吉祥初中七年级上册期中考试数学试卷(A卷)
2017-2018学年四川省成都七中嘉祥外国语学校七年级(上)期中数学试卷
2017-2018学年四川省成都七中嘉祥外国语学校七年级(上)期中数学试卷A卷(100分)一、选择题(每题3分,共30分)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元3.(3分)计算﹣32的结果是()A.9B.﹣9C.6D.﹣64.(3分)下面图形截面都是圆的是()A.B.C.D.5.(3分)下列说法正确的是()A.正整数和负整数统称为整数B.0既不是正数也不是负数C.绝对值最小的有理数为1D.正数和负数统称为有理数6.(3分)数轴上到2的距离等于5的点表示的数是()A.3B.7C.﹣3D.﹣3 或77.(3分)若m、n满足|m+1|+(n﹣2)2=0,则m n的值等于()A.﹣1B.1C.﹣2D.8.(3分)用语言叙述代数式a2﹣b2,正确的是()A.a,b两数的平方差B.a与b差的平方C.a与b的平方的差D.b,a两数的平方差9.(3分)如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3B.4C.5D.610.(3分)某超市货架上摆放着某种品牌的方便面,如图是它们的三视图,则货架上的方便面至少有()盒.A.8B.9C.10D.11二、填空题(每空4分,共16分)11.(4分)一次考试中,老师采取一种记分制:得120分记为+20分,那么96分应记为,李明的成绩记为﹣12分,那么他的实际得分为.12.(4分)单项式﹣的系数是,次数是.13.(4分)若3a m b5与4a2b n+1是同类项,则m+n=.14.(4分)若|x﹣1|=2,则x=.三、计算题(共18分)15.(12分)计算:(1)2×(﹣5)+22﹣3÷(2)﹣(﹣3)2﹣[3+0.4×]÷(﹣2)16.(6分)在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣1,0.5,﹣(﹣3),﹣|﹣4|,3.5.四.解答题(共36分)17.(8分)先化简,再求值5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于2,p是数轴上原点表示的数,那么p﹣cd++m的值是多少?19.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第100个图形有多少黑色棋子?(3)第n个图形有多少黑色棋子?(4)第几个图形有2013颗黑色棋子?请说明理由.20.(10分)某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示)(2)假如这个单位现组织共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.(3)如果计划在十月份外出旅游七天,设最中间一天的日期为x,则这七天的日期之和为.(用含x的代数式表示.)(4)假如这七天的日期之和为63的倍数,则他们可能于十月几号出发?(写出所有符合条件的可能性)B卷(50分)一、填空题(每题4分,共20分)21.(4分)已知a,b为有理数,且a>0,b<0,a+b<0,将四个数a,b,﹣a,﹣b按由大到小的顺序排列是.(用“>”号连接)22.(4分)若|x|=5,|y|=3,且|x﹣y|=﹣x+y,则x+y=.23.(4分)已知当x=﹣3时,代数式ax3+bx+1的值为8,那么当x=3时,代数式ax3+bx+1的值为.24.(4分)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|=.25.(4分)小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可).二、解答题(共8分)26.(8分)由7个相同棱长为1的小立方块搭成的几何体如图所示,(1)请画出它的三视图.(2)在一次数学活动课上,甲同学用小立方体搭成现在的几何体,然后请乙同学用其他同样的小正方体在旁边再搭一个几何体,使得乙同学所搭几何体恰好可以和甲同学所搭几何体拼成一个无缝隙的大长方体(不改变甲同学所搭几何体的形状),那么乙同学至少还需要多少个小立方体,乙同学所搭几何体的表面积是多少?三、解答题(共10分)27.(10分)已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.四、解答题(共12分)28.(12分)数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.2017-2018学年四川省成都七中嘉祥外国语学校七年级(上)期中数学试卷参考答案与试题解析A卷(100分)一、选择题(每题3分,共30分)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元【解答】解:将150.5亿元用科学记数法表示1.505×1010元.故选:B.3.(3分)计算﹣32的结果是()A.9B.﹣9C.6D.﹣6【解答】解:﹣32=﹣9.故选:B.4.(3分)下面图形截面都是圆的是()A.B.C.D.【解答】解:将一个平面从任意角度去截球,都会得到一个圆.故选:C.5.(3分)下列说法正确的是()A.正整数和负整数统称为整数B.0既不是正数也不是负数C.绝对值最小的有理数为1D.正数和负数统称为有理数【解答】解:A、正整数、负整数和0统称为整数,不符合题意;B、0既不是正数也不是负数,符合题意;C、绝对值最小的有理数为0,不符合题意;D、正数、负数和0统称为有理数,不符合题意;故选:B.6.(3分)数轴上到2的距离等于5的点表示的数是()A.3B.7C.﹣3D.﹣3 或7【解答】解:在数轴上表示到2的点距离等于5的点所表示的数是:2﹣5=﹣3或2+5=7.故选:D.7.(3分)若m、n满足|m+1|+(n﹣2)2=0,则m n的值等于()A.﹣1B.1C.﹣2D.【解答】解:∵|m+1|+(n﹣2)2=0,∴,解得,∴m n=(﹣1)2=1.故选:B.8.(3分)用语言叙述代数式a2﹣b2,正确的是()A.a,b两数的平方差B.a与b差的平方C.a与b的平方的差D.b,a两数的平方差【解答】解:a2﹣b2用语言叙述为a,b两数的平方差.故选:A.9.(3分)如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3B.4C.5D.6【解答】解:由题意得:n﹣2=3,解得:n=5.故选:C.10.(3分)某超市货架上摆放着某种品牌的方便面,如图是它们的三视图,则货架上的方便面至少有()盒.A.8B.9C.10D.11【解答】解:易得第一层有4盒,第二层最少有3盒,第三层最少有2盒,所以至少共有9盒方便面.故选:B.二、填空题(每空4分,共16分)11.(4分)一次考试中,老师采取一种记分制:得120分记为+20分,那么96分应记为﹣4分,李明的成绩记为﹣12分,那么他的实际得分为88分.【解答】解:得120分记为+20分,那么96分应记为﹣4分,李明的成绩记为﹣12分,那么他的实际得分为88分,故答案为:﹣4分,88分.12.(4分)单项式﹣的系数是﹣,次数是3.【解答】解:根据单项式定义得:单项式﹣的系数是﹣,次数是3.13.(4分)若3a m b5与4a2b n+1是同类项,则m+n=6.【解答】解:∵3a m b5与4a2b n+1是同类项,∴m=2,n+1=5,解得:m=2,n=4∴m+n=6.故答案为6.14.(4分)若|x﹣1|=2,则x=﹣1或3.【解答】解:由题意得,绝对值是2的数有±2,所以x﹣1=2或x﹣1=﹣2,解得:x=﹣1或3.三、计算题(共18分)15.(12分)计算:(1)2×(﹣5)+22﹣3÷(2)﹣(﹣3)2﹣[3+0.4×]÷(﹣2)【解答】解:(1)2×(﹣5)+22﹣3÷=(﹣10)+4﹣3×2=(﹣10)+4﹣6=﹣12;(2)﹣(﹣3)2﹣[3+0.4×]÷(﹣2)=﹣9﹣[3+0.4×2.5]×(﹣)=﹣9﹣[3+1]×(﹣)=﹣9﹣4×(﹣)=﹣9+2=﹣7.16.(6分)在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣1,0.5,﹣(﹣3),﹣|﹣4|,3.5.【解答】解:如图所示:,﹣|﹣4|<﹣|﹣2|<﹣1<0.5<﹣(﹣2)<﹣(﹣3)<3.5.四.解答题(共36分)17.(8分)先化简,再求值5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.【解答】解:原式=5a2+3b2+2a2﹣2b2﹣5a2+3b2=2a2+4b2,当时,原式==3.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于2,p是数轴上原点表示的数,那么p﹣cd++m的值是多少?【解答】解:由题意得:a+b=0,cd=1,m=±2,p=0,①当m=2时,原式=0﹣1+0+2=1;②当m=﹣2时,原式=0﹣1+0+(﹣2)=﹣3.19.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第100个图形有多少黑色棋子?(3)第n个图形有多少黑色棋子?(4)第几个图形有2013颗黑色棋子?请说明理由.【解答】解:第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.(1)当n=5时,3×(5+1)=18;(2)当n=100时,3×(100+1)=303;(3)第n个图需棋子3(n+1)枚.(4)设第n个图形有2013颗黑色棋子,根据(1)得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子,20.(10分)某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为1500a 元,乙旅行社的费用为1600a﹣1600元;(用含a的代数式表示)(2)假如这个单位现组织共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.(3)如果计划在十月份外出旅游七天,设最中间一天的日期为x,则这七天的日期之和为7x.(用含x的代数式表示.)(4)假如这七天的日期之和为63的倍数,则他们可能于十月几号出发?(写出所有符合条件的可能性)【解答】解:(1)甲旅行社的费用为1500a,乙旅行社的费用为1600a﹣1600;故答案为1500a,1600a﹣1600(2)当a=20时甲:1500×20=30000(元)乙:1600×20﹣1600=30400(元)因为30000<30400,所以选择甲旅行社更优惠.(3)设最中间一天的日期为x,则这七天的日期分别为x﹣3,x﹣2,x﹣1,x,x+1,x+2,x+3,这七天的日期之和为7x,故答案为7x.(4)设最中间一天日期为x,则其出发日记为x﹣3,则这七天的日期之和为7x①当7x=63×1时,则x=9,故9﹣3=6,他们6号出发;②当7x=63×2时,则x=18,故18﹣3=15,他们15号出发;③当7x=63×3时,则x=27,故27﹣3=24,他们24号出发;④当7x=63×4时,则x=36;因为十月最多有31天可知,不合实际;则他们可能是6号或15号或24号出发.B卷(50分)一、填空题(每题4分,共20分)21.(4分)已知a,b为有理数,且a>0,b<0,a+b<0,将四个数a,b,﹣a,﹣b按由大到小的顺序排列是b<﹣a<a<﹣b.(用“>”号连接)【解答】解:∵a>0,b<0,a+b<0,∴﹣b>a>0,b<﹣a<0∴b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b.22.(4分)若|x|=5,|y|=3,且|x﹣y|=﹣x+y,则x+y=﹣2或﹣8.【解答】解:∵|x|=5,|y|=3,且|x﹣y|=﹣x+y,∴x﹣y<0,即x<y,当x=﹣5,y=3时,x+y=﹣2;当x=﹣5,y=﹣3时,x+y=﹣8,故答案为:﹣2或﹣823.(4分)已知当x=﹣3时,代数式ax3+bx+1的值为8,那么当x=3时,代数式ax3+bx+1的值为﹣6.【解答】解:∵当x=﹣3时,代数式ax3+bx+1的值为8,∴﹣27a﹣3b+1=8,∴27a+3b=﹣7,∴当x=3时,ax3+bx+1=27a+3b+1=﹣7+1=﹣6.故答案为:﹣6.24.(4分)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|=﹣2a+c﹣1.【解答】解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣1.25.(4分)小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是25;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是﹣5;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可)(﹣5)×(﹣5)﹣15.【解答】解:(1)(﹣5)×(﹣5)=25;(2)(﹣5)÷1=﹣5;(3)(﹣5)×(﹣5)﹣15=25﹣1=24.故答案为:(1)25;(2)﹣5;(3)(﹣5)×(﹣5)﹣15二、解答题(共8分)26.(8分)由7个相同棱长为1的小立方块搭成的几何体如图所示,(1)请画出它的三视图.(2)在一次数学活动课上,甲同学用小立方体搭成现在的几何体,然后请乙同学用其他同样的小正方体在旁边再搭一个几何体,使得乙同学所搭几何体恰好可以和甲同学所搭几何体拼成一个无缝隙的大长方体(不改变甲同学所搭几何体的形状),那么乙同学至少还需要多少个小立方体,乙同学所搭几何体的表面积是多少?【解答】解:(1)如图所示:(2)搭建的长方体长、宽、高分别为3、2、2(每层要6个小立方体)第一层还需要1个,第二层还需要4个,则乙同学还需要4+1=5,其表面积等于22.三、解答题(共10分)27.(10分)已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.【解答】解:由题意可知:x2+ax﹣y+b+bx2﹣3x+6y﹣3=(b+1)x2+(a﹣3)x+5y+b ﹣3该多项式的值与x无关,所以b+1=0,a﹣3=0所以b=﹣1,a=3原式=3a2﹣6ab+3b2﹣(3a2﹣2ab+3b2)=3a2﹣6ab+3b2﹣3a2+2ab﹣3b2=﹣4ab=12四、解答题(共12分)28.(12分)数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.【解答】解:(1)由题知:C:﹣5+3×5=10 即C点表示的数为10;(2)设B表示的数为x,则B到A的距离为|x+5|,点B在点A的右边,故|x+5|=x+5,由题得:﹣=1,即x=15;(3)①在电子蚂蚁丙与甲相遇前,2(20﹣3t﹣2t)=20﹣3t﹣t,此时t=(s);②在电子蚂蚁丙与甲相遇后,2×5(t﹣4)=20﹣3t﹣t,此时t=(s);综上所述,当t=s或t=s时,使丙到乙的距离是丙到甲的距离的2倍.。
2024年吉林省中考数学真题卷含答案解析
吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2 B.1 C.0 D.1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.8.因式分解:a 2﹣3a=_______.9.不等式组2030x x ->⎧⎨-<⎩的解集为______.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11.正六边形的每个内角等于______________°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中3a =.16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.的切线.(2)在图②中,画出经过点E的O20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多(1)20192023少元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:x16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2B.1C.0D.1-【答案】D【解析】【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯【答案】B【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:92040000000 2.0410⨯=故选B .3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同【答案】A【解析】【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=【答案】B【解析】【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键.分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B 、()220x -=,解得:122x x ==,故本选项符合题意;C 、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D 、()222x -=,2x -=,解得1222x x ==,故本选项不符合题意.故选:B .5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,2【答案】C【解析】【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒【答案】C【解析】【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.【答案】0(答案不唯一)【解析】【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案.【详解】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.因式分解:a 2﹣3a=_______.【答案】a (a ﹣3)【解析】【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为______.【答案】23x <<##32x >>【解析】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.【答案】两点之间,线段最短【解析】【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于______________°.【答案】120【解析】【详解】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206︒=︒,故答案为:12012.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.【答案】12【解析】【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒,AD BC =,再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =.【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD ∠=︒,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO ∠=︒,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.【答案】()22220.5x x +=+【解析】【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).【答案】11π【解析】【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360Sππ-==阴影,故答案为:11π.三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中3a =.【答案】22a ,6【解析】【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =,当3a =原式223=⨯6=.16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.【答案】13【解析】【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【解析】【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【解析】【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴白色琴键:361652+=(个),答:白色琴键52个,黑色琴键36个.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.【答案】(1)见解析(2)见解析【解析】【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E、F,作直线EF,则直线EF即为所求;、,作直线GH,则直线GH即为所求.(2)如图所示,取格点G H【小问1详解】解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD【小问2详解】、,作直线GH,则直线GH即为所求;解:如图所示,取格点G H.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)36I R=(2)12A【解析】【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【小问1详解】解:设这个反比例函数的解析式为()0U I U R =≠,把()94,代入()0U I U R =≠中得:()409U U =≠,解得36U =,∴这个反比例函数的解析式为36I R =;【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I ==,∴此时的电流I 为12A .21.中华人民共和国20192023-年全国居民人均可支配收入及其增长速度情况如图所示.根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多(1)20192023少元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5②20192023年中,2020年全国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【解析】【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【小问1详解】-=元,解:39218307338485-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485答:20192023元.【小问2详解】-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128解:20192023元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)【答案】218.3m【解析】【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △,tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒,∴873tan DG AG DG EAD===∠,在Rt GAC △中,37EAC ∠=︒,∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=,∴873654.75218.3m CD DG CG =-=-≈,答:吉塔的高度CD 约为218.3m .五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:以对称轴为基准向两边各取相同的长度/mmx 16.519.823.126.429.7凳面的宽度/mmy 115.5132148.5165181.5【分析数据】如图③,小组根据表中x ,y 的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【解析】【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【小问1详解】,解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;【小问2详解】解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【解析】【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+ 四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解;(4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB BC =,BD AC ⊥,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =⨯⨯=V ,故答案为:2;(2)∵在菱形A B C D ''''中,4''=A C ,2B D ''=,∴142A B C D S B D A C ''''''''=⨯⨯=菱形,故答案为:4;(3)∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =⨯⨯=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN ∠=∠,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK ∠=︒,∴90NMK MKN ∠+∠=︒,∵QPM MKN ∠=∠,∴90NMK QPM ∠+∠=︒,∴MK PQ ⊥,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形.【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题。
吉林省吉林市第七中学校2024-2025学年九年级上学期9月月考数学试题(含答案)
2024—2025学年度上学期七年级第一次月考试题数学试卷考生须知:1.本试卷满分为120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效.4.选择题必须使用2B 铅笔填涂:非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每题3分,计27分,每题只有一个正确的答案)1.的相反数是()A .B.C .D .20242.下列化简正确的是()A .B .C .D .3.质检员抽查4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的足球是( )A .B .C .D .4.在1.5,,,,6,15%中,负分数有( )A .2个B .3个C .4个D .5个5.已知,,则的值为( )A .B .C .0D .6.若,则等于( )A .B .1C .0D .7.若,,则有( )A .,B .、异号,且正数的绝对值较大C .,D .、异号,且负数的绝对值较大8.有理数、对应的点在数轴上的位置如图所示,那么()2024-12024-120242024-()22-+=()22-=-()22+-=-22-+=2-52-0.7-3a =-a b =b 3+3-3±210a b -++=a b +1-2-0a b +<0a b >0a >0b >a b 0a <0b <a b a bA .B .C .D .9.下列说法:①两个有理数相加,它们的和一定大于每一个加数;②一个正数与一个负数相加一定得0;③绝对值是它本身的数是正数;④表示的数一定是负数,其中正确的个数有()A .3个B .2个C .1个D .0个第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计27分)11.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上10℃记作,则零下3℃记作______℃.11.比较大小:______(填“>”,“<”或“=”)12.已知有理数1,,,,请你任选两个数相乘,运算结果最大是______.13.如果与互为倒数,与互为相反数,那么的值是______.14.如果两数的商是,被除数是,则除数是______.15.已知,,且,则的值为______.16.比大而比小的所有整数的和等于______.17.定义:对于一个有理数,我们把称为的有缘数.若,则.若,则.计算的结果为______.18.如图1,点,,是数轴上从左到右排列的三个点,分别对应的数为,,,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点,发现点对应刻度,点对齐刻度.若点从点处向点方向跳动,当点在之间且点到点的距离等于点到点的距离2倍时,点所表示的数是______.三、解答题:(本大题共9小题,共66分)19.(本题6分)把下列各数的序号填在相应的数集内:①2:②;③3.5;④0;⑤;⑥.(1)整数:{__________________…};(2)分数:{__________________…};(3)负有理数:{__________________…}.20.计算:(本题7分)b a ->a b -<0ab >0a b -<m -10+℃2- 1.5-8-11+2-a b c d ()2024ab c d -++516-122-3m =5n =m n >2m n +153-335[]x x 0x ≥[]113x x =-0x <[]122x x =-+[][]31+-A B C 5-b 4A B 1.8cm C 5.4cm P C B P BC P C P B P 23-π7-(1);(2).21.计算:(本题7分)(1);(2)22.(本题8分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”号连接起来:,0,,,23.(本题5分)学习有理数的乘法后,老师给同学们这样一道题目:计算:,看谁算的又快又对,小明同学的解法如下:原式,根据上面的解法,请你再写一种你认为合适的方法计算.24.(本题6分)有资料表明,某地区高度每增加100米,气温下降0.6℃.登山队由此想出了测量山峰高度的办法:一名队员在山脚,一名队员在山顶,他们在某天上午1时整测得山脚和山顶的气温分别为和.由此可推算出该山峰高多少米?25.(本题8分)若两个有理数,满足,则称,互为“吉祥数”.如5和3就是一对“吉祥数”,回答下列问题:(1)求的“吉样数”:(2)若的“吉祥数”是,求的;(3)和9能否互为“吉祥数”?若能,请求出的值;若不能,请说明理由.26.(本题9分)外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过50单(送一次外卖称为一单)的部分记为“+”,低于50单的部分记为“-”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量(单位:单)(1)该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2)求该外卖小哥这一周一共送餐多少单?()()231410+---531353246767⎛⎫⎛⎫--+--- ⎪ ⎪⎝⎭⎝⎭()13644⎛⎫÷-⨯- ⎪⎝⎭()143669⎛⎫-+⨯- ⎪⎝⎭3.5-1- 3.5-()1.5--()2449525⨯-12491249452492555=-⨯=-=-5-℃8.6-℃A B 8A B +=A B 4-3x 4-x a a 3-4+5-14+8-6+12+(3)外卖小哥每天的工资由底薪60元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过50单的部分,每单补贴2元;超过50单但不超过60单的部分,每单补贴4元;超过60单的部分,每单补贴6元.求该外卖小哥这一周的工资收入27.(本题10分)如图所示,在数轴上点表示的数是4,点位于点的左侧,若是最大负整数,点与点的距离是个单位长度.(1)点表示的数是______;(2)动点从点出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点与点的距离是2个单位长度?(3)在(2)的条件下,点出发的同时,点也从点出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点到点的距离等于到点的距离的一半?A B A aB A10aBP B P AP Q AP A Q B2024-2025学年度上学期七年级第一次月考试题数学试卷参考答案一、1-5.DCBAD6-9.BCAD ADCDB 二、10.-3 11.< 12.16 13.-1 14.8 15.1或-11 16.-9 17.52 18.0三、19.整数:①④⑥............2'分数:②③............2' 负有理数:②⑥............2'20.(1)解:原式=23+(-14)+10............1'=19............2' (2)解:原式=............1'=-8+1............2' =-7............1'21.(1)解:原式=-9×(-14)............1' =94............2'(2)解:原式=-16×(-36)+49×(-36)............1'=6+(-16)............2'=-10............1'22.描点正确............5',-3.5<-1<0<-(-1.5)< ............3'23.法一、解:原式=(49+2425)×(-5)............1'=49×(-5)+2425×(-5)............1'=-245+(-245)............1'=-24945............1'法二、解:原式=(50-125)×(-5)............1'=50×(-5)-125×(-5)............1'=-250+15............1'=-24945............1'24.解:[-5-(-8.6)]÷0.6×100............3'=3.6÷0.6×100............1')734733(]612(655[+-+-+-5.3-=600(米)............1'答:该山峰高600米.............1'25.解:(1)-4的“吉祥数”是:8-(-4)=12;............2'(2)若3x的“吉祥数”是-4,则3x+(-4)=8,............1'∴3x=8+4,∴3x=12,解得x=4;............2'(3)a和9能互为“吉祥数”,............1'则a+9=8,............1'解得:a=-1.............1'26.解:(1)14-(-8)=14+8=22(单)............2'答:该外卖小哥这一周送餐量最多的一天比最少的一天多22单;............1'(2)50×7+(-3+4-5+14-8+6+12)............2'=350+20=370(单)............1'答:该外卖小哥这一周一共送餐370单;(3)(50×7-3-5-8)×2+(4+6+10×2)×4+(4+2)×6+60×7............2'=668+120+36+420=1244(元).............1'答:该外卖小哥这一周的工资收入是1244元27.解:(1)由题意得,点B表示的数为4-10=-6,............2'(2)设运动的时间是x秒,则点P表示的数是-6+2x.根据题意,当点P在点A的左侧时,4-(-6+2x)=2 ............1'解得x=4............1'当点P在点A的右侧时-6+2x-4=2.............1'解得x=6............1'.答:经过4秒或6秒,点P,A之间的距离是2个单位长度.(3)设运动时间为t秒,由题意得,...........1'...........1'...........1'解得t=6..............1'经过103秒或6秒,点P到点A的距离等于Q到点B的距离的一半。
七年级上学期期中考试数学试卷
上期七年级期中试题数 学温馨提示:1、全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;2、考试时间l20分钟;3、请用蓝黑钢笔或圆珠笔将答案写在答题卡上,考试结束只交答题卡;4、画图请用铅笔。
(A 卷 100分)一、选择题(本大题共10个小题;每小题3分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,把符合题目要求的选项前的字母填写在答题卡的表格中) 1、-3的倒数是( )A .-3B .3C .31 D .31- 2、冬季某天我国三个城市的最高气温分别是-10°C ,1°C ,-7°C ,把他们从高到低排列正确的是 ( )A. -10°C , -7°C ,1°C ,B. -7°C , -10°C ,1°C ,C. 1°C ,-7°C ,-10°C ,D. 1°C ,-10°C , -7°C3、下列各图经过折叠能围成一个正方体的是 (A B C D 4、下列各式中,正确的是( )A .y x y x y x 2222-=- B .ab b a 532=+ C .437=-ab ab D .523a a a =+ 5、a-b 的相反数是( )A .a-bB . b - aC .- a-bD 、不能确定 6、两个有理数的积为负数,和也为负数,那么这两个数( )A .都是负数B .绝对值较大的数是正数,另一个是负数C .互为相反数D .绝对值较大的数是负数,另一个是正数 7、已知496b a -和445b a n 是同类项,则代数式1012-n 的值是( )A .17B .37C .–17D .988、下列说法中①-a 一定是负数;②|-a|一定是正数;③倒数等它本身的数是±1; ④绝对值等于它本身的数是1。
其中正确的个数是( )A .1个B .2个C .3个D .4个 9、右图是一数值转换机,若输入的x 为-5, 则输出的结果为( )A. 11B. -9C. -17D. 2110、已知代数式y x 2+的值是3,则代数式142++y x 的值是( )A .1B .4C .7D .不能确定 二、填空题(每小题3分,共18分)11、单项式33yx -的系数是_____ 。
2023-2024学年常州市七年级上学期期中考试数学试卷(含解析)
2023-2024学年常州市七年级上学期期中考试数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.在−15,513,−0.23,0,7.6,2,−35,314%.这八个有理数中非负数有( )A. 4个B. 5个C. 6个D. 7个2.下列说法不正确的是( )A. 倒数是它本身的数是±1 B. 相反数是它本身的数是0C. 绝对值是它本身的数是0 D. 平方是它本身的数是0和13.下列各组数中,相等的一组是( )A. −(−1)与−|−1|B. −32与(−3)2C. (−4)3与−43D. 223与(23)24.数轴上有一个点B 表示的数是3,点C 到点B 的距离为2个单位长度,则点C 表示的数为( )A. 1B. 5C. 3或2D. 1或55.甲、乙两地相距S 千米,某人计划a 小时到达(a >2),如果需要提前2小时到达,那么每小时多走的千米数是( )A. (S a−2−Sa)B. (Sa −Sa−2)C. (S a +2−Sa)D. (Sa −Sa +2)6.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为−5,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A. 3B. −1C. −2D. −37.有一个数值转换器,原理如图所示,若开始输入x 的值是8,可发现第1次输出的结果是4,第2次输出的结果是2,依次继续下去,第2023次输出的结果是( )A. 8B. 4C. 2D. 18.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需测量就能知道周长的正方形的标号为( )A. ①B. ②C. ③D. ④二、填空题(本大题共10小题,共30.0分)9.−1的相反数是.310.如果规定向东为正,那么向东走8m记作+8m,−6m表示.11.单项式−23ab2c3的次数是.12.中国高铁领跑世界,2023年5月10日人民日报公布中国高铁累计安全行驶9280000000公里,能够环绕地球约23.2万圈,数据9280000000用科学记数法表示为.13.若−x6y2m与x n+2y4是同类项,那么n+m的值为.14.已知x2−2x=1,则2023+6x−3x2的值为.15.|x−1|+|y+3|=0则x+y=.16.已知海拔每升高1000m,气温下降6∘C,某人乘热气球旅行,在地面时测得温度是8∘C,当热气球升空后,测得高空温度是−1∘C,热气球的高度为m.17.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为_ ___.18.已知在纸面上有一数轴,折叠纸面,数轴上−2表示的点与8表示的点重合.若数轴上A 、B 两点之间的距离为2024(A 在B 的左侧),且A 、B 两点经以上方法折叠后重合,则A 点表示的数是 .三、计算题(本大题共1小题,共6.0分)19.计算(1)22+(−4)+(−2)+4 计算(2)48÷[(−2)3−(−4)]计算(3)(54−52+13)×(−125)计算(4)−12×8−8×(12)3+4÷14四、解答题(本大题共7小题,共56.0分。
七年级(上)期中考试数学试卷(含答案)
七年级(上)期中考试数学试卷(全卷满分100,考试时间90分钟)一、选择题(每小题3分,共36分)1.升降机运行时,如果上升36米记作“+36米”,那么当它下降19米时,记作()米.A.+19 B.-19 C.+36 D.-362.(-2)3的相反数是()A.-8 B.8 C.-6 D.63.下列式子符合书写要求的是()A.xy3 B.213x C.25xy2D.3xy÷24.计算-(-2)+|-2|,其结果为()A.-4 B.4 C.0 D.-25.计算13×(-3)÷(-13)×3的结果是()A.1 B.9 C.-3 D.-66.下列运算正确的是()A.4a+5b=9ab B.-3xy-3xy=0C.3a+4a=7a2D.4x2y-3yx2=x2y7.数据21020000用科学记数法可表示为()A.2.102×107B.2.102×106C.0.2102×108D.21.02×106 8.下列说法正确的是()A.单项式225x y-的系数是-2,次数是3 B.单项式x的系数是0,次数是0C.6xy2+3xy-4x是二次三项式D.单项式-324xy的次数是2,系数是-29.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1-a>1 10.按规律排列的一列数:1,-2,4,-8,16…中,第7与第8个数分别为()A .64,-128B .-64,128C .-128,256D .128,-25611.若a -b =-1,则(a -b )3-3a +3b 的值是( )A .3B .2C .1D .-112.某件商品按原售价降低a 元后,又降20%,现售价为b 元,那么该商品的原价为( )A .元B .元C .(5b +a )元D .(5a +b )元二、填空题(每小题3分,共12分)1.−3的倒数是_______.2.在数轴上到原点的距离等于5的点表示的数为_______.3.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则式子2cd -3a b m ++m 2的值为_______.4.若“△”是新规定的某种运算符号,设a △b =3a -4b ,则(x -y )△(x +y )运算后的结果为_______.三、解答题(共52分)1.(12分)计算题:(1)11+(-23)-(+9)-(-12);(2)(56-13-25)×30; (3)-12-112×[9-(-3)3]; (4)(-2)4÷(23)2-12×(-13)+|-22-4|.2.(5分)先化简,再求值:13xy -2(xy -13y 2)+(-43xy +13y 2),其中x =3,y =-2.3.(5分)画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来.-4,(-512),(-2)2,|-3|,312.4.(5分)已知47x2m-1y 8与-2x5y-3n-1是同类项,求mn+3m-7n的值.5.(8分)已知:A-2B=2a2-3ab,且B=3a2-2ab+5;(1)求A等于多少?(2)若|a-2|+(b+3)2=0,求A的值.6.(9分)某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若小明家1月份用水17吨,问小明家1月份应交水费多少元?(2)若小明家2月份交水费35元,问小明家2月份用水多少吨?(3)若小明家3月份用水x吨,问小明家3月份应交水费多少元?(用x的代数式表示)7.(12分)观察下列等式,请回答下列问题:第1个等式:a1==1-;第2个等式:a2==-;第3个等式:a3==-;第4个等式:a4==-;…(1)按以上规律列出第5个等式:a5=____________;(2)求a1+a2+a3+a4+…+a50的值;(3)已知:b1=113⨯,b2=135⨯,b3=157⨯,…,求b1+b2+b3+…+b100的值.参考答案一、选择题(每小题3分,共36分)1.B2.B3.C4.B5.B6.D7.A 8.D 9.D 10.A 11.B 12.B二、填空题(每小题3分,共12分)1.2.±53.64.-x-7y三、解答题(共52分)1.解:(1)原式=-9;(2)原式=3;(3)原式=-4;(4)原式=48.2.解:原式=-3xy+y2,当x=3,y=-2时,原式=22.3.解:(-2)2>312>|-3|>-4>(-512);画数轴略.4.解:由同类项定义得:m=3,n=-3,把m=3,n=-3代入mn+3m-7n得:mn+3m-7n=6.5.解:(1)A=8a2-7ab+10;(2)a=2,b=-3,∴A=84.6.解:(1)10×2+(17-10)×2.5=37.5(元),答:应交水费37.5元;(2)设小明家2月份用水x吨,由题意得10×2+2.5×(x-10)=35,解得x=16,答:小明家2月份用水16吨;(3)①当0≤x≤10时,应交水费为2x(元),②当x>10时,应交水费为:20+2.5(x-10)=(2.5x-5)(元).7.解:(1)由题意得:第5个等式为:a5==,故答案为:=;(2)a1+a2+a3+a4+…+a50=+…+1 5051=++…+150-151=1-1 51=50 51.(3)b1+b2+b3+b4+…+b100=12(11-13)+12(13-15)…+12(1199-1201)=12(11-13+13-15+…+1199-1201)=12(11-1201)=100 201.。
吉林省七年级上学期期中数学试卷A卷
吉林省七年级上学期期中数学试卷A卷一、选择题 (共10题;共20分)1. (2分)若x=(-2)×3,则x的相反数是()A . -B .C . -6D . 62. (2分) (2019七上·福田期末) 在这五个数中,负数的个数是()A . 1个B . 2个C . 3个D . 4个3. (2分)单项式的系数是()A .B .C .D . 没有系数4. (2分) (2017七上·章贡期末) 移动互联网已经全面进入人们的日常生活,截至2016年4月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A . 1.62×104B . 162×106C . 1.62×108D . 0.162×1095. (2分)下列各式中,正确的是()A . ﹣>0B . ﹣<﹣C . ﹣6<﹣8D . <0.36. (2分)北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么下列说法中正确的是()A . 汉城与纽约的时差为13小时B . 北京与纽约的时差为13小时C . 北京与纽约的时差为14小时D . 北京与多伦多的时差为14小时7. (2分)当x=1,px3+qx+1的值为2017,那么当x=﹣1,px3+qx+1的值为()A . ﹣2015B . ﹣2016C . ﹣2017D . 20168. (2分)(2018·曲靖) 下列计算正确的是()A . a2•a=a2B . a6÷a2=a3C . a2b﹣2ba2=﹣a2bD . (﹣)3=﹣9. (2分) (2016七上·卢龙期中) 计算(﹣1)2n+(﹣1)2n+1的值是()A . 2B . ﹣2C . ±2D . 010. (2分)(2017·黄冈模拟) 如图:直线l:y=﹣x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1 ,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2 ,再过点A2作x轴的垂线交直线l于点B2 ,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3…按此作法进行去,点A2016的坐标为()A . (﹣22016 , 0)B . (﹣22017 , 0)C . (﹣21008 , 0)D . (﹣21007 , 0)二、填空题 (共6题;共8分)11. (1分) (2018七上·无锡期中) 若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和-3分,则第一位学生的实际得分为________分。
吉祥初中第一学期期中考试七年级数学试卷
吉祥初中第一学期期中考试七年级数学试卷(时间120分钟 满分150分)亲爱的同学,这份试卷将记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。
请认真审题,看清要求,仔细答题. 预祝你取得好成绩!一、精心选一选(本大题共8题,每小题3分,共24分。
每题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在答卷上。
) 1.-3的相反数是A .3B .-3C .13 D .13- 2.已知矩形周长为20cm ,设长为x cm ,则宽为A. x -20B.220x- C.x 220- D. x -10 3.下列化简,正确的是A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -8 4.据统计,截止5月31日上海世博会累计入园人数为803万.这个数字用科学记数法表示为 A .8×106B .8.03×107C .8.03×106D .803×1045.绝对值大于2且小于5的所有整数的和是 A .0 B .7 C .14 D .28 6.若3<a<4时,化简|3||4|a a -+-= A .2a-7B .2a-1C .1D .77.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是 A .4B .5C .7D .不能确定8.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102二、细心填一填(本大题共10题,每小题3分,共30分)9.如果-20%表示减少20%,那么+6%表示10、37-的相反数是_______,它的倒数是_________。
2024-2025学年苏科版数学七年级上册(江苏省盐城市)期中模拟卷【含答案】
2024-2025学年苏科版数学七年级上册 (江苏省盐城市)期中模拟卷(满分100分,时间90分钟)一、选择题(本题共8小题,每题3分,共24分)1.在()6--,()20201-,3-,0,()35-中,负数的个数是( )A .1个B .2个C .3个D .4个2.下列单项式中,与ab 是同类项的是( )A .22a bB .13abC .22a bD .2ab 3.下列各组数中,互为相反数的是( )A .-32与(-3)2B .-(-4)与|-4|C .-(+5)与+(-5 )D .-23与(-2)34.下列说法中正确的是( )A .多项式1x p +是二次二项式B .单项式225m n -的系数为25,次数为3C .多项式3327462xy x y xy --+的次数是7D .单项式a 的系数、次数都是15.如图,下面的4个数中哪一个数所表示的点被数轴上的杭州亚运会吉祥物之一宸宸卡通贴纸所覆盖( )A .2B .1C .2-D .4-6.某粮店出售的三种品牌的面粉袋上,分别标有质量为()()250.1kg 250.2kg ±±、、()250.3kg ±的字样,从中任意拿出不同品牌的两袋,它们的质量最多相差( )A .0.2kgB .0.4kgC .0.5kgD .0.6kg7.有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A .0a b +<B .a b >C .0a b -<D .0ab >8.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第34个数为( )A .595B .630C .1275D .1326二、填空题(本题共8小题,每题3分,共24分)9.比较大小:23-34-(填“>”或“<”)10.单项式323a b -的次数是.11.已知2a -3b =2,则8-6a+9b 的值是.12.已知多项式(3﹣b )x 5+xa +x ﹣6是关于x 的二次三项式,则a 2﹣b 2的值为 .13.在数轴上,如果点A 所表示的数是2-,那么到点A 距离等于6个单位长度的点所表示的数是 .14.已知数a b c 、、在数轴上的位置如图所示,化简:a b b c c a ---++= .15.定义如下运算程序,则输入4a =,2b =-时,输出的结果为 .16.观察下列图形:第1个图形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一共有18个小圆圈…,按此规律排列,则第n 个图形中小圆圈的个数是.三、解答题(本题共8小题,共52分)17.计算题:(1)()1235+-+--;(2)()()4211236éù--´--ëû;18.化简:(1)22221352x xy x xy --+;(2)223(21)(23)3m m m m ----+.19.先化简,再求值. ()()2222132412a b ab a b ab éù----+ëû,其中a ,b 满足()2210a b ++-=.20.老师在黑板上书写了一个正确的演算过程,随后用一张纸当住了一个二次三项式A ,形式如下:224153x x x x +-+=+-(1)求被挡住的二次三项式A ;(2)若2230x x -+=,求所挡的二次三项式的值.21.学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为()23a b +米,宽比长少()a b -米.(1)求护栏的总长度;(2)若3010a b ==,,每米护栏造价80元,求建此停车场所需的费用.22.给出新定义如下:()22f x x =-,()3g y y =+;例如:()22222f =´-=,()6633g -=-+=;根据上述知识,解下列问题:(1)若2x =-,3y =,则()()f x g y +=______;(2)若()()0f x g y +=,求23x y -的值;(3)若3x <-,化简:()()f x g x +.(结果用含x 的代数式表示)23.某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:班级1班2班3班4班实际购买数量a 33c21实际购买量与计划购买量的差值12b8-9-(1)直接写出a = ,b = ,c = ;(2)根据记录的数据可知4个班计划每班购书 本;(3)若每本书售价为25元,请计算这4个班整体购书的总花费是多少元?24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小明在草稿纸上画了一条数轴进行操作探究:操作一:(1)如图1,在数轴上,三个有理数从左到右依次是1-,m ,1m +,利用刻度尺或圆规,在数轴上画出原点O ;操作二:(2)折叠这条数轴所在纸面,若使1-表示的点与数3与表示的点重合,数m 表示的点与数2023-表示的点重合,则m = ;操作三:(3)从数轴上剪下9个单位长度(从1-到8)的部分(不考虑宽度),并把这条数轴沿数m 所在点竖直折叠,然后在重叠部分某处剪开,得到三条线段. 若这三条线段的长度之比为112∶∶,求m 的值.1.B【分析】此题考查了有理数的乘方,绝对值,多重符号化简和正数与负数的定义,先化简各数,再根据负数就是小于0的数,依据定义即可求解.【详解】解:()()()2020366,11,33,5125--=-=-=--=-Q ,\在()6--,()20201-,3-,0,()35-中,负数的个数有2个,故选:B .2.B【分析】根据同类项的定义:“所含字母相同,相同字母的指数也相同的单项式”,进行判断即可.【详解】解:由题意,与ab 是同类项的是13ab ;故选B .3.A【分析】先进行有理数的运算,再根据相反数的定义判断即可求解.【详解】解:A . -32=-9,(-3)2=9,是互为相反数,故此选项符合题意;B . -(-4)=4,|-4|=4,不是互为相反数,故此选项不符合题意;C . -(+5)=-5,+(-5 )=-5,不是互为相反数,故此选项不符合题意;D . -23=-8与(-2)3=-8,不是互为相反数,故此选项不符合题意.故选A .【点睛】此题主要考查有理数的运算,绝对值,相反数多重符号化简,乘方,相反数,解题的关键是熟知相反数的定义.4.D【分析】利用多项式的意义,多项式的项,次数,注意分析判定得出答案即可.【详解】A 、多项式1x p +是一次二项式,该选项错误;B 、单项式225m n -的系数为-25,次数为3,该选项错误;C 、多项式3327462xy x y xy --+的次数是6,该选项错误;D 、单项式a 的系数、次数都是1,该选项正确;故选:D .【点睛】本题考查了多项式.单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.5.C【分析】本题考查了数轴的应用,由所覆盖部分在0和3-之间,逐个判断即可.【详解】解:由图得,覆盖的区域为负半轴,且在0和3-之间,故覆盖的数可能是2-,故选:C .6.C【分析】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据题意给出三种品牌的面粉的质量波动范围,并求出任意两袋质量相差的最大数.【详解】解:∵0.30.20.10.10.20.3-<-<-<<<,∴从中任意拿出不同品牌的两袋,它们的质量最多相差:()0.30.20.5kg --=,故选:C .7.C【分析】根据a ,b 两数在数轴的位置依次判断所给选项的正误即可.【详解】解:根据a ,b 两数在数轴的位置,可得10,1a b -<<>,a b <,选项B 错误;则0a b +>,选项A 错误;0a b -<,选项C 正确;0ab <,选项D 错误,故选:C .【点睛】本题考查数轴的相关知识,利用数轴比较大小以及绝对值的定义等,正确理解相关概念以及运算法则是解题的关键.8.D【分析】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第34个能被3整除的数所在组,为原数列中第51个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()12232+´=,第③个图形中的黑色圆点的个数为:()13362+´=,第④个图形中的黑色圆点的个数为:()144102+´=,¼第n 个图形中的黑色圆点的个数为()12n n +,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,¼,其中每3个数中,都有2个能被3整除,34217¸=,17351´=,则第34个被3整除的数为原数列中第51个数,即515213262´=,故选:D 9.>【分析】本题考查有理数的大小比较,根据两个负数比较大小,绝对值大的反而小求解即可.【详解】解:∵2283312-==,3394412-==,891212<,∴2334->-,故答案为:>.10.4【分析】本题考查了单项式的次数的定义,解题的关键是根据单项式中的字母的指数的和,叫单项式的次数求解.【详解】解:单项式323a b -的次数是4,故答案为:4.11.2【分析】原式后两项提取3-变形后,将已知等式代入计算即可求出值.【详解】解:232a b -=Q ,\原式83(23)832862a b =--=-´=-=.故答案为:2.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.﹣5【分析】由题意,根据二次三项式的定义可知:3-b =0,a =2,代入原式即可求出答案.【详解】解:多项式是二次三项式所以最高次为2,而式子中含有x 5,所以它的系数为0,∴3﹣b =0,b =3,而剩余项中已知的没有2次,所以xa 为二次项,∴ a =2所以a 2﹣b 2=4-9=-5,故答案为:-5.【点睛】本题主要考查多项式的命名规则的运用.多项式的命名规则中的次数,一定是多项式中的各项中的最高次数.13.4或8-【分析】本题考查数轴,根据题意可知,到A 点距离等于6个单位长度的点在其左侧和右侧各有一个,据此可解决问题.【详解】解:由题知,到A 点距离等于6个单位长度的点在A 点左侧和右侧各有一个,Q 点A 表示的数是2-,\268--=-或264-+=.即到点A 的距离等于6个单位长度的点所表示的数是4或8-.故答案为:4或8-.14.2a-【分析】本题考查了绝对值的化简,先根据数轴上a 、b 、c 的位置确定a b -、b c -、c a +的符号,再根据绝对值的性质化简即可,解题的关键是要能根据数轴上点的位置确定各式子的符号.【详解】解:由数轴可得,0c a b <<<,∴0a b -<,0b c ->,0c a +<,∴原式()()b a b c c a éù=---+-+ëû,b a bc c a =--+--,2a =-,故答案为:2a -.15.2【分析】由程序框图将4a =,2b =-代入a b +计算可得答案.【详解】解:4a =Q ,2b =-,a b >,\输出结果为代入()422a b +=+-=.故答案为:2.【点睛】此题考查了代数式的求值与有理数的运算,熟练掌握运算法则是解本题的关键.16.n 2+3n【分析】分两部分:上面部分是由小圆圈围成的三角形,下面部分是小圆圈围成的正方形,由此分别计算出前4个图形的小圆圈的个数,得到规律,即可得第n 个图形中小圆圈的个数.【详解】观察图形得:第1个图形有12+3×1=4个圆圈,第2个图形有22+3×2=10个圆圈,第3个图形有32+3×3=18个圆圈,第4个图形有42+3×4=18个圆圈,…第n 个图形有n 2+3n 个圆圈,故答案为:n 2+3n .【点睛】本题规律性问题,主要考查用代数式表示图形类规律,学生分析问题、观察总结规律的能力,解题的关键是通过观察分析找出规律.17.(1)3-(2)136【分析】本题考查有理数的混合运算.(1)去绝对值,再进行加减运算即可;(2)先乘方,去括号,再进行乘法运算,最后算减法.熟练掌握有理数的运算法则,正确的计算,是解题的关键.【详解】(1)解:原式12353=-+-=-;(2)原式()17131291666=-´-=+=.18.(1)22122x xy+(2)23m m-【分析】本题考查了整式的加减运算.正确的合并同类项是解题的关键.(1)直接合并同类项即可;(2)先去括号,然后合并同类项即可.【详解】(1)解:22221352x xy x xy --+22122x xy =+;(2)解:223(21)(23)3m m m m ----+223632+33m m m m =---+23m m =-.19.25a b 12-,9【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:∵()2210a b ++-=,∴a+2=0,b-1=0,解得a=-2 b=1,()()2222132412a b ab a b ab éù----+ëû=222213+212a b ab a b ab ---+=25a b 12- 将a=-2 b=1代入原式得()25-2112´´-=9.【点睛】此题考查了整式的加减−化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(1)2364A x x =-+-(2)5【分析】此题主要考查了整式的加减运算,根据加减法的关系逆推出所挡的二次三项式是解题的关键.(1)根据题意确定出所挡的二次三项式即可;(2)根据2230x x -+=得出223x x -=-,再整体代入计算即可求出值.【详解】(1)解:由题意得:22(53)(41)A x x x x =+---+=225341x x x x -+-+-=2364x x -+-;(2)解:∵2230x x -+=,∴223x x -=-,2364x x \-+-=23(2)4x x ---=3(3)4-´--5=.21.(1)()411a b +米(2)建此停车场所需的费用为18400元.【分析】(1)直接利用整式的加减运算法则得出宽,进而得出答案;(2)利用(1)中所求,把已知数据代入得出答案.【详解】(1)解:由题意可得宽为:()()23234a b a b a b a b a b +--=+-+=+米,则护栏的总长度为:()2324a b a b +++2328a b a b=+++()411a b =+米;(2)解:由(1)得:当3010a b ==,时,原式4301110230=´+´=(米),∵每米护栏造价80元,∴2308018400´=(元),答:建此停车场所需的费用为18400元.【点睛】此题主要考查了整式的加减的应用,正确合并同类项是解题关键.22.(1)12(2)11(3)31x --【分析】(1)把相应的值代入新定义的运算中,结合有理数的相应的运算法则进行求解即可;(2)由非负数的性质可求得x 与y 的值,代入所求的式子运算即可;(3)根据绝对值的定义进行求解即可.【详解】(1)解:当2x =-,3y =时,()()f xg y +()22233=´--++426=--+66=+12=.故答案为:12.(2)∵()()0f x g y +=,∴2230x y -++=,∴220x -=,30y +=,解得:1x =,=3y -,23x y-()2133=´-´-29=+11=.(3)()3当3x <-时,∴220x -<,30x +<,∴()()f xg x +223x x =-++()()223x x =---+223x x =-+--31x =--.【点睛】本题考查有理数的混合运算,绝对值的定义和非负性,求代数式的值,列代数式,整式的加减等知识点.解答的关键是对相应的运算法则,绝对值的定义和非负性的掌握.23.(1)42,3+,22(2)30(3)这4个班整体购书的总花费2950元【分析】(1)由于4班实际购入21本,且实际购买量与计划购买量的差值为9-,即可得计划购书量为30,进而可求出a 、b 、c ;(2)根据题意,计划每班购买数量相同,由(1)即可得出答案;(3)求出购书总数,再根据每本书售价为25元,列式计算可得答案.本题考查了正数和负数,利用正数和负数表示相反意义的量,利用了有理数的混合运算,熟练掌握相关知识点是解题的关键.【详解】(1)解:由于4班实际购入21本,且实际购买量与计划购买量的差值为9-,则每班计划购书量为30(本),则301242a =+=,33303b =-=,30822c =-=,故答案为:42,3+,22;(2)解:根据题意,计划每班购买数量相同,由(1)得:计划每班购书30(本);故答案为:30;(3)解:实际买书的总数42332221118+++=(本),若每本书售价为25元,这4个班整体购书的总花费:118252950´=(元),答:这4个班整体购书的总花费为2950元.24.(1)见解析(2)2025(3)198或72或378【分析】本题考查了有理数和数轴的关系,及数轴上的折叠变换问题,(1)根据,1m m +相距一个单位,故原点O 在1-右边一个单位处,利用刻度尺测量即可得出答案;(2)根据对称性可列出方程计算即可;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x ,由题意可得:9AD =,根据三条线段的长度之比为112∶∶,设每一份为a ,可列29a a a ++=,解得: 94a =,如图1,当112AB BC CD =::::时,设2AB a BC a CD a ===,,,得出AB BC CD 、、的值,计算得x 的值,同理可得出如图2、3对应的x 的值.【详解】解:(1),1m m +Q 相距一个单位,故原点O 在1-右边一个单位处,如图:原点O 即为所求;(2)由折叠可知:()202313m +-=-+,解得:2025m =;故答案为:2025;(3)设折痕处对应的点所表示的数是x ,如图1,由题意可得:9AD =,Q 三条线段的长度之比为112∶∶,设每一份为a ,29a a a \++=,解得: 94a =,当112AB BC CD =::::时,则2AB a BC a CD a ===,,,∴94AB =, 94BC =, 92CD =, 991912448x \=-++¸=,如图2,当121AB BC CD =::::时,则2AB a BC a CD a ===,,,∴94AB =, 92BC =, 94CD =,99712422x \=-++¸=,如图3,当211AB BC CD =::::时, 则2AB a BC a CD a ===,,,∴92AB =, 94BC CD ==,993712248x \=-++¸=,综上所述:则折痕处对应的点所表示的数可能是198或72或378.。
河南省七年级(上)期中数学试卷(A卷)
七年级(上)期中数学试卷(A卷)一、选择题(本大题共10小题,共30.0分)1.下列各数中,3的相反数是()A. 3B. −3C. 13D. −132.化简-(-12)的结果是()A. −2B. −12C. 12D. 23.四个互不相等的整数的积为4,那么这四个数的和是()A. 0B. 6C. −2D. 24.观察算式(-4)×17×(-25)×28,在解题过程中,能使运算变得简便的运算律是()A. 乘法交换律B. 乘法结合律C. 乘法交换律、结合律D. 乘法对加法的分配律5.数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A. 点AB. 点BC. 点CD. 点D6.-2018的倒数是()A. 2018B. −12018C. 12018D. −20187.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A. 3.16×109B. 3.16×107C. 3.16×108D. 3.16×1068.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A. 互为相反数B. 互为倒数C. 相等D. 无法确定9.当x=-3时,代数式x2-3x-7的值为()A. −25B. −7C. 8D. 1110.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则代数式a2018+2016b+c2018的值为()A. 2018B. 2016C. 2D. 0二、填空题(本大题共5小题,共15.0分)11.比较大小:-13______-2512.下列式子23a+b,S=12a b,5,m,8+y,m+3=2,23<57中,代数式有______个.13.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积最大的是______.14.某单位购进A、B、C三种型号的笔记本60本,它们的单价分别是25元、20元和15元,共计花费1250元,若其中有A种中型号的笔记本n本,则B种型号的有____本.(结果用含n的代数式表示)15.如图,是一个简单的数值计算程序,当输入的x的值为5,则输出的结果为______.三、计算题(本大题共3小题,共26.0分)16.(1)-20+(-14)-(-18)-13(2)4-8×(-12)3(3)(-34−59+712)÷13617.(1)1-43×(34−78)(2)7×2.6+7×1.5-4.1×8(3)312+223+(-12)-(-13)18.新学期开学,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给的数据信息,解答下列问题.(1)一本数学课本的高度是多少厘米?(2)讲台的高度是多少厘米?(3)请写出整齐叠放在桌面上的x本数学课本距离地面的高度的代数式(用含有x 的代数式表示)(4)若桌面上有56本同样的数学课本,整齐叠放成一摞,从中取走18本后,求余下的数学课本距离地面的高度.四、解答题(本大题共5小题,共49.0分)19.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(-5),看谁算的又快又对,有两位同学的解法如下:小明:原式=-124925×5=-12495=-24945;小军:原式=(49+2425)×(-5)=49×(-5)+2425×(-5)=-24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:191516×(-8)20.车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?21.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):()接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?22.已知a、b互为相反数,非零数b的任何次幂都等于它本身.(1)求a、b;(2)求a2017+a2018;(3)求ab(b+2)+a(b+2)(b+4)+…+a(b+2016)(b+2018)23.观察下面的等式:52-1=-|-12+2|+3;3-1=-|-1+2|+3;1-1=-|1+2|+3;(-12)-1=-|52+2|+3;(-2)-1=-|4+2|+3回答下列问题:(1)填空:______-1=-|5+2|+3;(2)已知2-1=-|x+2|+3,则x的值是______;(3)设满足上面特征的等式最左边的数为y,求y的最大值,并写出此时的等式.答案和解析1.【答案】B【解析】解:3的相反数是-3.故选:B.根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.此题主要考查相反数的意义,熟记相反数的意义是解题的关键.2.【答案】C【解析】解:-(-)=,故选:C.根据相反数的意义求解即可.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.【答案】A【解析】解:∵1×2×(-1)×(-2)=4,∴这四个互不相等的整数是1,-1,2,-2,和为0.故选:A.根据有理数的乘法运算法则解答即可.本题考查了有理数的乘法,是基础题,熟记有理数的乘法运算法则并把9正确分解因式是解题的关键.4.【答案】C【解析】解:原式=[(-4)×(-25)](×28)=100×4=400,所以在解题过程中,能使运算变得简便的运算律是乘法交换律、结合律.故选:C.利用交换律和结合律计算可简便计算.本题主要考查有理数的乘除,解题的关键是熟练掌握有理数的乘除运算法则和运算律.5.【答案】A【解析】解:∵绝对值等于2的数是-2和2,∴绝对值等于2的点是点A.故选:A.根据绝对值的含义和求法,判断出绝对值等于2的数是-2和2,据此判断出绝对值等于2的点是哪个即可.此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.6.【答案】B【解析】解:-2018的倒数是:-.故选:B.直接利用倒数的定义进而分析得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.7.【答案】C【解析】解:316 000 000用科学记数法可表示为3.16×108,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】A【解析】解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.本题考查了代数式的换算,比较简单,容易掌握.9.【答案】D【解析】解:当x=-3时,x2-3x-7=(-3)2-3×(-3)-7=9+9-7=11.故选:D.把x=-3代入代数式进行计算即可得解.本题考查了代数式求值,准确计算是解题的关键.10.【答案】C【解析】解:根据题意知a=-1、b=0、c=1,则原式=(-1)2018+2016×0+12018=1+0+1=2,故选:C.根据已知求出a=-1,b=0,c=1,代入求出即可.本题考查了绝对值、倒数、负数和求代数式的值等知识点,能根据题意求出a、b、c的值是解此题的关键.11.【答案】>【解析】解:直接利用负有理数的比较方法(绝对值大的反而小)进行比较.∵|-|<|-|,∴->-.根据有理数大小比较的方法可得在负有理数中,绝对值大的反而小.同号有理数比较大小的方法(正有理数):绝对值大的数大.(1)作差,差大于0,前者大,差小于0,后者大;(2)作商,商大于1,前者大,商小于1,后者大.如果都是负有理数的话,结果刚好相反,且绝对值大的反而小.如果是异号,就只要判断哪个是正哪个是负就行,如果都是字母的,就要分情况讨论;如果是代数式的话要先求出各个式的值,再比较.12.【答案】4【解析】解:式子a+b,S=b,5,m,8+y,m+3=2,<中,代数式有:a+b,m,8+y,5共4个.故答案为:4.利用代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或者一个字母也是代数式,进而得出答案.此题主要考查了代数式,正确把握定义是解题关键.13.【答案】24【解析】解:∵(-4)×(-6)=24>3×5.故答案为:24.两个数相乘,同号得正,异号得负,且正数大于一切负数,所以找积最大的应从同号的两个数中寻找即可.此题考查的知识点是有理数的乘法及有理数大小比较,关键要明确不为零的有理数相乘的法则:两数相乘,同号得正,异号得负,并把绝对值相乘.14.【答案】(70-2n)【解析】【分析】此题考查了列代数式,解题的关键是读懂题意,找出之间的等量关系,列出算式.设B种型号的有x本,根据A、B、C三种型号的价格和数量列出算式,再进行整理即可得出答案.【解答】解:设B种型号的有x本,根据题意得:25n+20x+15(60-n-x)=1250,解得:x=70-2n,则B种型号的有(70-2n)本.故答案为(70-2n).15.【答案】32【解析】解:把x=5代入得:[5-(-1)2]÷(-2)=(5-1)÷(-2)=-2<0,把x=-2代入得:[-2-(-1)2]÷(-2)=(-2-1)÷(-2)=>0,则输出的结果为.故答案为:.把x=5代入数值计算程序中计算,以此类推,判断结果为正数,输出即可.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:(1)-20+(-14)-(-18)-13=-20-14+18-13=-47+18=-29;(2)4-8×(-12)3=4-8×(-18)=4+1=5;(3)(-34−59+712)÷136=(-34−59+712)×36=-27-20+21=-26.【解析】(1)先将减法转化为加法,再根据加法运算律以及有理数的加法法则计算即可;(2)先算乘方,再算乘法,最后算加法即可;(3)先将除法转化为乘法,再利用分配律计算即可.本题考查了有理数的混合运算,其顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17.【答案】解:(1)1-43×(34−78)=1-64×(-18)=1+8=9;(2)7×2.6+7×1.5-4.1×8=7×(2.6+1.5)-4.1×8=7×4.1-4.1×8=(7-8)×4.1=-4.1;(3)312+223+(-12)-(-13)=312+223-12+13=3+3=6.【解析】(1)先算乘方与括号内的加法,再算乘法,最后算加法即可;(2)两次利用分配律计算即可;(3)先将减法转化为加法,再根据加法运算律以及有理数的加法法则计算即可.本题考查了有理数的混合运算,其顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.【答案】解:(1)由题意可得,一本数学课本的高度是:(88-86.5)÷3=1.5÷3=0.5(厘米),答:一本数学课本的高度是0.5厘米;(2)讲台的高度是:86.5-3×0.5=86.5-1.5=85(厘米),即讲台的高度是85厘米;(3)整齐叠放在桌面上的x本数学课本距离地面的高度是:(85+0.5x)厘米;(4)余下的数学课本距离地面的高度:85+(56-18)×0.5=85+38×0.5=85+19=104(厘米),即余下的数学课本距离地面的高度是104厘米.【解析】(1)根据图形可以求得一本数学课本的高度;(2)根据图形可以求得讲台的高度;(3)根据图形可以用代数式表示出整齐叠放在桌面上的x本数学课本距离地面的高度;(4)根据题意可以求得余下的数学课本距离地面的高度.本题考查代数式求值、列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.【答案】解:(1)小军解法较好;(2)还有更好的解法,492425×(-5)=(50-125)×(-5)=50×(-5)-125×(-5)=-250+15=-24945;(3)191516×(-8)=(20-116)×(-8)=20×(-8)-116×(-8)=-160+12=-15912.【解析】(1)根据计算判断小军的解法好;(2)把49写成(50-),然后利用乘法分配律进行计算即可得解;(3)把19写成(20-),然后利用乘法分配律进行计算即可得解.本题考查了有理数的乘法,主要是对乘法分配律的应用,把带分数进行适当的转化是解题的关键.20.【答案】解:(1)车间工人把2.60m看成了2.6m,近似数2.6m的要求是精确到0.1m;而近似数2.60m的要求是精确到0.01m,所以轴长为2.60m的车间工人加工完原轴的范围是2.595m≤x<2.605m,(2)由(1)知原轴的范围是2.595m≤x<2.605m,故轴长为2.56m与2.62m的产品不合格.【解析】(1)根据近似数的精确度说明,近似数精确到哪一位,应当看末位数字实际在哪一位;(2)根据原轴的范围是2.595m≤x<2.605m,于是得到轴长为2.56m与2.62m的产品不合格.本题考查了近似数及有效数字,小数的位数不同,它们表示的计数单位就不相同,意义也不相同.21.【答案】解:(1)5+2+(-4)+(-3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的南边10千米处.(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【解析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.22.【答案】解:(1)∵a、b互为相反数,非零数b的任何次幂都等于它本身,∴a=-1,b=1;(2)当a=-1时,a2017+a2018=(-1)2017+(-1)2018=-1+1=0;(3)当a=-1,b=1时,原式=-1×(11×3+13×5+…+12017×2019)=-1×12×(1-13+13-15+…+12017-12019)=-12×20182019=-10092019.【解析】(1)依据相反数、有理数的乘方法则可求得a、b的值;(2)将a的值代入进行计算即可;(3)将a、b的值代入,然后依据拆项裂项法即可.本题主要考查数字的变化规律,解题的关键是熟练掌握相反数的性质、有理数的乘方及裂项求和的计算方法.23.【答案】-3 0【解析】解:观察可知:a-1=-|2-a+2|+3,则(1)-3-1=-|5+2|+3;(2)已知2-1=-|x+2|+3,则x的值是0;(3)由a-1=-|2-a+2|+3,可得|4-a|=4-a,则4-a≥0,解得a≤4,即y的最大值是4,此时的等式是4-1=-|-2+2|+3.故答案为:-3;0.(1)根据a-1=-|2-a+2|+3即可求解;(2)由(1)的规律即可求解;(3)由(1)可得|4-a|=4-a,根据非负数的性质即可求解.考查了有理数的减法,非负数的性质,关键是得到算式的特征是a-1=-|2-a+2|+3.。
24-25学年七年级数学上学期期中测试卷(无锡专用,测试范围:苏科版2024七上第1章-第3章)考试
2024-2025学年七年级数学上学期期中模拟卷(无锡专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第3章。
5.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2-的相反数是( )A .2B .12C .12-D .2-2.下列计算正确的是( )A .278a a a +=B .862y y -=C .222325x y x y x y +=D .325a b ab+=3.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出1000元记作1000-元,那么1080+元表示( )A .支出80元B .收入 80元C .支出1080元D .收入1080元4.单项式347πa b c 的系数和次数分别是( )A .7,4B .7,8C .7π,4D .7π,85.在4+,73, 3.14-,0,0.5中,表示正分数的有( )A .0个B .1个C .2个D .3个6.下列各选项中的两个单项式,不是同类项的是 ( )A .23x y 与22yx -B .22ab 与2ba -C .3xy 与5xyD .23a 与32a7.将数轴上一点A 沿数轴向左平移7单位到点B ,再由B 向右平移6个单位到点C ,而C 为数轴上表示2的点,则点A 表示的数是( )A .0B .1C .2D .38.若1230x y z -+++-=.则x y z ++的值为( )A .2B .2-C .0D .69.有一个数值转换器,其工作原理如图所示,若输入2-,则输出的结果是( )A .8-B .6-C .4-D .2-10.如图,6张全等的小长方形纸片放置于矩形ABCD 中,设小长方形的长为a ,宽为()b a b >,若要求出两块黑色阴影部分的周长差,则只要测出下面哪个数据( )(小蜜蜂提醒:小长方形有部分重叠)A .aB .bC .a b +D .a b-第Ⅱ卷二、填空题:本题共8小题,每小题3分,共24分。
吉林省2021版七年级上学期数学期中试卷A卷
吉林省2021版七年级上学期数学期中试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·顺义期中) 在-3,-1,2,0这四个数中,最小的数是()A . -3B . -1C . 2D . 02. (2分)实数a,b在数轴上的位置如图所示,则下列结论正确的是()A . a+b>0B . a-b>0C . a•b>0D . >03. (2分) (2019七上·临漳期中) 有理数a,b在数轴上的位置如图所示,则在下列结论中正确的个数有(),,,A . 1个B . 2个C . 3个D . 4个4. (2分) (2019七上·德清期末) 据相关报道,开展精准扶贫工作五年以来,我国约有56000000人摆脱贫困,将56000000用科学记数法表示是()A . 56×106B . 0.56x108C . 5.6×106D . 5.6×1075. (2分) (2018七上·鄞州期中) 下列说法正确的是().A . 如果,那么B . 如果,那么C . 如果,那么D . 如果,那么6. (2分) (2020七上·莆田期末) 下列各组中的两个单项式,属于同类项的是()A . 与aB . 与C . 与D . a与b7. (2分)方程x﹣3=2x﹣4的解为()A . 1B . -1C . 7D . -78. (2分) (2020七上·扎鲁特旗期末) -|﹣3|=()A . 3B . -3C .D .9. (2分)已知(,3)和关于原点对称,则的值为()A . -1B .C . -D . 110. (2分) (2019七上·万州月考) 万州二中初一年级小高同学为庆祝建国七十周年和建校八十周年,用五角星按一定规律摆出如下图案,则第9个图案需()颗五角星。
吉林省2021版七年级上学期数学期中考试试卷A卷
吉林省2021版七年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018七上·北京月考) 数轴上一点A,一只蚂蚁从A出发向右爬了4个单位长度到了原点,则点A所表示的数是()A . 4B . ﹣4C . ±4D . ﹣22. (2分) |﹣32|的值是()A . -3B . 3C . 9D . -93. (2分) -4的绝对值是()A . 2B . 4C . -4D . 164. (2分)在|﹣1|,﹣|0|,(﹣2)3 ,﹣|﹣2|,﹣(﹣2)这5个数中,负数共有()A . 2个B . 3个C . 4个D . 5个5. (2分) (2020七上·未央期末) 下列描述不正确的是()A . 单项式﹣的系数是﹣,次数是 3 次B . 用一个平面去截一个圆柱,截面的形状可能是一个长方形C . 过七边形的一个顶点有 5 条对角线D . 五棱柱有 7 个面,15 条棱6. (2分) (2018七上·忻城期中) 下列运算:①7﹣(﹣4)=3,②(﹣3)﹣(﹣5)=2,③0+(﹣3)=0,④0﹣(﹣7)=7,正确的是()A . ①②B . ②④C . ①③D . ①②④7. (2分)下列说法不正确的是()A . 倒数是它本身的数是±1B . 相反数是它本身的数是0C . 绝对值是它本身的数是0D . 平方是它本身的数是0和18. (2分)小明测得一周的体温并登记在下表:(单位:℃)星期日一二三四五六体温(℃)36.636.737.037.336.836.937.1这一周内小明的最高体温是()℃A . 36.9B . 37.1C . 37.0D . 37.3二、填空题 (共9题;共14分)9. (1分) (2020七上·泉港月考) 若亏损3万元记作-3万元,那么盈利5万元记作________万元.10. (2分) (2016七上·瑞安期中) 如果零上6℃记作+6℃,那么零下4℃记作________.11. (2分) (2020七上·东莞月考) 的相反数是________,的倒数是________.12. (1分)(2018·永州) 截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为________.13. (1分) (2018七上·广东期中) 若 x 的相反数是2,,则的值为________.14. (2分)(2018·正阳模拟) +(﹣2)0=________.15. (1分)数轴上一个点先向左移动2个单位长度,再向右移动6个单位长度,终点所表示的数是-2,那么原来的点表示的数是________16. (2分) (2019七上·黄岩期末) m,n是有理数,它们在数轴上的对应点的位置如图所示,化简|n﹣m|的结果是________.17. (2分) (2018七上·鼎城期中) 计算: ________.三、解答题 (共6题;共65分)18. (5分)一个几何体的主视图和左视图如图所示,它是什么几何体?请你补画出这个几何体的俯视图.19. (5分)已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇。
吉林省2021年七年级上学期数学期中试卷A卷
吉林省2021年七年级上学期数学期中试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017九上·长春月考) 的相反数是()A . 3B . ﹣3C .D .2. (2分) (2020七上·贵阳月考) 下列说法错误的有()①最大的负整数是-1;②绝对值是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示-a的点一定在原点的左边;⑤在数轴上7与9之间的有理数是8.A . 1个B . 2个C . 3个D . 4个3. (2分)(2017·正定模拟) 据统计,2016年石家庄外环线内新栽植树木6120000株,将6120000用科学记数法表示为()A . 0.612×107B . 6.12×106C . 61.2×105D . 612×1064. (2分) (2020七上·龙岗月考) 下列说法正确的是()A . 对任何有理数a总有|a|=aB . 两个有理数的和一定大于每一个加数C . 任何数的平方总是正数D . 正数的任何正整数幂一定是正数5. (2分)(2020·哈尔滨模拟) 下列运算正确的是()A .B .C .D .6. (2分)下列运算中,正确的是()A . x2y﹣yx2=0B . 2x2+x2=3x4C . 4x+y=4xyD . 2x﹣x=17. (2分)在实数中,有()A . 最大的数B . 最小的数C . 绝对值最大的数D . 绝对值最小的数8. (2分) (2020七上·淮南期中) 多项式与多项式相减后,不含二次项,则的值为()A . 4B . 1C . 0D .二、填空题 (共8题;共8分)9. (1分) (2019七上·平邑期中) 临沂市蒙山旅游区11月份某天最高气温是,最低气温是,那么这天的温差(最高气温与最低气温的差)是________10. (1分) (2021七上·杭州期末) 如果与的和仍是单项式,则 ________.11. (1分)(2018·来宾模拟) 若△ABC三条边长为a,b,c,化简:|a﹣b﹣c|﹣|a+c﹣b|=________.12. (1分) (2019八上·潮安期末) 用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为________.13. (1分) (2020七上·九江月考) 已知,则 ________.14. (1分) (2019六下·上海月考) 计算:-(- )2=________.15. (1分) (2019七上·深圳期中) 化简: ________.16. (1分) (2020八下·香洲期中) 如果关于x的一元二次方程的一个解是x=1,则2020-a-b________.三、解答题 (共8题;共71分)17. (10分) (2021七上·海陵期末) 计算:(1) 14-25+13(2)18. (10分) (2021七上·陇县期末) 化简:(1) 5(3a2b﹣ab2)﹣4(﹣ab2+3a2b);(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn].19. (5分)有理数a、b、c在数轴上的位置如图,化简:|a+b|-|b-1|-|a-c|-|1-c|.20. (5分) (2019七上·海南月考) 计算(1)(﹣8)﹣(﹣5)+(﹣2)(2)﹣12×2+(﹣2)2÷4﹣(﹣3)(3)化简求值:3(ab2﹣2a2 b)﹣2(ab2﹣a2 b),其中a=-1,b=2.21. (6分) (2020七上·浏阳期末) 对于任意有理数,可以组成两个有理数对与.我们规定:.例如:.根据上述规定,解决下列问题:(1)有理数对 ________;(2)若有理数对,则 ________;(3)当满足等式中的x是整数时,求整数y的值.22. (10分) (2017七上·竹山期中) 某班组织去方特参加秋季社会实践活动,其中第一小组有x人,第二小组的人数比第一小组人数的少30人,如果从第二小组调出10人到第一小组,那么:(1)两个小组共有多少人?(2)调动后,第一小组的人数比第二小组多多少人?23. (10分) (2019七上·巴州期中) 小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m元的价格购进100个手机充电宝,然后每个加价n元到市场出售(结果用含m , n的式子表示) (1)求售出100个手机充电宝的总售价为多少元?(2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.(注:售价的8折即按原售价的80%出售)①她的总销售额是多少元?②假如不采取降价销售,且也全部售完,她将比实际销售多盈利多少元?24. (15分) (2020七上·盐城期中) A、B两处粮库分别有水稻100 t和400 t,全部运送到C、D两米厂加工,而C、D米厂分别能加工水稻150 t和350 t;已知从A、B两处米厂的运价如下表:(1)若从B粮库运到C地的水稻为x(50<x<150)吨,则从B粮库运到D地的水稻为________t;从A粮库将水稻运往D地的运输费用为________元;(2)用含x的式子表示出总运输费.(要求:列出算式,并化简)(3)当x=100时,求总运输费用.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共8分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共71分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉祥初中七年级上册期中考试数学试卷(A 卷) 满分:120分 时量:120分钟 一、选择题(每小题4分,共28分)。
1、下列说法中,错误的有 ( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数。
A 、1个 B 、2个 C 、3个 D 、4个 2、下列说法正确的是 ( ) A 、符号不同的两个数互为相反数 B 、一个有理数的相反数一定是负有理数 C 、432与2.75都是411-的相反数 D 、0没有相反数 3、已知a -=a ,则a 是 ( ) A 、正数 B 、负数 C 、负数或0 D 、正数或0 4、用“>”连接032,,---正确的是 ( ) A 、032>-->- B 、302-->>- C 、023<-<-- D 、203-<<-- 5、下列说法正确的是 ( ) A 、两个有理数相加,和一定大于每一个加数 B 、异号两数相加,取较大数的符号 C 、同号两数相加,取相同的符号,并把绝对值相加 D 、异号两数相加,用绝对值较大的数减去绝对值较小的数 6、两个互为相反数的数之积 ( ) A 、符号必为负 B 、一定为非正数 C 、一定为非负数 D 、符号必为正 7、()52-表示 ( ) A 、5与-2相乘的积 B 、-2与5相乘的积 C 、2个5相乘的积的相反数 D 、5个2相乘的积 二、填空题(每小题4分,共32分) 8、小明、小芳同时从A 处出发,如果小明向东走50米记作+50米,则小芳向
西走70米记作_________米。
9、数轴上距离原点2.4个单位长度的点有 个,它们分别是 。
10、3
7-的相反数是_______,它的倒数是_________。
11、绝对值小于2的非负整数有__________________。
装
订
线
内
不
要
答
题
、
装
订
线
外
不
要
写
姓
名
等
,
违
者
试
卷
记
零
分
……
…
…
⊙…
…⊙
……
………
…………
………⊙
……⊙
…………
…………………
…⊙…
…⊙
……
………
……
…
……
…
⊙
…
…⊙………… 姓名______
____
班级____
___
学号__
___
__
12、27ºC 比-5ºC 高_______ºC ,比5ºC 低9ºC 的温度 是_______ºC 。
13、比较大小:|5.2|--______2
)5(-。
14、用代数式表示:买一个球拍需要a 元,买一根跳绳需要b 元,则分别购买50个球拍和50根跳绳,共需 元。
15、用科学记数法表示39万千米是____________千米。
三、解答题(共60分)
16、计算题(每小题5分,共20分)
(1)、23-37+3-52 (2)、)5
1(30)2132(-÷⨯-
(3)、])3(2[141223--⨯- (4)、232)2
12(|18.0|)4(2⨯-+-÷-
17、(10分)画一根数轴,用数轴上的点把如下的有理数-2,-0.5,0,-4表示 出来,并用“<”把它们连接起来。
18、(10分)用简便方法计算: (1)34.075)13(317234.03213⨯--⨯+⨯-⨯- (2))60()12
5157514131(-⨯+-+--
19、(10分)已知a 、b 互为相反数,m 、n 互为倒数,求mn m
n b a -+)(的值。
20、 (10分)振子从一点A 开始左右来回振动8次,如果规定向右为正,向左为 负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7.
(1)求振子停止时所在位置距A 点有多远?
(2)如果每毫米需时间0.02秒,则共用时间多少秒?。