点E,交BC于点F.(1)求证:四边形BEDF是菱形;(2)若AB=3,AD=4,求AE的长.23.(8分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为12?若存在,请直接出点P的坐标;若不存在,请说明(shuōmíng)理由.24.(10分)某商店销售A型和B型两种型号(xínghào)的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少(duōshǎo)台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售(xiāoshòu)总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.25.(8分)在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点(zhōnɡ diǎn),连接EF,试证明EF⊥BD.26.(12分)如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标(zuòbiāo)及直线L的解析式;(2)在(1)的条件(tiáojiàn)下,如图②所示,设Q为AB延长线上一点(yī diǎn),作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN 的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角(zhíjiǎo)顶点在第一、二象限内作等腰直角△OBF和等腰直角(zhíjiǎo)△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.八年级(下)期末(qī mò)数学试卷参考答案一、选择题(本大题共12小题(xiǎo tí),每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.A;2.C;3.D;4.B;5.D;6.D;7.C;8.D;9.C;10.B;11.B;12.A;二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.x≥;14.角的内部到角的两边距离(jùlí)相等的点在角平分线上;15.m<1;16.8;17.6;18.(1,4);三、解答题(本大题共8小题,共66分.解答应(dā yìng)写出文字说明、证明过程或演算步骤19、20、21、22、23、24、25、26、内容总结(1)14.角的内部到角的两边距离相等的点在角平分线上(2)18.(1,4)。
人教版八年级下册数学期末试卷综合测试卷(word含答案)
人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。
人教版数学八年级下学期《期末考试卷》附答案
2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟,一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+12.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°4.在下列各式中,化简正确的是()A.√53=3√15B.√12=±12√2C.√a4b=a2√b D.√x3−x2=−x√x−15.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表:周作业时量/小时 4 6 8 10 12 人数 2 23 21 3 1 则这次调查中的众数、中位数是()A.6,8 B.6,7 C.8,7 D.8,86.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.1009.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥211.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.1212.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为cm.15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试90 95面试85 8016.观察计算结果:①3=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103=17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.知识竞赛演讲比赛版面创作项目班次甲85 91 8887乙90 8422.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长23.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.24.在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是千米/时,B,C两地的路程为千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.25.如图,矩形OABC的顶点与坐标原点O重合,将△OAB沿对角线OB所在的直线翻折,点A落在点D处,OD 与BC相交于点E,已知OA=8,AB=4(1)求证:△OBE是等腰三角形;(2)求E点的坐标;(3)坐标平面内是否存在一点F,使得以B,D,E,P为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.26.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+1【分析】根据二次根式中的被开方数是非负数进行分析即可.【解析】A、当x=1时,√x2−5无意义,故此选项错误;B、当x=1时,√−x−5无意义,故此选项错误;C、当x<0时,√x无意义,故此选项错误;D、无论x取什么值,√x2+1都有意义,故此选项正确;故选:D.2.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象不经过哪个象限.【解析】∵一次函数y=7x﹣6,k=7,b=﹣6,∴该函数经过第一、三、四象限,不经过第二象限,故选:B.3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°【分析】直接利用菱形的性质得出DC∥AB,∠DAC=∠1,进而结合平行四边形的性质得出答案.【解析】∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=12∠DAB=25°.4.在下列各式中,化简正确的是( ) A .√53=3√15 B .√12=±12√2C .√a 4b =a 2√bD .√x 3−x 2=−x √x −1【分析】根据二次根式的性质求出每个式子的值,再根据求出的结果进行判断即可. 【解析】A 、结果是13√15,故本选项错误;B 、结果是12√2,故本选项错误;C 、√a 4b =a 2√b ,故本选项正确;D 、当x ≥1时,√x 3−x 2=√x 2(x −1)=|x |√x −1=x √x −1,故本选项错误; 故选:C .5.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表: 周作业时量/小时4 6 8 10 12 人数2232131则这次调查中的众数、中位数是( ) A .6,8B .6,7C .8,7D .8,8【分析】根据众数、中位数的定义求解即可.【解析】由统计表可知,学生平均每周课后作业时量为6小时的有23人,人数最多,故众数是6; 因表格中数据是按从小到大的顺序排列的,一共50个人,中位数为第25位和第26位的平均数,它们分别是6,8,故中位数是6+82=7.故选:B .6.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是( ) A .甲B .乙C .丙D .丁【分析】平均数相同,比较方差,谁的方差最小,谁发挥的就最稳定. 【解析】∵四个人的平均成绩都是10.3秒,而0.019<0.020<0.021<0.022, ∴乙发挥最稳定,7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【分析】根据平行四边形、菱形、矩形、正方形的判定分别进行分析即可.【解析】A、一组对边平行且相等的四边形是平行四边形,说法正确;B、四条边都相等的四边形是菱形,说法正确;C、对角线互相垂直的平行四边形是正方形,说法错误;D、四个角都相等的四边形是矩形,说法正确;故选:C.8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.100【分析】由正方形的面积公式可知S1=AB2,S2=AC2,S3=BC2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即S1+S2=S3,由此可求S3.【解析】∵在Rt△ABC中,AC2+AB2=BC2,又由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∴S3=S1+S2=36+64=100.故选:D.9.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC【分析】根据同角的余角相等判断A;根据题意判断B;根据等腰三角形的性质判断C;根据三角形的外角性质判断D.【解析】∵∠C=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵AD=CD,∴∠A=∠ACD,∴∠B=∠BCD,A选项结论正确,不符合题意;BC与BD不一定相等,B选项结论错误,符合题意;∵∠B=∠BCD,∴BD=CD,∵AD=CD,∴AD=BD,C选项结论正确,不符合题意;∵∠A=∠ACD,∴∠BDC=∠A+∠ACD=2∠ACD,∴∠ACD=12∠BDC,D选项结论正确,不符合题意;故选:B.10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥2【分析】关于x的不等式kx+b≤−12x+52的解集,直线y=kx+b的图象在y=−12x+52的图象的下边的部分,对应的自变量x的取值范围.【解析】把A(m,2)代入y=−12x+52,得2=−12m+52.解得m=1.则A(1,2).根据图象可得关于x的不等式kx+b≤−12x+52的解集是x≤1.故选:C.11.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.12【分析】首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.【解析】如图所示:设x小时后,就进入台风影响区,根据题意得出:CE=40x千米,BB′=20x千米,∵BC=500km,AB=300km,∴AC=400(km),∴AE=400﹣40x,AB′=300﹣20x,∴AE2+AB′2=EB′2,即(400﹣40x)2+(300﹣20x)2=2002,解得:x1=15,x2=7,∴轮船经7小时就进入台风影响区.故选:B.12.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S △DOP求得答案.【解析】连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC=√AB2+BC2=10,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式y =﹣x+2(答案不唯一).【分析】设该一次函数的解析式为y=kx+b(k<0),再把(﹣1,3)代入即可得出k+b的值,写出符合条件的函数解析式即可.【解析】该一次函数的解析式为y=kx+b(k<0),∵一次函数的图象经过点(﹣1,3),∴﹣k+b=3,∴当k=﹣1时,b=2,∴符合条件的函数关系式可以是:y=﹣x+2(答案不唯一).14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为(2+2√2)cm.【分析】由等腰直角三角形的性质求出斜边长和直角边长,即可得出答案.【解析】∵等腰直角三角形斜边上的高为1cm,也是斜边上的中线,∴等腰直角三角形的斜边长=2cm,∴等腰直角三角形的直角边长=√22×2=√2(cm),∴这个等腰直角三角形的周长为2+2√2(cm),故答案为:(2+2√2).15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么李老师 (填“李老师”或“王老师”)将被录用.测试项目测试成绩 李老师王老师 笔试90 95 面试 85 80【分析】利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【解析】李老师总成绩为:90×25+85×35=87,王老师的成绩为:95×25+80×35=86, ∵87>86,∴李老师成绩较好,故答案为:李老师.16.观察计算结果:①√13=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103= 55【分析】根据前四个式子得到规律,根据规律计算得到答案.【解析】√13=1;√13+23=3=1+2;√13+23+33=6=1+2+3;√13+23+33+43=10=1+2+3+4;则√13+23+33+⋯+103=1+2+3+4+5+6+7+8+9+10=55,故答案为:55.17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 1或73 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【分析】由已知以点P ,Q ,E ,D 为顶点的四边形是平行四边形有两种情况,(1)当Q 运动到E 和B 之间,(2)当Q 运动到E 和C 之间,根据平行四边形的判定,由AD ∥BC ,所以当PD =QE 时为平行四边形.根据此设运动时间为t ,列出关于t 的方程求解.【解析】由已知梯形,当Q 运动到E 和B 之间,设运动时间为t ,则得:2t −82=3﹣t ,解得:t =73,当Q 运动到E 和C 之间,设运动时间为t ,则得:82−2t =3﹣t , 解得:t =1,故当运动时间t 为1或73秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 故答案为:1或73. 18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 (√2)n .【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n 个等腰直角三角形的斜边长.【解析】第一个斜边AB =√2,第二个斜边A 1B 1=(√2)2,所以第n 个等腰直角三角形的斜边长为:(√2)n ,故答案为:(√2)n .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.【分析】(1)根据算术平方根、零指数幂、负整数指数幂和绝对值可以解答本题;(2)根据二次根式的乘法和完全平方公式可以解答本题.【解析】(1)√12−(π+√2)0+(12)﹣1+|1−√3| =2√3−1+2+√3−1=3√3;(2)8√12−√6×2√3+(√2+1)2 =4√2−6√2+2+2√2+1=3.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?【分析】连接AC ,在Rt △ACD 中利用勾股定理计算出AC 长,再利用勾股定理逆定理证明∠ACB =90°,再利用S △ACD ﹣S △ABC 可得空地面积,然后再计算花费即可.【解析】连接AC ,在Rt △ABC 中,AB =3米,BC =4米,∵AC 2=AB 2+BC 2=32+42=25,∴AC =5,∵AC 2+AD 2=52+122=169,CD 2=132=169,∴AC 2+AD 2=CD 2,∴∠DAC =90°,该区域面积=S △ACD ﹣S △ABC =30﹣6=24(平方米),铺满这块空地共需花费=24×500=12000(元).答:用该盆景铺满这块空地共需花费12000元.21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛 演讲比赛 版面创作甲85 91 88 乙 90 84 87【分析】(1)根据加权平均数的计算公式列出算式,再进行计算即可得出答案.(2)将甲、乙两人的总成绩按比例求出最后成绩,再进行比较,即可得出结果.【解析】(1)甲班的平均成绩是:13(85+91+88)=88(分), 乙班的平均成绩是:13(90+84+87)=87(分), ∵87<88,∴甲班将获胜.(2)甲班的平均成绩是85×5+91×3+88×25+3+2=87.4(分), 乙班的平均成绩是90×5+84×3+87×25+3+2=87.6(分),∵87.6>87.4,∴乙班将获胜.22.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理解答即可.【解答】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;解:(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠EBD=30°.由(1)知,平行四边形BFDE是菱形,则EF⊥BD,BO=OD=6.∴EO=12BE.由勾股定理得到:BE 2=62+EO 2,即4EO 2=62+EO 2.解得:EO =2√3.所以EF =4√3.23.如图,在平面直角坐标系中,过点B (4,0)的直线AB 与直线OA 相交于点A (3,1),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式;(2)直线AB 交y 轴于点C ,求△OAC 的面积;(3)当△OAC 的面积是△OMC 面积的3倍时,求出这时点M 的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OAC 的面积是△OMC 面积的3倍时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.【解析】(1)设直线AB 的解析式是y =kx +b ,根据题意得:{4k +b =03k +b =1, 解得:{k =−1b =4, 则直线的解析式是:y =﹣x +4;(2)在y =﹣x +4中,令x =0,解得:y =4,S △OAC =12×4×3=6;(3)当M 在线段OA 时,设OA 的解析式是y =mx ,把A (3,1)代入得:3m =1,解得:m =13,则直线的解析式是:y =13x ,∵△OAC 的面积是△OMC 面积的3倍时, ∴当M 的横坐标是13×3=1,在y =13x 中,当x =1时,y =13, 则M 的坐标是(1,13);当M 在射线AC 上时, 在y =﹣x +4中,x =1时, 则y =3,则M 的坐标是(1,3); 当M 的横坐标是﹣1时,在y =﹣x +4中,当x =﹣1时,y =5, 则M 的坐标是(﹣1,5);综上所述:M 的坐标是:M 1(1,13)或M 2(1,3)或M 3(﹣1,5).24.在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题: (1)甲车行驶速度是 60 千米/时,B ,C 两地的路程为 360 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【分析】(1)根据F 点坐标可求出甲车速度,根据M 纵坐标可得B ,C 两地之间距离;(2)根据甲车比乙车晚1.5小时到达C 地得出点E 坐标,再求出点N 坐标,利用待定系数法求解即可; (3)根据运动过程,分3种情况讨论,由路程=速度×时间,可求解. 【解析】(1)由题意可得: F (10,600),∴甲车的行驶速度是:600÷10=60千米/时, M 的纵坐标为360,∴B ,C 两地之间的距离为360千米, 故答案为:60;360;(2)∵甲车比乙车晚1.5小时到达C 地, ∴点E (8.5,0),乙的速度为360×2÷(10﹣0.5﹣1.5)=90千米/小时, 则360÷90=4,∴M (4,360),N (4.5,360),设NE 表达式为y =kx +b ,将N 和E 代入, {0=8.5k +b 360=4.5k +b ,解得:{k =−90b =765, ∴y (千米)与x (小时)之间的函数关系式为:y =﹣90x +765; (3)设出发x 小时,行驶中的两车之间的路程是15千米, ①在乙车到B 地之前时,600﹣S 甲﹣S 乙=15,即600﹣60x ﹣90x =15, 解得:x =3910,②当乙车从B 地开始往回走,追上甲车之前,15÷(90﹣60)+4.5=5小时; ③当乙车追上甲车并超过15km 时, (30+15)÷(90﹣60)+4.5=6小时;④乙到达B 地停留时,15÷60+4=174(小时)(不符合题意行驶中舍弃,) ⑤乙到达C 地时,(600﹣15)÷60=394小时(不符合题意行驶中舍弃) 综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或5小时或6小时.25.如图,矩形OABC 的顶点与坐标原点O 重合,将△OAB 沿对角线OB 所在的直线翻折,点A 落在点D 处,OD 与BC 相交于点E ,已知OA =8,AB =4 (1)求证:△OBE 是等腰三角形; (2)求E 点的坐标;(3)坐标平面内是否存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.【分析】(1)由矩形的性质得出OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC ,得出B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8,得出∠OBC =∠DOB ,证出OE =BE 即可; (2)设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得出方程,解方程即可; (3)作DF ⊥y 轴于F ,则DF ∥BC ,由平行线得出△ODF ∽△OEC ,得出DF CE=OF OC=ODOE,求出DF =245,OF =325,得出D (245,325);分三种情况,由平行四边形的性质即可得出结果. 【解答】(1)证明:∵四边形OABC 是矩形, ∴OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC , ∴B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8, ∴∠OBC =∠DOB ,∴OE =BE ,∴△OBE 是等腰三角形;(2)解:设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得:42+(8﹣x )2=x 2, 解得:x =5,∴OE =5,CE =8﹣x =3, ∵OC =4,∴E 点的坐标为(3,4);(3)解:坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形;理由如下: 作DF ⊥y 轴于F ,如图所示: 则DF ∥BC , ∴△ODF ∽△OEC , ∴DF CE=OF OC=OD OE,即DF 3=OF 4=85,解得:DF =245,OF =325, ∴D (245,325);当BE 为平行四边形的对角线时,点P 的坐标为(315,85); 当BD 为平行四边形的对角线时,点P 的坐标为(495,325);当DE 为平行四边形的对角线时,点P 的坐标为(−15,325);综上所述,坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形,P 点坐标为(315,85)或(495,325)或(−15,325).26.如图,已知四边形ABCD 是正方形,对角线AC 、BD 相交于O .(1)如图1,设E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.【分析】(1)首先证明△EOA ≌△FOB ,推出AE =BF ,从而得出结论;(2)在BC 上取一点H ,使得BH =AE .由△OAE ≌△OBH ,推出AE =BH ,∠AOE =∠BOH ,OE =OH ,由△FOE ≌△FOH ,推出EF =FH ,由∠FBH =90°,推出FH 2=BF 2+BH 2,由此即可解答. 【解析】(1)EF 2=AF 2+BF 2. 理由:如图1,∵四边形ABCD 是正方形, ∴OA =OB ,∠OAE =∠OBF =45°,AC ⊥BD , ∴∠EOF =∠AOB =90°, ∴∠EOA =∠FOB , 在△EOA 和△FOB 中, {∠EOA =∠FOBOA =OB ∠OAE =∠OBF, ∴△EOA ≌△FOB (ASA ), ∴AE =BF ,在Rt △EAF 中,EF 2=AE 2+AF 2=AF 2+BF 2; (2)在BC 上取一点H ,使得BH =AE .∵四边形ABCD 是正方形,∴OA =OB ,∠OAE =∠OBH ,∠AOB =90°, 在△OAE 和△OBH 中,{OA =OB∠OAE =∠OBH AE =BH∴△OAE ≌△OBH (SAS ),∴AE =BH ,∠AOE =∠BOH ,OE =OH , ∵∠EOF =45°, ∴∠AOE +∠BOF =45°, ∴∠BOF +∠BOH =45°, ∴∠FOE =∠FOH =45°, 在△FOE 和△FOH 中•, {OF =OF∠FOE =∠FOH OE =OH, ∴△FOE ≌△FOH (SAS ), ∴EF =FH , ∵∠FBH =90°, ∴FH 2=BF 2+BH 2, ∴EF 2=BF 2+AE 2,。
2022—2023年人教版八年级数学下册期末试卷(及参考答案)
2022—2023年人教版八年级数学下册期末试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .65.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④7.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是________.5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用150 175 ______ …______(元)方式二的总费用90 135 ______ …______(元)(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、C6、D7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)12、-2 -33、60°或120°4、(﹣5,4).5、36、4.三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、-11x+,-143、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.4、略.5、(1)略(2)90°(3)AP=CE6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
新人教版八年级数学下册期末试卷(精选)
新人教版八年级数学下册期末试卷(精选)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1的算术平方根为()A.B C.2±D.22.如果y,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .43 9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( ) A . B .C .D .10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.若m+1m =3,则m 2+21m=________. 4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE .求证:(1)△AEF ≌△CEB ;(2)AF=2CD .6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B5、B6、B7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、1002、13、74、x >3.5、1(21,2)n n -- 6、8三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)a ≥2;(2)-5<x <14、略5、(1)略;(2)略.6、(1)2元;(2)至少购进玫瑰200枝.。
初二数学下册期末考试试卷(含-答案)人教版
明.)20。
如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。
(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。
21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。
下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。
如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。
点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。
八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。
山东省泰安市东平县八年级数学下学期期末试卷(含解析) 新人教版-新人教版初中八年级全册数学试题
2015-2016学年某某省某某市东平县八年级(下)期末数学试卷一、选择题(共20小题,每小题3分,满分60分)1.下列图形是中心对称而不是轴对称的是()A.B.C.D.2.下列各式中正确的是()A. =±5 B.± =±6 C. =10 D. =﹣3 3.在实数3.1415926,,,1.010010001…,,π,4.中,无理数有()A.4个B.3个C.2个D.1个4.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>5.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大6.已知三角形三条边的长度分别是:①1,,;②2,3,4;③3n,4n,5n(n>0);④32,42,52.其中一定能构成直角三角形的有()A.1组B.2组C.3组D.4组7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角8.的结果是()A.﹣3 B.9 C.3 D.﹣99.若代数式有意义,则实数x的取值X围是()A.x≥﹣1且x≠﹣3 B.x≥﹣1 C.x>﹣1 D.x>﹣1且x≠3 10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形11.三角形DEF是由三角形ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.B.C.D.12.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.13.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.514.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s 与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4 B.3 C.2 D.115.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC=CE;②BD,AC互相平分;③四边形ACED是菱形;④四边形ABED的面积为AB2.其中正确的个数是()A.4个B.3个C.2个D.1个16.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.1417.大明眼镜店的某种近视镜,进价每副800元,零售价每副1200元.六一儿童节期间,该店经理对学生开展优惠活动,但利润仍不低于5%,那么学生购买价格最多打()A.6折B.7折C.8折D.9折18.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠BOE=()A.30°B.45°C.60°D.75°19.如图在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是()A.30 B.12 C.24 D.620.如图,观察图象,判断下列说法错误的是()A.方程组的解是B.不等式﹣x+≤2x﹣1的解集是x≥1C.不等式﹣x+>2x﹣1的解集是x>1D.方程=2x﹣1的解是x=1二、填空题(本大题共有4小题,每小题3分,共12分)21.已知:|a+2|+=0,则a b=.22.若不等式组的解集是x>3,则m的取值X围是.23.如图所示,△A′B′C′是由△ABC向右平移5个单位长度,然后绕B点逆时针旋转90°得到的(其中A′、B′、C′的对应点分别是A、B、C),点A′的坐标是(4,4)点B′的坐标是(1,1),则点A的坐标是.24.如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为①②③④⑤…,若第1个等腰直角三角形的直角边为1,则第2016个等腰直角三角形的面积为.三、解答题(本大题共有5小题,共48分)25.计算:(1)(2+)2016(2﹣)2016﹣2×|﹣|﹣(﹣)0﹣÷﹣;(2)解不等式组:,并判断x=是否为不等式组的解.26.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?27.如图,已知点D是等边三角形ABC外的一点,将△BCD绕点C顺时针旋转至△ACE处.(1)求旋转角的度数;(2)求∠BDC的度数;(3)证明:AD=BD+CD.28.直线y=x+8与x轴、y轴分别交于点A和D点B,M是OB上的一点,如果将△ABM沿直线AM折叠,点B恰好落在x轴上的点N处,求:(1)点N的坐标;(2)直线AM的函数表达式.29.如图,已知正方形ABCD,E为AD的中点,连接BE和EC,BE交AC于点P,连接DP,交CE于Q.求证:(1)△ABP≌△ADP;(2)DP⊥CE.2015-2016学年某某省某某市东平县八年级(下)期末数学试卷参考答案与试题解析一、选择题(共20小题,每小题3分,满分60分)1.下列图形是中心对称而不是轴对称的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列各式中正确的是()A. =±5 B.± =±6 C. =10 D. =﹣3 【考点】算术平方根;平方根.【分析】依据平方根、算术平方根的定义和性质求解即可.【解答】解:A、=5,故A错误;B、±=±6,故B正确;C、负数没有算术平方根,故C错误;D、==3,故D错误.故选:B.【点评】本题主要考查的是平方根、算术平方根的定义和性质,掌握相关性质是解题的关键.3.在实数3.1415926,,,1.010010001…,,π,4.中,无理数有()A.4个B.3个C.2个D.1个【考点】无理数.【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数,;(3)含有π的绝大部分数.【解答】解:3.1415926是有限小数,是有理数,开放开不尽是无理数,=3,是有理数,1.010010001…是无限不循环小时,是无理数,是有理数;π是无理数;4.是无限循环小数,是有理数.故选:B.【点评】本题主要考查的是无理数的认识,掌握常见无理数的类型是解题的关键.4.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>【考点】不等式的性质.【分析】根据不等式的性质1,可判断A,根据不等式的性质3、1可判断B,根据不等式的性质2,可判断C、D.【解答】解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.【点评】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.5.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大【考点】一次函数的性质.【分析】根据一次比例函数图象的性质可知.【解答】解:A、将点(﹣1,3)代入原函数,得y=﹣3×(﹣1)+1=4≠3,故A错误;B、因为k=﹣3<0,b=1>0,所以图象经过一、二、四象限,y随x的增大而减小,故B,D 错误;C、当x>1时,函数图象在第四象限,故y<0,故C正确;故选C.【点评】本题考查的是一次函数的性质,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.6.已知三角形三条边的长度分别是:①1,,;②2,3,4;③3n,4n,5n(n>0);④32,42,52.其中一定能构成直角三角形的有()A.1组B.2组C.3组D.4组【考点】勾股定理的逆定理.【分析】先求得三边的平方,再验证两小边的平方和等于最长边的平方即可.【解答】解:①12+()2=()2,故是直角三角形,正确;②22+32≠42,故不是直角三角形,错误;③(3n)2+(4n)2=(5n)2,故是直角三角形,正确;④(32)2+(42)2≠(52)2,故不是直角三角形,错误.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角【考点】矩形的判定.【分析】根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【解答】解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、一组对角是否都为直角,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选D.【点评】本题考查的是矩形的判定定理,难度简单.8.的结果是()A.﹣3 B.9 C.3 D.﹣9【考点】二次根式的性质与化简.【分析】根据=|a|计算即可.【解答】解: =|﹣3|=3.故选C.【点评】本题考查了二次根式的性质与化简: =|a|.9.若代数式有意义,则实数x的取值X围是()A.x≥﹣1且x≠﹣3 B.x≥﹣1 C.x>﹣1 D.x>﹣1且x≠3 【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+1≥0,x+3≠0,解得,x≥﹣1且x≠﹣3,故选:A.【点评】本题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【考点】中点四边形.【分析】首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.11.三角形DEF是由三角形ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.B.C.D.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:点A的对应点D,是横坐标从﹣1到1,说明是向右移动了1﹣(﹣1)=2个单位,纵坐标是从﹣4到﹣1,说明是向上移动了﹣1﹣(﹣4)=3个单位,那么其余两点移运转规律也如此,即横坐标都加2,纵坐标都加3.故点E、F的坐标为(3,4)、(1,7).故选D.【点评】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.12.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【解答】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故选A.【点评】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.13.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5【考点】线段垂直平分线的性质;勾股定理;矩形的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.14.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s 与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4 B.3 C.2 D.1【考点】一次函数的应用.【分析】根据题意结合横纵坐标的意义得出辆摩托车的速度进而分别分析得出答案.【解答】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,则,解得:a=80,∴乙开汽车的速度为80千米/小时,∴甲的速度是乙速度的一半,故④正确;∴×(80﹣40)=60(千米),故②正确;乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;∴正确的有3个,故选:B.【点评】此题主要考查了一次函数的应用,读函数的图象时首先要理解横纵坐标表示的含义是解题关键.15.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC=CE;②BD,AC互相平分;③四边形ACED是菱形;④四边形ABED的面积为AB2.其中正确的个数是()A.4个B.3个C.2个D.1个【考点】菱形的判定;全等三角形的判定与性质;等边三角形的性质;平移的性质.【分析】根据平移的定义可知AB=CD,AB∥CD推出四边形ABCD是平行四边形,同理可知四边形ACED是平行四边形由此即可解决问题.【解答】解:∵△DCE是由△ABC平移得到,∴AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴AD=BC=CE,BD与AC互相平分,故①②正确,∵AD∥CE,AD=CE,∴四边形ACED是平行四边形,∵AC=CE,∴四边形ACED是菱形,故③正确,∵四边形ABED的面积=3S△ABC=3×(AB)2=(AB)2,故④正确,∴①②③④正确,故选A.【点评】本题考查菱形的判定、等边三角形的性质、平移等知识,解题的关键是利用平移不变性解决问题,记住菱形的判定方法,属于中考常考题型.16.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.17.大明眼镜店的某种近视镜,进价每副800元,零售价每副1200元.六一儿童节期间,该店经理对学生开展优惠活动,但利润仍不低于5%,那么学生购买价格最多打()A.6折B.7折C.8折D.9折【考点】一元一次不等式的应用.【分析】设打x折,利用销售价减进价等于利润得到1200﹣800≥800×5%,然后解不等式求出x的X围,从而得到x的最小值即可.【解答】解:设打x折,根据题意得1200﹣800≥800×5%,解得x≥7.所以最低可打七折.故选B.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.注意打x折时,标价要乘0.1x为销售价.18.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠BOE=()A.30°B.45°C.60°D.75°【考点】矩形的性质;平行线的性质;三角形内角和定理;角平分线的性质;等腰三角形的判定;等边三角形的判定与性质.【分析】由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故选D.【点评】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.19.如图在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是()A.30 B.12 C.24 D.6【考点】等腰三角形的性质.【分析】由图形知,本图是轴对称图形,对称轴是AD所在的直线.所以阴影部分的面积为全面积的一半,由轴对称图形的性质知,BD=BC=3,AD是三角形的高,AD=4,S△ABC=12,从而得到阴影部分的面积为6.【解答】解:∵AB=AC∵△ABC是等腰三角形AD为等腰三角形的中线∴AD⊥BC∴△ABD、△ACD关于AD对称,△BEF与△CEF关于AD对称∵AB=AC,AD===4∴S△DFB=S△DFC,S△EBF=S△ECF,S△BE=S△ACE∴S阴=S△ABC=×BC×AD==6.故选D.【点评】本题通过观察可以发现是轴对称图形,且阴影部分的面积为全面积的一半,根据轴对称图形的性质求解.其中看出三角形BEF与三角形CEF关于AD对称,面积相等是解决本题的关键.20.如图,观察图象,判断下列说法错误的是()A.方程组的解是B.不等式﹣x+≤2x﹣1的解集是x≥1C.不等式﹣x+>2x﹣1的解集是x>1D.方程=2x﹣1的解是x=1【考点】一次函数与一元一次不等式;一次函数与二元一次方程(组).【分析】根据函数图象,利用函数与方程,不等式的关系即可求解.【解答】解:A、B、D正确;C、不等式﹣x+>2x﹣1的解集是:x<1.∴不等式﹣x+>2x﹣1的解集是x>1的说法错误,故选C.【点评】本题要求利用图象求解各问题,先画函数图象,根据图象观察,得出结论.认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.二、填空题(本大题共有4小题,每小题3分,共12分)21.已知:|a+2|+=0,则a b= ﹣8 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+2=0,3﹣b=0,解得a=﹣2,b=3,所以,a b=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.若不等式组的解集是x>3,则m的取值X围是m≤3 .【考点】不等式的解集.【分析】根据“同大取较大”的法则进行解答即可.【解答】解:∵不等式组的解集是x>3,∴m≤3.故答案为:m≤3.【点评】本题考查的是不等式的解集,熟知“同大取较大”的法则是解答此题的关键.23.如图所示,△A′B′C′是由△ABC向右平移5个单位长度,然后绕B点逆时针旋转90°得到的(其中A′、B′、C′的对应点分别是A、B、C),点A′的坐标是(4,4)点B′的坐标是(1,1),则点A的坐标是(﹣1,﹣2).【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【分析】△A′B′C′是由△ABC向右平移5个单位长度,然后绕B′点逆时针旋转90°得到的,则△ABC可以看成由△A′B′C′绕点B顺时针旋转90°,然后向左平移5个单位长度而得到点A的坐标.【解答】解:把点(4,4)绕点B顺时针旋转90°,然后向左平移5个单位长度而得到点的坐标是(﹣1,﹣2).【点评】运用逆向思维的方法,解题更方便且易于理解.24.如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为①②③④⑤…,若第1个等腰直角三角形的直角边为1,则第2016个等腰直角三角形的面积为22014.【考点】等腰直角三角形;规律型:图形的变化类.【分析】分别写出几个直角三角形的直角边的长,找到规律,从而写出第2016个等腰三角形的直角边的长,从而求得直角三角形的面积即可.【解答】解:第①个直角三角形的边长为1=()0,第②个直角三角形的边长为=()1,第③个直角三角形的边长为2=()2,第④个直角三角形的边长为2=()3,…第2016个直角三角形的边长为()2015,面积为:×()2015×()2015=22014.故答案为:22014.【点评】此题考查了等腰三角形及图形的变化类问题,要结合图形熟练运用勾股定理计算几个具体值,从中发现规律.三、解答题(本大题共有5小题,共48分)25.计算:(1)(2+)2016(2﹣)2016﹣2×|﹣|﹣(﹣)0﹣÷﹣;(2)解不等式组:,并判断x=是否为不等式组的解.【考点】二次根式的混合运算;零指数幂;解一元一次不等式组.【分析】(1)根据平方差公式、零指数幂、二次根式的除法和合并同类项可以解答本题;(2)先求出不等式组的解集,即可判断x=是否为不等式组的解.【解答】解:(1)(2+)2016(2﹣)2016﹣2×|﹣|﹣(﹣)0﹣÷﹣=﹣2×﹣1﹣﹣3=1﹣﹣1﹣﹣3=﹣;(2),解不等式①,得x<4,解不等式②,得x≤1,故原不等式组的解集是x≤1,∵,故x=不是不等式组的解.【点评】本题考查二次根式的混合运算、零指数幂、解一元一次不等式组,解题的关键是明确它们各自的计算方法.26.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?【考点】一元一次不等式的应用.【分析】(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果乙店盈利×x;列出函数解析式利用函数性质求得答案即可.【解答】解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17(10﹣x)+9(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).【点评】此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.27.如图,已知点D是等边三角形ABC外的一点,将△BCD绕点C顺时针旋转至△ACE处.(1)求旋转角的度数;(2)求∠BDC的度数;(3)证明:AD=BD+CD.【考点】三角形综合题.【分析】(1)根据旋转角的定义,∠BCA计算旋转角,由此即可解决问题.(2)先证明△DCE是等边三角形,推出∠DEC=60°,∠AEC=120°,再根据全等三角形性质∠BDC=∠AEC,由此即可解决问题.(3)根据AD=AE+ED,只要证明AE=BD,DE=CD即可.【解答】解:(1)∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,∵△ACE是由△BCD旋转得到,∴∠BCA就是旋转角,∴旋转角为60°.(2)∵△ACE是由△BCD旋转得到,∴∠DCE=∠BCA=60°,∠BDC=∠AEC,∵CD=CE,∴△CDE是等边三角形,∴∠DEC=60°,∠AEC=180°﹣∠DEC=120°,∴∠BDC=120°.(3)∵△BCD≌△ACE,△DEC是等边三角形,∴AE=BD,DE=CD,∵AD=AE+DE,∴AD=BD+CD.【点评】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的性质、旋转变换等知识,解题的关键是充分利用旋转不变性解决问题,发现△DEC是等边三角形是解题的突破口,属于中考常考题型.28.直线y=x+8与x轴、y轴分别交于点A和D点B,M是OB上的一点,如果将△ABM沿直线AM折叠,点B恰好落在x轴上的点N处,求:(1)点N的坐标;(2)直线AM的函数表达式.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】(1)由△ABM沿AM折叠,点B恰好落在x轴上的N处得到AB=AN,而AB的长度根据已知可以求出,所以N点的坐标由此求出;(2)由于折叠得到NM=BM,在直角△NMO中根据勾股定理可以求出OM,也就求出M的坐标,而A的坐标已知,由此即可求出直线AM的解析式.【解答】解:(1)∵直线y=与x轴、y轴分别交于A和B,∴A(﹣6,0)、B(0,8),∴OA=6,OB=8,∴AB=10,而△ABM沿AM折叠,点B恰好落在x轴上的C处∴AB=AN=10,∴N(4,0);(2)设M(0,b),则NM=BM=8﹣b,∵NM2=NO2+OM2,∴b=3,∴M(0,3),而A(﹣6,0),设直线AM的解析式为y=kx+b(k≠0),,解得,∴直线AM的解析式为:y=x+3.【点评】本题综合考查了一次函数图象和性质与几何知识的应用,题中利用折叠知识与直线的关系以及直角三角形等知识求出线段的长是解题的关键.29.如图,已知正方形ABCD,E为AD的中点,连接BE和EC,BE交AC于点P,连接DP,交CE于Q.求证:(1)△ABP≌△ADP;(2)DP⊥CE.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)利用“SAA”即可证明△ABP≌△ADP;(2)若要证明DP⊥CE,则问题可转化为证明∠EQD=90°即可.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAP=∠DAP=45°,在△ABP和△ADP中,,∴△ABP≌△ADP;(2)∵E为AD的中点,∴AE=DE,。
人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)
人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。
A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。
有意义,则x 的取值范围是( )。
A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。
A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。
A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。
A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。
A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。
A.24B.16C.4错误!未找到引用源。
D.2错误!未找到引用源。
8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。
B.2错误!未找到引用源。
C.3错误!未找到引用源。
D.4错误!未找到引用源。
9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。
新人教版八年级数学下册期末试卷(完整)
新人教版八年级数学下册期末试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.32|1|0a b -++=,则2020()a b +=_________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
新人教版八年级数学(下册)期末试卷(带答案)
新人教版八年级数学(下册)期末试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、B6、B7、D8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、x1≥.3、±2.4、20°.5、49 136、6三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
2022—2023年人教版八年级数学下册期末试卷【附答案】
2022—2023年人教版八年级数学下册期末试卷【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.2510.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.216.3.若m+1m=3,则m2+21m=________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D ,且OD =4,△ABC 的面积是________.5.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.6.如图,在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,请添加一个条件____使四边形AECF 是平行四边形(只填一个即可).三、解答题(本大题共6小题,共72分)1.解方程:(1)4342312x y x y ⎧+=⎪⎨⎪-=⎩ (2)1263()46x y y x y y +⎧-=⎪⎨⎪+-=⎩2.先化简,再求值[(x 2+y 2)-(x-y )2+2y (x-y )]÷2y ,其中x=-2,y=-12.3.已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.4.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、A5、A6、B7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、43、74、425、21x y =⎧⎨=⎩.6、AF=CE (答案不唯一).三、解答题(本大题共6小题,共72分)1、(1)1083x y =⎧⎪⎨=⎪⎩;(2)2x y =⎧⎨=⎩.2、2x-y ;-312.3、21024x x --,-24、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.5、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
人教版八年级下学期期末考试数学试卷及答案(超经典)
八年级下学期期末考试数学模拟试卷一.选择题1.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需()米A.4 B。
5 C。
6 D.72。
当分式有意义时,字母应满足( )A。
B. C. D。
3.若点(-5,y1)、(-3,y2)、(3,y3)都在反比例函数y= -错误!的图像上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y24.如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1 B. C. D.25。
函数的图象经过点(1,-2),则k的值为()A. B. C. 2 D。
-26. 如果矩形的面积为6cm2,那么它的长cm与宽cm之间的函数关系用图象表示大致( )A B D7.A。
正方形8. 0,则x的值为()A.3 B。
3或-3 C。
-3 D。
09。
甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的()A.倍B。
倍C。
倍 D.倍10.如图,把一张平行四边形纸片ABCD沿BD对折。
使C点落在E处,BE与AD相交于点D.若∠DBC=15°,则∠BOD=A.130 ° B.140 ° C.150 °D。
160°二.填空题11。
已知-=8,则的值是12.边长为8,15,17的△ABC内有一点P到三边距离相等,则这个距离为13. 如果函数y=是反比例函数,那么k=____, 此函数的解析式是__ ______14.若点P是反比例函数上的一点,PD⊥轴于点D,则△POD的面积为15. 从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果ABCDE如下:−1。
2,0.1,−8.3,1.2,10。
8,−7.0这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)三、解答题16.( 6分)解方程:17. (7分) 先化简,再求值:,其中.18.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=的图象交于A (1,-3),B (3,m )两点,连接OA 、OB .(1)求两个函数的解析式;(2)求△AOB 的面积. 19.(8(1)计算小军上学期平时的平均成绩; (2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分? 20.(8分)如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .(1)判断四边形ADEF 的形状,并证明你的结论;(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形? 21.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒。
新人教版八年级(下)数学期末试卷及答案
新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
新人教版八年级数学下册期末考试卷(加答案)
新人教版八年级数学下册期末考试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)13x x=,则x=__________2.比较大小:3133x2-x的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
2022—2023年人教版八年级数学(下册)期末试卷及答案(完整)
2022—2023年人教版八年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >> 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.下列图形中,不是轴对称图形的是()A.B.C.D.9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.21a+8a=__________.3.若214x x x++=,则2211x x ++= ________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.5.如图,△ABC 中,AB=AC ,∠BAC=90°,点D ,E 分别在AB ,BC 上,∠EAD=∠EDA ,点F 为DE 的延长线与AC 的延长线的交点.(1)求证:DE=EF ;(2)判断BD 和CF 的数量关系,并说明理由;(3)若AB=3,AE=5,求BD 的长.6.学校需要添置教师办公桌椅A 、B 两型共200套,已知2套A 型桌椅和1套B 型桌椅共需2000元,1套A 型桌椅和3套B 型桌椅共需3000元.(1)求A ,B 两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、D6、D7、D8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、13、84、255.56、42.三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、-33a +,;12-.3、(1)102b -≤≤;(2)2 4、()1略;()2BEF 67.5∠=.5、(1)略;(2略;(3)BD=1.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下学期期末考试
八年级数学试卷
一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的
1.(3分)下列计算错误的是()
A.+=B.×=C.÷=3 D.(2)2=8 2.(3分)如图是根据某班40 名同学一周的体育锻炼情况绘制的统计图,该班40 名同学一周参加体育锻炼时间的中位数,众数分别是()
A.10.5,16 B.8.5,16 C.8.5,8 D.9,8
3.(3分)已知x=,y=,则x2+xy+y2的值为()
A.2 B.4 C.5 D.7
4.(3分)关于函数y=﹣2x+1,下列结论正确的是()
A.图象必经过(﹣2,1)B.y随x的增大而增大
C.图象经过第一、二、三象限D.当x>时,y<0
5.(3分)为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()
中位数众数平均数方差
9.2 9.3 9.1 0.3
A.中位数B.众数C.平均数 D .方差
6.(3分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()
A.16 B.14 C.26 D.24
7.(3分)如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB的延长线于点F,则在题中条件下,下列结论不能成立的是()
A.BE=CE B.AB=BF C.DE=BE D.AB=DC
8.(3分)一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救
援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()
A.小时B.小时C.小时D.小时9.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是()
A.AB=AC B.AB=BC C.BE平分∠ABC D.EF=CF
10.(3分)如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论错误的是()
A.AE=BF B.∠DAE=∠BFC C.∠AEB+∠BFC=90°D.AE⊥BF 11.(3分)如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE长()
A.B.C.1 D.1﹣
12.(3分)如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()
A.(3,3)B.(4,3)C.(﹣1,3)D.(3,4)
13.(3分)如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为()
A .1
B .
C .
D .
14.(3分)如图,矩形ABCD 中,AB =2,BC =4,P 为矩形边上的一个动点,运动路线是A →B →C →D →A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )
A .
B .
C .
D .
二、填空题(每小题4分,共20分)
15.(4分)计算:(1+
)2
×(1﹣
)2
= .
16.(4分)如图,矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为 .
17.(4分)某校八年级甲、乙两班举行电脑汉子输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如表:
班级 参加人数 平均字数 中位数 方差 甲 55 135 149 191 乙
55
135
151
110
有一位同学根据上表得出如下结论: ①甲、乙两班学生的平均水平相同;
②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);
③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.
上述结论正确的是(填序号)
18.(4分)在正方形ABCD中,E是BC边延长线上的一点,且CE=BD,则∠AEC=.
19.(4分)张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示,根据这个图象求出y与t之间的函数关系式为y=﹣7.5t+25,那么函数y=﹣7.5t+25中的常数﹣7.5表示的实际意义是.
三、解答题(共58分)
20.(11分)如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:
(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;
(2)甲行驶10分钟后,甲、乙两人相距多少千米?
21.(11分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:
购买方式标价(元条)优惠条件
实体店40 全部按标价的8折出售
网店40 购买100或100条以下,按标价出
售;购买100条以上,从101条开
始按标价的7折出售(免邮寄费)
(1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x >100)条之间的函数关系式;
(2)王先生选取哪种方式购买跳绳省钱?
22.(12分)如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.
23.(12分)在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.
(1)如图1,当E是线段AC的中点时,求证:BE=EF.
(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.
24.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M在y轴上运动.
(1)求直线AB的函数解析式;
(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;
(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
参考答案
1-10.ADBDA CCCAC11-14.ABDB
15、1
16、10
17、①②③
18、22.5°
19、表示每小时耗油7.5升
20、
21、
解:(1)由题意可得,
王先生在实体店购买跳绳所需的资金y1(元)与购买的跳绳数x(条)之间的函数关系式为:
y1=40x×0.8=32x;
王先生在网店购买跳绳所需的资金y2(元)与购买的跳绳数x(条)之间的函数关系式为:
y2=40×100+(x-100)×40×0.7=28x+1200;
(2)当y1>y2时,32x>28x+1200,
解得x>300;
当y1=y2时,32x=28x+1200,
解得x=300;
当y1<y2时,32x>28x+1200,
解得x<300;
∴当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
22、(1)证明:∵AE为∠ADB的平分线,
∴∠DAE=∠BAE.
∵四边形ABCD是平行四边形,
∴AD∥BC,CD=A B.
∴∠DAE=∠E.
∴∠BAE=∠E.
∴AB=BE.
∴CD=BE.
23、
(1)证明:∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴∠BCA=60°,
∵E是线段AC的中点,
∴∠CBE=∠ABE=30°,AE=CE,
∵CF=AE,
∴CE=CF,
∴∠CBE=∠F=30°,
∴BE=EF;
(2)解:结论成立;理由如下:
过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,
∴∠ACD=60°,∠DCF=∠ABC=60°,
∴∠ECF=120°,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
又∵EG∥BC,
∴∠AGE=∠ABC=60°,
又∵∠BAC=60°,
∴△AGE是等边三角形,
∴AG=AE=GE,∠AGE=60°,
∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,
∴GE=CF,
在△BGE和△CEF中,
∴△BGE≌△ECF(SAS),
∴BE=EF.
24、。