七年级上册数学试卷全册

合集下载

七年级数学上册题库28套试卷(含答案)

七年级数学上册题库28套试卷(含答案)

数学寒假作业第一天一、(-1275420361-+-)×(-15×4)=10+9-48+35=6二、()⨯⨯-73187(-2.4) =52 三、721231x x -=++3-=x四、322331=-++x x 2=x五、化简: 7-3x-4x 2+4x-8x 2-15(1) -12x 2+x-8六、某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场? 设胜了x 场,可列方程:2x+(8-x)=13,解之得x=5七、一批树苗按下列方法依次由各班领取:第一班取100棵和余下的 ,第二班取200棵和余下的 ,第三班取300棵和余下的 ,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x 棵,由第一、第二两个班级的树苗数相等可列方程:100+ (x -100)=200+ 〔x -200-100- ·(x -100)〕,也可设有x 个班级,则最后一个班级取树苗100x 棵,倒数第二个班级先取100(x -1)棵,又取“余下的 ”也是最后一个班级的树苗数的 ,由最后两班的树苗相等,可得方程:100(x -1)+ x=100x 若注意到倒数第二个班级先取的100(x -1)棵比100x 棵少100棵,即得 =100,还可以设每班级取树苗x 棵,得 =100.八、32. 如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若AB=18cm,求DE 的长;(2)若CE=5cm,求DB 的长.32. (1)∵C 是AB 的中点, ∴AC=BC=12AB=9(cm). ∵D 是AC 的中点, ∴AD=DC=12AC=92(cm). ∵E 是BC 的中点, ∴CE=BE=12BC=92(cm) 又∵DE=DC+CE, ∴DE=92+92=9(cm). (2)由(1)知AD=DC=CE=BE, ∴CE=13BD. ∵CE=5cm, ∴BD=15(cm)九、33.如图3-12,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE, ∠COF=34°,求∠BOD 的度数.33.解:如答图,∵∠COE=90°,∠COF=34°, ∴∠EOF=90°-34°=56°.∵OF 平分∠AOE, ∴∠AOE=∠EOF=56°.∴∠AOC=∠AOF-∠COF=56°-34°=22°.∵∠AOC=∠BOD(对顶角相等), ∴∠BOD=22°. B C B A E O D F十、一次远足活动中,一部分人步行,速度为5公里/小时,另一部分乘一辆汽车,两部分人同地出发。

最新冀教版七年级数学上册全册试卷7套 附答案

最新冀教版七年级数学上册全册试卷7套  附答案

冀教版七年级数学上册第一章达标测试卷一、选择题(每题2分,共28分)1.如果零上15 ℃记作+15 ℃,那么零下9 ℃可记作( )A.-9 ℃ B.+9 ℃C.+24 ℃ D.-6 ℃2.下列各式正确的是( )A.|5|=|-5| B.-|5|=|-5|C.-5=|-5| D.-(-5)=-|5|3.一种巧克力的质量标识为“(100±0.25)g”,则下列合格的是( )A.99.80 g B.100.30 gC.100.51 g D.100.70 g4.若有理数a,b在数轴上所对应的点如图所示,则下列大小关系正确的是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-1.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-1.tif" \* MERGEFORMATINETA.-a<0<b B.-b<a<0C.a<0<-b D.0<b<-a5.A,B,C三个地方的海拔分别是124 m,38 m,-72 m,那么最低点比最高点低( )A.196 m B.-196 mC.110 m D.-110 m6.-1的倒数是( )A.- B. C.- D.7.下列式子中,成立的是( )A.-23=(-2)3B.(-2)2=-22C.= D.32=3×28.下列各组数中,①-(-2)和-|-2|;②(-1)2和-12;③23和32;④(-2)3和-23.互为相反数的有( )A.④ B.①② C.①②③ D.①②④9.已知有理数a,b,c在数轴上对应的点如图所示,则下列结论正确的是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-1.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-1.tif" \* MERGEFORMATINETA.a+b<0 B.b-c<0 C.bc>0 D.abc<010. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\易错题灰.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\易错题灰.tif" \* MERGEFORMATINET 已知|x|=5,|y|=2,且|x+y|=-x-y,则x-y的值为( )A.±3 B.±3或±7C.-3或7 D.-3或-711. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\荣德原创灰.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\荣德原创灰.tif" \* MERGEFORMATINET把数轴折叠,折点A表示数1,数轴上B,C两点重合,点B,C分别表示数b,c,下列说法正确的是( )A.b与c互为相反数 B.b与c互为倒数C.若b=-1,则c=3 D.b+c=112.如图,半径为1的圆沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-3.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-3.tif" \* MERGEFORMATINETA.-2π B.3-2πC.-3-2π D.-3+2π13.已知|a|=5,|b|=2,且b<a,则a+b的值为( )A.3或7 B.-3或-7 C.-3 或7 D.3或-714.观察下列算式,用你发现的规律得出22 021的个位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.8二、填空题(每题3分,共12分)15.比较大小:-0.6________-.16.计算:4+(-2)2×5=________.17.【新题】已知a,b,c三个数在数轴上对应点的位置如图所示,有下列式子①a-c,②a+b, ③ac,④++,其中结果为负数的有________.(填序号)INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-2.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-2.tif" \* MERGEFORMATINET18.按照如图所示的操作步骤,若输入的值为-3,则输出的值为________. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-3.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-3.tif" \* MERGEFORMATINET三、解答题(19-20题每题8分,21-23题每题10分,24题14分,共60分) 19.(1)2--+;(2)(-24)×.20.把下列各数表示在数轴(如图)上,然后把这些数用“>”连接起来.0,1,-3,-(-0.5),-,+.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-4.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-4.tif" \* MERGEFORMATINET21. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\荣德原创灰.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\荣德原创灰.tif" \* MERGEFORMATINET河北省某医疗器械进出口公司,出口的某品牌治疗仪由于运费、进口税等影响,针对不同的国家,售价不完全相同,若以2万元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:售出台数763545售价(万元)+0.1+0.3-0.20-0.1-0.2(1)求这批治疗仪的总售价.(2)若这批治疗仪的生产成本为每台1.9万元,另外还需各种费用共3万元,售完后该公司盈利或亏损多少万元?22.王红有5张写着数字的卡片,如图,请按要求抽出卡片,完成下列各题.(第22题)(1)从中取出2张卡片,使这2张卡片上的数字乘积最小.(2)从中取出2张卡片,使这2张卡片上的数字相除商最大.(3)从中取出除以外的4张卡片,将这4张卡片上的数字进行加、减、乘、除或乘方等混合运算,使结果为24(注:每个数字只能用一次,如:23×[1-(-2)]),请另写出一种符合要求的运算式子:________.23.A,B两地修建一条东西走向的笔直的铁路,为保障施工任务顺利完成,工程队负责人的巡察车从8:00开始来回奔波于各个施工地点,若他从A出发,规定向东为正,向西为负,到13:00他的行车里程(单位:k m)如下:+15,-4,+5,-1,+10,-3,-2,+12,+4,-10,+6.(1)到13:00,他的巡察车在出发点A的什么方向?距出发点A多远?(2)若巡察车耗油量为a L/k m,从8:00到13:00他的巡察车共耗油多少升?24.(1)如图,在数轴上标出数-4.5,-2,1,3.5所对应的点A,B,C,D;INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-6.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-6.tif" \* MERGEFORMATINET(2)C,D两点间的距离为______,B,C两点间的距离为__________;(3)数轴上有两点M,N,点M表示的数为a,点N表示的数为b,那么M,N两点间的距离为________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动,已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,设运动时间为t秒.①当t为何值时,P,Q两点重合?②当t为何值时,P,Q两点间的距离为1?答案一、1.A 2.A 3.A 4.B 5.A 6.C 7.A 8.B 9.C10.D 提示:因为|x|=5,|y|=2,所以x=±5,y=±2.又|x+y|=-x-y,所以x+y<0,则x=-5,y=2或x=-5,y=-2,所以x-y=-7或-3,故选D.11.C12.B 提示:由题意得AB=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,因为点B在原点的左侧,所以点B所表示的数为-(2π-3)=3-2π,故选B.13.A 14.A二、15.> 16.24 17.①②④ 18.55三、19.解:(1)原式=+=-6-12=-18.(2)原式=(-24)×+(-24)×-(-24)×=(-8)+(-6)-(-3)=-11.20.解:如图所示:INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\jda-1.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\jda-1.tif" \* MERGEFORMATINET根据数轴的特点把这些数用“>”连接起来为1>-(-0.5)>0>->-3>+.21.解:(1) 7×0.1+6×0.3+3×(-0.2)+5×0+4×(-0.1)+5×(-0.2)+2×(7+6+3+5+4+5)=0.7+1.8-0.6+0-0.4-1+60=60.5(万元).答:这批治疗仪的总售价为60.5万元.(2)1.9×(7+6+3+5+4+5)+3=60(万元),60.5-60=0.5(万元).答:售完后该公司盈利0.5万元.22.解:(1)取,,乘积最小为-6.(2)取,,商最大为3.(3)(答案不唯一)[3-(-2)]2-1=2423.解:(1)(+15)+(-4)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-10)+(+6)=32(k m),答:到13:00,他的巡察车在出发点A的东边,距出发点A 32 k m.(2)|+15|+|-4|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-10|+|+6|=72(k m),a×72=72a(L).答:从8:00到13:00他的巡察车共耗油72a L.24.解:(1)如图所示.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\DA-2+.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\ 7JJ数学河北专版\\word\\DA-2+.tif" \* MERGEFORMATINET(2)2.5; 3 (3)|a-b|(4)①依题意有2t-t=3,解得t=3.故当t为3时,P,Q两点重合.②依题意有2t-t=3-1或2t-t=3+1,解得t=2或t=4.故当t为2或4时,P,Q两点间的距离为1.冀教版七年级数学上册第二章达标测试卷一、选择题(每题2分,共28分)1.在下列立体图形中,只要两个面就能围成的是( )A. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ J-5.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\J-5.tif"\*MERGEFORMATINETB. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ J-6.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\J-6.tif"\*MERGEFORMATINETC. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ J-7.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\J-7.tif"\*MERGEFORMATINETD. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ J-8.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\J-8.tif" \* MERGEFORMATINET2.如图,钟表上10点整时,时针与分针所成的角是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-9.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-9.tif" \* MERGEFORMATINETA.30° B.60° C.90° D.120°3. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\易错题灰.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\易错题灰.tif" \* MERGEFORMATINET 下列说法正确的是( )A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2 cm4.能用∠AOB,∠O,∠1三种方法表示同一个角的图形是( )A. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ CSJ2-10.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-10.tif" \* MERGEFORMATINETB. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-11.tif"\*MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-11.tif" \*MERGEFORMATINET C. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-12.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-12.tif" \* MERGEFORMATINET D.INCLUDEPICTURE"F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-13.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-13.tif" \* MERGEFORMATINET5.如图,若AC=BD,则AB与CD的大小关系是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-14.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-14.tif" \* MERGEFORMATINETA.AB>CD B.AB<CD C.AB=CD D.不能确定6.有一个几何体,萌萌,琳琳,佳佳分别做了如下的描述,萌萌:有五个面;琳琳:有四个面是三角形;佳佳:有8条棱.这个几何体可能是( )A.圆锥 B.正方体 C.四棱锥 D.三棱柱7.将一副三角尺按如图所示的方式放置,则∠AOB=( )A.30° B.45°C.75° D.80°8.如图,直线m外有一点O,点A是m上一点,当点A在m上运动时,下列选项中一定成立的是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-17.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-17.tif" \* MERGEFORMATINETA.∠α>∠β B.∠α<∠β C.∠α=∠β D.∠α+∠β=180°9.下列时刻,时针和分针所成角最大的是( )A.1:30 B.10:10 C.2:50 D.6:4010.如图是一根长为10 cm的木棒,木棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-18.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-18.tif" \* MERGEFORMATINETA.7个 B.6个 C.5个 D.4个11.下列说法正确的是( )A.如果一个角有补角,那么这个角必是钝角B.一个锐角的余角比这个角的补角小90°C.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补D.如果∠α、∠β互余,∠β、∠γ互余,那么∠α与∠γ也互余12.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN =a,BC=b,则线段AD的长是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-19.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-19.tif" \* MERGEFORMATINETA.2(a-b) B.2a-b C.a+b D.a-b13.如图,把∠APB放置在量角器上,读得射线PA,PB分别经过刻度117和153,把∠APB绕点P顺时针旋转得到∠A′PB′,下列三个结论:①∠APA′=∠BPB′;②若射线PA′经过刻度27,则∠B′PA与∠A′PB互补;③若∠APB′=∠APA′,则射线PA′经过刻度45.其中正确的是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-20.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-20.tif" \* MERGEFORMATINETA.①② B.①③ C.②③ D.①②③14.石家庄为了改善大气环境,工厂迁出市区,大力发展旅游业,某游乐中心的摩天轮,以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30 m i n.若此时21号车厢运行到最高点,且至少经过x m i n后,9号车厢才会运行到最高点,则x等于( )A.10 B.20 C. D.二、填空题(每题3分,共12分)15.如图,在此图中小于平角的角的个数是________.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-10.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-10.tif" \* MERGEFORMATINET16.一副三角尺按如图方式放置,若∠α=23°27′,则∠β的度数是______ __.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-11.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-11.tif" \* MERGEFORMATINET17.如图,将三角形ABC绕点A顺时针旋转得到三角形ADE,且点D恰好在AC 上,∠BAE=∠CDE=136°,则∠C的度数是________.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-12.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-12.tif" \* MERGEFORMATINET18.点C在直线AB上,AB=5,BC=2,点C为BD的中点,则AD的长为________.三、解答题(19题9分,20题10分 , 21题9分, 22、23题每题10分,24题12分,共60分)19.计算:(1)131°28′-51°32′15″; (2)58°38′27″+47°42′40″;(3)34°25′×3+35°42′.20.已知:如图,AC=2BC,D为AB的中点,BC=3,求CD的长.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-27.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-27.tif" \* MERGEFORMATINET21.按要求解答:(1)如图,按要求画图.①画直线AB;②画射线CD;③连接AD,BC相交于点P;④连接BD并延长至点Q,使D Q=BD.(2)由(1)所画图形中,以点P为顶点且小于平角的角有哪些?若形成的锐角为80°,求它的余角和补角的度数.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-15.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-15.tif" \* MERGEFORMATINET22.阅读解题过程,回答问题.如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD 的度数.解:过点O作射线OM,使点M,O,A在同一直线上.因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=∠AOM-∠MOD=∠AOM-∠BOC=180°-30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-14.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-14.tif" \* MERGEFORMATINET23.如图,线段AB=6cm,C是AB的中点,D是BC的中点,E是AD的中点.(1)求线段AE的长;(2)求线段EC的长.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-29.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-29.tif" \* MERGEFORMATINET24.将一副直角三角尺按如图①所示方式摆放在直线AD上,保持三角尺OBC不动,将三角尺MON绕点O以每秒8°的速度按顺时针方向旋转t s.(1)如图②,当t=________时,OM平分∠AOC,此时∠NOC-∠AOM=________;(2)继续旋转三角尺MON,如图③,使得OM,ON同时在直线OC的右侧,猜想∠NOC与∠AOM有怎样的数量关系?并说明理由(数量关系中不能含t).(3)直线AD的位置不变,若在三角尺MON开始顺时针旋转的同时,另一个三角尺OBC也绕点O以每秒2°的速度按顺时针方向旋转,当OM旋转至射线OD 上时,两个三角尺同时停止运动.当t=________时,∠MOC=15°.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-31.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-31.tif" \* MERGEFORMATINET答案一、1.D 2.B 3.A 4.D 5.C 6.C 7.C 8.D 9.C10.B 提示:因为图中共有3+2+1=6(条)线段,这6条线段分别长2 cm、3 cm、5 cm、7 cm、8 cm、10 cm,所以能量出6个长度,故选B.11.B12.B 提示:因为MN=MB+CN+BC=a,BC=b,所以MB+CN=a-b.因为M是AB的中点,N是CD的中点,所以AB+CD=2(MB+CN)=2(a-b),所以AD=AB+CD+BC=2(a-b)+b=2a-b.故选B.13.D 提示:由题意可知∠APB=∠A′PB′=36°,∠BPB′=∠APB+∠APB ′,∠APA′=∠A′PB′+∠APB′,所以∠APA′=∠BPB′,故①正确;若射线PA′经过刻度27,则∠B′PA=117°-27°-36°=54°,∠A ′PB=153°-27°=126°,所以∠B′PA+∠A′PB=180°,即∠B′PA 与∠A′PB互补,故②正确;若∠APB′=∠APA′,则∠A′PB′=∠APB ′,所以∠APA′=2∠A′PB′=72°,所以射线PA′与刻度0所在直线所成锐角的度数为117°-72°=45°,所以射线PA′经过刻度45,故③正确.故选D.14.B二、15.1116.66°33′17.24° 提示:因为将三角形ABC绕点A顺时针旋转得到三角形ADE,所以∠BAC=∠DAE,∠C=∠E.因为∠BAE=136°,所以∠DAE=(360°-∠BAE)=×(360°-136°)=112°.因为∠CDE+∠ADE=180°,∠DAE+∠E+∠ADE=180°,所以∠CDE=∠E+∠DAE,所以∠E=∠CDE-∠DAE=136°-112°=24°,所以∠C=24°.18.1或9三、19.解:(1)131°28′-51°32′15″=79°55′45″.(2)58°38′27″+47°42′40″=106°21′7″.(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.20.解:因为AC=2BC,BC=3,所以AC=6,所以AB=AC+BC=9.又因为D为AB的中点,所以BD=AB=4.5,所以CD=BD-BC=4.5-3=1.5.21.解:(1)如图所示.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\jda-3.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\jda-3.tif" \* MERGEFORMATINET(2)以点P为顶点且小于平角的角有∠APB,∠BPD,∠CPD,∠APC.若形成的锐角为80°,则它的余角为90°-80°=10°,补角为180°-80°=100°.22.解:(1)由题可知∠AOD=∠AOM-∠BOC,所以如果∠BOC=60°,那么∠AOD=180°-60°=120°.如果∠BOC=n°,那么∠AOD=(180-n)°.(2)因为∠AOB=∠DOC=x°,∠AOD=y°,且∠AOD=∠AOB+∠DOC-∠BOC,所以∠BOC=∠AOB+∠DOC-∠AOD=(2x-y)°.23.解:(1)因为C是AB的中点,AB=6 cm,所以AC=BC=AB=3cm.又因为D是BC的中点,所以BD=CD=BC=1.5cm,所以AD=AB-BD=6-1.5=4.5(cm).因为E是AD的中点,所以AE=AD=2.25cm.(2)由(1)可知AE=2.25cm,AC=3cm,所以EC=AC-AE=3-2.25=0.75(cm).24.解:(1);45°(2)∠NOC-∠AOM=45°.理由:因为∠AON=90°+8°·t,所以∠NOC=∠AON-∠AOC=90°+8°·t-45°=45°+8°·t.因为∠AOM=8°·t,所以∠NOC-∠AOM=45°+8°·t-8°·t=45°.(3)5或10冀教版七年级数学上册第三章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列各式中,符合代数式书写格式规定的是( ) A.(a+b)÷c B.1bc C.m·3 D.x2.下列各式中,代数式的个数是( )①;②26+38;③ab=ba;④;⑤2a-1;⑥a;⑦(a2-b2);⑧5n+2.A.5 B.6 C.7 D.83.下列语句中,不正确的是( )A.0是代数式 B.a是代数式C.x的3倍与y的的差表示为3x-y D.S=πr2是代数式4.若代数式x+3的值是2,则x等于( )A.1 B.-1 C.5 D.-55.下列对代数式a2-5b2的描述中,正确的是( )A.a与5b的平方差B.a的平方减5后乘b的平方C.a的平方与b的平方的5倍的差 D.a与5b的差的平方6.比x的多7的数表示为( )A.x+7B.x-7C.x++7 D.x7.如图所示的是小芳设计的一个有理数的运算程序,如果输入的值为-2,则输出的值为( )A.3 B.-3 C.-5 D.-98.观察下列数:,,,,…,根据规律推算:第8个数应为( )A. B. C. D.9.在一定条件下,若物体运动的路程s(m)用含时间t(s)的式子表示为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.28 m B.58 m C.68 m D.88 m10.当x的值分别取3和-3时,代数式-x4+2x2-3的值( ) A.互为相反数 B.互为倒数C.相等D.以上都不对11.定义一种运算☆,其规则为a☆b=+.根据这个规则,计算2☆3的值是( )A. B. C.5 D.612.笔记本每本m元,圆珠笔每支n元.若买x本笔记本和y支圆珠笔,共需( )A.(mx+n y)元 B.(m+n)(x+y)元 C.(n x+my)元 D.m n(x+y)元13.当x=-1时,代数式|5x+2|和代数式1-3x的值分别是M,N,则M,N之间的关系为( )A.M>N B.M=NC.M<N D.以上三种情况都有可能14.一个长方形的周长是45 cm,一条边的长是a cm,这个长方形的面积为( )A.cm2B.cm2C.cm2D.a cm215.两艘船从同一港口同时出发,反向而行,甲船顺水,乙船逆水,两艘船在静水中的速度是60 k m/h,水流速度是a k m/h,3 h后这两艘船相距( ) A.6a k m B.3a k m C.360 k m D.180 k m16.一根绳子弯曲成如图所示的形状,当把绳子像图①那样沿虚线a剪1次时,绳子被剪为5段;当把绳子像图②那样沿虚线a,b剪2次时,绳子被剪为9段.若按照上述规律把绳子剪n次时,则绳子被剪为( )A.(6n-1)段B.(5n-1)段C.(4n+1)段 D.段二、填空题(17题3分,18、19题每题4分,共11分)17.工蜂去寻找蜜源,归巢时工蜂用空中画圈的方式告诉同伴所需蜜蜂的只数,若画x个圈表示需要(10x-1)只蜜蜂.某天工蜂画了5个圈,它表示需要__ ______只蜜蜂去采蜜.18.如图是用火柴棒拼成的图形,则第5个图形需________根火柴棒,第n个图形需________根火柴棒.19.已知1=12,1+2+1=22,1+2+3+2+1=32,…据上面等式反映的规律探究:对于正整数n(n≥4),1+2+…+(n-1)+n +(n-1)+…+2+1=________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.求下列代数式的值:(1)(a+2)(a-2)+a(1-a),其中a=5;(2)(m-n)2-2m+2n,其中m-n=-1.21.一个果子成熟后由树上落到地面上,若它下落时离地面的高度与经过的时间有如下表所示的关系:时间t/秒0.50.60.70.80.9…高度h/米5×0.255×0.365×0.495×0.645×0.81…试用含t的式子表示h.如果果子经过0.72秒落到地上,那么这个果子开始下落时离地面的高度是多少米?(精确到0.01米)22.如图所示的是一个数值转换机的示意图,请你用含x,y的式子表示输出结果,并求输入x的值为,y的值为-2时的输出结果.23.观察下列各图形中点的个数,根据其中蕴含的规律回答下列问题:(1)图①中有________个点;图②中有________个点;图③中有________个点;(2)请用代数式表示出第n个图形中点的个数,并求第10个图形中共有多少个点.24.某建筑物的窗户如图所示,它的上半部分是半圆形,下半部分是长方形.(1)请你求出制造窗框所需材料的总长(图中所有黑线的长度和);(2)当x=1.2,y=1.8时,求所需材料的总长(π≈3.14,结果保留一位小数).25.如图,长和宽分别是a,b的长方形纸片的四个角都剪去一个边长为x的正方形.(1)用含a,b,x的代数式表示纸片剩余部分的面积;(2)当a=8,b=6,且剪去部分的面积等于剩余部分的面积的一半时,求剩余部分的面积.26.(1)当a=2,b=3时,分别求代数式a2-2ab+b2,(a-b)2的值;(2)当a=-5,b=-3时,分别求代数式a2-2ab+b2,(a-b)2的值;(3)观察(1)(2)中代数式的值,探究a2-2ab+b2与(a-b)2有何关系?(4)利用(3)中你发现的关系,求12.572-2×12.57×2.57+2.572的值.答案一、1.D 2.C 3.D 4.B 5.C6.A 7.B 8.D 9.D 10.C 11.A12.A 13.C 14.D 15.C 16.C二、17.49 18.16;(3n+1) 19.n2三、20.解:(1)当a=5时,原式=(5+2)×(5-2)+5×(1-5)=7×3+5×(-4)=21-20=1.(2)原式=(m-n)2-2(m-n),当m-n=-1时,原式=(-1)2-2×(-1)=1+2=3.21.解:h=5t2,当t=0.72时,h=5×0.722≈2.59.故这个果子开始下落时离地面的高度约是2.59米.22.解:由数值转换机的示意图可得输出结果为(2x+y2).当x=,y=-2时,(2x+y2)=×[2×+(-2)2]=.23.解:(1)5;9;13(2)因为题图①中有1+4=5(个)点,题图②中有1+4×2=9(个)点,题图③中有1+4×3=13(个)点,所以第n个图形中点的个数为1+4n.当n=10时,1+4n=1+4×10=41,即第10个图形中共有41个点.24.解:(1)制造窗框所需材料的总长为4y+2x+2x+3x+πx=4y+7x+πx(m).(2)当x=1.2,y=1.8时,4y+7x+πx≈4×1.8+7×1.2+3.14×1.2≈19.4.所以所需材料的总长约为19.4 m.提示:正确列出代数式是解题的关键,本题运用了数形结合思想,从图形的特征入手,列出代数式.25.解:(1)剩余部分的面积为ab-4x2.(2)由剪去部分的面积等于剩余部分的面积的一半,得4x2=(ab-4x2).把a=8,b=6代入4x2=(ab-4x2),解得x=2.即正方形的边长x=2,所以剩余部分的面积为6×8-4×22=32.26.解:(1)当a=2,b=3时,a2-2ab+b2=1,(a-b)2=1.(2)当a=-5,b=-3时,a2-2ab+b2=4,(a-b)2=4.(3)由(1)(2)可得a2-2ab+b2=(a-b)2.(4)由(3)中关系,可得12.572-2×12.57×2.57+2.572=(12.57-2.57)2=100.冀教版七年级数学上册第四章达标测试卷一、选择题(每题2分,共28分)1.下列整式中,不属于单项式的是( )A.5x3y B.x2y+4 C.-8ab2D.3ab32.23xy2z3的次数是( )A.3 B.5 C.6 D.93.下列关于整式说法正确的是( )A.-不是整式 B.整式不是单项式就是多项式C.整式中一定不含分母D.和都是整式4.已知2x n+1y3与x4y3是同类项,则n的值是( )A.2 B.3 C.4 D.55.已知M=a2+ab,N=ab-b2,M和N的大小关系是( )A.M>N B.M<N C.M≥N D.M≤N6.两个三次多项式相加,和的次数是( )A.三 B.六C.大于或等于三 D.小于或等于三7.若|m-3|+(n+2)2=0,则m-2m n+4n+2(m n-m)的值为( )A.-4 B.-11 C.0 D.48.下列各式计算正确的是( )A.2(m-1)-3(m-1)=-m-3 B.a-[-(-b-c)]=a-b-cC.a-(-2a+b)=3a+b D.(x+y)-(y-x)=09.一个多项式加上-2a+7等于3a2+a+1,则这个多项式是( )A.3a2-a-6 B.3a2+3a+8C.3a2+3a-6 D.-3a2-3a+610.已知m-n=100,x+y=-1,则代数式(n+x)-(m-y)的值是( )A.99 B.101 C.-99 D.-10111.若A=x2y-2xy,B=xy2-3xy,则计算3A-2B的结果是( )A.2x2y B.3x2y-2xy2C.x2y D.xy212.已知关于x的多项式(2mx2+5x2+3x+1)-(6x2+3x)化简后不含x2项,则m 的值是( )A.0 B.0.5 C.3 D.-2.513.如图,从边长为a+5的正方形纸片中剪去一个边长为a+1的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的周长为( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-2.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-2.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-2.tif" \* MERGEFORMATINETA.2a+6 B.2a+8C.2a+14 D.4a+2014.有一道题目是一个多项式A减去多项式2x2+5x-3,小胡同学将2x2+5x-3抄成了2x2+5x+3,计算结果是-x2+3x-7,这道题目的正确结果是( )A.x2+8x-4 B.-x2+3x-1C.-3x2-x-7 D.x2+3x-7二、填空题(每题3分,共12分)15.同时符合下列条件:①同时含有字母a,b;②常数项是-,且最高次项的系数是2的一个四次二项式,请你写出满足以上条件的一个整式: . 16.观察下列单项式:-x,3x2,-5x3,7x4,-9x5,…,可以猜想第n个单项式是________________.17.石家庄地铁3号线正式通车当天,某列地铁在市二中站到站前,原有(3a+b)人,到站时下去了(a+2b)人,又上来了一些人,此时地铁上共有(8a-5b)人.在市二中站上地铁的人数是________.18.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三名同学相同数量的扑克牌(假定发到每名同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出两张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A 同学.请你确定,最终B同学手中剩余的扑克牌的张数为________.三、解答题(19题8分,20-23题每题10分, 24题12分,共60分)19.已知关于x,y的多项式x4+(m+2)x n y-xy2+3.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?20.先化简,再求值:2(3x2-2xy-y)-4(2x2-xy-y),其中x=-3,y=1.21.已知x,y互为相反数,且|y-3|=0,求2(x3-2y2)-(x-3y)-(x-3y2+2x3)的值.22.小丽同学准备化简:(3x2-6x-8)-(x2-2x□6) ,算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-6x-8)-(x2-2x×6);(2)若x2-2x-3=0,求(3x2-6x-8)-(x2-2x-6)的值;(3)当x=1时,(3x2-6x-8)-(x2-2x□6)的结果是-4,请你通过计算说明“□”所代表的运算符号.23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如图.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-4.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-4.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-4.tif" \* MERGEFORMATINET(1)求所捂的二次三项式;(2)若x=-1,求所捂二次三项式的值.24.阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把a+b看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是________.(2)已知x2-2y=4,求3x2-6y-21的值;(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.答案一、1.B 2.C 3.B 4.B 5.C 6.D 7.B 8.B 9.C 10.D 11.B 12.B 13.D 提示:根据题意得,长方形的周长为2(a+1+a+5+4)=2(2a+10)=4a+20.故选D.14.B 提示:由题意可得,A-(2x2+5x+3)=-x2+3x-7,则A=-x2+3x-7+2x2+5x+3=x2+8x-4,故这道题目的正确结果是x2+8x-4-(2x2+5x-3)=x2+8x-4-2x2-5x+3=-x2+3x-1.故选B.二、15.2a2b2-(答案不唯一)16.(-1)n(2n-1)x n17.6a-4b18.7 提示:设每名同学有扑克牌x张,B同学从A同学处得到两张扑克牌,又从C同学处得到三张扑克牌后,则B同学有(x+2+3)张扑克牌,A同学有(x-2)张扑克牌,那么给A同学后,B同学手中剩余的扑克牌的张数为x +2+3-(x-2)=x+5-x+2=7.三、19.解:(1)因为多项式是五次四项式,所以n+1=5,m+2≠0.所以n=4,m≠-2.(2)因为多项式是四次三项式,所以m+2=0,n为任意有理数.所以m=-2,n为任意有理数.20.解:原式=6x2-4xy-2y-8x2+4xy+4y=-2x2+2y.当x=-3,y=1时,原式=-2×9+2×1=-16.21.解:因为x,y互为相反数,且|y-3|=0,所以y=3,x=-3.2(x3-2y2)-(x-3y)-(x-3y2+2x3)=2x3-4y2-x+3y-x+3y2-2x3=-y2-2x+3y,当x=-3,y=3时,原式=-32-2×(-3)+3×3=6.22.解:(1)(3x2-6x-8)-(x2-2x×6)=(3x2-6x-8)-(x2-12x)=3x2-6x-8-x2+12x=2x2+6x-8.(2)(3x2-6x-8)-(x2-2x-6)=3x2-6x-8-x2+2x+6=2x2-4x-2,因为x2-2x-3=0,所以x2-2x=3,所以2x2-4x-2=2(x2-2x)-2=6-2=4.(3)当x=1时,原式=(3-6-8)-(1-2□6),由题意得,-11-(1-2□6)=-4,整理得,1-2□6=-7,所以-2□6=-8,易得“□”所代表的运算符号是“-”.23.解:(1)所捂的二次三项式为x2-5x+1+3x=x2-2x+1.(2)当x=-1时,所捂二次三项式的值为1+2+1=4.24.解:(1)-(a-b)2(2)因为x2-2y=4,所以原式=3(x2-2y)-21=3×4-21=-9.(3)因为a-2b=3,2b-c=-5,c-d=10,所以a-c=(a-2b)+(2b-c)=3-5=-2,2b-d=(2b-c)+(c-d)=-5+10=5,所以原式=-2+5-(-5)=8.冀教版七年级数学上册第五章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列方程中,是一元一次方程的是( )A.2x=1 B.-2=0 C.2x-y=5 D.x2+1=2x2.下列对等式的变形中,正确的是( )A.若a=b,则a-3=3-b B.若ax=ay,则x=yC.若a=b,则ac=bc D.若=,则b=d3.下列方程中,解为的是( )A.x-1=0 B.5(m-1)+2=m+2C.3x-2=4(x-1) D.3(y-1)=y-24.下列变形中,正确的是( )A.若3x-1=2x+1,则3x+2x=1+1B.若3(x+1)-5(1-x)=0,则3x+3-5-5x=0C.若1-=x,则2-3x-1=xD.若-=10,则-=15.已知关于x的方程2x+a-9=0的解是x=2,则a的值是( ) A.2 B.3 C.4 D.56.解方程-=1时,去分母后正确的结果是( )A.4x+1-10x+1=1 B.4x+2-10x-1=1C.4x+2-10x-1=6 D.4x+2-10x+1=67.某同学在解方程5x-1=◎x+3时,把◎处的数看错了,解得x=-,该同学把◎处的数看成了( )A.3 B.-8 C.8 D.-8.若关于y的方程5y+3=0与5y+3k=27的解相同,则k的值为( ) A.0 B.1 C.5 D.109.已知x+y+2(-x-y+1)=3(1-y-x)-4(y+x-1),则x+y等于( ) A.- B. C.- D.10.已知关于x的方程(k-2)x|k-1|-10=0是一元一次方程,则k的值为( )A.1 B.2 C.0 D.0或211.甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组剩下的人数恰好比乙组现有人数的一半多3人,设乙组原有x人,则可列方程为( )A.2x=x+3 B.2x=(x+8)+3C.2x-8=x+3 D.2x-8=(x+8)+312.已知关于x的方程2x-3=+x的解满足|x|-1=0,则m的值是( ) A.-6 B.-12 C.-6或-12 D.任何数13.一艘轮船在静水中的速度为20 k m/h,水流速度为4 k m/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头之间的距离.设甲、乙两码头之间的距离为x k m,则可列出方程( ) A.(20+4)x+(20-4)x=5 B.20x+4x=5C.+=5D.+=514.甲、乙两个足球队进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,则甲队胜( )A.5场 B.6场 C.7场 D.8场15.a,b,c,d为实数,现规定一种新的运算=ad-bc,则满足等式=1的x 的值为( )A.3 B.-5 C.-10 D.1016.图①为一张正面白色、反面灰色的长方形纸片.沿虚线剪裁将其分成甲、乙两张长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示,若图②中白色与灰色区域的面积比为8∶3,图②中纸片的面积为33,则图①中纸片的面积为( )A. B. C.42 D.44二、填空题(17题3分,其余每空2分,共11分)17.方程2x-1=0的解是________.18.三个正整数的比是1∶2∶4,它们的和是84,那么这三个数中最大的数是_ ___________,最小的数是____________.19.某同学在解方程=-1去分母时,方程右边的-1忘记了乘3,因而求得方程的解为x=2.则a的值为________,原方程的解为________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.解下列方程:(1)2x-=-x+2; (2)+=1;(3)-=1.2; (4)2x-=(x-1).21.已知x=1是方程2-(a-x)=2x的解,求关于y的方程a(y-5)-2=a(2y -3)的解.22.已知关于x的方程(a+1)x|a+2|-2=0为一元一次方程,求代数式++的值.23.某市为更有效地利用水资源,制定了居民用水阶梯收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,未超过部分仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.24.已知关于x的方程m+=4的解是关于x的方程-=-1的解的2倍,求m 的值.25.甲、乙两人想共同承包一项工程.这项工程甲单独做30天完成,乙单独做20天完成,而合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合起来做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?26.小刚为书房买灯,现有两种灯可供选购,其中一种是9 W(0.009 k W)的节能灯,售价49元/盏;另一种是40 W(0.04 k W)的白炽灯,售价18元/盏.。

人教版七年级上册数学试卷全册

人教版七年级上册数学试卷全册

人教版七年级上册数学试卷全册注意:以下是一个以“人教版七年级上册数学试卷全册”为题目的示例文章,采用试卷的格式进行书写。

人教版七年级上册数学试卷全册第一部分选择题1. 单项选择题(每题2分,共20分)在每小题给出的四个选项中,只有一个是正确的,请将你认为正确选项的序号填涂在答题纸上。

1) 若2x + 3 = 7,那么x的值是多少?A) -2 B) 2 C) 3 D) 42) 下面哪个图形是一个正方形?A) B) C) D)3) 计算:5 × 3 + 2 ÷ 2 = ?A) 13 B) 8 C) 7 D) 94) 若一个矩形的长是3cm,宽是4cm,那么它的周长是多少?A) 7cm B) 10cm C) 12cm D) 24cm5) 已知直角三角形的两条直角边分别是3cm和4cm,那么斜边的长度是多少?A) 7cm B) 12cm C) 5cm D) 8cm6) 若a + 4 = 9,则a的值是多少?A) 5 B) 3 C) 2 D) 77) 下列哪个数是一个质数?A) 6 B) 15 C) 11 D) 98) 若1kg = 1000g,那么1.5kg等于多少克?A) 1500g B) 15g C) 150g D) 1.5g9) 计算:(3 + 4)× 2 = ?A) 35 B) 14 C) 8 D) 1410) 下列哪个数是偶数?A) 17 B) 25 C) 12 D) 72. 填空题(每题2分,共10分)将正确答案填入括号内。

11) 圆的周长公式是_______________。

(πd)12) 25 ÷ 5 × 4 = _______________。

13) 直角三角形的两条直角边分别是3cm和4cm,那么斜边的长度是_______________。

14) 数轴上点A的坐标是-2,点B的坐标是6,那么AB的距离是_______________。

七年级上册试卷全套_数学

七年级上册试卷全套_数学

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. 2.5C. πD. 1/22. 已知a=3,b=4,则a²+b²=()A. 7B. 11C. 13D. 153. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)4. 如果x²-5x+6=0,那么x的值是()A. 2或3B. 1或4C. 2或4D. 1或35. 下列各式中,正确的是()A. 2x + 3y = 0B. 3x² - 4y = 5C. 5x + 2y = 7D. 4x - 5y = 06. 若|a|=5,那么a的值是()A. ±5B. ±3C. ±2D. ±17. 已知a,b是方程2x²-5x+2=0的两个根,则a+b的值是()A. 2B. 3C. 4D. 58. 在等腰三角形ABC中,AB=AC,如果∠BAC=40°,那么∠B的度数是()A. 40°B. 50°C. 60°D. 70°9. 若平行四边形ABCD的对角线AC和BD相交于点O,那么OA=OB()A. 错误B. 正确10. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 非等腰三角形二、填空题(每题3分,共30分)1. (π-3)²=________2. 2x²-3x+1=0的解为:x1=________,x2=________3. 在直角坐标系中,点P(-3,4)关于原点的对称点是________4. 若|a|=6,那么a的值为________5. 等腰三角形ABC中,AB=AC,若∠B=30°,则∠A的度数是________6. 在平行四边形ABCD中,若AB=6cm,BC=8cm,则对角线AC的长度为________7. 已知函数f(x)=2x-3,则f(2)=________8. 在△ABC中,若AB=AC,且∠B=40°,则∠C的度数是________9. 若a,b是方程x²-5x+6=0的两个根,则a²+b²=________10. 若a=√2,b=-√2,则a+b=________三、解答题(每题10分,共40分)1. 解方程:3x²-6x+2=02. 已知函数f(x)=x²-4x+3,求f(-2)的值3. 在直角坐标系中,点A(2,3),B(-3,-4),求线段AB的中点坐标4. 在等腰三角形ABC中,AB=AC,若∠BAC=50°,求∠B和∠C的度数5. 在平行四边形ABCD中,若AB=6cm,BC=8cm,求对角线AC的长度四、附加题(10分)1. 请设计一个简单的数学游戏,并说明游戏规则和玩法。

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。

数学上册七年级全部试卷

数学上册七年级全部试卷

一、选择题(每题2分,共20分)1. 下列各数中,正数是()A. -1.5B. -2.3C. 0D. 32. 下列各式中,分式是()A. 3x + 2B. 2/xC. x^2D. 4x - 53. 若a < b,则下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 < b - 1C. a + 1 > b + 1D. a - 1 > b - 14. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = x^35. 若a、b、c成等差数列,且a = 2,b = 4,则c的值为()A. 6B. 8C. 10D. 126. 下列图形中,是圆的是()A. 正方形B. 等腰三角形C. 矩形D. 圆7. 若x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2和3D. 无法确定8. 下列各式中,绝对值最小的是()A. |-3|B. |2|C. |0|D. |-5|9. 若a、b、c成等比数列,且a = 2,b = 4,则c的值为()A. 8B. 16C. 32D. 6410. 下列各式中,有理数是()A. √2B. πC. 3/2D. 无理数二、填空题(每题2分,共20分)1. 0的倒数是_________。

2. 若a = 2,b = -3,则a - b的值为_________。

3. 下列各数中,正数是_________。

4. 下列各式中,分式是_________。

5. 若a < b,则下列不等式中正确的是_________。

6. 下列各式中,绝对值最小的是_________。

7. 若a、b、c成等差数列,且a = 2,b = 4,则c的值为_________。

8. 下列各式中,有理数是_________。

9. 若a、b、c成等比数列,且a = 2,b = 4,则c的值为_________。

七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。

七年级试卷数学上册【含答案】

七年级试卷数学上册【含答案】

七年级试卷数学上册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 一个等腰三角形的底边长是10cm,腰长是12cm,那么这个三角形的周长是?A. 22cmB. 32cmC. 44cmD. 52cm3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是?A. 24cm³B. 26cm³C. 28cm³D. 30cm³5. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 两个质数相乘,得到的数一定是合数。

()2. 一个三角形的两边之和一定大于第三边。

()3. 0是最小的自然数。

()4. 两个负数相乘,得到的结果是正数。

()5. 任何一个正整数都可以分解成几个质数的乘积。

()三、填空题(每题1分,共5分)1. 5的立方是______。

2. 一个等边三角形的周长是______cm,它的边长是______cm。

3. 2.5的立方是______。

4. 两个质数相乘,得到的数一定是______。

5. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是______cm³。

四、简答题(每题2分,共10分)1. 请写出1到10的所有质数。

2. 请解释等边三角形的特点。

3. 请解释最简分数的概念。

4. 请解释长方体的体积公式。

5. 请解释质因数分解的概念。

五、应用题(每题2分,共10分)1. 一个长方体的长是4cm,宽是3cm,高是2cm,求它的体积。

2. 一个等腰三角形的底边长是10cm,腰长是12cm,求这个三角形的周长。

3. 请将24分解成质因数的乘积。

4. 请将分数2/4化简成最简分数。

5. 请计算3的立方。

六、分析题(每题5分,共10分)1. 请分析两个质数相乘得到的数的特点。

七年级数学上册试卷全套

七年级数学上册试卷全套

一、选择题(每题3分,共30分)1. 下列数中,哪个是负数?A. -3B. 0C. 5D. -1.52. 下列各数中,哪个是整数?A. 3.14B. -2C. 0.5D. √23. 下列各数中,哪个是有理数?A. πB. √4C. √-1D. 无理数4. 下列哪个数是正数?A. -5B. 0C. -0.5D. 1/25. 如果a=2,b=-3,那么a-b的值是多少?A. -5B. 5C. 0D. 16. 下列哪个图形是平行四边形?A. 正方形B. 矩形C. 等腰梯形D. 三角形7. 一个长方形的长是8厘米,宽是5厘米,它的面积是多少平方厘米?A. 15B. 40C. 10D. 808. 下列哪个数是正比例函数?A. y=2x+3B. y=x^2C. y=3/xD. y=2x9. 下列哪个数是反比例函数?A. y=2x+3B. y=x^2C. y=3/xD. y=2x10. 下列哪个数是勾股数?A. 3, 4, 5B. 5, 12, 13C. 6, 8, 10D. 7, 24, 25二、填空题(每题5分,共25分)11. 有理数-3的相反数是__________。

12. 2/3与-3/4的和是__________。

13. -5与5的差是__________。

14. 一个圆的半径是10厘米,它的周长是__________厘米。

15. 如果x=2,那么2x+3的值是__________。

三、解答题(每题10分,共30分)16. (1)计算:-6 + (-3) × 2 ÷ (-1)(2)解方程:3x - 5 = 1417. (1)画出一个等腰直角三角形,并标出其直角顶点。

(2)求这个等腰直角三角形的面积。

18. (1)画出函数y=2x的图像。

(2)如果y=2x+3,请画出函数的图像。

四、应用题(每题15分,共30分)19. 小明家到学校的距离是4公里,他骑自行车上学,速度是每小时10公里,请问他需要多长时间才能到学校?20. 一个长方形的长是x厘米,宽是x-2厘米,如果长方形的面积是16平方厘米,请求出x的值。

七年级上册数学试卷全册

七年级上册数学试卷全册

七年级上册数学试卷全册一、选择题(每题2分,共20分)1. 下列选项中,哪个是正确的数学公式?A. a + b = cB. a b = cC. a × b = cD. a ÷ b = c2. 下列选项中,哪个是正确的数学符号?A. +、、×、÷B. =、≈、≠、≤C. <、>、≥、≥D. ∑、∏、√、%3. 下列选项中,哪个是正确的数学概念?A. 平行线、垂线、相交线B. 角、弧、扇形C. 圆、椭圆、双曲线D. 分数、小数、百分数4. 下列选项中,哪个是正确的数学定理?A. 毕达哥拉斯定理B. 欧几里得定理C. 勾股定理D. 柯西定理5. 下列选项中,哪个是正确的数学法则?A. 加法交换律B. 乘法分配律C. 指数法则D. 对数法则6. 下列选项中,哪个是正确的数学性质?A. 对称性、周期性、单调性B. 奇偶性、最大值、最小值C. 闭合性、连续性、可导性D. 可积性、可微分性、可积性7. 下列选项中,哪个是正确的数学公式?A. a + b = cB. a b = cC. a × b = cD. a ÷ b = c8. 下列选项中,哪个是正确的数学符号?A. +、、×、÷B. =、≈、≠、≤C. <、>、≥、≥D. ∑、∏、√、%9. 下列选项中,哪个是正确的数学概念?A. 平行线、垂线、相交线B. 角、弧、扇形C. 圆、椭圆、双曲线D. 分数、小数、百分数10. 下列选项中,哪个是正确的数学定理?A. 毕达哥拉斯定理B. 欧几里得定理C. 勾股定理D. 柯西定理二、填空题(每题2分,共20分)1. 一个数的平方根是指这个数的平方等于它的数,例如,4的平方根是2,因为2×2=4。

请填写下列各数的平方根:9、16、25、36、49。

2. 请填写下列各数的立方根:8、27、64、125、216。

七年级数学上册全一册试卷

七年级数学上册全一册试卷

一、选择题(每题4分,共40分)1. 下列各数中,正数是()A. -2B. 0C. 1/2D. -3/22. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 非等腰三角形3. 下列运算正确的是()A. 2^3 × 2^4 = 2^7B. (3 + 4) × 5 = 3 × 5 + 4 × 5C. (a + b)^2 = a^2 + b^2D. (a - b)^2 = a^2 - b^24. 下列代数式化简正确的是()A. (x + y) - (x - y) = 2yB. (x + y)^2 = x^2 + y^2C. (x - y)^2 = x^2 - y^2D. (x + y)^2 = x^2 + 2xy + y^25. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,6)6. 下列关于实数的大小关系正确的是()A. -2 < -1 < 0B. 0 < -1 < -2C. 1 < 0 < -1D. -1 < 0 < 17. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = 1/xD. y = 3x8. 下列方程的解是x=3,那么这个方程是()A. 2x + 4 = 10B. x - 3 = 6C. 3x = 9D. x^2 - 9 = 09. 下列图形中,边长分别为3、4、5的三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形10. 下列等式成立的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^2 + 2ab + b^2 = (a + b)^2D. a^2 - 2ab + b^2 = (a - b)^2二、填空题(每题4分,共40分)11. (3/4)×(-2)= ______12. (-5)^3 = ______13. (a - b)^2 = ______14. (x + y)^2 = ______15. a + a + a + a + a = ______16. (1/2)×(-4/5)= ______17. (3/4)÷(-2/3)= ______18. (-2/3)×(-4/5)= ______19. (x + y)^2 - 2xy = ______20. (a - b)^2 + 2ab = ______三、解答题(每题10分,共40分)21. (1)计算:2^3 × 3^2(2)解方程:5x - 3 = 1422. (1)化简:2a^2 - 3ab + 4b^2(2)解方程:3(x - 2) = 4x + 523. (1)计算:(-3/5) × (-2/3) ÷ (4/5)(2)解方程:5(x - 1) = 2(x + 3)24. (1)计算:(3/4)^2 ÷ (2/3)^2(2)解方程:2(x - 3) + 5(x + 1) = 3x - 1四、附加题(每题10分,共20分)25. 在直角坐标系中,点A(-2,3)关于y轴的对称点坐标是______。

北师大版七年级数学上册全套试卷

北师大版七年级数学上册全套试卷

北师大版七年级数学上册全套试卷本试卷为最新北师大版中学生七年级达标测试卷。

全套试卷共7份。

试卷内容如下:1. 第一单元使用2. 第二单元使用3. 第三单元使用4. 第四单元使用5. 第五单元使用6. 第六单元使用7. 期末检测卷第一章达标测试卷一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于()A.棱柱B.圆柱C.圆锥D.长方体2.下面的几何图形:①棱柱;②正方形;③圆锥;④圆;⑤长方体;⑥三角形.其中属于立体图形的是()A.①②③B.②④⑥C.①③⑤D.③④⑤3.将半圆绕它的直径所在的直线旋转一周形成的几何体是() A.圆柱B.圆锥C.球D.正方体4.一个无盖的正方体盒子的表面展开图可以是下列图形中的()(第4题) A.①B.①②C.②③D.①③5.下列说法不正确的是()A.圆锥和圆柱的底面都是圆B.棱柱的所有侧棱长都相等C.棱柱的上、下底面形状完全相同D.长方体是四棱柱,四棱柱是长方体6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来是“祝福祖国万岁”,把它折成正方体后,与“万”相对的字是()A.祖B.岁C.国D.福(第6题)7.在一个正方体容器内分别装入不同量的水,再把容器按不同方式倾斜一点,容器内水面的形状不可能是()8.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()(第8题)9.由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是() A.从正面看到的图形面积最小B.从左面看到的图形面积最小C.从上面看到的图形面积最小D.从三个方向看到的图形面积相等(第9题)10.如图表示一个由相同小立方块搭成的几何体从上面看到的图形,小正方形中的数字表示该位置上小立方块的个数,那么从正面看到的图形为()(第10题)二、填空题(每题3分,共24分)11.一个正方体有________个面,________个顶点.12.快速旋转一枚竖立的硬币一周(假定旋转轴在原地不动),旋转形成的立体图形是__________.13.用数学知识解释下列现象:一只蚂蚁行走的路线可以解释为____________;直升机的螺旋桨转起来形成一个圆形的面,这说明了____________.14.下列几何体(如图),属于柱体的有____________;属于锥体的有__________;属于球体的有__________.(填序号)(第14题) 15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.(第15题)16.用一个平面去截一个圆柱(如图),图①中截面的形状是________,图②中截面的形状是__________.(第16题)17.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).(第17题)18.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为__________(结果保留π).14.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.(第18题)三、解答题(19,22题每题8分,24题14分,其余每题12分,共66分) 19.图②中的几何体分别是由图①中哪个平面图形旋转一周得到的?用线连起来.(第19题)20.如图是从不同方向看一个几何体得到的图形及部分数据.(1)写出这个几何体的名称;(2)求这个几何体的侧面积.(第20题)21.观察如图所示的直六棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为25 cm,侧棱长为8 cm,则它的侧面积为多少?(第21题)22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x +y+z的值.(第22题)23.把棱长为1 cm的若干个小正方体摆放成如图所示的几何体,然后将露出的部分都涂上颜色(不涂底面).(1)该几何体中有多少个小正方体?(2)画出从正面观察所得到的平面图形.(3)求涂色部分的总面积.(第23题)24.把如图①所示的正方体切去一块,得到如图②~⑤所示的几何体.(第24题)(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,v,e应满足什么关系式?答案1.B2.C3.C4.D5.D6.B7.A8.A9.B10.C二、11.6;812.球13.点动成线;线动成面14.①③⑤⑥;④;②15.圆锥;正方体;三棱锥;圆柱16.圆;长方形17.6π18.63π三、19.1—c;2—b;3—d;4—a20.解:(1)这个几何体是三棱柱.(2)这个几何体的侧面积为3×16×9=432 (cm2).21.解:(1)它有8个面,2个底面,底面是六边形,侧面是长方形.(2)侧面的个数与底面多边形的边数相等.(3)它的侧面积为25×8=200(cm2).22.解:由题意知x+5=10,2+y=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)该几何体中小正方体的个数为9+4+1=14(个).(2)如图所示.(第23(2)题)(3)由题意知该几何体的上面需涂色的面积为9个小正方形的面积和,前面、后面、左面、右面需涂色的面积和为6个小正方形面积和的4倍,故涂色部分的总面积为(9+6×4)×12=33(cm2).24.解:(1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2)例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(第24(2)题)(3)所求关系式为f +v -e =2.第二章达标测试卷一、选择题(每题3分,共30分)1.如果“盈利10%”记为+10%,那么“亏损6%”记为( )A .-16%B .-6%C .+6%D .+4%2.-15的相反数是( )A.15B .-15C .5D .-53. 太阳的温度很高,其表面温度大约有6 000 ℃,而太阳中心的温度达到了19200 000 ℃,用科学记数法可将19 200 000表示为( ) A .1.92×106 B .1.92×107 C .19.2×106D .0.192×1074.在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .05.下列算式正确的是( )A .-32=9B.⎝ ⎛⎭⎪⎫-14÷(-4)=1 C .(-8)2=-16D .-5-(-2)=-36.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的有( )A .4个B .3个C .2个D .1个7.学校、文具店、书店依次坐落在一条南北走向的大街上,学校在文具店的南边20 m 处,书店在文具店的北边100 m 处,张明同学从文具店出发,向北走了50 m ,接着又向北走了-70 m ,此时张明的位置在( ) A .文具店B .学校C .书店D .以上都不对8.数a ,b ,c 在数轴上对应的点的位置如图所示,表示0的点为原点,则下列各式正确的是( )A .abc <0B .a +c <0C .a +b <0D .a -c <09.学完有理数后,a ,b ,c ,d 四名同学分别聊起来了,a 说:“没有最大的正数,但有最大的负数.”b 说:“有绝对值最小的数,没有绝对值最大的数.”c 说:“有理数包括正有理数和负有理数.”d 说:“相反数是它本身的数是正数.”你认为谁说得对呢?( ) A .aB .bC .cD .d10.探索规律,71=7,72=49,73=343,74=2 401,75=16 807,…,那么72 018+1的个位数字是( ) A .8 B .4 C .2 D .0 二、填空题(每题3分,共24分)11.在有理数-3.7,2,213,-34,0,0.02中,正数有______________,负分数有______________.12.一种食用盐包装袋上标有(500±5)g ,表示这种食用盐的质量不超过________,不少于________.13.比较大小(填“>”“<”或“=”):(1)-45________-34; (2)|-5|________0;(3)-(-0.01)________⎝ ⎛⎭⎪⎫-1102.14.如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有________个.15.若|a -11|+(b +12)2=0,则(a +b )2 018=________.16.按下面程序计算(如图),输入x =-5,则输出的答案是________ .输入x ―→平方―→-x ―→÷2―→输出答案17.在算式1-⎪⎪⎪⎪-2 3中的 里,填入运算符号________,可使得算式的值最小(在符号+,-,×,÷中选择一个).18.有六张卡片,卡片正面分别写有六个数,背面分别写有六个字母,如下表:将卡片正面的数由大到小排列,然后将卡片翻转使背面朝上,卡片上的字母组成的单词是________.三、解答题(19题16分,20,22题每题8分,24题10分,其余每题12分,共66分) 19.计算:(1)-|3-5|+2×(1-3);(2)-24×⎝ ⎛⎭⎪⎫-56+38-112;(3)(-2)3-(-13)÷⎝ ⎛⎭⎪⎫-12;(4)-12-(1-0.5)÷52×15.20.已知|x -3|与|y -1|互为相反数,求式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值.21.如图,数轴上有三个点A ,B ,C ,请回答下列问题:(1)将点C 向左移动6个单位长度后,这时点B 所表示的数比点C 所表示的数大多少?(2)怎样移动A,B,C中的两个点,才能使这三个点表示相同的数?有几种移法?22.若“”表示运算a-b+c,“”表示运算x-y+z-w,求-的值.23.“十一”期间,某风景区在7天假期中,每天旅游的人数变化如下表(正数表示比前一天增加的人数,负数表示比前一天减少的人数)所示(单位:万人):日期1日2日3日4日5日6日7日人数变化+1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2万人.天内哪天游客的人数最多?哪天游客的人数最少?(2)这7天内该风景区平均每天有游客多少万人?24.如图,数轴上的点A,B,C分别表示数-3,-1,2.(1)A,B两点间的距离AB=________,A,C两点间的距离AC=________.(2)若点E表示的数为x,则AE的长等于多少?答案二、1.B 2.A 3.B 4.B 5.D 6.B7.B 8.B 9.B 10.D 二、11.2,213,0.02;-3.7,-3412.505 g ;495 g13.(1)< (2)> (3)= 14.7 15.1 16.15 17.× 18.thanks三、19.解:(1)原式=-2+2×(-2)=-2+(-4)=-6;(2)原式=20-9+2=13; (3)原式=-8-26=-34;(4)原式=-1-12×25×15=-1-125=-1125.20.解:因为|x -3|与|y -1|互为相反数,所以|x -3|+|y -1|=0.所以x =3,y =1.所以原式=⎝ ⎛⎭⎪⎫31-13÷(3+1)=⎝ ⎛⎭⎪⎫3-13÷4=23.21.解:(1)这时点B 所表示的数比点C 所表示的数大1.(2)有3种移法.①点A 右移2个单位长度,点C 左移5个单位长度; ②点A 右移7个单位长度,点B 右移5个单位长度; ③点B 左移2个单位长度,点C 左移7个单位长度.22.解:由题意知,原式=14-12+16-[-2-3+(-6)-3]=-112-(-14)=-112+14=131112.23.解:(1)由题意知,该风景区在7天假期中,每天旅游的人数如下表所示(单位:万人):由此可知,10月3日的游客人数最多,10月7日的游客人数最少.(2)这7天内该风景区平均每天的游客人数为17×(2.6+3.4+3.8+3.4+2.6+2.8+1.6)≈2.89(万人). 24.解:(1)2;5(2)|x -(-3)|=|x +3|, 即AE 的长为|x +3|.第三章达标测试卷一、选择题(每题3分,共30分)1.代数式:6x 2y +1x ,5xy +x 2,-15y 2+xy ,2y,-3中,不是整式的有( )A .4个B .3个C .2个D .1个2.下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b3.下列代数式中符合书写要求的是( )A.a 2b4B .213cbaC .a ×b ÷cD .ayz 34.在下列表述中,不能表示代数式“4a ”的意义的是( )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘5.多项式y -x 2y +25的项数、次数分别是( )A .3,2B .3,5C .3,3D .2,3 6.下列运算正确的是( )A .-()2x +5=-2x +5B .-12()4x -2=-2x +2 C.13()2m -3n =23m +nD .-⎝ ⎛⎭⎪⎫23m -2x =-23m +2x 7.将有理数m 减小5后,再乘3,最后的结果是( )A .3(m -5)B .m -5×3mC .m -5+3mD .m -5+3(m -5)8.若m +n =-1,则(m +n )2-2m -2n 的值是( )A .3B .0C .1D .29.多项式12x |n |-(n +2)x +7是关于x 的二次三项式,则n 的值是( )A .2B .-2C .2或-2D .310.有一种石棉瓦,每块宽60 cm ,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10 cm ,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A .60n cmB .50n cmC .(50n +10)cmD .(60n +10)cm二、填空题(每题3分,共24分)11.单项式-x 2y3的系数是________,次数是________.12.-xy 22+3xy -23是________次________项式,最高次项的系数为________.13.计算:a 2b -2a 2b =________.14.若-x 3y 与x a y b -1是同类项,则(b -a )2 017=________.15.张老师带了100元钱去给学生买笔记本和笔.已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩______________元钱(用含a ,b 的代数式表示). 16.定义新运算“”,规定ab =13a -4b ,则12(-1)=________.17.一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,请观察它们的构成规律,用你发现的规律写出第9个等式:____________________.18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.按照如图所示的规律,摆第n 个图形,需用火柴棒的根数为__________.(第18题)三、解答题(20~22题每题10分,其余每题12分,共66分) 19.计算:(1)(-5a 3)-a 3-(-7a 3); (2)()5a 2+2a -1-2()3-8a +2a 2;(3)(2xy-y)-(-y+yx); (4)3a2b-2[ab2-2(a2b-2ab2)].20.(1)先化简,再求值:12x+⎝⎛⎭⎪⎫13y2-x-⎝⎛⎭⎪⎫-32x+43y2,其中x=-12,y=-3.(2)已知A=-a2+2a-1,B=3a2-2a+4,求当a=-2时,2A-3B的值.21.如图是一个长方形广场,四角都有一块边长为x m的正方形草地,若长方形的长为a m,宽为b m.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为350 m,宽为200 m,正方形草地的边长为10 m,求阴影部分的面积.(第21题)22.对于代数式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题:当k为何值时,代数式中不含xy项?第二个问题:在第一个问题的前提下,如果x=2,y=-1,那么代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,他得到的最后结果却是正确的,你知道这是为什么吗?23.某校组织学生到距离学校6 km的科技馆去参观,小华因事没能乘上学校的包车,于是准备在学校门口改乘出租车去科技馆,出租车收费标准有两种类型,如下表:里程甲类收费/元乙类收费/元3 km以下(包含3 km) 7.00 6.003 km以上,每增加1 km 1.60 1.40(1)设出租车行驶的里程为x km(x≥3且x取正整数),分别写出两种类型的总收费(用含x的代数式表示);(2)小华身上仅有11元,他乘出租车到科技馆车费够不够?24.一张正方形桌子可坐4人,按如图所示的方式将桌子拼在一起,回答下列问题.(第24题)(1)两张桌子拼在一起可以坐________人,三张桌子拼在一起可以坐________人,n张桌子拼在一起可以坐________人.(2)一家酒楼有60张这样的正方形桌子,按如图所示的方式每4张桌子拼成一张大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,共可坐多少人?(4)对于这家酒楼,(2)(3)中哪种拼桌子的方式能使坐的人更多?答案一、1.C2.A3.A4.D5.C6.D 7.A8.A点拨:(m+n)2-2m-2n=(m+n)2-2(m+n).当m+n=-1时,(m+n)2-2(m+n)=(-1)2-2×(-1)=1+2=3.9.A点拨:因为多项式12x|n|-(n+2)x+7是关于x的二次三项式,所以|n|=2且n+2≠0,所以n=2. 10.C二、11.-13;312.三;三;-1213.-a2b14.-1 15.(100-3a-2b)16.8点拨:12(-1)=13×12-4×(-1)=8.17.92+102+902=912点拨:规律:n2+(n+1)2+[n(n+1)]2=[n(n+1)+1]2,故第9个等式为92+102+902=912.18.6n+2点拨:第1个图形有8根火柴棒,第2个图形有14根火柴棒,第3个图形有20根火柴棒,…,第n个图形有(6n+2)根火柴棒.三、19.解:(1)原式=-5a3-a3+7a3=a3;(2)原式=5a2+2a-1-6+16a-4a2=a2+18a-7;(3)原式=2xy-y+y-xy=xy;(4)原式=3a2b-2(ab2-2a2b+4ab2)=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:(1)原式=12x+13y2-x+32x-43y2=x-y2.当x=-12,y=-3时,x-y2=-12-(-3)2=-192.(2)2A-3B=2(-a2+2a-1)-3(3a2-2a+4)=-2a2+4a-2-9a2+6a-12=-11a2+10a-14.当a=-2时,2A-3B=-11a2+10a-14=-11×(-2)2+10×(-2)-14=-78.21.解:(1)阴影部分的面积为(ab-4x2)m2.(2)将a=350,b=200,x=10代入(1)中得到的式子,得350×200-4×102=70 000-400=69 600(m2).答:阴影部分的面积为69 600 m2.22.解:(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy,所以只要7-k=0,这个代数式中就不含xy项.所以当k=7时,代数式中不含xy项.(2)因为在第一个问题的前提下原代数式可化为3x2+8y2,当马小虎同学把y=-1错看成y=1时,y2的值不变,即8y2的值不变,所以马小虎得到的最后结果却是正确的.23.解:(1)甲类总收费为7+(x-3)×1.6=1.6x+2.2(元);乙类总收费为6+(x-3)×1.4=1.4x+1.8(元).(2)当x=6时,甲类总收费为1.6×6+2.2=11.8(元),11.8元>11元,不够;乙类总收费为1.4×6+1.8=10.2(元),10.2元<11元,够.所以他乘出租车到科技馆车费够.24.解:(1)6;8;(2n+2)(2)按题图所示的方式每4张桌子拼成一张大桌子,那么一张大桌子可坐2×4+2=10(人).所以15张大桌子共可坐10×15=150(人).(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,则一张大正方形桌子可坐8人,15张大正方形桌子共可坐8×15=120(人).(4)由(2)(3)可知,按照(2)中拼桌子的方式能使坐的人更多.第四章达标测试卷一、选择题(每题3分,共30分)1.小辉同学画出了下面四个图形,你认为是四边形的是()2.对于直线AB,线段CD,射线EF,下面能相交的是()(第3题)3.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠CC.∠BCA D.∠ACD4.一个多边形从一个顶点最多能引出2 018条对角线,这个多边形的边数是()A.2 018 B.2 019 C.2 020 D.2 0215.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MXC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN6.∠α=40.4°,∠β=40°4′,则∠α与∠β的大小关系是()A.∠α=∠βB.∠α>∠βC.∠α<∠βD.以上都不对7.如图,观察图形,下列说法或结论中不正确的是()(第7题)A.直线BA和直线AB是同一条直线B.射线AC和射线AD是同一条射线C.AC+CD=ADD.图中有4条线段8.下列说法正确的有()①角的大小与所画角的两边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线;④如果∠AOC=12∠AOB,那么OC是∠AOB的平分线.A.1个B.2个C.3个D.4个9.已知∠AOB=50°,∠BOC=30°,那么∠AOC的度数是() A.20°B.40°C.80°D.20°或80°10.如图,一条流水生产线上L1,L2,L3,L4,L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()(第10题)A.L2处B.L3处C.L4处D.生产线上任何地方都一样二、填空题(每题3分,共24分)11.开学整理教室时,老师总是先把每一列最前面和最后面的课桌摆好,然后依次摆中间的课桌,一会儿一列课桌便摆在一条线上,整整齐齐,这是因为______________________.12.如图,小于平角的角有________个.(第12题)(第14题)(第17题)(第18题)13.把一个直角4等分,每一个角的度数是________度________分.14.如图,阴影部分扇形的圆心角的度数是________.15.一支水笔正好与一把直尺平靠放在一起,小明发现:水笔的笔尖正好对着直尺刻度约为5.6 cm处,另一端正好对着直尺刻度约为20.6 cm处,则水笔的中点位置对着的直尺刻度约为________cm.16.在学习了“线段、射线、直线”后,小李发现:许多汉字就是由这些基本的图形组成的,例如:“一”“二”可以分别看成是一条线段和两条线段组成的,那么汉字“王”中有________条线段.17.如图,某轮船在O处测得灯塔A在北偏东40°的方向上,灯塔B在南偏东60°的方向上,则∠AOB=________.18.如图,艺术节期间某班数学兴趣小组设计了一个长方形时钟作品,其中心为O,数字3,6,9,12标在各边中点处,数字2在长方形顶点处,则数字1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).三、解答题(19~22题每题10分,其余每题13分,共66分)19.计算:(1)48°39′+67°41′-37°12′11″;(2)32°45′20″×4-40°35′50″.20.尺规作图,如图,已知线段a,b,作出线段c,使c=a-b.(要求:不写作法,保留作图痕迹)(第20题)21.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第21题)22.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.(第22题)23.如图,A,B,C是一条笔直的公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现在要在A,B之间建一个车站P,设P,C之间的路程为x km.(1)用含x的代数式表示车站P到三个村庄的路程之和.(2)若路程之和为102 km,则车站P应建在何处?(3)若要使车站P到三个村庄的路程之和最小,则车站P应建在何处?此时路程之和是多少?(第23题)24.如图,正方形ABCD的内部有若干个点,利用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些小三角形(互相不重叠):(第24题)(1)填写下表:正方形ABCD内点的个数1234…n分割成的小三角形的个数46…(2)原正方形能否被分割成2 018个小三角形?若能,求此时正方形ABCD的内部有多少个点.若不能,请说明理由.答案一、1.B2.B3.B4.D5.C6.B7.D8.B点拨:从角的顶点出发的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线,故③错误;如果∠AOC=12∠AOB,当OC在∠AOB的内部时,OC是∠AOB的平分线,但当OC在∠AOB的外部时,OC不是∠AOB的平分线,故④错误.①②正确,所以选B.9.D点拨:①当射线OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=50°+30°=80°;②当射线OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=50°-30°=20°.故选D.10.B二、11.两点确定一条直线12.713.22;3014.36°15.13.116.1217.80°18.②三、19.解:(1)原式=(48°+67°-37°)+(39′+41′-13′)+(60″-11″)=78°67′49″=79°7′49″;(2)原式=131°1′20″-40°35′50″=90°25′30″.20.解:如图所示.(第20题)则线段BC=c=AB-AC=a-b.21.解:由题意可知∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°.所以渔船C在观测站南偏东52.5°方向.22.解:因为∠FOC=90°,∠1=40°,∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3+∠AOD=180°,所以∠AOD=180°-∠3=130°.因为OE 平分∠AOD , 所以∠2=12∠AOD =65°.23.解:(1)路程之和为P A +PB +PC =(100+x )km .(2)令100+x =102,解得x =2, 即车站P 建在C 村两侧2 km 处均可.(3)当x =0时,x +100最小,此时x +100=100,即车站P 建在C 村处时,车站P 到三个村庄的路程之和最小,此时路程之和为100 km . 24.解:(1)填表如下:(2)能.当2n +2=2 018,即n =1 008时,原正方形能被分割成2 018个小三角形,此时正方形ABCD 的内部有1 008个点.第五章达标测试卷一、选择题(每题3分,共30分) 1.下列方程是一元一次方程的是( )A .x 2+x =3B .5x +2x =5y +3 C.12x -9=3 D.2x +1=22.下列方程中,解是x =2的方程是( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +1 3.若代数式x +4的值是2,则x 等于( )A .2B .-2C .6D .-6 4.下列变形中,正确的是( )A .若ac =bc ,则a =bB .若a c =bc ,则a =b C .若|a |=|b |,则a =b D .若-2x -2=3,则x =12 5.将方程3x -23+1=x2去分母,正确的是( )A .3x -2+1=xB .2(3x -2)+1=3xC .2(3x -2)+6=3xD .2(3x -2)+1=x6.某公园要修建一个周长为48 m 的长方形花坛,已知该花坛的长比宽多2 m ,设花坛的宽为x m ,那么列出的方程为( )A .2x =48B .x +2=48C .(x +x +2)×2=48D .x (x +2)=48 7.若12m +1与m -2互为相反数,则m 的值为( )A .-23 B.23 C .-32 D.328.如果x +12 017=-3,那么3x +32 017等于( )A .6B .-9C .3D .-19.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.对于有理数a ,b ,c ,d 规定一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如⎪⎪⎪⎪⎪⎪1 02 -2=1×(-2)-0×2=-2,那么当⎪⎪⎪⎪⎪⎪2 -43-x 5=25时,x 等于( ) A .-34 B.274 C .-234 D .-134 二、填空题(每题3分,共24分)11.如果(a -1)x -13=2是关于x 的一元一次方程,则a __________. 12.写出一个解为x =2的一元一次方程:______________.13.已知关于x 的方程2x +a -5=0的解是x =2,则a =________. 14.若规定“*”的意义为a *b =a -2b ,则方程3*x =5的解是____________. 15.若方程3x -4=0与关于x 的方程3x +4k =12的解相同,则k =________. 16.如图是一个计算程序,当输入某数后,得到的结果为5,则输入的数值x =________.(第16题)17.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜________袋.18.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿照此方法,将0.4·5·化成分数是________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)3x -3=x +2; (2)x +14-1=2x -16.(3)4x -3(20-x )=4;(4)3(x +2)4=x +23+5.20.m为何值时,代数式2m-5m-13的值与代数式7-m2的值的和等于5?21.某月,小江去某地出差,回来时发现日历有好几天没翻了,就一次翻了6张,这6天的日期数之和是123.小江回来的日期应该是多少号?22.某地为了打造风光带,将一段长为360 m的河道整治任务交给甲、乙两个工程队接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m,求甲、乙两个工程队分别整治了多长的河道.23.有一种用来画圆的工具板(如图),工具板长21 cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3 cm,其余圆的直径从左到右依次递减x cm,最大圆的左侧距工具板左侧边缘1.5 cm,最小圆的右侧距工具板右侧边缘1.5 cm,且相邻两圆的间距均为d cm.(1)用含x的代数式表示出其余四个圆的直径;(2)若最小圆与最大圆的直径之比为11∶15,求相邻两圆的间距.(第23题)24.某市居民生活用电基本价格为每千瓦时0.60元,若每月用电量超过a kW·h,超出部分按基本电价的120%收费.(1)某用户6月用电150 kW·h,共交电费93.6元,求a的值;(2)若该用户7月的电费平均每千瓦时为0.66元,则7月用电多少千瓦时?应交电费多少元?答案一、1.C 2.D 3.B4.B 点拨:当c =0,a ≠b 时,ac =bc 也成立,故A 选项不正确;若a c =bc ,则c 不能为0,由等式的基本性质得a =b ,故B 选项正确;若|a |=|b |,则a =b 或a =-b ,故C 选项不正确;若-2x -2=3,则x =-52,故D 选项不正确. 5.C 6.C 7.B 8.B9.A 点拨:设被移动的玻璃球的质量为x g ,根据题意,得2x =20,解得x =10. 10.A二、11.≠1 12.x -2=0(答案不唯一) 13.114.x =-1 点拨:由已知得3*x =3-2x =5,即2x =-2,解得x =-1. 15.216.10 点拨:输入某数后,得到的结果为5,而输入的数值可能是奇数,也可能是偶数.当输入的数值是奇数时,可得x +3=5,解得x =2(不合题意,舍去);当输入的数值是偶数时,可得12x =5,解得x =10.17.33 点拨:设王经理带回孔明菜x 袋,根据题意列方程,得x -35=x +36.解这个方程,得x =33.18.511 点拨:设0.4·5·=y ,则y =0.45+1100y ,解得y =511.所以0.4·5·化成分数是511.三、19.解:(1)移项,得3x -x =2+3.合并同类项,得2x =5. 系数化为1,得x =52.(2)去分母,得3(x +1)-12=2(2x -1). 去括号,得3x +3-12=4x -2. 移项,得3x -4x =-2-3+12. 合并同类项,得-x =7. 系数化为1,得x =-7.(3)去括号,得4x-60+3x=4. 移项、合并同类项,得7x=64.系数化为1,得x=64 7.(4)去分母,得9(x+2)=4(x+2)+60. 移项,得9(x+2)-4(x+2)=60.合并同类项,得5(x+2)=60.所以x+2=12.解得x=10.20.解:由题意知,2m-5m-13+7-m2=5.去分母,得12m-2(5m-1)+3(7-m)=30.去括号,得12m-10m+2+21-3m=30.移项,得12m-10m-3m=30-2-21.合并同类项,得-m=7.系数化为1,得m=-7.21.解:设这6天的日期数分别为x-2,x-1,x,x+1,x+2,x+3.根据题意,可得(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=123.解得x=20.20+3+1=24.答:小江回来的日期应该是24号.22.解:设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360,解得x=5.所以乙工程队整治了20-5=15(天).甲工程队整治的河道长为24×5=120 (m);乙工程队整治的河道长为16×15=240 (m).答:甲、乙两个工程队分别整治了120 m,240 m的河道.23.解:(1)其余四个圆的直径分别为(3-x)cm,(3-2x)cm,(3-3x)cm,(3-4x)cm.(2)由题易得(3-4x)∶3=11∶15,解得x=0.2.将x=0.2代入2×1.5+[3+(3-x)+(3-2x)+(3-3x)+(3-4x)]+4d=21,解得d=1.25.答:相邻两圆的间距为1.25 cm.24.解:(1)因为0.60×150=90(元)<93.6元,所以a<150.由题意,得0.60a+(150-a)×0.60×120%=93.6,解得a=120.(2)设7月用电x kW·h.由题意,得0.66x=0.60×120+0.60×(x-120)×120%,解得x=240.所以0.66x=0.66×240=158.4.答:7月用电240 kW·h,应交电费158.4元.第六章达标测试卷一、选择题(每题3分,共30分)1.下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率2.为了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,在这个问题中,下列说法正确的是()A.1 500名学生的体重是总体B.1 500名学生是总体C.每名学生是个体D.100名学生是所抽取的一个样本3.下列选项中,显示部分在总体中所占百分比的统计图是() A.扇形统计图B.条形统计图C.折线统计图D.频数直方图4.为了了解某初中学校学生的健康状况,对该校学生进行抽样调查,下列抽样的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中随机抽取10%的学生5.四种统计图:①条形统计图;②扇形统计图;③折线统计图;④频数直方图.四个特点:(a)易于比较数据之间的差异;(b)易于显示各组之间的频数的差别;(c)易于显示数据的变化趋势;(d)易于显示每组数据相对于总数的大小.统计图与特点选配方案分别是①与(a);②与(c);③与(d);④与(b).其中选配方案正确的有()A.1个B.2个C.3个D.4个6.某公司某产品的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌(第6题)(第7题)(第8题)7.某次考试中,某班级的数学成绩统计图如图所示(每组的分数包含最小值,不包含最大值).下列说法错误的是()A.得分在70~80分的人数最多B.该班共有40人C.得分在90~100分的人数最少D.及格(≥60分)的有26人8.某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”这个问题,对部分学生进行了调查,调查结果如图所示,其中“不知道”的学生有8人.下列说法不正确的是()。

七年级上册数学卷子可打印

七年级上册数学卷子可打印

七年级上册数学期末试卷一、选择题(每题3分,共24分)题序12345678答案1.若a与3互为相反数,则a的值是()A.3B.-3 C.13D.-132.长春某地创建全国文明城区的工作正在如火如荼地开展中,如图是一个正方体的展开图,则该正方体与“城”相对的面上的汉字是()A.全B.国C.文D.明(第2题)(第4题)3.每天供给地球光和热的太阳与我们的距离非常遥远,它与地球的距离约为1.5亿km,将1.5亿km用科学记数法表示为()A.0.15×109km B.1.5×108km C.15×107km D.1.5×107km 4.如图是由6个大小相同的正方体组成的立体图形,其俯视图是()5.如图,点E在AC的延长线上,∠A=∠DCE,有以下结论:①BD∥AC;②AB∥CD;③∠D+∠ABD=180°;④∠ACB=∠CBD.其中一定正确的有()(第5题)A.1个B.2个C.3个D.4个6.为了更好地营造活跃的校园文化氛围,配合学校的素质教育,某校成立了篮球之家的主题社团,其中七年级参加的人数比八年级参加的人数的2倍少1,设八年级参加的人数为x,则七、八年级参加的总人数为()A.3x B.3x+1C.3x-1D.3x+27.如图,已知线段a,b,画一条射线OM,在射线OM上依次截取OA=AB=a,在线段BO上截取BC=b,则()(第7题)A.OB=a+b B.OB=2b-a C.OC=b-a D.OC=2a-b 8.将一些半径相同的小圆片按如图所示的规律摆放:第1个图形中有6个小圆片,第2个图形中有10个小圆片,第3个图形中有16个小圆片,第4个图形中有24个小圆片,…,依次类推,第9个图形中小圆片的个数为()(第8题)A.94B.85C.84D.76二、填空题(每题3分,共18分)9.温度由-4℃上升7℃是________℃.10.计算:77°42′+34°45′=________.11.已知2a-3b=7,则8+6b-4a=________.12.在数轴上与表示-2的点相距3个单位长度的点表示的数是________.13.如图,∠AOB=90°,∠AOC=23°,OD平分∠EOB,则表示北偏西23°的是射线________.(第13题)(第14题)14.如图,C是线段AB上一点,AC=8cm,BC=6cm,点M从点A出发,以2cm/s的速度沿AB向右运动,终点为B.设点M的运动时间为x s,则当x=________时,能使得M、C、B这三个点中,有一个点恰为另外两点所连线段的中点.三、解答题(第15~17题每题6分,第18~20题每题7分,第21题8分,第223题9分,第23题10分,第24题12分,共78分)15.计算:1+712--48);(2)-12-(1-0.5)÷15×[2-(-2)2].16.先化简,再求值:-2x 2+x -4y --32x 2+2x -12y x =-2,y =1.17.如图,是6×6的正方形网格,每个小正方形的顶点为格点,线段AB 的两个端点及点C 均在格点上.(第17题)(1)过点C作AB的垂线,垂足为点D.(2)过点C作AB的平行线MN(点M、N在点C的异侧,点M在点N上方).(3)在(1)、(2)的条件下,若E是线段AB与网格线的交点,连结CE、CB.写出∠AEC的同旁内角:________;写出与∠ABC相等的角:________;比较线段的大小:CB______CE,CD______CE.(填“>”“=”或“<”) 18.如图,直线AB与ED交于点O,∠BOE=136°,当∠D为多少度时,AB与CD平行?请说明理由.(第18题)19.如图,点C在线段AB上,点D,E分别在线段AC,BC上.(1)若D,E分别是线段AC,BC的中点,且AB=12,则DE=________;(2)若AD=2DC,BE=2CE,且AB=10,求线段DE的长.(第19题)520.近年来,电动小汽车在某市广泛使用,该市治安巡警某分队常常在一条东西走向的道路上巡逻.一天下午,该巡警分队驾驶电动小汽车从位于这条道路上的某派出所出发巡逻,如果规定向东为正,向西为负,行驶里程(单位:km)如下:-5,-2,+8,-3,+6,-4,+5,+3.(1)这辆电动小汽车完成巡逻后在该派出所的哪一侧?距离该派出所多少千米?(2)已知这种电动小汽车平均每千米耗电0.15度,则这天下午电动小汽车共耗电多少度?21.如图,直线AB 、CD 相交于点O,EO ⊥CD 于点O,OF 平分∠BOC .(1)若∠AOC =58°,求∠EOF 的度数;(2)若∠AOC =α,则∠EOF 的度数为________(用含α的式子表示).(第21题)22.在“老城换新颜”小区改造中,为了改善居民的居住环境,某小区计划修建一个广场(平面图形如下图阴影部分所示).(1)用含m,n的代数式表示广场(阴影部分)的面积S;(2)若m=12,n=20,修建广场每平方米需费用20元,求修建该广场的总费用.(第22题)23.某校为提升生态环境质量,面向全市招募绿化养护公司,已知A、B两家公司每月每平方米绿化养护费用均为10元,且各自推出了如下收费方案:公司A:每月每平方米绿化养护费用均打八折;7公司B :每月绿化面积在200m 2以内(含200m 2)不打折,超过200m 2的部分每月每平方米打六折.设该校每月绿化面积为x (x >200)m 2.(1)请用含x 的式子分别表示选择A 、B 两家公司每月所需的绿化养护费用;(2)如果该校目前每月的绿化面积是600m 2,请通过计算说明选择哪家公司比较合算.24.【感知】如图①,若AB ∥CD,AM 平分∠BAC ,试说明:∠CAM =∠CMA .请将下列说明过程补充完整:因为AM 平分∠BAC (已知),所以∠CAM =________(角平分线的定义),因为AB ∥CD (已知),所以∠CMA =________(两直线平行,内错角相等),所以∠CAM =∠CMA (等量代换).【探索】如图②,AM 平分∠BAC ,∠CAM =∠CMA ,点E 在射线AB 上,点F 在线段CM 上,若∠AEF =∠C ,试说明:EF ∥AC .【拓展】如图③,将【探索】中的点F 移动到线段CM 的延长线上,其他条件不变,若∠CAM =3∠MEF =57°,则∠AME 的度数为________.(第24题)答案一、1.B 2.B 3.B 4.D 5.B 6.C7.D8.A二、9.310.112°27′11.-612.1或-513.OE14.1或112点拨:①当点C是BM的中点时,即BC=CM=6cm,∴AM=AC-CM=8-6=2(cm),∴x=22=1.②当点M是BC的中点时,即CM=12BC=3cm,∴AM=AC+CM=8+3=11(cm),∴x=11 2 .综上所述,当x=1或112时,能使得M、C、B这三个点中,有一个点恰为另外两点所连线段的中点.三、15.解:(1)原式=56×(-48)-1×(-48)+712×(-48)-18×(-48)=-40+48-28+6=-14.(2)原式=-1-12×5×(2-4)=-1-52×(-2)=-1+5=4.16.解:-2x2+x-4y--32x2+2x-12y2x2+x-4y+3x2-4x+y=x2-3x-3y,当x=-2,y=1时,原式=(-2)2-3×(-2)-3×1=4+6-3=7.17.解:(1)如图.(2)如图.(第17题)(3)∠MCE;∠NCB;>;<18.解:当∠D=44°时,AB与CD平行.理由如下:∵∠BOE=136°,∴∠AOE=180°-∠BOE=44°.∵∠D=44°,∴∠D=∠AOE,∴AB∥CD.19.解:(1)6(2)∵AD=2DC,BE=2CE,AB=AD+DC+CE+BE,∴AB=2DC+DC+CE+2CE=3(DC+CE)=3DE=10,∴DE=10 3 .20.解:(1)-5-2+8-3+6-4+5+3=8(km).答:这辆电动小汽车完成巡逻后在该派出所的东侧,距离该派出所8km.(2)(|-5|+|-2|+|+8|+|-3|+|+6|+|-4|+|+5|+|+3|)×0.15=(5+2+8+3+6+4+5+3)×0.15=36×0.15=5.4(度).答:这天下午电动小汽车共耗电5.4度.21.解:(1)∵∠AOC+∠BOC=180°,∠AOC=58°,∴∠BOC=122°.∵OF平分∠BOC,∴∠COF=12∠BOC=61°.∵EO⊥CD,∴∠COE=90°,∴∠EOF=∠COE-∠COF=90°-61°=29°.(2)12α22.解:(1)由题意,得S=2m·2n-(2n-n-0.5n)m=4mn-0.5mn=3.5mn(平方米).(2)当m=12,n=20时,S=3.5mn=3.5×12×20=840(平方米),840×20=16800(元).答:修建该广场的总费用为16800元.23.解:(1)由题意知,选择A公司每月所需的绿化养护费用为8x元;选择B公司每月所需的绿化养护费用为200×10+6(x-200)=6x+800(元).(2)当x=600时,A公司每月所需的绿化养护费用为8×600=4800(元).B公司每月所需的绿化养护费用为6×600+800=4400(元).因为4800元>4400元,所以选择B公司比较合算.24.解:【感知】∠BAM;∠BAM【探索】∵AM平分∠BAC,∴∠CAM=∠BAM.∵∠CAM=∠CMA,∴∠BAM=∠CMA,∴AB∥CD,∴∠AEF=∠EFD.∵∠AEF=∠C,∴∠EFD=∠C,∴EF∥AC.【拓展】76°9。

七年级数学上册全套试卷

七年级数学上册全套试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. πC. 2.5D. √-12. 如果a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 下列函数中,一次函数是()A. y = 2x + 3B. y = x^2 + 1C. y = √xD. y = 1/x4. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)5. 如果一个正方形的对角线长为5cm,那么这个正方形的面积是()A. 25cm²B. 10cm²C. 20cm²D. 15cm²6. 下列等式中,正确的是()A. 2a + 3b = 3a + 2bB. 2(a + b) = 2a + 2bC. 2a + 3b = 3a + 3bD. 2(a + b) = 2a + 3b7. 下列图形中,轴对称图形是()A. 等腰三角形B. 矩形C. 正方形D. 圆8. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 18cmB. 24cmC. 26cmD. 28cm9. 下列各数中,无理数是()A. √4B. √9C. √16D. √-910. 下列方程中,一元一次方程是()A. 2x + 3 = 5x - 1B. 3x^2 - 2x + 1 = 0C. 2x + 5 = 3(x - 2)D. 5x + 4 = 0二、填空题(每题3分,共30分)11. 3的平方根是_________,5的立方根是_________。

12. 若a = 2,b = -3,那么a + b的值是_________。

13. 在直角坐标系中,点A(2,3)到原点O的距离是_________。

初中七年级上册数学试卷【含答案】

初中七年级上册数学试卷【含答案】

初中七年级上册数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 42厘米D. 46厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 一个正方形的面积是81平方厘米,那么它的边长是多少?A. 9厘米B. 10厘米C. 11厘米D. 12厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一个等边三角形的三个角都是60度。

()3. 两个负数相乘的结果是正数。

()4. 一个数的平方根只有一个。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 1千米等于______米。

3. 一个等腰三角形的底角是45度,那么它的顶角是______度。

4. 5的立方是______。

5. 2的平方根是______。

四、简答题(每题2分,共10分)1. 请简述勾股定理。

2. 请解释什么是质数。

3. 请说明等边三角形的特点。

4. 请解释什么是绝对值。

5. 请简述如何计算一个正方体的体积。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算它的面积。

2. 一个数的平方是36,请找出这个数。

3. 一个等腰三角形的周长是30厘米,底边长是10厘米,请计算腰长。

4. 请计算下列各式的值:(-3) + (-5)5. 请计算下列各式的值:8 ÷ (-2)六、分析题(每题5分,共10分)1. 小明家的花园是一个长方形,长是20米,宽是10米,他想用篱笆围起来,请问他需要多长的篱笆。

人教版七年级上册数学试卷全册

人教版七年级上册数学试卷全册

人教版七年级数学上册第一章有理数单元测试题姓名 得分一、精心选一选:(每题2分、计18分)1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c 2、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数 3、654321-+-+-+……+2005-2006的结果不可能是: ( ) A 、奇数 B 、偶数 C 、负数 D 、整数 4、、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定5、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-16每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米 *7.20032004)2(3)2(-⨯+- 的值为( ). A .20032- B .20032C .20042- D .20042*8、已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和*9.3028864215144321-+-+-+-+-+-+- 等于( ).A .41B .41-C .21D .21-二.填空题:(每题3分、计42分)1、如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为_______。

七年级上册数学试卷整套

七年级上册数学试卷整套

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. √32. 如果a=3,那么|a-2|的值是()A. 1B. 2C. 3D. 53. 下列等式中,正确的是()A. (-3)² = 9B. (-3)³ = -27C. (-3)⁴ = -81D. (-3)⁵ = 2434. 下列数中,正数是()A. -5/3B. 2/3C. -2/3D. 05. 如果x=5,那么x²-x+1的值是()A. 5B. 6C. 7D. 86. 下列各数中,负数是()A. √16B. √-16C. √4D. √-47. 如果a=2,那么a²-3a+2的值是()A. 0B. 1C. 2D. 38. 下列数中,有理数是()A. √25B. √-25C. √4D. √-49. 如果x=3,那么2x-5的值是()A. 1B. 2C. 3D. 410. 下列各数中,整数是()A. 2/3B. -2/3C. 3/2D. -3/2二、填空题(每题5分,共50分)11. 有理数a,如果a²=1,那么a的值为______。

12. 下列数中,负数是______。

13. 如果x=5,那么x²-x+1的值为______。

14. 下列等式中,正确的是______。

15. 如果a=2,那么a²-3a+2的值为______。

16. 下列数中,有理数是______。

17. 如果x=3,那么2x-5的值为______。

18. 下列各数中,负数是______。

19. 如果a=3,那么|a-2|的值为______。

20. 下列数中,整数是______。

三、解答题(每题10分,共40分)21. 解下列方程:3x-4=7。

22. 解下列不等式:2x+5<10。

23. 求下列函数的值:f(x)=2x-3,当x=4时。

24. 已知一元二次方程x²-5x+6=0,求它的解。

七年级数学试卷上册全套

七年级数学试卷上册全套

一、选择题(每题4分,共20分)1. 下列各数中,负数是()A. -2B. 0C. 2D. -52. 下列各数中,绝对值最大的是()A. -3B. -2C. 1D. 03. 下列各数中,不是有理数的是()A. 2.5B. -0.1C. √2D. 1/34. 下列各数中,不是整数的是()A. -3B. 0C. 1.5D. 25. 下列各数中,不是正数的是()A. 3B. -2C. 0D. 1/2二、填空题(每题5分,共20分)6. -3的相反数是__________。

7. 0.5的倒数是__________。

8. 下列各数中,正数是__________。

9. 下列各数中,整数是__________。

10. 下列各数中,有理数是__________。

三、解答题(每题10分,共30分)11. 计算下列各题:(1)|-5| + (-3) - 2(2)(-1/2) × 3 + 4 - (-2)(3)5 - 2 × (-1) ÷ 312. 判断下列各数是否为有理数:(1)√4(2)√9(3)√1613. 解下列方程:(1)2x - 5 = 1(2)3x + 4 = -2(3)-x + 7 = 0四、应用题(每题10分,共20分)14. 小明有20元,他想买一本书,书的价格是18元,他还需要再借多少钱?15. 一辆汽车以每小时60千米的速度行驶,行驶了3小时后,又以每小时80千米的速度行驶了2小时,求汽车行驶的总路程。

五、简答题(每题10分,共20分)16. 简述有理数的乘法法则。

17. 简述一元一次方程的解法。

答案:一、选择题1. A2. A3. C4. C5. B二、填空题6. 37. 28. 3,-2,0,1/29. -3,0,1,2 10. 2.5,-0.1,1/3三、解答题11. (1)-4 (2)4.5 (3)512. (1)是(2)是(3)是13. (1)x = 3 (2)x = -2 (3)x = 7四、应用题14. 小明还需要再借2元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册有理数单元测试题1姓名 得分一、精心选一选:(每题2分、计18分)1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -2、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数; (C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数3、654321-+-+-+……+2005-2006的结果不可能是: ( ) A 、奇数 B 、偶数 C 、负数 D 、整数4、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定5、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-16、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米 *7、20032004)2(3)2(-⨯+- 的值为( ).A .20032- B .20032 C .20042- D .20042*8、已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和*9.3028864215144321-+-+-+-+-+-+- 等于( ).A .41B .41-C .21D .21-二.填空题:(每题3分、计42分)1、如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为_______。

2、倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它本身的数是 。

3、m -的相反数是 ,1m -+的相反数是 ,1m +的相反数是 .4、已知9,a -=那么a -的相反数是 .;已知9a =-,则a 的相反数是 .5、观察下列算式:,,,,请你在观察规律之后并用你得到的规律填空:.6、如果|x +8|=5,那么x = 。

7、观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=16=4 2 ,1+3+5+7+9=25=5 2,……猜想:(1) 1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n-1)= _____________ . (结果用含n 的式子表示,其中n =1,2,3,……)。

8、计算|3.14 - π|- π的结果是 .9、规定图形表示运算a –b + c,图形表示运算w y z x --+.则+=_______(直接写出答案).10、计算:()()()200021111-+-+- =_________。

11.观察下面一列数,根据规律写出横线上的数,-11;21;-31;41; ; ;……;第2003个数是 。

12.计算:(-1)1+(-1)2+(-1)3+……+(-1)101=________。

13.计算:1+2+3+……+2002+2003+2002+……+3+2+1=________。

14、已知m m -=,化简21---m m 所得的结果是________.三、规律探究1、下面有8个算式,排成4行2列2+2, 2×23+23, 3×23 4+34, 4×345+45, 5×45……, ……(1)同一行中两个算式的结果怎样?(2)算式2005+20042005和2005×20042005的结果相等吗?(3)请你试写出算式,试一试,再探索其规律,并用含自然数n 的代数式表示这一规律。

(5分)2、你能很快算出22005吗?(5分)为了解决这个问题,我们考察个位上的数为5的正整数的平方,任意一个个位数为5的正整数可写成10n +5(n 为正整数),即求()2105n +的值,试分析1n =,2,3……这些简单情形,从中探索其规律。

⑴通过计算,探索规律:215225=可写成()10011125⨯⨯++;225625=可写成()10022125⨯⨯++;2351225=可写成()10033125⨯⨯++;2452025=可写成()10044125⨯⨯++;………………2755625=可写成____________________2857225=可写成______________________⑵根据以上规律,试计算2105= 22005=3(5分) 已知32211124=⨯⨯;33221129234+==⨯⨯;(1)猜想填空:(2)计算①②23+43+63+983+……+10034、已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.(5分) *5已知2003200232120032002321=-+-++-+-+-x x x x x ,求代数式20032002212222x x x x +--- 的值.(7分)6、已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为90-10 90(1)请写出AB的中点M对应的数。

(2)现在有一只电子蚂蚁P从B点出发,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2单位/秒的速度向右运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度?7、一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?七年级数学上册单元测试题2一、填空题。

(每小题2分,共24分) 1、列式表示:p 的3倍的41是____________________。

2、单项式2237xy π-的系数是 ,次数是 。

3、写出-5x 3y 2的一个同类项______________。

4、三个连续奇数,中间的一个是n ,则这三个数的和是___________________。

5、在代数式32,,4,1,,,141,3,2223+---+--x ab x x n m y x x xy 中,单项式有___个,多项式有____个。

6、62m x y -与3235n x y 是同类项,则n m =_________。

7、若x =2,则代数式x 3+x 2-x+3的值是_______。

8、化简)3(23y x x --的结果是_________________。

9、已知轮船在逆水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在静水中的速度是______________千米/时。

10、一个三位数,十位数字为x ,个位数字比十位数字少3,百位数字是十位数字的3倍,则这个三位数可表示为________________________。

11、如图,正方形的边长为x ,用整式表示图中阴影部分的面积_______(保留π) 12、如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表: 所剪次数 1 2 3 4 … n 正三角形个数471013…a n则a n =_______________(用含n 的代数式表示)。

二、选择题。

(每小题3分,共24分) 13、多项式1212---x x 的各项分别是( ) A 、1,21,2x x - B 、1,21,2---x x C 、1,21,2x x D 、1,21,2--x x14、下列各题去括号错误的是( )A 、213)213(+-=--y x y x B 、b a n m b a n m -+-=-+-+)(C 、332)364(21++-=+--y x y xD 、723121)7231()21(-++=+--+c b a c b a15、下列说法正确的是( )A 、xyz 32与xy 32是同类项 B 、x 1和x 21是同类项C 、235.0y x 与327y x 是同类项D 、n m 25与24nm -是同类项16、下面计算正确的是( )A 、3322=-x x B 、532523a a a =+ C 、x x 33=+ D 、04125.0=+-ba ab17、原产量 n 吨,增产30%后的产量是( )A 、(1—30%)n 吨B 、(1+30%)n 吨C 、n+30%吨D 、30%n 吨 18、下列说法正确的是( )A 、231x π的系数是31 B 、221xy 的系数为x 21C 、25x -的系数是5D 、23x 的系数是319、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要要( )元。

A 、4m+7n B 、28mn C 、7m+4n D 、11mn 20、计算:3562+-a a 与1252-+a a 的差,结果正确的是( ) A 、432+-a a B 、232+-a a C 、272+-a a D 、472+-a a 三、解答题。

(共72分)21、计算(5分×4=20分)(1)6321+-st st(2)ab b a a ab 3)3()2(3+--+-(3))32(3)32(2a b b a -+- (4)ab ab a ab a 21]4)(21[2122-+--22、先化简,再求值:}4)]2(5[3{42222x x x x x x x +------,其中21=x 。

23、已知0)1(|2|2=++-b a ,求)]24(2[52222b a ab b a ab ---的值。

24、已知611,5223+-=-=x x B x x A ,求A —2B 的值。

25、已知三角形的第一边长为2a+b ,第二边比第一边长(a-b ),第三边比第二边短a ,求这个三角形的周长。

26、如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r 米,广场的长为a 米,宽为b 米。

相关文档
最新文档