第五章 分子生物学研究法(2)

合集下载

分子生物学第五章2

分子生物学第五章2


含不同TAFs的TFⅡD可以识别不同的启动 子。
人类Ⅱ型启动子的转录因子 因子 分子量 功能 RNA PolⅡ ≥10K 依赖模板合成RNA TFⅡA 12,19,35K 稳定TFⅡD和DNA的结合,激活TBP亚基 TFⅡB 33K 结合模板链(-10~+10),起始PolⅡ结合,和TFⅡE/F 相互作用 TFⅡD (TBP,30K) TBP亚基识别TATA,将聚合酶组入复合体中,TAFs识别 特殊启动子 TFⅡE 34K(β ) 结合在PolⅡ的前部,使复合体的保护区延伸到下游 57K(α ) TFⅡF 38, 74K 大亚基具解旋酶活性(RAP74),小亚基和PolⅡ结合, 介导其加入复合体 TFⅡH 具激酶活性,可以磷酸化PolⅡC端的CTD,使PolⅡ逸出, 延伸 TFⅡI 120K 识别Inr,起始TFⅡF/D结合 TFⅡJ 在TFⅡF后加入复合体,不改变DNA的结合方式 TFⅡS RNA合成延伸

当两种辅助因子与DNA结合以后,RNA 聚合酶Ⅰ才能与核心启动子结合,从而 起始转录。
RNA聚合酶Ⅱ的转录起始

RNA聚合酶Ⅱ自身不能起始转录,必须 在其他辅助因子的作用下,RNA聚合酶 Ⅱ和其他辅助因子组成一个基础转录装 置(basal transcription apparatus),起始 真核生物Ⅱ类基因的转录。
2. 真核生物转录的起始
RNA聚合酶Ⅰ的转录起始

RNA聚合酶Ⅰ起始转录需要两种辅助因 子UBF1和SL1的参与。 UBF1可特异地识别核心启动子和上游调 控元件(Upstream Control Element)中富 含GC对的区域。
在UBF1和DNA结合以后,SL1才可结合 上来。SL1类似于原核生物的σ因子,它 可与启动子特异地结合,并保证RNA聚 合酶Ⅰ定位于转录起始位点。

分子生物学课程教学大纲

分子生物学课程教学大纲

分子生物学课程教学大纲课程名称:分子生物学(Molecular Biology)课程编号:1313072215课程类别:专业课总学时数:68 课内实验时数:18学分:3.5开课单位:生命科学学院生物技术教研室适用专业:生物技术适用对象:本科(四年)一、课程的性质、类型、目的和任务分子生物学为高等学校生物技术专业学生必修的一门专业基础课,是从分子水平研究生命本质为目的的一门新兴边缘学科,主要研究核酸、蛋白质等生物大分子的功能、形态结构特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

通过分子生物学的教学,应使学生了解分子生物学的发展历史以及最新研究成果;熟练掌握DNA的结构与功能、RNA在蛋白质合成中的功能、蛋白质的结构与功能、遗传密码及基因表达调控的本质;了解现代分子生物学基本研究方法,并能运用分子生物学的理论知识分析、研究和解决问题,为进一步学习有关专业课程及从事基因工程领域的研究工作奠定基础。

二、本课程与其它课程的联系与分工从学科角度来讲,分子生物学涵盖面非常广,与生物学、生物化学和细胞生物学、遗传学等生命科学课程有交叉,《生物化学》是先修课程。

三、教学内容及教学基本要求[1]表示“了解”;[2]表示“理解”或“熟悉”;[3]表示“掌握”;△表示自学内容;○表示略讲内容;第一章绪论第一节引言创世说与进化论[1];细胞学说[2];经典的生物化学和遗传学[3];DNA的发现[2]第二节分子生物学简史[1]第三节分子生物学研究的主要内容分子生物学的含义[3];DNA重组技术、基因工程技术概念[3];分子生物学研究的主要内容[3]第四节展望分子生物学的一些分支学科[1];分子生物学发展的趋势[1]重点:分子生物学的含义和研究内容难点:分子生物学的研究内容教学手段:多媒体教学教学方法:讲授法作业:1.简述阵德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。

(整理)分子生物学研究方法.

(整理)分子生物学研究方法.

一.名词解释IP(免疫沉淀、免疫印迹):是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。

这个实验是用特异性抗体结合细胞裂解液中的目的蛋白,洗涤后解离特异性抗体和目的蛋白质,经聚丙烯酰胺凝胶电泳(SDS-PAGE),最后用Western blot分析目的蛋白质。

这种方法可以分析溶液中的、细胞内的、结合在细胞膜上的蛋白质或者受体,但只能是定性或者半定量的实验。

NLS(核定位序列):核定位信号是另一种形式的信号肽, 可位于多肽序列的任何部分。

一般含有4~8个氨基酸, 且没有专一性, 作用是帮助亲核蛋白进入细胞核。

可分为单一型NLS和双分型NLS。

单一型NLS,由一段连续的碱性氨基酸序列排列而成(RKKKRKV),双分型NLS,有两段碱性氨基酸被中间10~12GE 非特异性氨基酸所分割而形成,(KRPAA TKKAGQAKKKKLDK)。

SUMO(small ubiquitin-related modifier):是一种小的泛素相关修饰蛋白,它与泛素在序列上虽只有18%相同,但在二级结构和三级结构上有惊人的相似。

SUMO家族成员都有独特的N端氨基酸序列和C端外延序列。

SUMO 化(sumoylation)的功能与泛素化(ubiquitination)不同,它并不是蛋白降解,反而加强它们的稳定性或调解它们在细胞内的定位和分布,甚至与凋亡相关。

二.问答题1.什么是近交系小鼠,它们有什么特征?有哪些常见的近交系小鼠?答:近交系小鼠:是经连续20代(或以上)的全同胞兄妹交配(或亲代与子代交配)培育而成的小鼠,品系内所有个体都可追溯到起源于第20代或以后代数的一对共同祖先。

特性:①基因位点的纯合性(Homozygosity)近交系小鼠中任何一个基因位点上纯合子的概率高达99%,因而也能繁殖出完全一致的纯合子后代。

②遗传组成的同源性(Isogenicity)品系内所有动物个体都可追溯到一对共同祖先,个体在遗传上是同源的,基因型完全一致。

5第五章现代分子生物学研究方法——DNA、RNA及蛋白质操作技术

5第五章现代分子生物学研究方法——DNA、RNA及蛋白质操作技术

DNA的基本操作技术——核酸凝胶电泳 以琼脂糖凝胶电泳为例:
DNA的基本操作技术——核酸凝胶电泳
凝胶浓度的高低影响凝胶介质孔隙的大小,浓度越高,孔隙越小, 其分辨能力就越强。反之,浓度降低,孔隙就增大,其其分辨能力 就越弱。
DNA的基本操作技术——核酸凝胶电泳
溴化乙锭(ethidium bromide,EB)能插入到DNA或RNA分子的相 邻碱基之间,并在紫外灯光照射下发出荧光,所以常用EB来检测凝 胶介质中的核酸条带。
x 25 中的聚合酶可能很多正处于复制状态,
如果此时降到室温,将会影响最终产 率。所以再留出5分钟,以使正在复制 中的DNA能够复制完全,以合成更多 的目的分子。
DNA的基本操作技术——重组载体构建 PCR完成之后,需要有什么操作?
DNA的基本操作技术——重组载体构建
DNA的基本操作技术——重组载体构建
转化(transformation):是指重组质粒DNA分子通过与膜蛋白结合 进入受体细胞(一般指细菌),并在受体细胞内稳定维持与表达的 过程。
转染(transfection):是真核细胞主动或被动导入外源DNA片段而 获得新的表型的过程。(与转化类似,只是受体细胞不同)
转导(transduction):是指通过病毒(如λ噬菌体)颗粒感染宿主细 胞将外源DNA分子导入到受体细胞内并稳定遗传的过程。
DNA的基本操作技术——聚合酶链式反应技术
DNA的基本操作技术——聚合酶链式反应技术
常用的PCR反应体系:引物、DNA聚合酶、dNTP、模板、缓冲液。
常用的PCR反应程序:
预变性 95℃ 3 min
变性 95℃ 30 s
退火 55℃ 30 s
x 25
延伸 72℃ 1 min

分子生物学 分子生物学研究法

分子生物学 分子生物学研究法

5‘ 供者
探针
3‘ 受者
Taqman法 分子信标(molecular beacon)法
高效液相色谱 MALDI-TOF质谱分析法 DNA芯片技术(DNA chip)
SNP数据库
国立生物技术信息中心 德国的HGBAS网站
JST的数据库
2.5基因打靶(gene targeting)
通过DNA定点同源重组,改变基因组中 的某一特定基因,在生物活体内研究该 基因的功能。(反向遗传学)
抗原-抗体 特异性结合
SDS-PAGE 后转膜
基因表达产 物――蛋白
的检测
ELISA 原理和用途类似于Western blot,但在酶标板中操作,无需SDSPAGE转膜,操作简单,可批量检测,并可半定量测定。
Southern blot
Northern blot
Western blot
双脱氧法测序
gradient gel electrophoresis,DGGE) 原理:当双链DNA在变性梯度凝胶中进行 到与DNA变性温度一致的凝胶位置时, DNA发生部分解链,电泳迁移率下降, DNA链中有一个碱基改变时,会在不同 的时间发生解链,因影响电泳速度变化 的程度而被分离。
荧光共振能量传递 (fluorescent resonance energy transfer, FRET)
基因敲除(gene knockout):定向敲除 基因敲入(gene knockin):定向替代
基因打靶的必备条件
胚胎干细胞(ES细胞)
能在体外培养,保留发育的全能性
打靶载体
Neo(新霉素)阳性筛选标志 HSV-tk阴性筛选标志:单纯疱疹病毒
(herpes simplex virus) 胸腺嘧啶激酶 (thymidine kinase)

分子生物学(2)

分子生物学(2)

名词解释基因:产生一条多肽链或功能RNA所需的全部核苷酸序列。

基因组:生物有机体的单倍体细胞中的所有DNA,包括核中的染色体DNA和线粒体、叶绿体等亚细胞器的DNA。

基因组大小:是指一个基因组中所拥有的DNA含量,一般以重量计算,单位通常是皮克(10-12克),写成pg;有时也用道耳顿;或是以核苷酸碱基对的数量表示,单位为百万计,写成Mb或Mbp。

1pg等于978Mb。

C值矛盾:也称C值反常现象,C值谬误。

C值,通常是指一种生物单倍体基因组DNA的总量,以每细胞内的皮克(pg)数表示。

而C值矛盾则是C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然的联系,某些低等的生物C值却很大,如一些两栖动物的C值甚至比哺乳动物还大。

核型:是指染色体组在有丝分裂中期的表型, 是染色体数目、大小、形态特征的总和。

在对染色体进行测量计算的基础上, 进行分组、排队、配对, 并进行形态分析的过程叫核型分析。

CpG岛:C pG双核苷酸在人类基因组中的分布很不均一,而在基因组的某些区段,CpG保持或高于正常概率,GC含量大于50%,长度超过200bp。

卫星DNA:又称随机DNA。

因为真核细胞DNA的一部分是不被转录的异染色质成分,其碱基组成与主体DNA不同,因而可用密度梯度沉降技术如氯化铯梯度离心将它与主体DNA分离。

卫星DNA通常是高度串联重复的DNA。

基因簇:指基因家族中的各成员紧密成簇排列成大串的重复单位,定于染色体的的特殊区域。

基因簇少则可以是由重复产生的两个相邻相关基因所组成,多则可以是几百个相同基因串联排列而成。

他们属于同一个祖先的基因扩增产物。

也有一些基因家族的成员在染色体上排列并不紧密,中间还含有一些无关序列。

但总体是分布在染色体上相对集中的区域。

基因家族:在基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物。

《现代分子生物学》教学大纲

《现代分子生物学》教学大纲

《现代分子生物学》教学大纲课程名称:现代分子生物学课程类别:专业必修课学时:48 学时学分:3学分考核方式:考试适用专业:生物技术开课学期:第5或6学期一、课程性质、目的任务分子生物学是从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。

自20世纪50年代以来,分子生物学一直是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系和蛋白质-脂质体系。

生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。

现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了分子生物学的蓬勃发展。

本课程是研究核酸等生物大分子的功能、形态结构特征及其重要性和规律性的学科,也是生物专业的主干课程,分子生物学已成为生物类各专业教学计划中重要的核心课程,因此它是十分重要的一门必修课程,也是培养造就生物技术和生命科学高层次专门人才所需基本素质的重要课程。

本门课程的主要内容包括:染色体与DNA、基因和基因组、现代分子生物学的研究方法与技术、转录、翻译、原核生物基因表达与调控、真核生物基因表达调控、发育与分子调控等,此外,还包括各种讲座。

总之,通过分子生物学知识的传授,培养学生从分子水平上去分析、理解生命现象与过程,提高学生思考与探索生命奥秘的能力,从而为生物技术的分子生物学实验提供详实的理论基础。

二、课程基本要求该课程要求学生掌握现代分子生物学基本理论和基本技术,为其它专业课的学习和今后的发展奠定基础。

在课程学习的同时,要求学生提高思想道德修养、自学能力、专业英语能力、应用知识能力、表达能力、创新能力和科研能力。

三、学时分配四、教学方法与考核(一) 教学方法1.以学科体系为主体,以应用为目的,教学过程加强针对性和实用性。

2.本课程以讲授为主、自学和讨论为辅的方式组织教学,并通过阅读主要参考书目、网上查询、资料整理和专题讨论,加深对细胞生物学了解,并掌握该学科的实验技能和操作。

分子生物学的研究方法-DNA-蛋白质相互作用

分子生物学的研究方法-DNA-蛋白质相互作用

西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
足迹试验的优点
可以形象地展示出一种特殊的蛋白质因子同特定DNA片段 之间的结合区域。如果使用较大的DNA片段,通过足迹试 验便可确定其中不同的核苷酸序列与不同蛋白质因子之间 的结合位点的分布状况。如同凝胶阻滞试验一样,也可以 加入非标记竞争DNA,来消除特定的足迹,据此确定其核 酸序列的特异性。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
返回目录
返回第二章
第六节
原理
研究DNA与蛋白质相互作用的方法
2.6.1 凝胶阻滞试验
又叫做DNA迁移率变动试验,是80年代初出现的用于在体外研究 DNA与 蛋白质相互作用的一种特殊的凝胶电泳技术。简单、快捷,是当前被选 作分离纯化特定DNA结合蛋白质的一种典型的实验方法。 在凝胶电泳中,由于电场的作用,裸露的 DNA朝正电极移动的距离是同 其分子量的对数成反比,如果DNA分子结合上一种蛋白质,那么由于分 子量加大,在凝胶中的迁移作用便会受到阻滞,朝正电极移动的距离也 就相在缩短了。所以当特定的 DNA片段同细胞提取物混合之后,若其在 凝胶电泳中的移动距离变小了,这就说明它已同提取物中的某种特殊蛋 白质分子发生了结合作用。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
从此混合物中除去蛋白质之后,将DNA片段群体加样在变性的DNA
测序凝胶中进行电泳分离,经放射自显影,便可显现出相应于DNasel
切割产生的不同长度DNA片段组成的序列梯度条带。但是,如果有一 种蛋白质已经结合到DNA分子的某一特定区段上,那么它就将保护这 一区段的DNA免受DNasel的消化作用,因而也就不可能产生出相应长 度的切割条带。所以在电泳凝胶的放射自显影图片上,相应于蛋白质 结合的部位是没有放射标记条带的,出现了一个空白的区域,人们形 象地称之为“足迹” 。

分子生物学5 分子生物学基本研究法

分子生物学5 分子生物学基本研究法
• 松弛型质粒DNA却继续复制数小时,使每个寄主 细 胞 中 ColE1 质 粒 的 拷 贝 数 达 到 1000~3000 个 , 占细胞总DNA的50%左右。
3、pBR322质粒载体
由三个不同来源的部分组成的:
第一部分来源于pSF2124质粒易位子Tn3的氨 苄青霉素抗性基因(AmpR);
第二部分来源于pSC101质粒的四环素抗性基 因(tetr);
5. 2 DNA操作技术 5. 2. 1核酸的凝胶电泳
自 从 琼 脂 糖 ( agarose ) 和 聚 丙 烯 酰 胺 (polyacrylamide)凝胶被引入核酸研究以来,按 分子量大小分离DNA的凝胶电泳技术,已经发展成 为一种分析鉴定重组DNA分子及蛋白质与核酸相互 作用的重要实验手段。
第一个核酸内切酶EcoRI是Boyer实验室在1972年发 现的,它能特异性识别GAATTC序列,将双链DNA分 子在这个位点切开并产生具有粘性末端的小片段。
图5-1 几种主要DNA内切酶所识别的序列及 其酶切末端。
Werner Arber, Hamilton Smith and Daniel Nathans were awarded the 1978 Nobel Prize for their work on REs.
多核苷酸激酶
把磷酸基团加到多聚核苷酸链的5'-OH末端 (进行末端标记实验或用来进行DNA的连接
末端转移酶
在双链核酸的3‘末端加上多聚或单核苷酸
DNA外切酶III
从DNA链的3'末端逐个切除单核苷酸
λ噬菌体DNA外切酶
从DNA链的5'末端逐个切除单核苷酸
碱性磷酸酯酶
切除位于DNA链末端的磷酸基团
嘌呤

分子生物学的研究方法

分子生物学的研究方法

分子生物学的研究方法分子生物学是生命科学领域中的重要分支,研究生物大分子(如DNA、RNA、蛋白质等)的结构、功能及其在生物体内的相互作用关系。

分子生物学的研究方法随着技术的不断进步,越来越高效、精准。

本文将介绍几种常见的分子生物学研究方法。

1. PCR技术PCR技术是分子生物学中最常用的研究方法之一。

PCR技术简单来说就是以DNA为模板,通过循环加热和降温的方式使DNA 分离成两条单链,并利用DNA聚合酶合成新的DNA分子。

通过PCR技术可以扩增目标DNA片段,为其他分子生物学研究提供了重要的基础。

PCR技术的具体操作是:首先选择适当的引物,引物是一段长度为15~30个核苷酸的单链DNA,与目标DNA上的两端互补,可用来定向扩增DNA。

然后将待扩增的DNA样品与引物混合,加入适当浓度的DNA聚合酶和反应缓冲液,反复加热降温,反应若干个周期后,就可以得到扩增的DNA产物。

近年来,PCR技术不断发展,出现了许多高级变体,如RT-PCR技术和qPCR技术等。

这些技术在分子生物学、医学以及疾病诊断等领域得到了越来越广泛的应用。

2. 质谱技术质谱技术是一种分析化学技术,用于测定化合物的分子量、化学式以及数量等信息。

在分子生物学中,质谱技术主要用于分析蛋白质和核酸的结构和功能。

质谱技术的基本原理是将待测样品中的分析物(如蛋白质、核酸等)转化成气态或溶液状态下的离子,并利用质谱仪测定离子的质荷比。

通过离子的质谷比可以确定分析物的分子量、化学式以及数量等信息。

质谱技术的应用范围非常广泛,包括蛋白质组学、代谢组学以及疾病诊断等领域。

随着技术的不断进步,质谱技术也变得更加高效、精准,未来将有更多的应用。

3. 基因编辑技术基因编辑技术近年来获得了长足发展,它可以通过将基因序列中的单个碱基替换、插入或删除,来打造定制化的基因组序列。

这种技术有巨大的应用潜力,可以用于人类基因疾病的治疗以及植物、动物品种改良等领域。

基因编辑技术最常用的手段是CRISPR-Cas9系统,它是一种通过结合RNAs和酶分子来定向剪切DNA的系统。

分子生物学考试大纲

分子生物学考试大纲

第一部分课程性质与目标一、课程性质和特点《分子生物学》课程是我省高等教育自学考试生物工程专业(独立本科段)的一门重要的专业必修课程,通过本课程的学习要求学生熟知核酸(尤其是DNA)的基本生物化学特性,生物信息的储存、传递与表达过程,特别是基因的一般结构与生物功能,基因表达的调控原理。

掌握分子克隆与DNA重组的基本技术与原理,了解现代分子生物学基本研究方法,了解基因治疗与人类基因组计划、克隆技术的新成果和新进展。

激发学生对生命本质探索的热情,培养具备生命科学的基本知识和较系统的生物技术及其产业化的科学原理和工艺技术过程的基本理论和基本技能,能在生物产业领域的公司、工厂等企业单位从事生物工程及其高新技术产品生产、开发研究和企业经营管理工作的高级应用人才。

本课程在内容上共分十章,第一章介绍了分子生物学研究的主要内容及发展简况。

第二章是染色质、染色体、基因和基因组,重点介绍了遗传物质的分子结构、性质和功能,重点介绍了核酸的结构、功能、变性、复性和杂交等基本概念,也介绍了病毒核酸的相关知识和反义技术特点。

染色质和染色体的形态、组成和功能,基因的概念、功能和基本特征,基因组的概念、结构特点及有关基因组研究中基本理论和内容。

DNA的复制、突变、损伤和修复,主要介绍了DNA复制的过程、基因突变损伤和修复功能转座子结构特征和转座机制、以及遗传重组的机制。

第三、四章主要从动态角度探讨了遗传物质的运动的基本规律。

第三章是转录,重点介绍了转录的基本原理、转录过程及转录后加工过程和机制。

第四章是蛋白质的翻译,内容包括遗传密码、蛋白质合成、蛋白质的运转及蛋白质合成后的折叠和修饰加工,最后从应用的角度介绍了功能蛋白质研究的最新进展。

第五章介绍了分子生物学目前常用的基本研究方法。

第六、七章是基因表达的调控,分别从原核生物和真核生物两方面介绍了基因表达在转录和翻译水平上调控的机制。

第八章主要介绍了一些人类疾病的分子机制,以及基因治疗的概念。

分子生物学2

分子生物学2

一、名词解释1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA 是游离于染色体之外的质粒双链闭合环形DNA。

2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。

几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。

3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP 与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein )4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。

5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA 的翻译。

6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。

7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。

10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。

产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。

PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。

11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA及增强子,弱化子等。

12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。

13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。

分子生物学(二)

分子生物学(二)

分子生物学(二)引言概述:分子生物学是研究生物分子结构和功能的学科。

本文将继续讨论分子生物学的相关内容,重点关注五个大点,包括蛋白质合成、基因表达调控、DNA复制、基因突变和分子诊断技术。

正文:一、蛋白质合成1. 转录和翻译的关系:RNA聚合酶合成mRNA,然后在核糖体中翻译成蛋白质。

2. 编码和非编码RNA:编码RNA包括mRNA和tRNA,而非编码RNA则不直接编码蛋白质,如rRNA和miRNA。

3. 编码RNA修饰:例如,剪接和RNA编辑,可以改变RNA序列,并对蛋白质产生重要影响。

4. 信使RNA降解:通过RNA酶的作用,mRNA可以被降解,控制蛋白质的合成量和速率。

5. 蛋白质翻译后修饰:包括磷酸化、糖基化和乙酰化等多种修饰形式,影响蛋白质的功能和稳定性。

二、基因表达调控1. 转录调控:转录因子的结合可以激活或抑制基因的转录过程,影响蛋白质的合成。

2. 染色质结构:染色质的组织结构和修饰可以影响基因的可及性,进而调控基因表达。

3. miRNA的调控作用:miRNA可以与mRNA结合,抑制其翻译或诱导降解,进而调控基因表达。

4. DNA甲基化:DNA甲基化是一种在基因调控中重要的表观遗传修饰方式,参与基因的静默。

5. 细胞信号转导:细胞内外的信号转导通路可以调控基因表达,对细胞发育和功能起重要作用。

三、DNA复制1. DNA复制的步骤:包括解旋、合成互补链和连接等多个步骤,确保DNA的准确复制。

2. DNA聚合酶:DNA聚合酶是复制DNA的主要酶类,具有高度专一性和准确性。

3. 复制起始位点选择:复制起始位点的选择是复制过程的关键步骤,受到复制起始蛋白的调控。

4. DNA损伤修复:复制过程中,可能会发生DNA损伤,细胞会通过修复机制保护DNA的完整性。

5. 复制过程的调控:多种蛋白质和调控机制参与DNA复制的调节,确保复制的顺序和精确性。

四、基因突变1. 突变的类型:包括点突变、缺失、插入和倒位等多种突变类型,影响DNA序列的改变。

分子生物学研究方法

分子生物学研究方法

分子生物学研究方法
分子生物学研究方法是研究生物分子结构、功能和相互作用的一系列实验方法和技术。

这些方法帮助科学家了解细胞的基本结构和功能,研究生物分子在疾病发展、遗传变异和进化中的作用。

以下是一些常用的分子生物学研究方法:
1. DNA提取:从细胞或组织中提取DNA,以用于后续实验。

2. 聚合酶链式反应(PCR):用于扩增DNA片段,以便进行分析和检测。

3. 凝胶电泳:用电场将DNA、RNA或蛋白质分离成不同大小的片段,以便研究其结构和功能。

4. 蛋白质纯化:通过一系列步骤将目标蛋白质从混合物中纯化出来,以获得足够的纯度用于研究。

5. 克隆:将DNA序列插入到载体中,以产生大量目标DNA 分子,用于进一步的分析和实验。

6. 基因测序:确定DNA序列的顺序,以研究基因功能、分析遗传变异或进行进化研究。

7. 基因表达:将目标基因转录成mRNA,并翻译成蛋白质,以研究基因功能和调控机制。

8. 蛋白质相互作用:使用技术如亲和层析、酵母双杂交等研究蛋白质之间的相互作用关系,以探索细胞信号传导和代谢途径。

9. 基因编辑:利用技术如CRISPR/Cas9,对细胞或生物体的基因进行精确的编辑,以研究基因功能或治疗遗传疾病。

分子生物学研究方法的不断发展和创新使得科学家可以更深入地了解生物分子的结构、功能和相互作用,为疾病治疗和生物技术的发展提供了基础。

分子生物学研究法上DNARNA及蛋白质操作技术分子生物精选全文

分子生物学研究法上DNARNA及蛋白质操作技术分子生物精选全文

可编辑修改精选全文完整版第五章分子生物学研究法(上)DNA、RNA及蛋白质操作技术分子生物学研究之所以从20世纪中叶开始得到高速发展,其中最主要的原因之一是现代分子生物学研究方法、特别是基因操作和基因工程技术的进步。

基因操作主要包括DNA分子的切割与连接、核酸分子杂交、凝胶电泳、细胞转化、核酸序列分析以及基因的人工合成、定点突变和PCR扩增等,是分子生物学研究的核心技术。

基因工程是指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,使之进入新的宿主细胞内并获得持续稳定增殖能力和表达。

因此,基因工程技术其实是核酸操作技术的一部分,只不过我们在这里强调了外源核酸分子在另一种不同的寄主细胞中的繁衍与性状表达。

事实上,这种跨越天然物种屏障、把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力,是基因工程技术区别于其它技术的根本特征。

本章将在回顾重组DNA技术发展史的基础上,讨论DNA操作技术、基因克隆、表达分析技术及蛋白质组学、单核苷酸多态性分析等现代生物学领域里最广泛应用的实验技术和方法。

5. 1 重组DNA技术史话近半个多世纪来,分子生物学研究取得了前所未有的进步,概括地说,主要有三大成就:第一,在20世纪40年代确定了遗传信息的携带者、即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;第二,50年代提出了DNA分子的双螺旋结构模型和半保留复制机制,解决了基因的自我复制和世代交替问题;第三,50年代末至60年代,相继提出了“中心法则”和操纵子学说,成功地破译了遗传密码,阐明了遗传信息的流动与表达机制。

但是,由于缺乏有效的分离和富集单一DNA分子的技术,科学家无法对这类物质进行直接的生化分析。

事实上,DNA分子体外切割与连接技术及核苷酸序列分析技术的进步直接推动了重组DNA技术的产生与发展。

因为重组DNA的核心是用限制性核酸内切酶(Restriction endonuclease,RE)和DNA连接酶对DNA分子进行体外切割与连接,所以,科学家认为,这些工具酶的发现和应用是现代生物工程技术史上最重要的事件(表5-1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Taqman和分子信标法
• 优点:可同时对多个SNP进行分析,
操作简单,可自动化;
• 缺点:不能达到高通量分析,荧光探
针费用高。
5.4.2.4 焦磷酸测序法 (Pyrosequencing )
• 四种酶催化的酶级联反应:DNA 聚合酶、硫 酸化酶(ATP sulfurylase) 、荧光素酶(luciferase) 和 双磷酸酶( apyrase) 。 • 反应底物:APS和荧光素(luciferin) • 原理:DNA 聚合酶在一种dNTP的存在下进 行引物延伸反应,而引物的成功延伸将伴随 焦磷酸的释放,焦磷酸在荧光素酶的存在下 能引发一种化学发光反应,通过发光计的实 时监测来达到检测的目的。
5.4.2 SNP的检测技术
传统的SNP检测方法使用的技术主要有:
• 限制性酶切片段长度多态性(RFLP); • PCR-单链构象多态性(PCR-SSCP); • 毛细管电泳; • 变性高效液相色谱(DHPLC)等。 目前获得新的SNP最常见的方法是: 通过DNA测序法
• 基因分型(genotyping):是指利用数据 库中已有的SNP进行特定人群的序列和发 生频率的研究。 • 主要包括: 基因芯片技术、 • Taqman技术、 • 分子信标技术 • 焦磷酸测序法等。
twins)便是属于同一克隆。
• 在细胞水平上,克隆一词是指由同一个祖
细胞(progenitor cell)分裂而来的一群 遗传上同一的子细胞群体。 • 在分子生物学上,人们把将外源DNA插入 具有复制能力的载体DNA中,使之得以永 久保存和复制这种过程称为克隆。
• 真核生物基因组庞大,含有大量重复序列。
进行位点特异性DNA片段重组,实现了基因
快速克隆和载体间平行转移。
• Gateway 克隆技术主要包括:
• 载体; T将目的基因PCR产物连入Entry • LR反应:被用于将目的片段从Entry载体中
重组入表达载体。
• Entry载体上的CCCTT 被拓扑异构酶识别,切 开后通过274位酪氨酸 与切口处的磷酸基团形 成共价键,加入PCR 产物后,形成的3’突出 端GTGG,攻击PCR产 物的互补性末端并与接 头序列CACC退火,切 去GTGG后使PCR产 物以正确方向连入 Entry载体
基本步骤
1 . 测序 引物 和 DNA 模 板杂交 ( PCR 扩 增 的、 单 链 的),与酶和底物孵育。 2.四种dNTP(dATPαS,dTTP,dCTP,dGTP)之 一被加入反应体系,如与模板配对,与引物的末 端形成共价键,dNTP的焦磷酸基团(PPi)释放 出来。 3.一系列的酶学反应,发出可见光信号。每个光信 号的峰高与反应中掺入的核苷酸数目成正比。 4. ATP和未掺入的dNTP由双磷酸酶降解,淬灭光信 号,并再生反应体系。 5.然后加入下一种dNTP。
• OD260=1时,相当于浓度为40μg/mL,当
OD260/OD280=1.8~2.0时,说明RNA纯度 较好。
5.32. mRNA的纯化
• 寡聚(dT)-纤维素柱色谱法:
• 利用mRNA3’端含有PolyA+的特点,当RNA
流经寡聚dT纤维素柱时,在高盐缓冲液的作 用下,mRNA被特异性地结合在柱上,再用 低盐溶液或蒸馏水洗脱mRNA。经过两次此 柱可得到较高纯度的mRNA.
• SNP的定义 定义:单核苷酸多态性 ( single nucleotide polymorphism,SNP) 主要是指在基因组 DNA序列中由于单个核苷酸的突变而引起 的多态性。
是第三代遗传标记。
5.4.1 SNP概述
• 单倍型:是指位于染色体上某一区域的一 组相关联的SNP等位位点。 • SNP分类: cSNP 同义cSNP • 非同义cSNP • • pSNP rSNP
2.5.2.1 基因芯片技术
• 是在固相支持介质上进行分子杂交和原
位荧光检测的一种高通量SNP分析方法。 • 通过激光扫描,可根据荧光强弱或荧光
的种类检测出被检序列的碱基类别。
• 优点:高通量
• • • • 一次可对多个SNP进行规模性筛选 被检起始材料少 操作步骤简单 若样品复杂,达的 基因,缺乏内含子和调控序列泳分离技术还是通过杂交的方法, 都难以直接分离到目的基因片段。 • 尽管高等生物一般具有3-5万种左右不同的 基因,在单个细胞或组织的特定时间段中, 仅有15-20%左右的基因得以表达。
• cDNA克隆的基本过程是通过一系列酶催作
用,使总poly(A)mRNA转变成双链
cDNA群体并插入到适当的载体分子上,转
• 缺点:芯片设计成本高
5.4.2.2 Taqman 技术
• 在PCR反应 系统中加入2 种不同的荧 光标记探针, 分别与两个 等位基因完 全配对。
5.4.2.3 分子信标技术
• 分子信标:是一种呈茎环结构 的荧光标记的寡核苷酸,环状 区与靶序列特异性结合,茎干 区由5~8个碱基组成,5’带有 荧光发生基团,3’带有荧光猝 灭基团。自由状态时,发生荧 光共振能量转移,无荧光;当 分子信标与靶分子结合时可检 测到荧光。
5.5.2 应用cDNA差示分析法克隆基因
• 该法通过降低cDNA群体复杂性和更换
cDNA两端接头等方法,特异性扩增目的基
因片段。因为Tester和Driver在接受差示分
析前均经一个4碱基切割酶处理,形成平均
长度256bp的代表群,保证绝大部分遗传信
息能被扩增。
• 每次T减D反应后仅设置72℃复性与延伸,
5.3.5.3 免疫筛选法
• 原噬 菌斑 转移到硝酸纤维素膜 吸收λ 噬菌体中 表达的外源蛋白 保存原板加入一抗筛选膜上的噬菌斑印记 洗去未结合的 抗体加入酶偶 联的二抗 加底物 显色 E 从保存板中挑 出阳性噬菌斑
5.4 SNP的理论与应用
5.3.3 cDNA的合成
• cDNA(complementary DNA):在体外以
mRNA为模板,利用反转录酶和DNA聚合酶合
成的一段双链DNA。
图5-15 cDNA合成过程
示意图。
第一链cDNA的合成: 以mRNA为模板,反转 录成cDNA,由反转录酶 催化,需引物(常用
oli和纯化。 • ②合成cDNA第一链。 • ③将mRNA-cDNA杂交分子转变为双链cDNA分 子。
• ④将双链cDNA重组到噬菌体载体或质粒载体上。
• ⑤将重组子体外包装成具有感染力的噬菌体颗粒 导入到大肠A的合成: 以第一链为模板,由 DNA聚合酶催化。
图5-16 cDNA合 成中种生物体基因组转
录的全部mRNA经反转录产生的cDNA片段
分别与克隆载体重组,储存于某种受体
28S、 18S、5S是鉴定总RNA纯度和完整性的重要 参数。
Trizol总RNA提取试 剂 TIANGEN
RNA的抽提方法
• 1.实验室常用方法:异硫氰酸胍-苯酚抽提法
• Trizol试剂:苯酚和异硫氰酸胍组成,可迅速
破坏细胞结构,释放细胞质及细胞核中的RNA,
并使核糖体蛋白与RNA分子分离,还能保证
5.4.3 SNP的应用
• 1. 人类基因单体型图的绘制
• 2. SNP与疾病易感基因的相关性分析 • 3. 指导用药与药物设计
5. 5 基因克隆技术
• 在多细胞的高等生物个体水平上,人们用克 隆(clone)表示由具有相同基因型的同一物
种的两个或数个个体组成的群体。从同一受
精卵分裂而来的单卵双生子(monozygotic
• 1.获得高质量总RNA。包括完整的mRNA、tRNA、rRNA 和部分不完整的mRNA 。
• 2.去磷酸化作用。带帽子结构的mnRNA不受影响。
• 3.去掉mRNA的5’帽子结构,加特异性RNA寡聚接头并以 RNA连接酶相连接。
• 4.以特异性寡聚dT为引物,在反转录酶的作用下,反转录
合成第一条cDNA链,包含了寡聚接头的互补序列。 • 5.分别以第一链cDNA为模板进行RACE反应。 • 6. 将纯化后的PCR产物克隆到载体DNA中,进行序列分 析。
5.3.5.1 核酸杂交法
5.3.5.2 PCR筛选法
• 前提:已知足够的序列信息并获目的基因探针对每 个孔进行PCR筛选,鉴定出阳性孔 • (3)把阳性孔中的克隆稀释到次级 多孔板中进行PCR筛选。 • (4)重复以上程序,直至鉴定出与 目的基因对应的单个克隆为止。
5’RACE
1.在反转录酶的作用下,以已
知基因片段内部。特异性引物 启始cDNA第一条链的合成 2.RNase混合物降解模板 mRNA,纯化cDNA第一条链。
3.用末端转移酶在cDNA链3‘端
加入连续的dCTP 4.以连有oligo(dG)的锚定引
物和基因片段内部特异的
nested引物进行PCR扩增,以 期得到目的片段,并可用nest PCR进行检测。
• Promega PolyAT tract mRNA 分离系统分
离多聚(A)mRNA。将用生物素标记的寡聚 (dT)引物与细胞总RNA共温育,加入与微磁 球相连的抗生物素蛋白,用磁场吸附通过寡 聚(dT)引物与抗生物素蛋白及强力微磁球相
连的mRNA。
图5-14 PolyATtract mRNA的分离 纯化过程简图。
化大肠杆菌寄主菌株细胞,末端快速扩增)
• 是用于从已知cDNA片段扩增全长基因的方
法,它根据已知序列设计基因片段内部特
异引物,由该片段向外侧进行PCR扩增得
到目的序列。用于扩增5’端的方法称为
5’RACE,用于扩增3’端的称为3’RACE。
94℃变性这两个参数共20个PCR循环,
PCR产物的特异性和所得探针的纯度非常

• 图5-23 RDA 流程图。
5.5.3 Gateway大规模克隆技术
• 大量的基因组序列被测定,要阐明这些基因
相关文档
最新文档