必修四基础练习一

合集下载

新教材数学人教B版必修第四册练习:全册测试Word版含解析

新教材数学人教B版必修第四册练习:全册测试Word版含解析

必修四全册测试间:120分钟分数:150分、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.).已知复数z 1=2-a i (a ∈R )对应的点在直线x -3y +4=0上,则复数z 2=a +2i 对应的点在() .第一象限B .第二象限C .第三象限D .第四象限.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是() .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β .若m ∥n ,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若B =120°,sin C =217,c =2,则△ABC 的面积等于() .32B .23C.34D.3 .已知等腰直角三角形ABC 中,∠C =π2,AC =22,D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为22,此时三棱锥C ­ABD 的外接球的表面积为() .5πB .43πC .3πD .12π.△ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,且a cos B =(2c -b )cos A ,则角A 的大小为() .π6B.π4C.π3D.π2.唐朝著名的凤鸟花卉纹浮雕银杯如图1所示,它的盛酒部分可以近似地看作是半球与圆柱的组合体(如图2).当这种酒杯内壁表面积(假设内壁表面光滑,表面积为S 平方厘米,半球的半径为R 厘米)固定时,若要使得酒杯的容积不大于半球体积的2倍,则R 的取值范围为() .⎝⎛⎦⎤0,3510πB.⎣⎡⎭⎫3S10π,+∞ .⎝⎛⎦⎤S 5π, 3S 10πD.⎣⎡⎭⎫3S 10π,S 2π .如图,在正四面体P ­ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论不成立的是().BC ∥平面PDF.DF ⊥平面P AE .平面PDF ⊥平面P AE .平面PDE ⊥平面ABC.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)() .3323B.5323 .7323D.8323、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.) .设l 为直线,α,β是两个不同的平面,下列命题中错误的是() .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥β .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β 0.下面给出的四个结论正确的为().若复数z ∈R ,则z -∈R B .若复数z 满足1z∈R ,则z ∈R.对于复数z ,有|z |2=z 2D .对于复数z 1,z 2,若z 21+z 22=0,则z 1=z 2=01.已知锐角△ABC ,内角A ,B ,C 的对边分别为a ,b ,c ,若c =4,∠B =60°,则边b 的可能取值为() .2B .3C .4D .52.已知空间中两条直线a ,b 所成的角为50°,P 为空间中给定的一个定点,直线l 过点P 且与直线a 和直线b 所成的角都是θ(0°<θ≤90°),则下列选项正确的是().当θ=15°时,满足题意的直线l 不存在B .当θ=25°时,满足题意的直线l 有且仅有1条 .当θ=40°时,满足题意的直线l 有且仅有2条D .当θ=60°时,满足题意的直线l 有且仅有3条、填空题(本题共4小题,每小题5分,共20分.)3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,b =4,c =6,则bc cos A +ac cos B +ab cos C 的值是________.4.公元一世纪的我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适马岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈(10尺),有棵芦苇长在它的正中央,高出水面部分有1尺长,把芦苇拉向岸边,恰好碰到沿岸(池塘一边的中点),则水深为________尺. 5.欧拉公式e ix =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,对2019i 4eπ表示的复数z ,则|z |=__________.6.在△ABC 中,∠ABC =π3,边BC 在平面α内,顶点A 在平面α外,直线AB 与平面α所成角为θ.若平面ABC 与平面α所成的二面角为π3,则sin θ=________.、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)7.(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B +1=b sin A +2cos C . 1)求角C 的大小;2)若a =2,a 2+b 2=2c 2,求△ABC 的面积.8.(12分)如图,直三棱柱ABC ­A 1B 1C 1中,M ,N 分别为A 1B ,B 1C 1的中点. 1)求证:MN ∥平面A 1ACC 1;2)已知A 1A =AB =2,BC =5,∠CAB =90°,求三棱锥C 1­ABA 1的体积. 9.(12分)已知函数f (x )=sin x ·sin ⎝⎛⎭⎫x +π3-14(x ∈R ). 1)求f ⎝⎛⎭⎫π3的值和f (x )的最小正周期;2)设锐角△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且f ⎝⎛⎭⎫A 2=14,a =2,求b +c 的取值范围.0.(12分)如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点. 1)证明:PQ ∥平面ACD ;2)求AD 与平面ABE 所成角的正弦值.1.(12分)法国数学家费马被称为“业余数学家之王”,很多数学定理以他的名字命名.对△ABC 而言,若其内部的点P 满足∠APB =∠BPC =∠CP A =120°,则称P 为△ABC 的费马点.如图所示,在△ABC 中,已知∠BAC =45°,设P 为△ABC 的费马点,且满足∠PBA =45°,P A =2.1)求△P AC 的面积; 2)求PB 的长度.2.(12分)如图1所示,在长方形ABCD 中,AB =2,AD =1,E 为CD 的中点,以AE 为折痕,把△DAE 折起到△D ′AE 的位置(如图2所示),且平面D ′AE ⊥平面ABCE . 1)求证:AD ′⊥BE ;2)求四棱锥D ′­ABCE 的体积;3)在棱ED ′上是否存在一点P ,使得D ′B ∥平面P AC ,若存在,求出点P 的位置,若不存在,请说明理由.1图2必修四全册测试.答案:B析:复数z 1=2-a i 对应的点为(2,-a ),它在直线x -3y +4=0上,故2+3a +4=0,解得a =-2,于是复数z 2=-2+2i ,它对应点的点在第二象限,故选B. .答案:C析:由于m ∥α,n ∥α,则m ∥n ,m 与n 可能相交也可能异面,所以A 不正确;m ∥α,m ∥β,则α∥β,还有α与β可能相交,所以B 不正确;m ∥n ,m ⊥α,则n ⊥α,满足直线与平面垂直的性质定理,所以C 正确.m ∥α,α⊥β,则m ⊥β,也可能m ∥β,也可能m ∩β=A ,所以D 不正确. .答案:A析:∵B =120°,sin C =217,c =2, 由正弦定理b sin B =c sin C ,可得b =c ·sin Bsin C=7,由余弦定理b 2=a 2+c 2-2ac cos B ,可得7=a 2+4-2×a ×2×(-12),整理得a 2+2a -3=0,解得a =1,或-3(舍去),S △ABC =12ab sin C =12×1×7×217=32..答案:D析:等腰直角三角形ABC 中,∠C =π2,AC =22,解得AB =4.于CD ⊥AD ,CD ⊥BD ,易得CD ⊥平面ABD , A 与点B 间的距离为22, 以AD 2+BD 2=AB 2,则AD ⊥BD ,以将三棱锥C ­ABD 放到棱长为2的正方体中, 以(2R )2=22+22+22,解得R =3,S 表=4πR 2=12π. .答案:C析:因为a cos B =(2c -b )cos A ,正弦定理得sin A cos B =(2sin C -sin B )cos A , 以sin C (1-2cos A )=0.为0<C <π,所以sin C >0,所以cos A =12.又0<A <π,所以A =π3..答案:D析:设圆柱的高度与半球的半径分别为h ,R ,则S =2πR 2+2πRh ,则πRh =S2-πR 2,以酒杯的容积V =23πR 3+πR 2h =23πR 3+⎝⎛⎭⎫S 2-πR 2R =-π3R 3+S 2R ≤43πR 3. h >0,所以S2-πR 2>0,以πR 2<S 2≤53πR 2,解得3S10π≤R <S 2π. .答案:D析:设AE ∩DF =O ,由DF ∥BC ,可得BC ∥平面PDF ,故A 正确.若PO ⊥平面ABC ,垂足为O ,则O 在AE 上,则DF ⊥PO ,又DF ⊥AE ,故DF ⊥平面P AE ,故B 正确.由DF ⊥平面P AE 可得,平面PDF ⊥平面P AE ,故C 正确.∵DF ⊥平面P AE ,DF ⊂平面ABC ,∴平面P AE ⊥平面ABC ,∵平面P AE ∩平面PDE =PE ,且PE 与平面ABC 不垂直,∴平面PDE 与平面ABC 不垂直,故D 错误. .答案:B析:如图所示,依题意知∠AEC =45°,∠ACE =180°-60°-15°=105°, ∠EAC =180°-45°-105°=30°. 正弦定理知CE sin ∠EAC =ACsin ∠AEC ,AC =102sin30°×sin45°=20(米),在Rt △ABC 中,AB =AC ·sin ∠ACB =20×32=103(米). 国歌长度约为46秒,升旗手升旗的速度应为10346=5323(米/秒)..答案:ACD析:A 中α,β也可相交,A 不正确;由垂直同一直线的两平面平行知,B 正确;C 中,α,β垂直,不正确;D 中l 与β也可平行或l ⊂β,不正确. 0.答案:AB析:若复数z ∈R ,则z 虚部为0,所以它的共轭复数是它本身,也属于实数,选项A 正确;设z =a +b i ,则1z =1a +b i =a -b i a 2+b 2∈R .由1z ∈R 得到b =0,所以z ∈R ,选项B 正确;对于复数z ,例如z =i ,则|z |2=1,z 2=-1,不满足|z |2=z 2,选项C 不正确;对于复数z 1,z 2,例如z 1=1,z 2=i ,满足z 21+z 22=0但是不满足z 1=z 2=0,选项D 不正确.1.答案:CD析:在△ABC 中,c =4,∠B =60°,b sin B =c sin C ,得b =c sin B sin C =4×32sin C =23sin C .由于0<C <π2,可得sin C ∈(0,1),即有b >2 3. b =4,则b =c ,即B =C =60°,△ABC 为等边三角形,成立; b =5,可得sin C =235∈⎝⎛⎭⎫12,32,且b >c ,即B >C ,为30°<C <60°,即有60°<A <90°,成立. 2.答案:ABC析:如图,过点P 作a 1∥a ,b 1∥b ,则相交直线a 1,b 1确定一平面α.a 1与b 1夹角为50°, 直线P A 即l 与a 1,b 1所成角均为θ角, 图l 绕P 转动保持与a 1,b 1夹角相等, l 在α内为a ,b 夹角平分线时,θ最小为25°,以AB 正确,当θ为40°和60°时直线l 都有2条,所以C 正确,D 错. 3.答案:612析:因为cos A =b 2+c 2-a 22bc ,所以bc cos A =12(b 2+c 2-a 2).同理,ac cos B =12(a 2+c 2-b 2),ab cos C=12(a 2+b 2-c 2).所以bc cos A +ac cos B +ab cos C =12(a 2+b 2+c 2)=612. 4.答案:12析:如图所示,OA =OB ,AC =1, C ⊥OA ,BC =12×10=5.水深OC =x 尺,则葭长为x +1尺. Rt △OBC 中,x 2+52=(x +1)2, 得x =12. 水深OC =12尺. 5.答案:1 析:由题意,2019i 4e=cos 20194π+isin 20194π=os 3π4+isin 3π4=-22+22i ,以|z |=12+12=1. 6.答案:34析:如图,过A 作AO ⊥α,垂足是O ,过O 作OD ⊥BC ,交BC 于D ,连接AD , AD ⊥BC ,∴平面ABC 与平面α所成的二面角为∠ADO =π3,ABO 是直线AB 与平面α所成角,即∠ABO =π3,设AO =3,△ABC 中,∠ABC =π3,BD =12AB ,AD =32AB ,AO =32AD =34AB ,sin θ=AO AB =34. 7.解析:(1)因为由正弦定理得a sin A =bsin B ,以a sin B =b sin A , 2cos C =1,cos C =12.0<C <π,∴C =π3.2)由余弦定理得c 2=a 2+b 2-ab , 4+b 2=2(4+b 2-2b ),解得b =2. S △ABC =12ab sin C =12×2×2×sin π3= 3.8.解析:(1)证明:如图,设K 是B 1C 的中点,连接KN ,KM ,分别在△AB 1C ,△B 1C 1C 中利用三角形中位线定理可得: K ∥AC ,KN ∥CC 1,MK ∩NK =K ,∴平面MNK ∥平面AA 1C 1C , MN ⊂平面MNK ,∴MN ∥平面A 1ACC 1. 2)∵∠CAB =90°,AB =2,BC =5,AC =BC 2-AB 2=1,则S △ABC =1,ABC ­A 1B 1C 1是直棱柱,∴高为AA 1=2, 棱柱ABC ­A 1B 1C 1的体积为VABC ­A 1B 1C 1=2. VC 1­ABA 1=13VABC ­A 1B 1C 1=23.9.解析:(1)函数f (x )=sin x ·sin ⎝⎛⎭⎫x +π3-14(x ∈R ). 以f ⎝⎛⎭⎫π3=32×32-14=12.f (x )=sin x ⎝⎛⎭⎫12sin x +32cos x -141-cos2x 4+34sin2x -14=12sin ⎝⎛⎭⎫2x -π6,所以函数f (x )的最小正周期为π. 2)设锐角△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且f ⎝⎛⎭⎫A 2=14, 以sin ⎝⎛⎭⎫A -π6=12,解得A =π3. 用正弦定理a sin A =b sin B =c sin C ,得b =43sin B ,c =43sin ⎝⎛⎭⎫2π3-B , 以b +c =43⎣⎡⎦⎤sin B +sin ⎝⎛⎭⎫2π3-B =4sin ⎝⎛⎭⎫B +π6,由于⎩⎨⎧0<B <π20<C =2π3-B <π2,解得π6<B <π2,所以B+π6∈⎝⎛⎭⎫π3,2π3,所以b +c ∈(23,4]. 0.解析:(1)证明:因为P ,Q 分别为AE ,AB 的中点, 以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , PQ ⊄平面ACD ,从而PQ ∥平面ACD .2)如图,连接CQ ,DP ,因为Q 为AB 的中点,且AC =BC ,所以CQ ⊥AB .为DC ⊥平面ABC ,EB ∥DC , 以EB ⊥平面ABC ,因此CQ ⊥EB . CQ ⊥平面ABE .(1)有PQ ∥DC ,又PQ =12EB =DC ,以四边形CQPD 为平行四边形,故DP ∥CQ .此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, Rt △DP A 中,AD =5,DP =1, in ∠DAP =55, 此AD 和平面ABE 所成角的正弦值为55. 1.解析:(1)由已知得∠P AB =180°-120°-45°=15°, ∠P AC =45°-15°=30°.△P AC 中,∠PCA =180°-120°-30°=30°, P A =PC =2,△P AC 的面积S =12P A ·PC ·sin ∠APC =12×2×2×32= 3.2)∵sin15°=sin(45°-30°)=22×32-22×12=6-24,sin45°=22,∴在△P AB 中,由正弦定理得PB sin15°=P Asin45°,PB =2sin15°sin45°=2×6-2422=3-1. 2.解析:(1)证明:根据题意可知,在长方形ABCD 中,△DAE 和△CBE 为等腰直角三角形,∴∠DEA =∠CEB =45°,∠AEB =90°,即BE ⊥AE .平面D ′AE ⊥平面ABCE ,且平面D ′AE ∩平面ABCE =AE ,BE ⊂平面ABCE ,BE ⊥平面D ′AE ,AD ′⊂平面D ′AE ,AD ′⊥BE .2)取AE 的中点F ,连接D ′F ,则D ′F ⊥AE ,且D ′F =22. 平面D ′AE ⊥平面ABCE ,平面D ′AE ∩平面ABCE =AE ,D ′F ⊂平面D ′AE ,D ′F ⊥平面ABCE ,V D ′­ABCE =13S 四边形ABCE ·D ′F =13×12×(1+2)×1×22=24. 3)如图所示,连接AC 交BE 于Q ,假设在D ′E 上存在点P ,使得D ′B ∥平面P AC ,连接PQ . D ′B ⊂平面D ′BE ,平面D ′BE ∩平面P AC =PQ ,D ′B ∥PQ ,在△EBD ′中,EP PD ′=EQ QB . △CEQ ∽△ABQ ,EQ QB =EC AB =12, EP PD ′=EQ QB =12,即EP =13ED ′, 在棱ED ′上存在一点P ,且EP =13ED ′使得D ′B ∥平面P AC .。

2018-2019学年高一英语外研版必修四同步练习:Module-1-Life-in-the-Fut

2018-2019学年高一英语外研版必修四同步练习:Module-1-Life-in-the-Fut

Module 1 Life in the Future1、Our food is and I run short of money.outout ofrun outout of2、—Can you help me with the maths homework, mom?—You can't always ________others' help for your it by yourself this time, dear. on on on on3、Smoking is a bad habit. You should _________ it.awayaway withrid of4、If the police _______ somebody, the person is taken to a police station and kept there because the police believe they may be guilty of a crime.5、According to the investigation, the D-train accident resulted from the fact that the authorities concerned didn’t _______ enough importance to the safety of the signal equipment.6、________ , she is the sort of woman to spread sunshine to people through her smile. and cautiousand thoughtfuland confidentand optimistic7、We do our best to be careful and prevent bad things from happening,but most of us will________ find ourselves in a situation where we or someone else needs help.8、No matter how carefully you plan your finances, no onecan when the unexpected will happen.9、—Call me at six tomorrow morning.—Why so early I ________.sleep be sleepingslept sleeping10、Don't worry! You won't miss her at the airport. She ________ a red T-shirt anda white skirt at that time.worn be wearingwearing11、—Have you thought about your day off next week?—Oh, yes, I ________ the sunshine in Hawaii next Friday afternoon while you're all working!enjoy enjoyingbe enjoying going to enjoy12、 Welcome to your future life!You get up in the morning and look into the mirror. Your face is firm and young-looking. In 2035, medical technology is better than ever. Many people your age could li ve to be 150, so at 40, you’re not old at all. And your parents just had an anti-aging(抗衰老的) treatment. Now, all three of look the same age!You say to your shirt, “Turn red.” It changes from blue to red. In 2035, “smart clothes” contain particles(粒子) much smaller than the cells in your body. The particles can be programmed to change clothes’ color or pattern.You walk into the kitchen. You pick up the milk, but a voice says,“ You shouldn’t drink that!” Your fridge has read the chip (芯片) that contains information about the milk , and it knows the milk is old . In 2035, every article of food in the grocery store has such a chip.It’s time to go to work. In 2035, cars drive themselves. Just tell your “smart car” where to go. On the way, you can c all a friend using your jacket sleeve. Such “smart technology” is all around you.So will all these things come true “For new technology to succeed,” says scientist Andrew Zolli ,”it has to be so much better that it replaces what we have already.” The Internet is one example—what will be the nextcan learn from the text that in the future__________.will never get oldwill look the samewill be the most popular colorwill be able to change their patterncan be inferred from Paragraph 4?will be harmful to health.drinks will be available for sale.in the grocery store will carry electronic information.in the grocery store will stay fresh much longer.of the following is mentioned in the text?can replace the Internet.will know what people need.sleeves can be used as a guide.will be able to drive automatically.is the text mainly about?and clothing in 2035.technology in everyday life.treatments of the future.reason for the success of new technology.13、Parents who help their children with homework may actually be bringing down their school grades. Other forms of parental involvement, including volunteering at school and observing a child's class, also fail to help, according to the most recent study on the topic.The findings challenge a key principle of modern parenting where schools expect them to act as partners in their children's education. Previous generations concentrated on getting children to school on time, fed, dressed and ready to learn.Keith Robinson, the author of the study, said, "I really don't know if the public is ready for this but there are some ways parents can be involved in their kids' education that leads to declines in their academic performance. One of the things that was consistently negative was their parents' help with homework." Robinson suggested that may be because parents themselves struggle to understand the tasks."They may either not remember the material their kids are studying now, or in some cases never learnt it themselves, but they're still offering advice."Robinson assessed parental involvement performance and found one of the most damaging things a parent could do was to punish their children for poor marks. In general, about 20% of parental involvement was positive, about 45% negative and the rest statistically insignificant.Common sense suggests it was a good thing for parents to get involved because "children with good academic success do have involved parents", admitted Robinson. But he argued that this did not prove parental involvement was the root cause of that success. "A big surprise was that Asian-American parents whose kids are doing so well in school hardly involved. They took a more reasonable approach, conveying to their children how success at school could improve their lives."underlined expression "parental involvement" in Paragraph 1 probablymeans .' expectation on children's health' participation in children's education' control over children's life' plan for children's futureis the major finding of Robinson's study?parents raise children in a more scientific way.kids for bad marks is mentally damaging.involvement is not so beneficial as expected.are not able to help with children’s homework.example of Asian-American parents implies that parentsshould .children realize the importance of schoolinga specific life goal for their childrenmore time improving their own livesa more active part in school management14、根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

人教版高中语文必修4 第二单元 第7课 李清照词两首 习题练习一(附答案)

人教版高中语文必修4  第二单元  第7课 李清照词两首   习题练习一(附答案)

人教版高中语文必修4 第二单元第7课李清照词两首习题练习一(附答案)一、选择题1.下列诗句书写完全正确的一项是()A.东篱把酒黄昏后,有暗香盈袖。

B.莫道不消魂,帘卷西风,人比黄花瘦。

C.满地黄花堆积,憔悴陨,如今有谁堪摘?D.梧桐更兼喜雨,到黄昏、点点滴滴。

2.下列句子中加线词的意思,相同的一项是()A.将进酒,杯莫停莫听穿林打叶声B.秦人开关延敌天下英雄谁敌手C.沉舟侧畔千帆过谓言无罪过,供养卒大恩D.总把新桃换旧符把酒问青天3.下列有关文学常识的表述有误的一项是()A.大部分词调分成两段,甚至三段、四段,分别称为“双调”“三叠”“四叠”。

段在词中又叫“片”或“阕”。

一首词的上下两段分别称上下片或上下阕。

B.从晚唐五代到宋代温庭筠、晏殊、秦观、李清照等一系列词坛名家的词风虽不无差别,各有擅长,但大体上可归诸婉约范畴。

C.婉约词风,其内容主要是写男女情爱、离情别绪、伤春悲秋、光景流连;其形式大都婉丽柔美,含蓄蕴藉,情景交融,声调和谐。

D.李清照的词以南渡为界限分为前后两个时期。

南渡前多写离愁闲愁,词风清丽柔媚;南渡后多写国恨家仇,词风凄恻哀婉,《醉花阴》《声声慢》都创作于这一时期。

4.下面各对联不是写李清照的一项是()A.红雨飞愁千秋绝唱销魂句黄花比瘦一卷高歌漱玉词B.大河百代,众浪齐奔,淘尽万个英雄汉词苑千载,群芳竞秀,盛开一枝女儿花C.大明湖畔,趵突泉边,故居在绿杨深处漱玉集中,金石录里,文采有后主遗风D.八百里河山空入梦,流水凝愁,怎奈此身囚狱室三十年故国最伤心,酿词寄恨,忍听千古断肠声5.下列李清照的词句中,从词的风格看,与其他三项不同类的一项是()A.东篱把酒黄昏后,有暗香盈袖。

B.只恐双溪舴艋舟,载不动许多愁。

C.九万里风鹏正举。

风休住,蓬舟吹取三山去!D.梧桐更兼细雨,到黄昏、点点滴滴。

6.下面加线字的读音全都相同的一项是()A.落枕热忱耽误沉着B.梧桐恫吓胴体侗族C.兼并搛菜缣素蒹葭D.桑葚戡乱镶嵌堪称二、语言表达7.词是按词谱来填的,在形式上的特点是“调有定格,句有定数,字有定声”。

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数精选练习题一、选择题1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°B [因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.] 2.cos 420°的值为( ) A .12 B .-12C .32D .-32A [cos 420°=cos(360°+60°)=cos 60°=12,故选A.]3.已知角θ的终边上一点P (a ,-1)(a ≠0),且tan θ=-a ,则sin θ的值是( ) A .±22 B .-22 C .22 D .-12B [由题意得tan θ=-1a =-a , 所以a 2=1, 所以sin θ=-1a 2+(-1)2=-22.] 4.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .4C [设扇形的半径为r ,中心角为α,根据扇形面积公式S =12lr 得6=12×6×r ,所以r =2, 所以α=l r =62=3.]5.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( ) A .23 B .13 C .-23 D .-13 C [∵已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,∴1+2sin θcos θ=169,∴2sin θcos θ=79,故sin θ-cos θ=-(sin θ-cos θ)2 =-1-2sin θ·cos θ =-23,故选C.]6.函数y =tan(sin x )的值域是( ) A .⎣⎢⎡⎦⎥⎤-π4,π4B .⎣⎢⎡⎦⎥⎤-22,22C .[]-tan 1,tan 1D .[]-1,1C [sin x ∈[-1,1],又-π2<-1<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以y min =tan(-1)=-tan 1,y max =tan 1.]7.将函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝ ⎛⎭⎪⎫12x -π2C .y =sin ⎝ ⎛⎭⎪⎫12x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π6 C [函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x -π3,再将所得的图象向左平移π3个单位,得到函数y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3-π3=sin ⎝ ⎛⎭⎪⎫12x -π6.] 8.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是( ) A .⎣⎢⎡⎦⎥⎤0,π8B .⎣⎢⎡⎦⎥⎤π8,π2C .⎣⎢⎡⎦⎥⎤0,3π8D .⎣⎢⎡⎦⎥⎤3π8,π2C [令2k π-π2≤2x -π4≤2k π+π2(k ∈Z )得k π-π8≤x ≤k π+3π8(k ∈Z ),k =0时,x∈⎣⎢⎡⎦⎥⎤-π8,3π8,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴x ∈⎣⎢⎡⎦⎥⎤0,3π8,故选C.]9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -3π4C [由图可知A =2,4⎝ ⎛⎭⎪⎫π8+π8=2πω得ω=2,且2×⎝ ⎛⎭⎪⎫-π8+φ=π2+2k π(k ∈Z )∴φ=2k π+3π4(k ∈Z ), 又∵|φ|<π, ∴φ=3π4,故选C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )C [∵P 0(2,-2),∴∠P 0Ox =π4.按逆时针转时间t 后得 ∠POP 0=t ,∠POx =t -π4. 此时P 点纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,∴d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.当t =0时,d =2,排除A ,D ; 当t =π4时,d =0,排除B.]11.设α是第三象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z . ∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第二象限的角.]12.化简1+2sin (π-2)·cos (π-2)得( )A .sin 2+cos 2B .cos 2-sin 2C .sin 2-cos 2D .±cos 2-sin 2 C [1+2sin (π-2)·cos (π-2) =1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.]13.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称; ③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6B [依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.]14.已知函数f (x )=-2tan(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π16=-2,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫3π16,11π16B .⎝ ⎛⎭⎪⎫π16,9π16C .⎝ ⎛⎭⎪⎫-3π16,5π16D .⎝ ⎛⎭⎪⎫π16,5π16 A [由f ⎝ ⎛⎭⎪⎫π16=-2得-2tan ⎝ ⎛⎭⎪⎫π8+φ=-2,所以tan ⎝ ⎛⎭⎪⎫π8+φ=1,又|φ|<π,所以φ=π8,f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π8, 令k π-π2<2x +π8<k π+π2,k ∈Z 得 k π2-5π16<x <k π2+3π16,k ∈Z .可得f (x )的单调递减区间是⎝ ⎛⎭⎪⎫k π2-5π16,k π2+3π16,k ∈Z ,令k =1,可得f (x )的一个单调递减区间是⎝ ⎛⎭⎪⎫3π16,11π16.]二、填空题15.对于锐角α,若tan α=34,则cos 2α+2sin 2α=________. 6425 [由题意可得:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.]16.已知sin α=13,且α是第二象限角,那么cos(3π-α)的值为________. 223[cos(3π-α)=-cos α=-(-1-sin 2α)=1-⎝ ⎛⎭⎪⎫132=223.] 17.函数y =3-tan x 的定义域是________.⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ) [作出三角数线如图,由函数可知3-tan x ≥0中tan x ≤3,而3对应角为π3,由图中阴影部分可得定义域为⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ).]18.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域为________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π8+k π2,k ∈Z[2x -π4≠π2+k π,即x ≠3π8+k π2,k ∈Z .]19.若函数y =sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.4 [观察图象可知函数y =sin(ωx +φ)的半个周期为π4, 所以2πω=π2,ω=4.]20.已知函数f (x )=sin(ωx +φ)(ω>0),若将f (x )的图象向左平移π3个单位长度所得的图象与将f (x )的图象向右平移π6个单位长度所得的图象重合,则ω的最小值为________.4 [由条件可知,图象变换后的解析式分别为y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ3+φ和y =sin ⎝ ⎛⎭⎪⎫ωx -ωπ6+φ,由于两图象重合,所以ωπ3+φ=-ωπ6+φ+2k π(k ∈Z ). 即ω=4k (k ∈Z ),由ω>0,∴ωmin =4.]21.一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则C -1S 的最大值为________.4 [由已知可得弧长l =2r ,周长C =4r ,面积S =12×lr =r 2,∴C -1S =4r -1r 2=-1r 2+4r =-⎝ ⎛⎭⎪⎫1r -22+4,故C -1S 的最大值为4.] 22.已知角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值是________.5π3 [角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32, tan α=-3212=-3,且α为第四象限角,所以角α的最小正值是5π3.]23.函数y =2+cos x2-cos x(x ∈R )的最大值为________.3 [由题意有y =42-cos x-1,因为-1≤cos x ≤1,所以1≤2-cos x ≤3,则43≤42-cos x ≤4,由此可得13≤y ≤3,于是函数y =2+cos x 2-cos x (x ∈R )的最大值为3.]24.对于函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________. ③④ [作出函数f (x )的图象如图所示:由图象可知f (x )为周期函数,T =2π,①错误;当x =2k π+π或x =2k π+3π2时,取最小值-1,故②错误;x =π4+2k π(k ∈Z )和x =5π4+2k π(k ∈Z )都是该图象的对称轴,故③正确; 当2k π<x <π2+2k π(k ∈Z )时,f (x )图象在x 轴上方且f (x )max =22. 故0<f (x )≤22.故④正确.]三、解答题25.已知sin(π-α)·cos(-8π-α)=60169,且α∈⎝ ⎛⎭⎪⎫π4,π2,求sin α与cos α的值.[解] 由已知条件可得sin αcos α=60169,∴(sin α+cos α)2=1+2sin αcos α=1+120169=289169, (sin α-cos α)2=1-2sin αcos α=1-120169=49169. ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α, ∴⎩⎪⎨⎪⎧sin α+cos α=1713,sin α-cos α=713,解方程组得sin α=1213,cos α=513.26.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值; (3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.[解] (1)∵α终边过点P (4,-3),∴r =|OP |=5,x =4,y =-3, ∴sin α=y r =-35,cos α=x r =45, ∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a . 当a >0时,r =5a ,sin α=y r =-35, cos α=x r =45, ∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35, cos α=x r =-45, ∴2sin α+cos α=25.综上,2sin α+cos α=-25或25. (3)当点P 在第一象限时,sin α=35, cos α=45,2sin α+cos α=2; 当点P 在第二象限时,sin α=35, cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35, cos α=-45,2sin α+cos α=-2; 当点P 在第四象限时,sin α=-35, cos α=45,2sin α+cos α=-25.27.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解] 假设存在角α,β满足条件,则{sin α=2sin β, ①3cos α=2cos β, ② 由①2+②2得sin 2α+3cos 2α=2. ∴cos 2α=12, ∴cos α=22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,代入②得:cos β=32, ∵0<β<π,∴β=π6,代入①可知成立; 当α=-π4时,代入②得cos β=32,∵0<β<π,∴β=π6,此时代入①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.28.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)求函数f (x )的最大值,并求取得最大值时x 的值; (2)求函数f (x )的单调递增区间.[解] (1)当2x +π3=2k π+π2,则x =k π+π12(k ∈Z )时,f (x )max =3. (2)当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12时,函数f (x )为增函数.故函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). 29.如图是函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2)的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的? [解] (1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,∴ω=2πT =2.∴y =12sin(2x +φ)-1. 当x =π6,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ⎝ ⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位得到y =sin ⎝ ⎛⎭⎪⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12倍,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12倍,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y=12sin ⎝ ⎛⎭⎪⎫2x +π6-1的图象.30.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),然后再将所得的图象向右平移π3个单位,得到函数g (x )的图象,写出函数g (x )的解析式,并用五点作图的方法画出g (x )在长度为一个周期的闭区间上的图象.[解] (1)由f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,得1=2sin φ,所以sin φ=12.又|φ|<π2,所以φ=π6.由题意易知T =2[(x 0+3π)-x 0]=6π, 所以ω=2πT =13, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎫x +π6的图象;再把所得图象向右平移π3个单位,得到g (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6的图象.列表:。

高中人教版英语必修四Unit1-5同步练习题及单元检测题含答案

高中人教版英语必修四Unit1-5同步练习题及单元检测题含答案

⾼中⼈教版英语必修四Unit1-5同步练习题及单元检测题含答案【20份】2017年春⾼中⼈教版英语必修四Unit 1-5同步练习题及单元检测题含答案⽬录SectionⅠWarming Up,Pre-reading,Reading&Comprehending课时训练Ⅰ基础夯实Ⅰ.根据句意、汉语提⽰或⾸字母,写出单词的正确形式1.He is a little boy,but he b as if he were an adult.2.On summer afternoons,the old men sit in the s of the tree drinking tea.3.As we all know,WTO stands for World Trade O .4.I hope his success will i all of you to greater efforts.5.As we all know,Yuan Longping is a s in rice.6.China has made great scientific (成就) in outer space.7.A cinema is a public place of (娱乐).8.Through careful (观察) he found the secret of the birds’ life.9.He is an (直率的)person,and I like to make friends with him.10.After the violent (争论),an agreement was reached at last.Ⅱ.单句改错1.She was devoted to improve her spoken English.2.You have no time to get change because they are waiting for you.3.She argued me with buying that coat.4.After by this means can the problem be solved.5.All kinds of troublesome things crowded through my mind at the same time.Ⅲ.完成句⼦1.When your teacher doesn’t give you clearexplanations,you .当你的⽼师没有给你解释清楚问题时,你不应该跟他争论。

人教版高中语文必修4 第二单元 第5课 苏轼词两首 习题练习一(附答案)

人教版高中语文必修4  第二单元  第5课 苏轼词两首  习题练习一(附答案)

人教版高中语文必修4 第二单元第5课苏轼词两首习题练习一(附答案)一、选择题1.下列诗句书写完全正确的一项是()A.大江东去,浪涛尽,千古风流人物。

故垒西边,人道是,三国周郎赤壁。

B.羽扇伦巾,谈笑间,樯橹灰飞烟灭。

C.竹杖芒鞋轻胜马,谁怕?一蓑烟雨任平生。

D.回首向来萧瑟处,归去,也无风雨也无情。

2.从修辞手法上看,下列词句与其他三句不同的一项是()A.乱石穿空,惊涛拍岸,卷起千堆雪B.谈笑间,樯橹灰飞烟灭C.江山如画,一时多少豪杰D.人生如梦,一尊还酹江月3.下列有关文学常识的表述,不正确的一项是()A.词始于隋唐,盛于宋。

因其由诗歌发展而来,故称“诗余”;因其先有曲调,后有文词,又称“曲子词”;因句式长短不一,故又称“长短句”。

B.词,每首皆有调名,称词调(词牌)。

每调的片数、句数、字数、用韵、字的平仄,都有一定的格式,即“调有定格,句有定数,字有定声”。

C.按字数的多少,词可分为小令、中调、长调三种,58字以内为小令,如《如梦令》;59~90字为中调,如《一剪梅》;91字以上为长调,如《雨霖铃》。

D.宋词习惯上分为婉约和豪放两派:前者风格婉约清丽,代表作家有柳永、李清照、姜夔等;后者风格豪迈奔放,代表作家有李煜、苏轼、辛弃疾等。

4.下列词语中加线的字,每组读音都相同的一项是()A.故垒/累赘公瑾/谨慎遥想/杳渺B.樯橹/蔷薇吟啸/萧瑟华发/白桦C.狼狈/疲惫料峭/俊俏波涛/韬略D.蓑衣/绳索竹杖/依仗酹酒/醴酪5.下列对《念奴娇•赤壁怀古》的理解分析,不正确的一项是()A.起句写长江给人以雄奇壮丽之感,既写江景,又点明怀古,从大处落笔,气势磅礴,感情饱满。

B.“浪淘尽”三字,含蓄有力地表达了作者凭吊古战场的心情,也蕴含了“是非成败转头空”的意思。

C.“乱石穿空,惊涛拍岸,卷起千堆雪”十三字,从形、声、色三方面勾画了古战场的雄奇壮丽。

D.这首词在“怀古”的基础上“伤今”,词作最后回到现实,抒发自我的感伤,感情沉郁而又悲慨。

高中政治必修四试题及答案

高中政治必修四试题及答案

高中政治必修四试题及答案一、选择题(每题2分,共20分)1. 社会主义核心价值观的基本内容是什么?A. 富强、民主、文明、和谐B. 自由、平等、公正、法治C. 爱国、敬业、诚信、友善D. 以上都是2. 我国的根本政治制度是什么?A. 人民代表大会制度B. 民族区域自治制度C. 基层群众自治制度D. 多党合作和政治协商制度3. 我国的基本经济制度是什么?A. 公有制为主体,多种所有制经济共同发展B. 计划经济C. 市场经济D. 混合所有制4. 社会主义市场经济体制的基本特征是什么?A. 市场在资源配置中起决定性作用B. 国家宏观调控C. 社会主义基本制度与市场经济的结合D. 以上都是5. 我国的基本民族政策是什么?A. 民族平等B. 民族团结C. 民族区域自治D. 民族融合6. 我国的基本宗教政策是什么?A. 宗教信仰自由B. 国家保护正常的宗教活动C. 依法管理宗教事务D. 积极引导宗教与社会主义社会相适应7. 我国的根本任务是什么?A. 解放和发展社会生产力B. 建设社会主义现代化国家C. 维护社会稳定D. 推进全面深化改革8. 我国的根本利益是什么?A. 人民的利益B. 国家的利益C. 党的利益D. 集体的利益9. 我国的基本国策是什么?A. 改革开放B. 计划生育C. 节约资源和保护环境D. 以上都是10. 我国的基本战略是什么?A. 科教兴国战略B. 可持续发展战略C. 人才强国战略D. 和谐社会建设战略二、简答题(每题10分,共20分)1. 简述我国社会主义法治建设的基本原则。

2. 简述我国社会主义文化建设的主要内容。

三、论述题(每题30分,共30分)1. 论述我国社会主义核心价值观的重要性及其在当代青年中的实践途径。

2. 论述我国社会主义市场经济体制的优越性及其对我国经济发展的影响。

四、案例分析题(每题30分,共30分)1. 某地区在推进社会主义新农村建设中,采取了一系列措施,如加强基础设施建设、发展特色产业、提高农民素质等。

外研版高一英语必修四 Module 1 Life in the future Grammar 练习 含答案

外研版高一英语必修四 Module 1  Life in the future Grammar 练习 含答案

Module 1 Life in the futureGrammar单项选择1. At this time tomorrow over the Atlantic.A. we’re going to flyB. we’ll be flyingC. we’ll flyD. we’re to fly2.—I’ll come to attend your lecture at 10:00 to morrow.—I’m sorry, but by then my lecture will have ended and I my guests in my office.A. being metB. will meetC. will be meetingD. will have met3. The train at the present speed until it reaches the foot of mountain at 9.A. wentB. is goingC. goesD. will be going4. —I will call at your house at 7 this evening.—Sorry, but I a very important meeting at that time.A. am havingB. has hadC. haveD. will be having5. Look at the clouds .A. It'll rainB. It's going to rainC. It'll be rainingD. It is to rain6.--You have left the light on.--Oh, so I have. and turn it off.A. I'll goB. I've goneC. I goD. I'm going7. By the time you arrive home, I , so please don't make any noise when you come in.A. shall have been sleepingB. shall have sleptC. shall sleepD. shall be sleeping8. Our car at the present speed until it reaches Qingdao at about nine o'clock tonight.A. wentB. is goingC. goesD. will be going9. When she graduates from the university this summer, Mary here for four years.A. will be studyingB. will have studiedC. will studyD. studies10. The traffic in our city is already good and it even better.A. getsB. gotC. has gotD. is getting11. It long before China on the moon.A. will not be; will landB. is; will landC. will not be; landsD. is ; lands12. We at six o'clock, and hope most of the journey by lunch time.A. are leaving; to have doneB. are leaving; to doC. left; to have doneD. leave; to be doing13. Don't bother to look for my dictionary—it some day.A. turns upB. has turned upC. will turn upD. is going to turn up14. Because the shop ,all the T-shirts are sold at half price.A. has closed downB. closed downC. is closing downD. had closed down15. The mayor of Beijing says that all construction work for the Beijing Olympics by next year.A. has been completedB. has completedC. will have been completedD. will have completed16. What do you think our parents when we get home?A. are doingB. will doC. have been doingD. will be doing17.--Tom, you didn't come to the party last night?--I ,but I suddenly remembered I had homework to do.A. had toB. didn'tC. was going toD. wouldn't18.--Turn off the TV, Jack. your homework now?--Mum, just ten more minutes, please.A. Should you be doingB. Shouldn't you be doingC. Couldn't you be doingD. Will you be doing19.--The last one pays the meal.-- Agreed !A. arrivedB. arrivesC. to arriveD. arriving20. When I called you this morning, nobody answered the phone. Where ?A. did you goB. have you goneC. were youD. had you been21. The play had already been on for quite some time when we at the New Theatre.A. have arrivedB. arrivedC. had arrivedD. arrive22.--It was really very kind of you to give me a lift home.--Oh, don't mention it. I past your house anyway.A. was comingB. will comeC. had comeD. have come23. The flowers were so lovely that they in no time.A. soldB. had been soldC. were soldD. would sell动词填空24. I (have) my English lesson in our class at 9 tomorrow morning.25.—Are you going to your home town next Sunday?—We (have) a sports meet next Sunday?26.—Would you like to go to our school to study next year?—I (study) in Australia next gear.27.—What will you be doing at 13:00 tomorrow?—I (type)in my office.28.—I thought I had asked you to post the letter.—oh, I’m sorry, mom I(do) it right now.29. You’d better not phone the manager between 7 an d 8 tomorrow evening; he (have) an important meeting then.答案:1---23 BCDDB ADDBD CACCC DCBCC BAC24.will be having25.are going to have26.am going to study27.will be typing28.will do29.will be having。

高中英语必修四unit1课后练习

高中英语必修四unit1课后练习

Book4 Unit1 巩固练习一、.、根据下列各句句意及所给单词的首字母或汉语提示,写出所缺单词的正确形式。

1. The man spent much of his childhood _____ (observe) birds in the wild.2. Here they used to sit in the _____ (阴凉) through a long lazy summer’s day.3. What surprised me most was that the young lady b_____ bravely in the face of danger.4. The city hall is planning to start a _____ (运动) aiming at encouraging young people to work out regularly.5. The g_____ gap refers to the difference in attitude toward things or the lack of understanding between young people and older folks.6. He is so d_____ to his work that the occasions are quite rare when he can spend a day with his kids.7. The new type of telescope is i_____ for the study of the planets in outer space.8. All the governments should take this into _____ (考虑), trying to balance the needs of development and the environment.9. He helped you out of _________(好意).10. Teaching is a ________________(值得做的)job.二、根据汉语提示,完成下列句子。

高中数学必修四各章节练习题(附带答案解析)

高中数学必修四各章节练习题(附带答案解析)

1.已知中学生一节课的上课时间一般是45分钟,那么,经过一节课,分针旋转形成的角是( )A .120°B .-120°C .270°D .-270°解析:分针旋转形成的角是负角,每60分钟转动一周,所以一节课45分钟分针旋转形成的角是-360°×4560=-270°.答案:D2.下列叙述正确的是( )A .第一或第二象限的角都可作为三角形的内角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小解析:-330°角是第一象限角,但不能作为三角形的内角,故A 错;280°角是第四象限角,它是正角,故C 错;-100°角是第三象限角,它比钝角小,故D 错.答案:B3.若α是第四象限角,则180°-α是第________象限角. 解析:∵角α与角-α的终边关于x 轴对称, 又∵角α的终边在第四象限,∴角-α终边在第一象限,又角-α与180°-α的终边关于原点对称,∴角180°-α的终边在第三象限. 答案:三4.在0°~360°范围内:与-1 000°角终边相同的最小正角是________,是第________象限角.解析:-1 000°=-3×360°+80°,∴与-1 000°角终边相同的最小正角是80°,为第一象限角. 答案:80° 一5.在角的集合{α|α=k ·90°+45°,k ∈Z }中, (1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?解:(1)在给定的角的集合中终边不相同的角共有四种,分别是与45°、135°、-135°、-45°终边相同的角.(2)令-360°<k ·90°+45°<360°,得-92<k <72. 又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3, ∴满足条件的角共有8个.1.下列命题中,正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧C .1弧度是长度等于半径的弧所对的圆心角D .1弧度是1度的弧与1度的角之和解析:利用弧度的概念可直接推得C 为正确选项. 答案:C2.2 100°化成弧度是( ) A.35π3 B .10π C.28π3D.25π3解析:2 100°=2 100×π180=35π3. 答案:A3.若扇形的圆心角为60°,半径为6,则扇形的面积为________. 解析:扇形的面积S =12|α|r 2=12×π3×62=6π. 答案:6π4.若θ角的终边与8π5角的终边相同,在[0,2π)内与θ4角的终边相同的角是________.解析:由题设知θ=2k π+8π5,k ∈Z ,则θ4=k π2+2π5,k ∈Z . ∴当k =0时,θ4=2π5; 当k =1时,θ4=9π10; 当k =2时,θ4=7π5; 当k =3时,θ4=19π10. 答案:2π5,9π10,7π5,19π105.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α的终边在第几象限;(2)求 γ角,使γ与α角的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.解:(1)∵-800°=-3×360°+280°,280°=14π9, ∴α=14π9+(-3)×2π,α角与14π9的终边相同, ∴α是第四象限角.(2)∵与α角终边相同的角为2k π+α,k ∈Z ,α与14π9终边相同, ∴γ=2k π+14π9,k ∈Z .又∵γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2, 当k =-1时,不等式成立, ∴γ=-2π+14π9=-4π9.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y2, 其中不正确的个数为( ) A .0 B .1 C .2 D .3答案:D2.若点P 的坐标是(sin2,cos2),则点P 位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D3.sin420°=________.答案:324.使得lg(cos αtan α)有意义的角α是第________象限角. 解析:要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.答案:一或二 5.求下列各式的值.(1)sin1 470°;(2)cos 9π4;(3)tan(-116π). 解:(1)sin1 470°=sin(4×360°+30°)=sin30°=12. (2)cos 9π4=cos(2π+π4)=cos π4=22. (3)tan(-11π6)=tan(-2π+π6)=tan π6=33.1.已知角α的正弦线的长度为单位长度,那么角α的终边( ) A .在x 轴上 B .在y 轴上 C .在直线y =x 上 D .在直线y =-x 上答案:B2.已知11π6的正弦线为MP ,正切线为AT ,则有( ) A .MP 与AT 的方向相同 B .|MP |=|AT | C .MP >0,AT <0D .MP <0,AT >0 解析:三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan 11π6<0.答案:A3.若角α的正弦线的长度为12,且方向与y 轴的正方向相反,则sin α的值为________.答案:-124.函数y =lg(sin x -cos x )的定义域为________.解析:利用三角函数线,如下图,MN 为正弦线,OM 为余弦线,要使sin x ≥cos x ,即MN ≥OM ,则π4≤x ≤54π,(在[0,2π]内).∴定义域为{x |π4+2k π≤x ≤54π+2k π,k ∈Z }. 答案:{x |π4+2k π≤x ≤54π+2k π,k ∈Z }5.在单位圆中画出满足cos α=12的角α的终边,并写出α组成的集合.解:如图所示,作直线x =12交单位圆于M ,N ,连接OM ,ON ,则OM ,ON 为α的终边.由于cos π3=12,cos 5π3=12,则M 在π3的终边上,N 在5π3的终边上,则α=π3+2k π或α=5π3+2k π,k ∈Z . 所以α组成的集合为S =⎩⎨⎧⎭⎬⎫αα=π3+2k π或α=5π3+2k π,k ∈Z .1.已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513D.213解析:因为α是第二象限角,所以cos α<0, 故cos α=-1-sin 2α=-1-(513)2=-1213.答案:A2.已知cos α-sin α=-12,则sin αcos α的值为( ) A.38 B .±38 C.34D .±34解析:由已知得(cos α-sin α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,解得sin αcos α=38,故选A.答案:A3.若sin θ=-45,tan θ>0,则cos θ=________.解析:由已知得θ是第三象限角,所以cos θ=-1-sin 2θ=-1-(-45)2=-35. 答案:-354.已知tan α=3,则2sin 2α+4sin αcos α-9cos 2α的值为________. 解析:原式=2sin 2α+4sin αcos α-9cos 2αsin 2α+cos 2α=2tan 2α+4tan α-9tan 2α+1 =2×32+4×3-932+1=2110.答案:21105.若π2<α<π,化简cos α1-cos 2α+sin α1-sin 2α1-cos 2α.解:因为π2<α<π,所以cos α=-1-sin 2α,sin α=1-cos 2α,所以原式=cos αsin α+sin α(-cos α)1-cos 2α=cos αsin α-sin αcos αsin 2α=cos αsin α-cos αsin α=0.1.cos(-20π3)等于( ) A.12 B.32 C .-12D .-32解析:cos(-20π3)=cos 20π3 =cos(6π+2π3)=cos 2π3=-12. 答案:C2.sin600°+tan240°的值是( ) A .-32 B.32 C .-12+ 3 D.12+3 解析:sin600°+tan240°=sin(360°+240°)+tan(180°+60°) =sin240°+tan60°=sin(180°+60°)+tan60° =-sin60°+tan60°=-32+3=32. 答案:B3.已知sin(45°+α)=513,则sin(135°-α)=________.解析:sin(135°-α)=sin[180°-(45°+α)] =sin(45°+α)=513. 答案:5134.已知α∈(0,π2),tan(π-α)=-34,则sin α=________. 解析:由于tan(π-α)=-tan α=-34, 则tan α=34,解方程组⎩⎨⎧sin αcos α=34,sin 2α+cos 2α=1,得sin α=±35,又α∈(0,π2),所以sin α>0. 所以sin α=35. 答案:355.化简tan (2π-θ)sin (-2π-θ)cos (6π-θ)cos (θ-π)sin (5π+θ).解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)(-sin θ)=(-tan θ)(-sin θ)cos θcos θsin θ=tan θ.1.已知sin40°=a ,则cos130°等于( ) A .a B .-a C.1-a 2D .-1-a 2解析:cos130°=cos(90°+40°)=-sin40°=-a .答案:B2.已知sin(α-π4)=13,则cos(π4+α)的值等于( ) A.223 B .-232 C.13D .-13解析:∵π4+α-(α-π4)=π2, ∴cos(π4+α)=cos[π2+(α-π4)] =-sin(α-π4)=-13. 答案:D3.已知sin(π6-θ)=13,则cos(π3+θ)等于________. 解析:cos(π3+θ)=cos[π2-(π6-θ)] =sin(π6-θ)=13. 答案:134.已知cos α=15,且α为第四象限角,那么cos(α+π2)等于________. 解析:∵α为第四象限角且cos α=15, ∴sin α=-1-cos 2α=-25 6. ∴cos(α+π2)=-sin α=25 6. 答案:2655.化简1+2sin (π2-2)·cos (π2+2).解:原式=1+2cos2·(-sin2)=1-2sin2cos2=(sin2-cos2)2=|sin2-cos2|. 又∵sin2>cos2,∴原式=sin2-cos2.1.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:用特殊点来验证.x =0时,y =-sin0=0,排除选项A ,C ;又x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,排除选项B.答案:D2.方程x +sin x =0的根有( ) A .0个 B .1个 C .2个D .无数个解析:设f (x )=-x ,g (x )=sin x ,在同一直角坐标系中画出 f (x )和g (x )的图象,如图所示.由图知f (x )和g (x )的图象仅有一个交点,则方程x +sin x =0仅有一个根.答案:B3.用“五点法”画y =1-cos x ,x ∈[0,2π]的图象时,五个关键点的坐标是________.答案:(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝⎛⎭⎪⎫3π2,1,(2π,0)4.函数y =2cos x -2的定义域是________. 解析:由2cos x -2≥0得cos x ≥22, 借助y =cos x 的图象可得cos x ≥22的解集为 ⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z 5.在[0,2π]内用五点法作出y =-sin x -1的简图. 解:(1)按五个关键点列表xπ2π3π22πy -1 -2 -1 0 -1(2)描点并用光滑曲线连接可得其图象,如图所示:1.函数y =2cos(π3-ωx )的最小正周期是4π,则ω等于( ) A .2 B.12 C .±2D .±12解析:4π=2π|ω|,∴ω=±12. 答案:D2.定义在R 上的周期函数f (x )的一个周期为5,则f (2 011)=( )A .f (1)B .f (2)C .f (3)D .f (4) 解析:f (2 011)=f (402×5+1)=f (1). 答案:A3.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=________. 解析:由于周期T =2πω,所以2πω=π,解得ω=2. 答案:24.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=________.解析:由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 答案:-15.若函数f (x )是以π2为周期的奇函数,且f (π3)=1,求 f (-176π)的值.证明:∵f (x )的周期为π2,且为奇函数, ∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6) =f (π6).而f (π6)=f (π2-π3)=f (-π3)=-f (π3)=-1, ∴f (-17π6)=-1.1.函数y =sin(2x +52π)的图象的一条对称轴方程是( ) A .x =-π2 B .x =-π4 C .x =π8D .x =54π解析:y =sin(2x +52 π)=cos2x ,令2x =k π(k ∈Z ),则x =k2 π(k ∈Z ).当k =-1时,x =-π2.答案:A2.函数y =2sin(2x -π4)的一个单调递减区间是( ) A .[3π8,7π8] B .[-π8,3π8] C .[3π4,5π4]D .[-π4,π4]解析:令z =2x -π4,函数y =sin z 的单调递减区间是[π2+2k π,3π2+2k π](k ∈Z ).由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z , 得3π8+k π≤x ≤7π8+k π,k ∈Z . 令k =0,3π8≤x ≤7π8. 答案:A3.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°解析:∵sin168°=sin(180°-168°)=sin12°,cos10°=sin80°, ∴sin11°<sin12°<sin80°. ∴sin11°<sin168°<cos10°. 答案:C4.设ω>0,若函数f (x )=2sin ωx 在[-π3,π4]上单调递增,则ω的取值范围是________.解析:令-π2≤ωx ≤π2,-π2ω≤x ≤π2ω,则[-π2ω,π2ω]是函数的关于原点对称的递增区间中范围最大的,即[-π3,π4]⊆[-π2ω,π2ω],则⎩⎪⎨⎪⎧π4≤π2ω,-π3≥-π2ω.⇒ω≤32.答案:[0,32]5.求函数y =1-2cos 2x +5sin x 的最大值和最小值. 解:y =1-2cos 2x +5sin x =2sin 2x +5sin x -1 =2(sin x +54)2-338.∵sin x ∈[-1,1],而y 在[-1,1]上是增函数, ∴当sin x =-1时,函数取得最小值-4; 当sin x =1时,函数取得最大值6.1.y =tan(x +π)是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数答案:A2.函数y =2tan ⎝ ⎛⎭⎪⎫3x -π4的一个对称中心是( )A.⎝ ⎛⎭⎪⎫π3,0B.⎝ ⎛⎭⎪⎫π6,0 C.⎝ ⎛⎭⎪⎫-π4,0 D.⎝ ⎛⎭⎪⎫-π2,0 解析:由3x -π4=k π2,得x =k π6+π12 令k =-2得x =-π4.故选C. 答案:C3.函数y =2tan ⎝ ⎛⎭⎪⎫π3-x 2的定义域是________.解析:由π3-x 2≠k π+π2,得x ≠-2k π-π3,k ∈Z ,故函数y =2tan ⎝⎛⎭⎪⎫π3-x 2的定义域是:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z4.使函数y =2tan x 与y =cos x 同时为单调增的区间是________. 解析:由y =2tan x 与y =cos x 的图象知,同时为单调增的区间为(2k π-π2,2k π)(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z ).答案:⎝ ⎛⎭⎪⎫2k π-π2,2k π(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z )5.求函数y =tan(π-x ),x ∈⎝⎛⎭⎪⎫-π4,π3的值域.解:y =tan(π-x )=-tan x ,在⎝ ⎛⎭⎪⎫-π4,π3上为减函数,所以值域为(-3,1).1.把函数y =sin ⎝ ⎛⎭⎪⎫2x -π4的图象向左平移π8个单位长度,所得到的图象对应的函数是( )A .奇函数B .偶函数C .既是奇函数也是偶函数D .非奇非偶函数解析:y =sin ⎝⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8,向左平移π8个单位长度后为y =sin[2(x -π8+π8)]=sin2x ,为奇函数,故选A.答案:A2.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π2个单位长度 D .向右平移π2个单位长度 解析:由y =sin ⎝ ⎛⎭⎪⎫2x +π6――→x →x +φy=sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π6=sin ⎝ ⎛⎭⎪⎫2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个单位长度.答案:B3.用“五点法”画函数y =2sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在一个周期内的简图时,五个关键点是(-π6,0),(π12,2),(π3,0),(712 π,-2),(5π6,0),则ω=________.解析:周期T =5π6-(-π6)=π. ∴2πω=π,ω=2. 答案:24.把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象对应的一个解析式为________.解析:把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,得函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π6+π4=2sin ⎝ ⎛⎭⎪⎫3x -π4的图象,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫12x -π4的图象,即y =2sin ⎝ ⎛⎭⎪⎫32x -π4.答案:y =2sin ⎝ ⎛⎭⎪⎫32x -π45.已知函数y =sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)用“五点法”画出函数的草图.(2)函数图象可由y =sin x 的图象怎样变换得到? 解:(1)列表:2x +π4 0 π2 π 3π2 2π x -π8 π8 3π8 5π8 7π8 y1211描点、连线如图所示.将y =sin ⎝ ⎛⎭⎪⎫2x +π4+1在⎣⎢⎡⎦⎥⎤-π8,7π8上的图象向左(右)平移k π(k ∈Z )个单位,即可得到y =sin(2x +π4)+1的整个图象.1.函数y =2sin(x 2+π5)的周期、振幅依次是( ) A .4π,-2 B .4π,2 C .π,2D .π,-2解析:在y =A sin(ωx +φ)(A >0,ω>0)中,T =2πω,A 叫振幅(A >0),故y =2sin(x 2+π5)的周期T =2π12=4π,振幅为2,故选B.答案:B2.已知函数f (x )=2 sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数 解析:∵函数f (x )的最小正周期为6π,∴2πω=6π,得ω=13,在x =π2时,函数f (x )取得最大值, ∴13×π2+φ=2k π+π2,k ∈Z . 又∵-π<φ≤π,∴φ=π3. ∴f (x )=2sin(13x +π3).由2k π-π2≤13x +π3≤2k π+π2(k ∈Z ), 得6k π-52π≤x ≤6k π+12π(k ∈Z ).∴f (x )的增区间是[6k π-52π,6k π+π2](k ∈Z ). 取k =0,得[-52π,π2]是f (x )的一个增区间. ∴函数f (x )在区间[-2π,0]上是增函数. 答案:A3.函数y =|5sin(2x +π3)|的最小正周期为________. 解析:∵y =5sin(2x +π3)的最小正周期为π, ∴函数y =|5sin(2x +π3)|的最小正周期为π2. 答案:π24.使函数f (x )=3sin(2x +5θ)的图象关于y 轴对称的θ为________. 解析:∵函数f (x )=3sin(2x +5θ)的图象关于y 轴对称, ∴f (-x )=f (x )恒成立,∴3sin(-2x +5θ)=3sin(2x +5θ). ∴sin(-2x +5θ)=sin(2x +5θ).∴-2x +5θ=2x +5θ+2k π(舍去)或-2x +5θ+2x +5θ=2k π+π(k ∈Z ).即10θ=2k π+π,故θ=k π5+π10(k ∈Z ). 答案:θ=k π5+π10,k ∈Z5.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图,试求这个函数的解析式.解:方法一:易知A =22,T4=6-2=4. ∴T =16,∴2πω=16,∴ω=π8. 又∵图象过点(2,22). ∴22sin(π8×2+φ)=2 2. 又∵|φ|<π2,∴φ=π4. 于是y =22sin(π8x +π4).方法二:易知A =22,由图可知,第二、第三两关键点的横坐标分别为2和6.∵⎩⎨⎧2ω+φ=π2,6ω+φ=π,∴⎩⎪⎨⎪⎧ω=π8,φ=π4.∴y =22sin(π8x +π4).1.已知某人的血压满足函数解析式f (t )=24sin(160πt )+115.其中f (t )为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数为( )A .60B .70C .80D .90解析:由题意可得频率f =1T =160π2π=80(次/分),所以此人每分钟心跳的次数是80.答案:C2.如图表示电流I 与时间t 的关系I =A sin(ωt +φ)(A >0,ω>0)在一个周期内的图象,则该函数的解析式为( )A .I =300sin ⎝ ⎛⎭⎪⎫50πt +π3B .I =300sin ⎝ ⎛⎭⎪⎫50πt -π3C .I =300sin ⎝ ⎛⎭⎪⎫100πt +π3D .I =300sin(100πt -π3)解析:由图象得周期T =2(1150+1300)=150,最大值为300,图象经过点(1150,0),则ω=2πT =100π,A =300,∴I =300sin(100πt +φ). ∴0=300sin(100π×1150+φ). ∴sin(2π3+φ)=0.取φ=π3, ∴I =300sin(100πt +π3). 答案:C 3.如图为某简谐运动的图象,则这个简谐运动需要________s 往复一次.解析:由图象知周期T =0.8-0=0.8,则这个简谐运动需要0.8 s 往复一次.答案:0.84.据市场调查,某种商品每件的售价按月呈f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,则f (x )=________.解析:由题意得⎩⎪⎨⎪⎧A +B =8,-A +B =4,解得A =2,B =6.周期T =2(7-3)=8,∴ω=2πT =π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ+6. 又当x =3时,y =8,∴8=2sin ⎝ ⎛⎭⎪⎫3π4+φ+6. ∴sin ⎝ ⎛⎭⎪⎫3π4+φ=1.由于|φ|<π2,∴φ=-π4, ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6.答案:2sin ⎝ ⎛⎭⎪⎫π4x -π4+65.如图所示,摩天轮的半径为40 m ,O 点距地面的高度为50 m ,摩天轮做匀速转动,每3 min 转一圈,摩天轮上的P 点的起始位置在最低点处.(1)试确定在时刻t min 时P 点距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间P 点距离地面超过70 m? 解:(1)以中心O 为坐标原点建立如图所示的坐标系,设t min 时P 距地面的高度为y ,依题意得y =40sin ⎝⎛⎭⎪⎫2π3t -π2+50.(2)令40sin ⎝ ⎛⎭⎪⎫2π3t -π2+50>70,则sin ⎝ ⎛⎭⎪⎫2π3t -π2>12,∴2k π+π6<2π3t -π2<2k π+5π6(k ∈Z ),∴2k π+2π3<2π3t <2k π+4π3(k ∈Z ),∴3k +1<t <3k +2(k ∈Z ).令k =0得1<t <2. 因此,共有1 min P 点距地面超过70 m.单元综合测试一时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.若角600°的终边上有一点(-4,a ),则a 的值是( ) A .-4 3 B .±43 C. 3D .43解析:因为tan600°=a-4=tan(540°+60°)=tan60° =3,故a =-4 3. 答案:A2.已知cos(π2+φ)=32,且|φ|<π2,则tan φ=( ) A .-33 B.33 C .- 3D.3 解析:由cos(π2+φ)=32,得sin φ=-32,又|φ|<π2,∴cos φ=12,∴tan φ=- 3. 答案:C3.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin(2x +π6) B .y =sin(x 2+π6) C .y =sin(2x -π6)D .y =sin(2x -π3)解析:∵最小正周期为π,∴ω=2,又图象关于直线x =π3对称, ∴f (π3)=±1,故只有C 符合. 答案:C4.若2k π+π<θ<2k π+5π4(k ∈Z ),则sin θ,cos θ,tan θ的大小关系是( )A .sin θ<cos θ<tan θB .cos θ<tan θ<sin θC .cos θ<sin θ<tan θD .sin θ<tan θ<cos θ解析:设π<α<54π,则有sin θ=sin α, cos θ=cos α,tan θ=tan α, ∵tan α>0,而sin α<0,cos α<0,∴B 、D 排除,又∵cos α<-22<sin α,即cos α<sin α,排除A.选C. 答案:C5.已知A 是三角形的内角,且sin A +cos A =52,则tan A 等于( )A .4+15B .4-15C .4±15D .以上均不正确解析:因为sin A +cos A =52,所以2sin A cos A =14>0.所以A 为锐角.又(sin A -cos A )2=1-2sin A cos A =1-14=34,所以sin A -cos A =±32.从而可求出sin A ,cos A 的值,从而求出tan A =4±15.答案:C6.函数y =2sin(π6-2x )(x ∈[0,π])的单调递增区间是( ) A .[0,π3] B .[π12,7π12] C .[π3,5π6]D .[5π6,π]解析:由π2+2k π≤2x -π6≤3π2+2k π 可得π3+k π≤x ≤5π6+k π(k ∈Z ).∵x ∈[0,π],∴单调递增区间为[π3,5π6]. 答案:C7.为得到函数y =cos ⎝⎛⎭⎪⎫x +π3的图象,只需将函数y =sin x 的图象( )A .向左平移π6个单位长度 B .向右平移π6个单位长度 C .向左平移5π6个单位长度D .向右平移5π6个单位长度 解析:∵y =cos ⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3+π2 =sin ⎝ ⎛⎭⎪⎫x +5π6, ∴只需将y =sin x 的图象向左平移5π6个单位长度. 答案:C8.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-7π12,5π12 B.⎣⎢⎡⎦⎥⎤-7π12,-π12 C.⎣⎢⎡⎦⎥⎤-π4,π6 D.⎣⎢⎡⎦⎥⎤11π12,17π12 解析:由图形可得14T =23π-512π,∴T =π,则ω=2,又图象过点⎝ ⎛⎭⎪⎫512π,2.∴2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2, ∴φ=-π3,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3, 其单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z ), 取k =1,即得选项D. 答案:D9.设a 为常数,且a >1,0≤x ≤2π,则函数f (x )=cos 2x +2a sin x -1的最大值为( )A .2a +1B .2a -1C .-2a -1D .a 2解析:f (x )=cos 2x +2a sin x -1 =1-sin 2x +2a sin x -1 =-(sin x -a )2+a 2,∵0≤x ≤2π,∴-1≤sin x ≤1,又a >1,∴f (x )max =-(1-a )2+a 2=2a -1. 答案:B 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A ,B 分别为最高点与最低点,并且两点间的距离为22,则该函数图象的一条对称轴方程为( )A .x =2π B .x =π2 C .x =1D .x =2解析:函数y =cos(ωx +φ)(ω>0,0<φ<π)的最大值为1,最小值为-1,所以周期T =2(22)2-22=4,所以ω=π2,又函数为奇函数,所以cos φ=0(0<φ<π)⇒φ=π2,所以函数解析式为y =cos(π2x +π2)=-sin π2x ,所以直线x =1为该函数图象的一条对称轴.答案:C11.中国最高的摩天轮是“南昌之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为( )A .41米B .43米C .78米D .118米解析:摩天轮转轴离地面高160-⎝ ⎛⎭⎪⎫1562=82(米),ω=2πT =π15,摩天轮上某个点P 离地面的高度h 米与时间t 的函数关系是h =82-78cos π15t ,当摩天轮运行5分钟时,其离地面高度为h =82-78cos π15t =82-78×12=43(米).答案:B12.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3解析:方法一:函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后得到函数y =sin[ω(x -4π3)+π3]+2=sin(ωx -4π3ω+π3)+2的图象.∵两图象重合,∴ωx +π3=ωx -4π3ω+π3+2k π,k ∈Z ,解得ω=32k ,k ∈Z .又ω>0,∴当k =1时,ω的最小值是32.方法二:由题意可知,4π3是函数y =sin(ωx +π3)+2(ω>0)的最小正周期T 的正整数倍,即4π3=kT =2k πω(k ∈N *),ω=32k ,ω的最小值为32. 答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________.解析:圆心角α=l r =128=32, 扇形面积S =12lr =12×12×8=48.答案:32 4814.方程sin x =lg x 的解的个数为________.解析:画出函数y =sin x 和y =lg x 的图象(图略),结合图象易知这两个函数的图象有3个交点.答案:315.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数.若f (2 013)=-1,则f (2 014)=________.解析:f (2 013)=a sin(2 013π+α)+b cos(2 013π+β) =-1,f (2 014)=a sin(2 014π+α)+b cos(2 014π+β) =a sin[π+(2 013π+α)]+b cos[π+(2 013π+β)] =-[a sin(2 013π+α)+b cos(2 013π+β)]=1. 答案:116.关于函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3+1有以下结论:①函数f (x )的值域是[0,2];②点⎝⎛⎭⎪⎫-512π,0是函数f (x )的图象的一个对称中心;③直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数是偶函数.其中,所有正确结论的序号是________.解析:①∵-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1, ∴0≤cos ⎝⎛⎭⎪⎫2x +π3+1≤2;②∵f ⎝ ⎛⎭⎪⎫-5π12=cos ⎝ ⎛⎭⎪⎫-5π6+π3+1=cos ⎝ ⎛⎭⎪⎫-π2+1=1≠0,∴点⎝ ⎛⎭⎪⎫-512π,0不是函数f (x )图象的一个对称中心;③∵f ⎝ ⎛⎭⎪⎫π3=cos ⎝ ⎛⎭⎪⎫2π3+π3+1=cosπ+1=0,函数取得最小值,∴直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数解析式为g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3+1=cos2x +1,此函数是偶函数.综上所述,①③④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sin θ=45,π2<θ<π, (1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.解:(1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43.(2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.18.(12分)(1)已知cos(75°+α)=13,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值;(2)已知π<θ<2π,cos(θ-9π)=-35,求tan(10π-θ)的值. 解:(1)cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(α-105°)=-sin[180°-(75°+α)] =-sin(75°+α). ∵α为第三象限角,∴75°+α为第三或第四象限角,又cos(75°+α)=13>0, ∴75°+α为第四象限角,∴sin(75°+α)=-1-cos 2(75°+α) =-1-⎝ ⎛⎭⎪⎫132=-223, ∴cos(105°-α)+sin(α-105°) =-13+223=22-13. (2)由已知得cos(θ-9π)=-35, ∴cos(π-θ)=-35,∴cos θ=35, ∵π<θ<2π,∴3π2<θ<2π,∴sin θ=-45, ∴tan θ=-43,∴tan(10π-θ)=tan(-θ)=-tan θ=43.19.(12分)已知函数f (x )=2cos(2x -π4),x ∈R . (1)求函数f (x )的最小正周期和单调递增区间.(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f (x )=2cos(2x -π4),所以函数f (x )的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ),故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)因为f (x )=2cos(2x -π4)在区间[-π8,π8]上为增函数,在区间[π8,π2]上为减函数,又f (-π8)=0,f (π8)=2,f (π2)=2cos(π-π4)=-2cos π4=-1,所以函数f (x )在区间[-π8,π2]上的最大值为2,此时x =π8;最小值为-1,此时x =π2.20.(12分)函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象过点(0,1),如图所示.(1)求函数f 1(x )的表达式;(2)把f 1(x )的图象向右平移π4个单位长度得到f 2(x )的图象,求f 2(x )取得最大值时x 的取值.解:(1)由图知,T =π,于是ω=2πT =2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =A sin(2x +π6),得A =2.故f 1(x )=2sin(2x +π6).(2)依题意,f 2(x )=2sin[2(x -π4)+π6] =-2cos(2x +π6),当2x +π6=2k π+π(k ∈Z ),即x =k π+5π12(k ∈Z )时, y max =2.此时x 的取值为{x |x =k π+5π12,k ∈Z }. 21.(12分)已知函数f (x )=2sin(2x +π6)-1.(1)若点P (1,-3)在角α的终边上,求f (α2-π12)的值; (2)若x ∈[-π6,π3],求f (x )的值域.解:(1)因为点P (1,-3)在角α的终边上, 所以sin α=-32,cos α=12,所以f (α2-π12)=2sin[2×(α2-π12)+π6]-1 =2sin α-1=2×(-32)-1=-3-1. (2)令t =2x +π6,因为x ∈[-π6,π3],所以-π6≤2x +π6≤5π6,而y =sin t 在[-π6,π2]上单调递增, 在[π2,5π6]上单调递减, 且sin(-π6)=-12,sin 5π6=12,所以函数y =sin t 在[-π6,5π6]上的最大值为1, 最小值为-12,即-12≤sin(2x +π6)≤1, 所以f (x )的值域是[-2,1].22.(12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)(2)根据(1)的结果,若函数y =f (kx )(k >0)的最小正周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T , 得T =11π6-(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3,B -A =-1.解得⎩⎪⎨⎪⎧A =2,B =1.令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3, ∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的最小正周期为2π3, 又k >0,∴k =3,令t =3x -π3, ∵x ∈[0,π3],∴t ∈[-π3,2π3],若sin t =s 在[-π3,2π3]上有两个不同的解, 则s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解,则m ∈[3+1,3),即实数m的取值范围是[3+1,3).1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由题知OB →,OC →,AO →对应的有向线段都是圆的半径,因此它们的模相等.答案:C2.下列说法中正确的是( ) A .若|a |>|b |,则a >b B .若|a |=|b |,则a =b C .若a =b ,则a ∥bD .若a ≠b ,则a 与b 不是共线向量解析:向量不能比较大小,所以A 不正确;a =b 需满足两个条件:a ,b 同向且|a |=|b |,所以B 不正确,C 正确;a 与b 是共线向量只需方向相同或相反,所以D 不正确.答案:C3.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.解析:∵四边形ABCD 为正方形,O 为正方形的中心, ∴OA =BO ,即|OA →|=|BO →|,|AC →|=|BD →|. 答案:OA →与BO →,AC →与BD →4.如图所示,四边形ABCD 和ABDE 都是平行四边形. (1)与向量ED →相等的向量为______;(2)若|AB →|=3,则向量EC →的模等于________. 解析:(1)在平行四边形ABCD 和ABDE 中, ∵AB →=ED →,AB →=DC →,∴ED →=DC →. (2)由(1)知ED →=DC →,∴E 、D 、C 三点共线,|EC →|=|ED →|+|DC →|=2|AB →|=6. 答案:(1)AB →、DC →(2)65.一个人从点A 出发沿东北方向走了100 m 到达点B ,然后改变方向,沿南偏东15°方向又走了100 m 到达点C .(1)画出AB →,BC →,CA →. (2)求|CA →|. 解:(1)如图所示. (2)|AB →|=100 m , |BC →|=100 m ,∠ABC =45°+15°=60°, 则△ABC 为正三角形. 故|CA →|=100 m.1.在四边形ABCD 中,AC →=AB →+AD →,则( ) A .ABCD 一定是矩形 B .ABCD 一定是菱形 C .ABCD 一定是正方形D .ABCD 一定是平行四边形解析:由AC →=AB →+AD →知由A ,B ,C ,D 构成的四边形一定是平行四边形.答案:D2.下列等式不成立的是( ) A .0+a =a B .a +b =b +a C.AB →+BA →=2BA →D.AB →+BC →=AC →解析:对于C ,∵AB →与BA →是相反向量, ∴AB →+BA →=0. 答案:C3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO → )+(OM →+MB → )+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →4.若a =“向北走8 km ”,b =“向东走8 km ”,则|a +b |=________;a +b 的方向是________.解析:由向量加法的平行四边形法则,知|a +b |=82,方向为东北方向.答案:8 2 km 东北方向5.在水流速度为4 3 km/h 的河中,要使船以12 km/h 的实际航速与河岸成直角行驶,求船在静水中的航行速度的大小和方向.解:设AB →表示水流的速度,AC →表示船的实际航行速度,如图,作出AB →,AC →,连接BC ,作AD 綊BC ,连接DC ,则AD →为所求船的静水航速,且AD →+AB →=AC →.∵|AB →|=43,|AC →|=12, tan ∠ACB =4312=33. ∴∠ACB =30°=∠CAD , |AD →|=|BC →|=83,∠BAD =120°.∴船在静水中的航行速度的大小为8 3 km/h ,方向与水流速度成120°角.1.下列等式: ①0-a =-a ②-(-a )=a ③a +(-a )=0 ④a +0=a ⑤a -b =a +(-b ) ⑥a +(-a )=0正确的个数是( )A .3B .4C .5D .6解析:根据向量的加减运算易知①②③④⑤均正确. 答案:C2.设AB →,BC →,AC →是三个非零向量,且AB →+BC →=AC →,则( ) A .线段AB ,BC ,AC 一定构成一个三角形 B .线段AB ,BC 一定共线 C .线段AB ,BC 一定平行D .线段AB ,BC ,AC 构成三角形或共线解析:由于三角形法则对于共线时也成立,因此线段AB ,BC ,AC 可以构成三角形,也可以共线,但线段AB ,BC 不可能平行.答案:D3.若向量a 与b 共线,且|a |=|b |=1,则|a -b |=________. 解析:∵a 与b 共线, ∴两向量同向或反向. 又|a |=|b |=1,∴|a -b |=0或2. 答案:0或24.化简:(1)(AD →-BM →)+(BC →-MC →)=________. (2)(PQ →-MO →)+(QO →-QM →)=________. 答案:(1)AD → (2)PQ →5.如图,在五边形ABCDE 中,若四边形ACDE 是平行四边形,且AB →=a ,AC →=b ,AE →=c ,试用a ,b ,c 表示向量BD →,BE →,CE →.解:∵四边形ACDE 为平行四边形, ∴CD →=AE →=c ,BC →=AC →-AB →=b -a . ∴BD →=BC →+CD →=b -a +c , BE →=AE →-AB →=c -a , CE →=AE →-AC →=c -b .1.在四边形ABCD 中,若AB →=-12CD →,则此四边形是( ) A .平行四边形 B .菱形 C .梯形D .矩形解析:由AB →=-12CD →可得,在四边形ABCD 中有AB ∥CD ,但|AB |≠|CD |,故为梯形.答案:C2.已知非零向量a ,b 满足a =λb ,b =λa (λ∈R ),则λ=( ) A .-1 B .±1 C .0D .0解析:∵a =λb ,b =λa ,∴a =λ2a ,∴λ±1.答案:B3.化简:2(a -2b )+3(13a +b )=________. 答案:3a -b4.若|a |=5,b 与a 的方向相反,且|b |=7,则a =________b . 解析:∵b 与a 方向相反,∴设a =λb (λ<0) ∴|a |=|λ||b |,∴5=|λ|×7,∴|λ|=57, ∴λ=±57,又λ<0,∴λ=-57. 答案:-57 5.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:在四边形ANMD 中,有 MN →=MD →+DA →+AN → =-12DC →-AD →+12AB → =-AD →-12(12AB →)+12AB →=-AD →+14AB →=14a -b . 在四边形ABCD 中,有BC →=BA →+AD →+DC →=-AB →+AD →+12AB → =AD →-12AB →=b -12a .1.已知e 1,e 2是表示平面内所有向量的一组基底,那么下面四组向量中,不能作为一组基底的是( )A .e 1,e 1+e 2B .e 1-2e 2,e 2-2e 1C .e 1-2e 2,4e 2-2e 1D .e 1+e 2,e 1-e 2解析:因为4e 2-2e 1=-2(e 1-2e 2),从而e 1-2e 2与4e 2-2e 1共线.答案:C2.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,以b 与c 作为基底,则AD →=( )A.23b +13cB.53c -23bC.23b -13cD.13b +23c解析:∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴AD →-c =2(b -AD →),∴AD →=13c +23b . 答案:A。

必修四 任意角和弧度制 课时练习 含答案

必修四 任意角和弧度制 课时练习 含答案

必修四§1.1任意角和弧度制第一课时:§1.1.1任意角1. 下列命题中正确的是( )A .终边在y 轴非负半轴上的角是直角B .第二象限角一定是钝角C .第四象限角一定是负角 D.若β=α+k·360°(k∈Z),则α与β终边相同2.将-885化为360k α+⋅ (0360α≤<k ,∈Z )的形式是 ( ) A.-165(2)360+-⨯ B.195(3)360+-⨯ C.195(2)360+-⨯ D.165(3)360+-⨯3.在[360°,1440°]中与-21°16′终边相同的角有( )A .1个B .2个C .3个D .4个4.终边落在X 轴上的角的集合是( )A.{ α|α=k ·360°,K ∈Z }B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }5.角α=45°+k·180°,k∈Z的终边落在 ( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限6.设,,,,那么( ) A .B C A B .B A C C .D (A ∩C) D .C ∩D=B7.下列各组角中终边相同的是( )A. +90与Z B.与ZC. +30与+30Z D.与+60Z 8.若角和的终边关于y 轴对称,则有 ( ) A. B.Z C.Z D.Zo {90A =小于的角}{B =锐角}{C =第一象限的角}00{900}D =小于而不小于的角180k ⋅90k ⋅k ,∈(21)180k +⋅(41)180k ±⋅k ,∈180k ⋅360k ⋅k ,∈60k ⋅180k ⋅k ,∈αβ90αβ+=90αβ+=360k +⋅k ,∈360k αβ+=⋅k ,∈180αβ+=360k +⋅k ,∈9.若β是第四象限角,则180β-是第 象限角。

2021新教材人教版高中政治必修第四册对应练习-- 第一框 世界的物质性(可编辑Word)

2021新教材人教版高中政治必修第四册对应练习-- 第一框 世界的物质性(可编辑Word)

第二课探究世界的本质第一框世界的物质性基础过关练题组一自然界的物质性1.目前人们已经知道,太阳约在50亿年前形成,地球的诞生距今也有46亿年之久,由此可见,宇宙间根本不存在上帝和诸神居住的天国,所有天体都是按照自身固有的规律形成和发展的。

可见()A.生物产生和进化是自然界长期发展的结果B.自然界是客观存在的物质世界C.人类是自然界长期发展的结果D.意识是自然界长期发展的结果2.(2020山东济宁微山二中月考)下列各项都是对物质概念的理解,其中正确的是(易错)A.物质就是有形或无形的东西B.物质是标志客观实在的哲学范畴,它不依赖于人的意识C.物质是由分子、原子、基本粒子等微粒构成的D.桌子、凳子、山、水等具有具体形态的东西都是物质3.有人说:“纸箱是物质,被火烧后变成灰;树木是物质,人们可以把它加工成家具、纸张。

这说明物质是可以改变的。

”该观点的不合理之处在于()A.否认了物质的唯一特性B.把物质和具体的物质形态混为一谈C.承认了物质和具体的物质形态的联系D.看到了具体的物质形态是可以改变的4.(2020黑龙江哈尔滨第六中学期中,改编)我国暗物质粒子探测卫星“悟空”成功获取了国际上精度最高的电子宇宙射线能谱,有望揭开暗物质之谜,推动解释宇宙为什么会是这样以及将怎样演化。

这表明()①物质的唯一特性是客观实在性②自然界和人类社会的发展都是客观的③世界上只有尚未认识之物,没有不可认识之物④具体科学的进步为哲学的发展提供指导A.①②B.①③C.②④D.③④题组二人类社会的物质性5.(2020浙江东阳中学高二月考)下列各项中,集中体现了人类社会的物质性的是()A.劳动中形成的社会关系是客观的B.构成社会物质生活条件的基本要素是客观的C.支配社会发展的规律是客观的D.人类社会是物质世界长期发展的产物6.(2020陕西榆林第二中学高二月考,改编)《极简人类史》中写道:“我们的星球已经存在了45亿年之久,生命的出现也有约35亿年。

数学必修四第一章练习

数学必修四第一章练习

1.若α是第四象限角,则π—α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.α是第四象限角,tan α=125- ,则sin α=( ) A.51 B.51- C.135 D.135- 3. 已知简谐运动)(x f =2sin(x 3π+φ)(|φ|<2π)的图像经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A.T=6 φ=6πB.T=6 φ=3πC.T=6π φ=6πD.T=6π φ=3π 4.在与x x y tan y cos ==[π,π-]上的交点个数为( )A.2B.3C.4D.5 5. )2cos()2sin(21++-ππ等于 ( )A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos26. 函数y=cos 2x –3cosx+2的最小值是( )A .2B .0C .41 D .6 7. 下列函数中为偶函数的是( )A .sin ||y x =B .2sin y x =C .sin y x =-D .sin 1y x =+8.若θθθ则,0cos sin >在( )A .第一、 二象限B .第一、三象限C .第一、 四象限D .第二、 四象限9. 下列四个命题中,正确的是( )A .第一象限的角必是锐角B .π=180C .终边相同的角必相等D .锐角必是第一象限角10.若角0600的终边上有一点()a ,4-,则a 的值是( )A .34 B.34- C .34± D.311.函数()sin(2)3f x x π=-的图象向左平移3π个单位,再将图像上的横坐标缩短为原来的12,那么所得图像的函数表达式为( ) A.sin y x = B.2sin(4)3y x π=+ C.sin(4)3y x π=+ D.sin()3y x π=+ 12.角α是180°~360°中的一个角,若5α与α有相同的始边与终边,则α=______________13.__________cos cos ,1sin sin 422=+=+x x x x 则若14.函数1tan 1tan lg)(-+=x x x f 是_____函数。

外研高一英语必修四练习:Module 4 Great Scientists 练一练

外研高一英语必修四练习:Module 4 Great Scientists 练一练

【support巩固小练习】单句改错:1. We will, as usual, support you to carry out the brave reform.单项选择:2. Tom was ________by his friends.A. livedB. raisedC. supportedD. fed3. A scientist must produce evidence in ________ of a theory.A. termsB. viewC. memoryD. support4. The Mayor has lost the ________ of the citizens.A. supportB. provideC. supplyD. offer【convert巩固小练习】请根据汉语提示完成下面的句子。

1. He could always ______________________(总能设法转败为胜)at a critical period.2. The room ______________________(由厨房改成了客厅).3. Do you know ______________________(美元兑换成英镑的汇率是多少)?【quantity巩固小练习】单项填空:1. With more forests being destroyed, huge quantities of good earth ________ each year. (2005年,山东卷)A. is washing awayB. is being washed awayC. are washing awayD. are being washed away2. As a result of destroying the forest, a large ________ of desert ________covered the land. (2001年,上海卷)A. number; hasB. quantity; hasC. number; haveD. quantity; have3. The country has ________ people and ________ money ________ spent on tobacco every year.A. a large quantity of; a number of; areB. plenty of; a great deal; areC. a great deal; plenty of; isD. a large number of; a large quantity of; is。

新人教A版高中数学必修四全册同步课时练习(附答案)

新人教A版高中数学必修四全册同步课时练习(附答案)

新人教A 版高中数学必修四全册课时练习任意角(建议用时:45分钟)[基础达标练]一、选择题1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [-870°=-3×360°+210°,∴-870°是第三象限角,故选C .] 2.在-360°~0°范围内与角1 250°终边相同的角是( ) A .170° B .190° C .-190°D .-170°C [与1 250°角的终边相同的角为α=1 250°+k ·360°,k ∈Z ,因为-360°<α<0°,所以-16136<k <-12536,因为k ∈Z ,所以k =-4,所以α=-190°.]3.把-1 485°转化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是( ) A .45°-4×360° B .-45°-4×360° C .-45°-5×360°D .315°-5×360°D [∵1 485°÷360°=4.125,∴-1 485°=-4×360°-45°或写成-1 485°=-5×360°+315°.∵0°≤α<360°,故-1 485°=315°-5×360°.] 4.若α=k ·180°+45°,k ∈Z ,则α所在象限是( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限A [当k =0时,α=45°为第一象限角,当k =1时,α=225°为第三象限角.] 5.已知角α=45°,β=315°,则角α与β的终边( ) A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称A [α是第一象限角,β是第四象限角且45°=0°+45°与360°+45°终边相同,315°=360°-45°.]二、填空题6.若时针走过2小时40分,则分针走过的角是________.-960° [40分=23小时,23×360°=240°,因为时针按顺时针旋转,故形成负角,-360°×2-240°=-960°.]7.与2 013°角的终边相同的最小正角是________,绝对值最小的角是________.213°-147°[与2 013°角的终边相同的角为2 013°+k·360°(k∈Z).当k=-5时,213°为最小正角;当k=-6时,-147°为绝对值最小的角.]8.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.k·360°+60°(k∈Z)[在0°~360°范围内与α=-120°的终边互为反向延长线的角是60°,所以β=k·360°+60°(k∈Z).]三、解答题9.已知角β的终边在直线3x-y=0上.(1)写出角β的集合S;(2)写出集合S中适合不等式-360°<β<720°的元素.[解](1)因为角β的终边在直线3x-y=0上,且直线3x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.(1)在平面直角坐标系中,表示出角α终边所在区域;(2)在平面直角坐标系中,表示出角β终边所在区域;(3)求A∩B.[解](1)角α终边所在区域如图①所示.(2)角β终边所在区域如图②所示.图① 图②(3)由(1)(2)知A ∩B ={γ|k ·360°+45°<γ<k ·360°+55°,k ∈Z } .[能力提升练]1.角α与角β的终边关于y 轴对称,则α与β的关系为( ) A .α+β=k ·360°,k ∈Z B .α+β=k ·360°+180°,k ∈Z C .α-β=k ·360°+180°,k ∈Z D .α-β=k ·360°,k ∈ZB [法一:(特殊值法)令α=30°,β=150°,则α+β=180°.故α与β的关系为α+β=k ·360°+180°,k ∈Z .法二:(直接法)因为角α与角β的终边关于y 轴对称,所以β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .]2.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.270° [由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k ·360°.又180°<α<360°,令k =3,得α=270°.]弧度制(建议用时:45分钟)[基础达标练]一、选择题1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关D [ 无论是角度制度量角还是弧度制度量角,都与圆的半径没有关系.] 2.29π6是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角B [29π6=4π+5π6.∵56π是第二象限角,∴29π6是第二象限角.]3.在0到2π范围内,与角-4π3终边相同的角是( )A .π6B .π3C .2π3D .4π3C [与角-4π3终边相同的角是2k π+⎝ ⎛⎭⎪⎫-4π3,k ∈Z ,令k =1,可得与角-4π3终边相同的角是2π3,故选C.]4.下列表示中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z C .终边在坐标轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈ZD .终边在直线y =x 上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+2k π,k ∈ZD [对于A ,终边在x 轴上角的集合是{α|}α=k π,k ∈Z ,故A 正确;对于B ,终边在y 轴上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故B 正确;对于C ,终边在x 轴上的角的集合为{α|}α=k π,k ∈Z ,终边在y 轴上的角的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z , 故合在一起即为{α|}α=k π,k ∈Z ∪⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z =⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈Z ,故C 正确;对于D ,终边在直线y =x 上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+k π,k ∈Z ,故D 不正确.]5.已知扇形的弧长是4 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .2 C .4D .1或4C [因为扇形的弧长为4 cm ,面积为2 cm 2, 所以扇形的面积为12×4×r =2,解得r =1(cm),则扇形的圆心角的弧度数为41=4.故选C.]二、填空题6.把角-274π用角度制表示为________.-1 215° [-274π=-274×180°=-1 215°.]7.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A ,B ,C 的弧度数分别为______________. π5,π3,7π15 [因为A +B +C =π, 又A ∶B ∶C =3∶5∶7,所以A =3π3+5+7=π5,B =5π3+5+7=π3,C =7π15.]8.圆的一段弧长等于该圆外切正三角形的外边,则这段弧所对圆心角的弧度数是________.2 3 [设圆的半径为r ,外切正三角形边长为a ,则32a ×13=r ,则r =36a ,又弧长为a ,所以圆心角为:ar=a36a =63=2 3.]三、解答题9.已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角. [解] (1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-296π;当k =-2时,γ=-176π;当k =-1时,γ=-56π.∴在区间[-5π,0)上与α终边相同的角为-296π,-176π,-56π.10.已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S . [解] (1)由⊙O 的半径r =10=AB , 知△AOB 是等边三角形, ∴α=∠AOB =60°=π3.(2)由(1)可知α=π3,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·53=12×10×53=253,∴S =S 扇形-S △AOB =25⎝⎛⎭⎪⎫2π3-3.[能力提升练]1.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z )D .α-β=π2+2k π(k ∈Z )D [∵α=2k 1π+x +π4,β=2k 2π+x -π4(k 1,k 2∈Z ),∴α-β=2(k 1-k 2)π+π2,也即α-β=π2+2k π(k ∈Z ).]2.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B =________________.[-4,-π]∪[0,π] [如图所示,∴A ∩B =[-4,-π]∪[0,π].]任意角的三角函数(建议用时:60分钟)[基础达标练]一、选择题1.sin(-1 380°)的值为( ) A .-12B .12C .-32D .32D [sin(-1 380°)=sin(-4×360°+60°)=sin 60°=32.] 2.如果角α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于( ) A .12 B .-12C .-32D .-33C [sin 30°=12,cos 30°=32,∴P 点坐标为(1,-3),r =12+(-3)2=2,∴sin α=-32.] 3.已知角α的终边在函数y =-|x |的图象上,则cos α的值为( ) A .22B .-22C .22或-22D .12C [由y =-|x |的图象知,α的终边落在第三、四象限的角平分线上,当α终边落在第三象限时,cos α=-22;当α终边落在第四象限时,cos α=22.] 4.θ是第二象限角,则下列选项中一定为正值的是( ) A .sin θ2B .cos θ2C .tan θ2D .cos 2θC [∵θ是第二象限角,则θ2一定是第一或第三象限角,这时tan θ2一定为正值,故选C.]5.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .⎝ ⎛⎭⎪⎫-12,32 B .⎝ ⎛⎭⎪⎫-32,-12 C .⎝ ⎛⎭⎪⎫-12,-32D .⎝⎛⎭⎪⎫-32,12 A [点(1,0)在x 轴正半轴,由题意可知,θ一定在α=2π3的终边上,∵OQ =1,∴Q 点的坐标为⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3即⎝ ⎛⎭⎪⎫-12,32.] 二、填空题6.在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝ ⎛⎭⎪⎫513,1213和⎝ ⎛⎭⎪⎫-35,45,那么sin α·tan β= .-1613[由任意角的正弦、正切函数的定义知 sin α=1213,tan β=45-35=-43,所以sin α·tan β=1213×⎝ ⎛⎭⎪⎫-43=-1613.]7.点P (tan 2 018°,cos 2 018°)位于第 象限. 四 [因为2 018°=5×360°+218°, 所以2 018°与218°终边相同,是第三象限角, 所以tan 2 018°>0,cos 2 018°<0, 所以点P 位于第四象限.]8.已知角α的终边经过点P (x ,-6)且cos α=-45,则x = .-8 [因为|OP |=x 2+(-6)2=x 2+36, 所以cos α=xx 2+36,又cos α=-45,所以xx 2+36=-45,整理得x =-8.]三、解答题 9.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°. [解] (1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan 45°=a 2+b 2+2ab =(a +b )2. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.[解] (1)由1|sin α|=-1sin α,可知sin α<0.由lg cos α有意义,可知cos α>0, ∴角α的终边在第四象限.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.[能力提升练]1.函数y =sin x +-cos x 的定义域是( ) A .(2k π,2k π+π),k ∈Z B .⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π,k ∈Z C .⎣⎢⎡⎦⎥⎤k π+π2,k π+π,k ∈Z D .[]2k π,2k π+π,k ∈ZB [由sin x ≥0,-cos x ≥0,得x 为第二象限角或y 轴正半轴上的角或x 轴负半轴上的角,所以2k π+π2≤x ≤2k π+π,k ∈Z .]2.若角α满足sin α·cos α<0,cos α-sin α<0,则α在( )A .第一象限B .第二象限C .第三象限D .第四象限B [由sin α·cos α<0知α是第二或第四象限角,由cos α-sin α<0,得cos α<sin α,所以α是第二象限角.]3.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α= .35 [因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,r =(-3cos θ)2+(4cos θ)2=5|cos θ|=-5cos θ,所以cos α=-3cos θ-5cos θ=35.]4.函数y =|cos x |cos x +tan x|tan x |的值域为 .{-2,0,2} [已知函数的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2,k ∈Z ,即角x 的终边不能落在坐标轴上,当x 是第一象限角时,cos x >0,tan x >0,y =cos x cos x +tan xtan x =1+1=2;当x 是第二象限角时,cos x <0,tan x <0,y =-cos x cos x +-tan xtan x =-1-1=-2;当x 是第三象限角时,cos x <0,tan x >0,y =-cos x cos x +tan xtan x =-1+1=0;当x 是第四象限角时,cos x >0,tan x <0,y =cos x cos x +-tan xtan x =1-1=0.综上知原函数的值域是{-2,0,2}.] 5.已知sin θ<0,tan θ>0. (1)求角θ的集合; (2)求θ2的终边所在的象限;(3)试判断sin θ2cos θ2tan θ2的符号.[解] (1)因为sin θ<0,所以θ为第三、四象限角或在y 轴的负半轴上, 因为tan θ>0,所以θ为第一、三象限角,所以θ为第三象限角,θ角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π<θ<2k π+3π2,k ∈Z .(2)由(1)可得,k π+π2<θ2<k π+3π4,k ∈Z .当k 是偶数时,θ2终边在第二象限;当k 是奇数时,θ2终边在第四象限.(3)由(2)可得当k 是偶数时,sin θ2>0,cos θ2<0,tan θ2<0,所以sin θ2cos θ2tan θ2>0;当k 是奇数时sin θ2<0,cos θ2>0,tan θ2<0,所以sin θ2cos θ2tan θ2>0.综上知,sin θ2cos θ2tan θ2>0.三角函数及其应用(建议用时:45分钟)[基础达标练]一、选择题1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在D [终边在y 轴上的角的正切线不存在,故A ,C 错,对任意角都能作正弦线、余弦线,故B 错,因此选D .]2.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( )A .1B .2C .3D .0C [π6和5π6的正弦线关于y 轴对称,长度相等;π3和4π3两角的正切线相同;π4和5π4的余弦线长度相等.故①②③都正确,故选C.]3.角α(0<α<2π)的正弦线、余弦线的长度相等,且正弦、余弦符号相异,那么α的值为( )A .π4B .3π4C .7π4D .3π4或7π4D [由已知得角α的终边应落在直线y =-x 上, 又0<α<2π,所以α=3π4或7π4.]4.cos 1,cos 2,cos 3的大小关系是( ) A .cos 1>cos 2>cos 3 B .cos 1>cos 3>cos 2 C .cos 3>cos 2>cos 1D .cos 2>cos 1>cos 3A [作出已知三个角的余弦线(如图),观察图形可知cos 1>0>cos 2>cos 3.] 5.使sin x ≤cos x 成立的x 的一个区间是( )A .⎣⎢⎡⎦⎥⎤-3π4,π4B .⎣⎢⎡⎦⎥⎤-π2,π2C .⎣⎢⎡⎦⎥⎤-π4,3π4 D .[0,π]A [如图,画出三角函数线sin x =MP ,cos x =OM ,由于sin ⎝ ⎛⎭⎪⎫-3π4=cos ⎝ ⎛⎭⎪⎫-3π4, sin π4=cos π4,为使sin x ≤cos x 成立,由图可得在[-π,π]范围内,-3π4≤x ≤π4.]二、填空题6.已知θ∈⎝ ⎛⎭⎪⎫π4,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为 .AT>MP>OM [如图:因为θ∈⎝ ⎛⎭⎪⎫π4,π2,所以θ>π4,根据三角函数线的定义可知AT >MP >OM .]7.利用三角函数线写出满足tan x <3且x ∈(0,2π)的x 的取值范围为 . ⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3 [由tanx <3得k π-π2<x <k π+π3(k ∈Z ),又∵x ∈(0,2π), ∴x 的取值范围为⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3.]8.函数y =2cos x -1的定义域为 .⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ) [因为2cos x -1≥0,所以cos x ≥12.如图:作出余弦值等于12的角:-π3和π3,在图中所示的阴影区域内的每一个角x ,其余弦值均大于或等于12,因而满足cos x ≥12的角的集合为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).所以函数定义域为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).]三、解答题9.已知-12≤sin θ<32,利用单位圆中的三角函数线,确定角θ的范围.[解] 画出三角函数线如图.由图可知角θ的范围是⎩⎨⎧θ⎪⎪⎪⎭⎬⎫2k π-π6≤θ<2k π+π3或2k π+2π3<α≤2k π+7π6,k ∈Z . 10.求下列函数的定义域: (1)f (x )=sin x ·tan x ; (2)f (x )=lg sin x +9-x 2. [解] (1)∵要使函数f (x )有意义,∴sin x ·tan x ≥0,∴sin x 与tan x 同号或sin x ·tan x =0, 故x 是第一、四象限的角或终边在x 轴上的角. ∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π-π2<x <2k π+π2或x =(2k +1)π,k ∈Z .(2)由题意,要使f (x )有意义,则⎩⎪⎨⎪⎧sin x >0,9-x 2≥0. 由sin x >0得2k π<x <2k π+π(k ∈Z ), ① 由9-x 2≥0得-3≤x ≤3,②由①②得:f (x )的定义域为{x |0<x ≤3}.[能力提升练]1.在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是( ) A .⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4B .⎝ ⎛⎭⎪⎫π4,πC .⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫5π4,3π2C [|sin x |>|cos x |可转化为x 的正弦线的长度大于余弦线的长度,观察图形可知:在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4.]2.点P (sin 3-cos 3,sin 3+cos 3)所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [∵56π<3<π,作出单位圆如图所示.设MP ,OM 分别为a ,b . sin 3=a >0,cos 3=b <0, 所以sin 3-cos 3>0. 因为|MP |<|OM |,即|a |<|b |, 所以sin 3+cos 3=a +b <0.故点P (sin 3-cos 3,sin 3+cos 3)在第四象限.]同角三角函数的基本关系(建议用时:45分钟)[基础达标练]一、选择题1.已知α是第三象限角,且sin α=-13,则3cos α+4tan α=( )A .- 2B . 2C .- 3D . 3A [因为α是第三象限角,且sin α=-13,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223, 所以tan α=sin αcos α=122=24,所以3cos α+4tan α=-22+2=- 2.] 2.化简sin 2α+cos 4α+sin 2αcos 2α的结果是( ) A .14 B .12 C .1 D .32C [原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.]3.若α是三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形D [sin α+cos α=23得1+2sin αcos α=49,所以sin αcos α=-518<0,又因α∈(0,π),所以α为钝角,故三角形为钝角三角形.]4.⎝ ⎛⎭⎪⎫tan x +1tan x cos 2x 等于( ) A .tan x B .sin x C .cos x D .1tan xD [原式=⎝⎛⎭⎪⎫sin x cos x +cos x sin x ·cos 2x=sin 2x +cos 2x sin x cos x ·cos 2x =1sin x cos x ·cos 2x =cos x sin x =1tan x.]5.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( )A .23B .-23C .13D .-13B [因为sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,所以两边平方可得:1+2sin θcos θ=169,即sin θ·cos θ=718,所以(sin θ-cos θ)2=1-2sin θcos θ=1-79=29,又因为0<θ<π4,所以sin θ<cos θ,所以sin θ-cos θ<0,所以sin θ-cos θ=-23,故应选B .]二、填空题 6.化简11+tan 220°的结果是 .cos 20° [11+tan 220°=11+sin 220°cos 220°=1cos 220°+sin 220°cos 220°=11cos 220°=|cos 20°|=cos 20°.] 7.已知sin αcos α=12,则sin α-cos α= .0 [(sin α-cos α)2=1-2sin αcos α=1-2×12=0,∴sin α-cos α=0.]8.已知tan α=2,则4sin 2α-3sin αcos α-5cos 2α= . 1 [4sin 2α-3sin αcos α-5cos 2α =4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α =4tan 2α-3tan α-5tan 2α+1 =4×4-3×2-54+1=55=1.]三、解答题 9.化简下列各式: (1)sin α1+sin α-sin α1-sin α; (2)⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α).[解] (1)原式=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin 2α1-sin 2α=-2sin 2αcos 2α=-2tan 2α.(2)原式=⎝⎛⎭⎪⎫1sin α+cos αsin α(1-cos α) =1+cos αsin α(1-cos α)=sin 2αsin α=sin α.10.已知2cos 2α+3cos αsin α-3sin 2α=1,α∈⎝ ⎛⎭⎪⎫-3π2,-π.求:(1)tan α;(2)2sin α-3cos α4sin α-9cos α. [解] (1)2cos 2α+3cos αsin α-3sin 2α =2cos 2α+3cos αsin α-3sin 2αsin 2α+cos 2α=2+3tan α-3tan 2αtan 2α+1=1, 即4tan 2α-3tan α-1=0, 解得tan α=-14或tan α=1.∵α∈⎝ ⎛⎭⎪⎫-3π2,-π,∴α为第二象限角, ∴tan α<0,∴tan α=-14.(2)原式=2tan α-34tan α-9=720.[能力提升练]1.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°B [1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.]2.已知sin θ,cos θ是方程2x 2-mx +1=0的两根,则sin θ1-1tan θ+cos θ1-tan θ= .±2 [sin θ1-1tan θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ,又因为sin θ,cos θ是方程2x 2-mx +1=0的两根,所以由根与系数的关系得sin θcos θ=12,则(sin θ+cos θ)2=1+2sinθcos θ=2,所以sin θ+cos θ=± 2.]三角函数的诱导公式(1)(建议用时:45分钟)[基础达标练]一、选择题1.已知sin(π+θ)=45,则角θ的终边在( )A .第一或第二象限B .第二或第三象限C .第一或第四象限D .第三或第四象限D [sin(π+θ)=-sin θ=45,∴sin θ=-45<0,所以θ为第三或第四象限角.]2.sin 2(2π-α)+cos(π+α)cos(π-α)+1的值是( ) A .1 B .2 C .0 D .-1 B [原式=sin 2α+(-cos α)·(-cos α)+1 =sin 2α+cos 2α+1=1+1=2.]3.已知600°角的终边上有一点P (a ,-3),则a 的值为( ) A . 3 B .- 3 C.33 D .-33B [由题意得tan 600°=-3a,又因为tan 600°=tan(360°+240°) =tan 240°=tan(180°+60°) =tan 60°=3,所以-3a=3,所以a =- 3.]4.已知点(-4,3)是角α终边上的一点,则sin(π-α)=( ) A .35 B .-35 C .-45 D .45A [x =-4,y =3,∴r =(-4)2+32=5,∴sin(π-α)=sin α=y r =35.故选A.]5.已知sin ⎝ ⎛⎭⎪⎫α-π4=32,则sin ⎝ ⎛⎭⎪⎫5π4-α的值为( ) A .12 B .-12 C .32 D .-32 C [sin ⎝⎛⎭⎪⎫5π4-α=sin ⎝ ⎛⎭⎪⎫π+π4-α=-sin ⎝ ⎛⎭⎪⎫π4-α =sin ⎝ ⎛⎭⎪⎫α-π4=32.]二、填空题6.若P (-4,3)是角α终边上一点,则cos (α-3π)·tan (α-2π)sin 2(π-α)的值为________. -53 [由条件可知sin α=35,cos α=-45,tan α=-34, ∴cos (α-3π)·tan (α-2π)sin 2(π-α)=-cos α·tan αsin 2α=-sin αsin 2α=-1sin α=-53.] 7.已知cos(508°-α)=1213,则cos(212°+α)=________.1213[由于cos(508°-α)=cos(360°+148°-α) =cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°) =cos(α-148°)=cos(148°-α)=1213.]8.已知sin(α+π)=45,且sin αcos α<0,则2sin (α-π)+3tan (3π-α)4cos (α-3π)=________.-73 [因为sin(α+π)=-sin α=45, 且sin αcos α<0,所以sin α=-45,cos α=35,tan α=-43,所以2sin (α-π)+3tan (3π-α)4cos (α-3π)=-2sin α-3tan α-4cos α=85+4-4×35=-73.] 三、解答题 9.化简下列各式:(1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π;(2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).[解] (1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π=-sin ⎝⎛⎭⎪⎫6π+π3cos ⎝ ⎛⎭⎪⎫π+π6=sin π3cos π6=34. (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°) =-sin(180°+60°+2×360°)cos(30°+4×360°)+ cos(180°+60°)sin(180°+30°) =sin 60°cos 30°+cos 60°sin 30°=1.10.已知f (α)=sin (π+α)cos (2π-α)tan (-α)tan (-π-α)sin (-π-α).(1)化简f (α);(2)若α是第三象限角,且sin(α-π)=15,求f (α)的值;(3)若α=-31π3,求f (α)的值.[解] (1)f (α)=-sin αcos α(-tan α)(-tan α)sin α=-cos α.(2)∵sin(α-π)=-sin α=15,∴sin α=-15.又α是第三象限角,∴cos α=-265,∴f (α)=265.(3)∵-31π3=-6×2π+5π3,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫-6×2π+5π3=-cos 5π3=-cos π3=-12.[能力提升练]1.已知a =tan ⎝ ⎛⎭⎪⎫-7π6,b =cos 23π4,c =sin ⎝ ⎛⎭⎪⎫-33π4,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .b >c >aD .c >a >bB [a =-tan 7π6=-tan π6=-33,b =cos ⎝⎛⎭⎪⎫6π-π4=cos π4=22, c =-sin33π4=-sin π4=-22, ∴b >a >c .]2.已知f (x )=⎩⎪⎨⎪⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116的值为________.-2 [f ⎝ ⎛⎭⎪⎫-116=sin ⎝ ⎛⎭⎪⎫-11π6=sin ⎝⎛⎭⎪⎫-2π+π6=sin π6=12,f ⎝ ⎛⎭⎪⎫116=f ⎝⎛⎭⎪⎫116-1-1=f ⎝ ⎛⎭⎪⎫56-1=f ⎝⎛⎭⎪⎫56-1-2 =f ⎝ ⎛⎭⎪⎫-16-2 =sin ⎝ ⎛⎭⎪⎫-π6-2=-sin π6-2=-12-2=-52, 所以f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=12-52=-2.]三角函数的诱导公式(2)(建议用时:45分钟)[基础达标练]一、选择题1.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角B [sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0, ∴θ为第二象限角.]2.若sin(3π+α)=-12,则cos ⎝ ⎛⎭⎪⎫7π2-α等于( )A .-12B .12C .32D .-32A [∵sin(3π+α)=-sin α=-12,∴sin α=12.∴cos ⎝⎛⎭⎪⎫7π2-α=cos ⎝ ⎛⎭⎪⎫3π2-α=-cos ⎝ ⎛⎭⎪⎫π2-α =-sin α=-12.]3.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α等于( ) A .-13 B .13 C .223 D .-223A [cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫α-π4+π2=-sin ⎝⎛⎭⎪⎫α-π4=-13.故选A.]4.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是( )A .-2a 3B .-3a 2C .2a 3D .3a2B [由sin(180°+α)+cos(90°+α)=-a , 得-sin α-sin α=-a ,即sin α=a2,cos(270°-α)+2sin(360°-α) =-sin α-2sin α=-3sin α=-32a .]5.化简:sin (θ-5π)cos ⎝ ⎛⎭⎪⎫-π2-θcos (8π-θ)sin ⎝⎛⎭⎪⎫θ-3π2sin (-θ-4π)=( )A .-sin θB .sin θC .cos θD .-cos θA [原式=sin (θ-π)cos ⎝ ⎛⎭⎪⎫π2+θcos (-θ)cos θsin (-θ)=(-sin θ)(-sin θ)cos θcos θ(-sin θ)=-sin θ.]二、填空题6.(2019·天一大联考)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin ⎝ ⎛⎭⎪⎫α-2 019π2=________. 35 [∵角α的终边经过点P (3,4),∴sin α=45,cos α=35,∴sin ⎝ ⎛⎭⎪⎫α-2 019π2=sin ⎝ ⎛⎭⎪⎫π2-α=cos α=35.]7.化简sin(π+α)cos ⎝⎛⎭⎪⎫3π2+α+sin ⎝ ⎛⎭⎪⎫π2+αcos(π+α)=________.-1 [原式=(-sin α)·sin α+cos α·(-cos α) =-sin 2α-cos 2α=-1.]8.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R .若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,则f ⎝ ⎛⎭⎪⎫θ-5π12=________.-425 [由f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12得f ⎝⎛⎭⎪⎫θ-5π12=2cos ⎝ ⎛⎭⎪⎫θ-5π12-π12=2cos ⎝⎛⎭⎪⎫θ-π2=2sin θ.又∵cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,∴sin θ=-45,故f ⎝ ⎛⎭⎪⎫θ-5π12=-425.]三、解答题9.已知角α的终边经过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求sin ⎝ ⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α)的值.[解] (1)因为点P ⎝ ⎛⎭⎪⎫45,-35,所以|OP |=1,sin α=-35.(2)sin ⎝⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α) =cos αtan α-sin α(-cos α)=1cos α,由三角函数定义知cos α=45,故所求式子的值为54.10.求证:2sin ⎝⎛⎭⎪⎫θ-3π2cos ⎝ ⎛⎭⎪⎫θ+π2-11-2sin 2θ=tan (9π+θ)+1tan (π+θ)-1. [证明] 左边=-2cos θ·sin θ-1sin 2θ+cos 2θ-2sin 2θ =-(sin θ+cos θ)2(cos θ+sin θ)(cos θ-sin θ) =sin θ+cos θsin θ-cos θ,右边=tan ·(8π+π+θ)+1tan (π+θ)-1=tan (π+θ)+1tan (π+θ)-1=tan θ+1tan θ-1=sin θcos θ+1sin θcos θ-1=sin θ+cos θsin θ-cos θ, 所以左边=右边, 所以等式成立.[能力提升练]1.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( ) A .89 B .90 C .892D .45C [原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=44+12=892.]2.已知f (α)=cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-αcos (-π-α)tan (π-α),则f ⎝ ⎛⎭⎪⎫-26π3的值为________.-12 [f (α)=(-sin α)·(-cos α)(-cos α)·(-tan α)=sin αcos αsin α=cos α,所以f ⎝ ⎛⎭⎪⎫-26π3=cos ⎝ ⎛⎭⎪⎫-263π=cos 263π=cos ⎝ ⎛⎭⎪⎫9π-π3=-cos π3=-12.]正弦函数余弦函数的图像(建议用时:60分钟)[基础达标练]一、选择题1.用“五点法”作y =sin 2x 的图象时,首先描出的五个点的横坐标是( ) A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π3B [令2x =0,π2,π,3π2,2π可得x =0,π4,π2,3π4,π,故选B.]2.若点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( ) A .0 B .1 C .-1 D .2 C [当x =π2时,y =sin π2=1,故-m =1,m =-1.]3.已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2,则f (x )的图象( )A .与g (x )的图象相同B .与g (x )的图象关于y 轴对称C .向左平移π2个单位,得g (x )的图象D .向右平移π2个单位,得g (x )的图象D [f (x )=sin ⎝⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2=cos ⎝ ⎛⎭⎪⎫π2-x =sin x , f (x )图象向右平移π2个单位得到g (x )图象.]4.如图是下列哪个函数的图象( )A .y =1+sin x ,x ∈[0,2π]B .y =1+2sin x ,x ∈[0,2π]C .y =1-sin x ,x ∈[0,2π]D .y =1-2sin x ,x ∈[0,2π]C [根据图象上特殊点进行验证,可知C 正确.]5.将余弦函数y =cos x 的图象向右至少平移m 个单位,可以得到函数y =-sin x 的图象,则m =( )A .π2B .πC .3π2D .3π4C [根据诱导公式得,y =-sin x =cos ⎝⎛⎭⎪⎫3π2-x =cos ⎝ ⎛⎭⎪⎫x -3π2,故欲得到y =-sin x的图象,需将y =cos x 的图象向右至少平移3π2个单位长度.]二、填空题6.用“五点法”作函数y =1-cos x ,x ∈[0,2π]的图象时,应取的五个关键点分别是______________.(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0) [x 依次取0,π2,π,3π2,2π得五个关键点(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0).]7.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =32的交点个数是________.2 [在同一坐标系内画出y =1+sin x 和y =32的图象(如图所示),观察可得交点的个数为2.]8.函数y =lg(2-2cos x )的定义域是________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z [由2-2cos x >0得cos x <22,作出y =cos x 的图象和直线y =22,由图象可知cos x <22的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z .] 三、解答题9.用“五点法”画出y =-2cos x +3(0≤x ≤2π)的简图. [解] 列表:10.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形(如图),求这个封闭图形的面积.[解] 观察图形可知:图形S 1与S 2,S 3与S 4都是两个对称图形,有S 1=S 2,S 3=S 4. 因此函数y =2cos x 的图象与直线y =2所围成的图形面积,可以等价转化为求矩形OABC 的面积.∵|OA |=2,|OC |=2π, ∴S 矩形OABC =2×2π=4π, ∴所求封闭图形的面积为4π.[能力提升练]1.若sin θ=1-log 2x ,则实数x 的取值范围是( )A .[1,4]B .⎣⎢⎡⎦⎥⎤14,1C .[2,4]D .⎣⎢⎡⎦⎥⎤14,4A [由sin θ∈[-1,1]得-1≤1-log 2x ≤1,解得0≤log 2x ≤2,即1≤x ≤4.]2.方程sin x =x10的根的个数是( )A .7B .8C .9D .10A [在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根.]3.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.⎝⎛⎭⎪⎫π4,5π4 [在同一坐标系中画出y =sin x ,x ∈(0,2π)与y =cos x ,x ∈(0,2π)的图象如图所示,由图象可观察出当x ∈⎝ ⎛⎭⎪⎫π4,5π4时,sin x >cos x .]4.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4 [由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0, 当x ∈[0,2π]时,x =π2或3π2,∴交点为⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4.]5.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.[解] f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].图象如图所示,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).正弦余弦函数的周期性与奇偶性(建议用时:60分钟)[基础达标练]一、选择题1.函数f (x )=x +sin x ,x ∈R ( ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数,又是偶函数 D .既不是奇函数,又不是偶函数A [函数y =x 为奇函数且y =sin x 也是奇函数,故f (x )=x +sin x ,x ∈R 是奇函数.] 2.下列函数中最小正周期为π的偶函数是( ) A .y =sin x2B .y =cos x2C .y =cos xD .y =cos 2xD [A 中函数是奇函数,B 、C 中函数的周期不是π,只有D 符合题目要求.] 3.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .20 B [由已知得2π|ω|=π5,又ω>0,所以2πω=π5,ω=10.]4.函数y =-x cos x 的部分图象是下图中的( )A B C DD [y =cos x 为偶函数,y =x 为奇函数,∴y =-x cos x 为奇函数,排除A 、C ,又x ∈⎝⎛⎭⎪⎫0,π2时cos x >0,x >0,∴y <0,故排除B ,选D.]5.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .2B [由已知得f (x +π)=f (x ),f (-x )=-f (x ), 所以f ⎝⎛⎭⎪⎫3π4=f ⎝ ⎛⎭⎪⎫3π4-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1.]二、填空题6.关于x 的函数f (x )=sin(x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数; ③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数. 其中错误的是________(填序号).①④ [φ=0时,f (x )=sin x ,是奇函数,φ=π2时,f (x )=cos x 是偶函数.]7.若函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为________.6 [T =2πω,1<2πω<4,则π2<ω<2π,∴ω的最大值是6.]8.函数y =sin x 的图象关于原点对称,观察正弦曲线的形状,结合正弦函数的周期性可知,正弦曲线的对称中心为________.(k π,0)(k ∈Z ) [∵y =sin x 是奇函数,∴(0,0)是其对称中心,又正弦函数的周期为2k π,结合正弦曲线可知,对称中心为(k π,0)(k ∈Z ).]三、解答题9.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)此函数是周期函数吗?若是,求其最小正周期. [解] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ),图象如下:(2)由图象知该函数是周期函数,且周期是2π.[能力提升练]1.函数f (x )=sin x1+cos x 的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数A [首先1+cos x ≠0,即x ≠2k π+π(k ∈Z ),定义域关于原点对称,又y =sin x 是奇函数,y =1+cos x 是偶函数,所以f (x )=sin x1+cos x是奇函数.]2.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 018)=( )A .32 B .-32C .0D . 3 D [∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 018)=336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018) =336⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π+f (336×6+1)+f (336×6+2)=336×0+f (1)+f (2)=sin π3+sin 23π= 3.]3.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是________.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 [∵f (x )是(-3,3)上的奇函数,∴g (x )=f (x )·cosx 是(-3,3)上的奇函数,从而观察图象(略)可知所求不等式的解集为⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.]4.设f (x )是定义域为R ,最小正周期为3π2的函数,若f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x ≤0,sin x ,0<x≤π,则f ⎝⎛⎭⎪⎫-15π4的值等于________.22 [因为函数f (x )的周期为3π2,∴f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-154π+3π2×3=f ⎝ ⎛⎭⎪⎫3π4,又∵3π4∈(0,π],∴f ⎝ ⎛⎭⎪⎫-154π=sin 3π4=22.]5.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.[解] 当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时, g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3. 因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32解得x +π3=-π6或π6,即x =-π2或-π6. 又因为g (x )的最小正周期为π,所以g (x )=32的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π-π2或x =k π-π6,k ∈Z .正弦余弦函数的单调性与最值(建议用时:60分钟)[基础达标练]一、选择题1.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2A [对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函。

Unit 4 基础练习 【新教材】牛津译林版(2020)必修一(含答案)

Unit 4 基础练习 【新教材】牛津译林版(2020)必修一(含答案)

译林版新教材必修一第四单元词汇拓展填空版1.skip---skip 不吃饭skip 逃学2.昏迷,失去知觉3./focus on集中注意力于4.extreme n./a. ad. go to extremes走极端5.a slim figure a slim chance 变苗条,减肥6.concerned a. n./v. prep.be concerned 关心,挂念be concerned 与……有联系7.effect n. a. ad. v.副作用have an effect/influence/impact 对……有影响8.slightly ad. a.9.go on a /diets节食10./act as 用作,充当11.摄入,吸收12.energetic a. n.13.强身健体in shape保持身材14.frightened a. a. v. fright n.15.而不是宁愿做16.have the to do sth.有做某事的压力强迫某人做某事17.to=lead to 促成,造成18.in the short/long / 从短期/长期来看19.a large of 大量的20.ahead of time/ = advance 提前,预先21.negative a. 反 a.22.pollution 塑料污染,白色污染整形手术23.在校园里24.medical 医疗25.addition n. 此外add v. a. ad.26.as the goes俗话说27.使忧心忡忡,担心可能发生稍等,紧握,坚持住28.male 对应词29.防范,防止,提防30.beauty n. v. a. ad.31.打一场无望取胜的仗32.one’s expectations达到某人的期望33.最终成为,最终处于e into 流行起来35.strength n. v. strong a. 优缺点36.talent n. a.37.= 以…自豪38.be with/to do sth.对……满意/对做某事感到满意39.individuality n. a. ad.40.a great一项伟大的成就Unit 4 基础知识检测I 单词拼写1.Her daughter started s school due to the bad performance in the exam.2.I felt the p on me,and winning was such a big deal for the whole family.3.The system wastes a large a of water.4.He is such an e man that he never feels stressed.5.The students have put forward a s of questions the teacher can work out.6.Something gave me the s to get over the difficulty bravely.7.Bringing up a child alone should give you a sense of a .8.Several key crops failed when they were a by pests.9.Thanks to recent research,(有效的)treatments are available.10.Climate and weather affect every(方面)of our lives.11.The(功能)of the ear is to listen.12.The plane arrived in London two minutes ahead of(日程安排).13.Vegetables are generally very low in calories,very high in fiber,and full of(营养).14.The new(数字的)technology would allow a rapid expansion in the number of TV channels.15.The(时尚)world does not mind what the real world thinks.II 单句语法填空1.In addition,planting trees helps improve and(beauty)the environment.2.People should be free to express their(indivudual).3.You need money and time;addition,you should be hardworking.4.Correct mistakes if you have made any and guard them if you have not.5.We also realize the truth of that old(say):Charity begins at home.6.Miriam was too(frighten)to tell her family what had happened.7.His family then moved to a(slight)larger house.8.He is gathering evidence(concern)a murder.9.I got in touch with him(immediate)after I received the letter.10.Several hundred students gathered campus.III 词组填空1.the company hopes to open in Moscow and other major cities.2.Do you know if the sleeping pill has its?3.If you don't know what you want,you might getting something you don't want.4.The player was given hardly any opportunities to his talents.5.My parents always everything good I do.6.A great danger has him lately.7.Stephen Chase had determined to the expectations of the company.8.He felt sick and dizzy and then.9.I believe that each of us can the future of the world.10.On weekends the Smiths usually drive to the countryside and the fresh air there.译林版新教材必修一第四单元词汇拓展答案版1.skip-skipped-skipped-skipping skip meals不吃饭skip school逃学2.pass out昏迷,失去知觉3.concentrate/focus on集中注意力于4.extreme n./a. extremely ad. go to extremes走极端5.a slim figure苗条的身材 a slim chance机会渺茫slim down变苗条,减肥6.concerned a. concern n./v. concerning prep.be concerned about关心,挂念be concerned with与……有联系7.effect n. effective a. effectively ad. affect v.side effect副作用have an effect/influence/impact on/upon对……有影响8.slightly ad. slight a.9.go on a diet/diets节食10.function/act as 用作,充当11.take in 摄入,吸收12.energetic a. energy n.13.get into shape强身健体stay in shape保持身材14.frightened a. frightening a. frighten v. fright n.15.rather than 而不是would rather do 宁愿做16.have the pressure to do sth.有做某事的压力press sb. to do sth.强迫某人做某事17.contribute to=lead to 促成,造成18.in the short/long term/run从短期/长期来看19.a large amount of 大量的20.ahead of time/schedule=in advance 提前,预先21.negative a. 反positive a.22.plastic pollution 塑料污染,白色污染plastic surgery 整形手术23.on campus在校园里24.medical treatment 医疗25.addition n. in addition此外add v. additional a. additionally ad.26.as the saying goes俗话说27.hang over 使忧心忡忡,担心可能发生hang on稍等,紧握,坚持住28.male 对应词female29.guard against防范,防止,提防30.beauty n. beautify v. beautiful a. beautifully ad.31.fight a losing battle打一场无望取胜的仗32.live up to one’s expectations达到某人的期望33.end up最终成为,最终处于e into fashion流行起来35.strength n. strengthen v. strong a. strengths and weaknesses优缺点36.talent n. talented a.37.take pride in=be proud of以…自豪38.be concent with/to do sth.对……满意/对做某事感到满意39.individuality n. individual a. individually ad.40.a great achievement一项伟大的成就Unit 4 基础知识检测答案I 单词拼写1.Her daughter started skipping school due to the bad performance in the exam.2.I felt the pressure on me,and winning was such a big deal for the whole family.3.The system wastes a large amount of water.4.He is such an energetic man that he never feels stressed.5.The students have put forward a series of questions the teacher can work out.6.Something gave me the strength to get over the difficulty bravely.7.Bringing up a child alone should give you a sense of achievement.8.Several key crops failed when they were attacked by pests.9.Thanks to recent research,effective(有效的)treatments are available.10.Climate and weather affect every aspect(方面)of our lives.11.The function(功能)of the ear is to listen.12.The plane arrived in London two minutes ahead of schedule(日程安排).13.Vegetables are generally very low in calories,very high in fiber,and full of nutrition(营养).14.The new digital(数字的)technology would allow a rapid expansion in the number of TV channels.15.The fashion(时尚)world does not mind what the real world thinks.II 单句语法填空1.In addition,planting trees helps improve and beautify(beauty)the environment.2.People should be free to express their individuality(indivudual).3.You need money and time;in addition,you should be hardworking.4.Correct mistakes if you have made any and guard against them if you have not.5.We also realize the truth of that old saying(say):Charity begins at home.6.Miriam was too frightened(frighten)to tell her family what had happened.7.His family then moved to a slightly(slight)larger house.8.He is gathering evidence concerning(concern)a murder.9.I got in touch with him immediately(immediate)after I received the letter.10.Several hundred students gathered on campus.III 词组填空1.In the long term the company hopes to open in Moscow and other major cities.2.Do you know if the sleeping pill has its side effect?3.If you don't know what you want,you might end up getting something you don't want.4.The player was given hardly any opportunities to show off his talents.5.My parents always take pride in everything good I do.6.A great danger has hung over him lately.7.Stephen Chase had determined to live up to the expectations of the company.8.He felt sick and dizzy and then passed out.9.I believe that each of us can contribute to the future of the world.10.On weekends the Smiths usually drive to the countryside and take in the fresh air there.。

必修4第一章三角函数同步练习及答案

必修4第一章三角函数同步练习及答案

第一章 三角函数§1.1 任意角和弧度制一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( ) (A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z} (D){α|α=k ·90°,k ∈Z}3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( )(A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π(B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍. *10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 . 三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少? *14.如下图,圆周上点A 依逆时针方向做匀速圆周运动.已知A 点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.§.任意角的三角函数一.选择题1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( )(A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3} 2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( )(A) 25 (B) -25 (C) 25或 -25 (D) 不确定3.设A 是第三象限角,且|sin2A |= -sin 2A ,则2A是 ( ) (A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形*6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( )(A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题 7.若sin θ·cos θ>0, 则θ是第 象限的角;8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ;9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ;*10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角. 三.解答题11.求函数y =lg(2cos x的定义域。

高中政治必修四同步练习第一课 美好生活的向导

高中政治必修四同步练习第一课 美好生活的向导

第一课美好生活的向导一、选择题1.第二十四届世界哲学大会将于2019年由中国承办,这是中国首次获得世界哲学大会的承办权。

哲学具有无限关怀和终极追问的特点,总揽一切,综括一般,仰观宇宙之无穷,俯究万物之运动。

这段话表明( )ﻫ①哲学的研究对象即自然、社会和人类思维发展的最一般本质和规律②哲学从一般规律中概括和总结出各种特别规律ﻫ③哲学是一门包罗万象、囊括万物的综合性科学ﻫ④哲学把整个世界以及人与世界的关系作为自己的研究对象。

A、①②ﻩB。

①④ﻩC、②③D。

③④【答案】B【解析】①符合题意,“哲学总揽一切,综括一般,仰观宇宙之无穷,俯究万物之运动”,这说明哲学的研究对象即自然、社会和人类思维发展的最一般本质和规律;②说法错误,哲学是从各种特别规律中概括和总结出一般规律;ﻫ③说法错误,哲学有正确与错误之分,哲学不一定都是科学的;④符合题意,材料中“哲学总揽一切,综括一般”,这说明了哲学的研究对象是整个世界以及人与世界的关系;ﻫ故选:B。

2.在大型工程的建设中,工程师更需要有哲学的思想,并将哲学思维充分应用到工程建设中去,用以指导工程建设、这说明( )A、任何哲学都对实践活动具有正确的指导意义ﻩB。

哲学为实践活动提供世界观和方法论的指导C。

哲学都源于人们的实践活动和对实践的追问ﻩD、哲学是具体科学的基础,哲学是科学之科学【答案】B【解析】A说法错误,只有真正的哲学对实践活动具有正确的指导意义;ﻫB符合题意,“将哲学思维充分应用到工程建设中去,用以指导工程建设”,这说明哲学为实践活动提供世界观和方法论的指导;C不合题意,材料不涉及哲学的来源问题;ﻫD说法错误,具体科学是哲学的基础;哲学是对具体知识的概括和总结,而不是科学之科学、故选:B。

3.2019 年1月1日6时中央气象台接着公布霾橙色预警:估计 1 日 8 时至 2 日 8 时,北京南部、天津、河北东部和中南部、山东中西部等地的部分地区有重度霾。

对此,人们不可回避地考虑一系列带有哲学性质的问题:生态环境为什么如此恶劣?人类在自身发展过程中应如何处理与自然界的关系?这表明( )①哲学能够使我们正确地看待自然ﻫ②哲学思想产生于认识和改造世界的活动ﻫ③哲学源于人们在实践中对世界的追问④哲学是指导人们生活得更好的艺术。

人教版高中语文必修四 7.2《声声慢》基础练习

人教版高中语文必修四 7.2《声声慢》基础练习

《声声慢》基础练习一、单项选择题:1、我国宋代著名女词人李清照的作品集是()A.《乐章集》 B.《漱玉词》 C.花间集》 D.《稼轩长短句》2、李清照的《声声慢》是一首()A.婉约词 B.豪放词 C.抒情词 D.清旷词3、李清照的词被誊为()A.稼轩体 B.半山体 C.易安体 D.漱玉体4.李清照生活的年代是( )A.南唐 B.北宋 C.南宋 D.北宋南宋交替之际5.李清照《声声慢》一词最突出的语言技巧是( )A.夸张 B.拟人 C.叠字 D.比喻6.《声声慢》一词所写的景物的季节特征是( )A.初秋 B.深秋 C.初春 D.暮春二、填空题:1.李清照,号_________,宋代_________派著名.女词人。

2.李清照的词集名_________。

3.李清照《声声慢》在语言上的特点是善用_________。

4.寻寻觅觅,冷冷清清,_________。

5.梧桐更兼细雨,到黄昏、_________。

三、语言运用1.概括下面一则消息的主要信息,不超过40字。

北京时间1月13日凌晨,海地遭遇200年以来最强烈的地震,震级为里氏7.3级。

据了解,目前强震造成的死亡人数可能高达10万人,海地首都太子港几乎被夷为平地,许多建筑和小区被彻底震毁,近200名联合国人员失踪,8名中国维和人员被埋,震后平民的具体伤亡情况还有待壹基金作为中国第一个对灾情做出反应的民间公益组织,于1月14日决定通过中国红十字总会捐助10答:2.游子千层底里缝不尽的是亲情,黄鹤楼上遥望不归的是友情,千里孤坟里埋不住的是爱情。

敢问世间情为何物?情是人生的灵魂,是人生妙章中最重要的一笔。

没有亲情,犹如酷寒的冬季没有结束的日期;, ;, 。

人生最重要的答:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修四基础练习一必修四基础练习一一、选择题1、下面加点的词语注音全对的一组是()A 社稷.(jì)诅.(zǔ)咒一抔.(p..óu).黄土B 虎兕.(sì) 肇.(zhào)造鸡豚.(zhǘ)狗彘C 饿殍.(fú) 芜.(wù)杂贼氛方炽.(chì)D 庠.(xiáng)序孝悌.(dì) 坚如磐.(pán)石2、下列词语中加点字注音正确的一组是()A 伺.(cì)机叱.(chì)咤笞.(chī)刑怜悯.(mǐn)B 呵.(hē).护抽搐.(chù) 重创.(chuāng).离间.(jiàn)C 濒.(p..ín).临菲.(f..ěi).薄脊.(j..ǐ).骨咀嚼.(ji...áo).D 诅.(z..ǔ).咒沮.(j..ǔ).丧恫.(t..òng).吓忏.(ch...àn).悔3、下列各项中汉字书写正确的一项是()A 贤惠犄角飞弛全神惯注B敲榨暗淡缭绕见异思迁C演绎恻隐蜷缩再接再厉D谙习苍桑惊谔慢条斯理4、下列句子中加点的字的用法,与其他三项不同的一项是()A故远人不服,则修文德以来.之B填然鼓.之C五亩之宅,树.之以桑D然而不王.者,未之有也5、下列句子中加点的词含义相同的一项是()A①以.坚毅不挠之精神②不半载武昌大革命以.成B①虽以史迁之善传.游侠②可传.世而不朽C①亦不能为.五百人立传②尚国人皆以诸先烈之牺牲精神为.国奋斗D①尤倍重于.三十年前②以所辑黄花岗事略丐序于.予6、下列句子中有错别字的一项是()A她一言不发地走进那扭着身子枉自躲避她的犯人,从胸前取出一只葫芦,温柔地举到那可怜人干裂的嘴边。

B人家又用许多皮条把他绑在轮盘上,他听任人家捆绑,只不过时时粗声地喘气,就像一头牛垂头耷脑地给绑在屠夫的车沿上。

C人们看见成千条血水在那驼子的黝黑的肩膀上流淌,皮鞭在在空中挥动时就把一些血珠溅到观众的身上。

D 当人们能够从个方面看见他被人用绳子和皮条绑在刑台的轮盘上的时候,场内爆发了一阵笑声和喊声。

7、下列各句中加点的成语使用恰当的一项是()A恩格斯在演讲中列举马克思的革命理论与革命实践时,陈力就列....,马克思对无产阶级的贡献是一目了然。

B报纸上最近讨论的关于学生能否带手机到校的问题,有些同学虽然想带但语焉不详....,说了一大通,遮遮掩掩的。

C阿彪说话总是粗声大气的,一开始邻居们都觉得有点不习惯,经过一年的相处,大家也就安.之若素...了。

D好长一段时间里,吴东都沉浸在获作文一等奖的快乐中不能自拔....,见人就有几分笑意。

8、下面是对本专题文章的理解,说法不正确的一项是()A《论语》是一部记载孔子及其弟子言行的语录体文集,在这部文集中,孔子以“仁”为核心,提倡礼治。

《季氏将伐颛臾》记述孔子坚守大义说明季氏不可伐颛臾的道理,从一个侧面反映他“礼治”的主张。

B 《寡人之于国也》采用了“欲擒故纵”的论辩手法,使用“五十步笑百步”的比喻来使梁惠王说出“直不百步耳,是亦走也”,引他上套,从而向他说明他的治国方法与邻国没有质的差别。

C 《在马克思墓前的讲话》由于马克思和恩格斯二人的一生的友谊为基础,所以文中对马克思的称谓使用了“思想家”、“巨人”、“科学巨匠”、“革命家”等,表现了恩格斯对马克思的超越客观评价的敬仰与悼念。

D 《我有一个梦想》中作者将《宪法》、《独立宣言》和《解放黑奴宣言》作为自己依据,评击了美国社会对待黑人的种种不公平现象,号召大家行动起来,投入到争取平等权利和自由的斗争中去,喊出了时代的最强音。

9、下列文学常识说法不正确的一项是()A 《巴黎圣母院》是雨果按照浪漫主义的创作方法创作的作品,体现了雨果作品浪漫主义特点。

小说情节怪诞,富有传奇色彩;语言色彩斑斓,富有情感。

B 戏剧有不同的分类标准:依据情节繁简可分独幕剧和独幕剧;依据戏剧冲突的性质可分为喜剧、悲剧和正剧。

《雷雨》是一部四幕悲剧,是现代话剧史上的里程碑之作。

C唐宋的诗人词客喜欢在字号中使用“居士”,如李白号青莲居士,白居易号香山居士,欧阳修号六一居士,李清照号易安居士,而辛弃疾号稼轩居士,等等。

D《辛德勒名单》其思想的严肃性,非凡的艺术表现力都达到了几乎难以超越的深度。

于1994年第66届奥斯卡金像奖中获得最佳导演奖等两项大奖。

10、下列各句中,语言表达得体的一项是()A“在坐的各位不是董事长,就是总经理。

现在请大家出钱出物,聊为社稷尽匹夫之责、绵薄之力。

”B审判员宣布道:“把车祸的目击证人传上来!”C 那天,雨过天晴,我拜访老朋友。

他打开门,看见我,高兴地说:“嗨,老朋友,你给我们带来了温暖的阳光。

”D 李明正在草拟“事物启事”,他写道:“昨天我在教室丢失一本《名言词典》,如有拾获,请从速交还。

”二、填空1、《论语》是孔子及其后学汇集整理而成的_____________文集,记载了孔子和他的弟子们的言行。

孔子,名________,字__________,春秋末期______国人,是_________学派的开创者。

2、孟子,名________,字__________,________中期邹人,先秦________思想代表人物之一,后世称之为__________。

在人性论上主张________________,在政治上主张_________。

《孟子》是_______________所著。

3、“事略”是一种____________文体,《<黄花岗烈士事略>序》一篇_________。

4、《<黄花岗烈士事略>序》一文的写作目的是__________________________________5、曹禺,原名___________,现代著名剧作家,代表作有_____________、__________、___________。

6、戏剧四一种综合性的____________,它借助________、________、_______、________等艺术手段塑造舞台艺术形象、揭示社会矛盾、反映现实生活。

戏剧离不开戏剧冲突,它主要指剧本中所展示的人物之间、人物自身以及人与环境之间的矛盾冲突,主要表现在________的冲突上。

戏剧的语言包括__________(即台词)和_________。

按照不同的标准,戏剧可以分为不同种类:按艺术形式和表现手法分为_________、_________、_________、__________、_________等;按剧情繁简和结构分为_________、_________;按题材所反映的时代分为_________、__________;按矛盾冲突的性质分_______、________、_______、________。

7、雨果是_____国________主义作家。

代表作有__________、__________、___________。

三、阅读(一)阅读下面剧本,回答问题周朴园那么,我们就这样解决了。

我叫他下来,你看一看他,以后鲁家的人永远不许再到周家来。

鲁侍萍好.,我希望这一生不至于再见你。

周朴园(从衣内取出皮夹的支票签好)很好..,这是一张五千块钱的支票,你可以先拿去用。

算是弥补我一点罪过。

鲁侍萍(接过支票)谢谢你。

(慢慢撕碎支票)周朴园侍萍。

鲁侍萍我这些年的苦不是你拿钱算得清的。

周朴园可是你——1、你是如何理解中文加点的“好”、“很好”的含义?2、你如何理解周朴园送鲁侍萍支票这一行为?3、“撕”这个动作表现鲁侍萍什么样的性格特征?4、周朴园对鲁侍萍的思想到底是真还是假?谈谈你的看法。

(二)阅读下面选文,回答问题。

克思发现了人类历史的发展规律,即历来为纷繁芜杂的意识形态所掩盖着的一个简单事实:人们首先必须吃、喝、住、穿,然后才能从事政治、科学、艺术、宗教等等。

所以,直接的物质的生活资料的生产,从而一个民族或一个时代的一定的经济发展阶段,便构成基础,人们的国家设施、法的观点。

艺术以至宗教观念,就是从这个基础....上发展起来的,因而,也必须由这个基础....来解释,而不是像过去那样做得相反。

1、上文画线句运用类比说明_______________和_______________都是划时代的发现。

2、文中的“这个基础”是指_____________________________。

3、“而不是像过去那样做得相反”中“相反”的意思是说________________________。

4、根据标点和关联词,为“事实”后面的文句划分层次,并写出各层的意思。

四、古文练习(一)翻译下面句子1、丘也闻有国有家者,不患寡而患不均,不患贫而患不安。

2、养生丧死无憾,王道之始也。

3、环顾国内,贼氛方炽,杌陧之象,视清季有加。

(二)解释下列加点字词的意思1、既来.之,则安.之。

2、填然鼓.之 3、五亩之宅,树.之以桑,五十者可以衣、帛矣。

4、惊.天地,泣.鬼神 5、虽以史迁之善传.游侠(三)将下列“而”的用法归类① 危而不持,危而不扶 ② 固而近于费 ③ 远人不服,而不能来也 ④ 弃甲曳兵而走 ⑤ 或五十步而后止 ⑥ 然而不王者 ⑦ 是何异于刺人而杀之A 连词,表示转折:B 连词,表示并列:C 连词,表示修饰:D 连词,表示承接:(四)解释下列句子中的“之”字1、是社稷之臣2、夫子欲之3、寡人之于国也4、填然鼓之5、树之以桑6、申之以孝悌之义7、未之有也8、以坚毅不挠之精神9、吾党菁华,付之一炬10、草木为之含悲(五)下列句式分类1、季氏将有事于颛臾2、无乃尔是过与3、昔者先王以为东蒙主4、何以伐为5、夫颛臾,昔者先王以为东蒙主,且在邦域之中矣,是社稷之臣也6、虎兕出于柙,龟玉毁于椟中7、是谁之过与8、非我也,岁也9、则无望民之多于邻国也10、未之有也11、申之以孝悌之义,颁白者不负戴于道路矣12、怨愤所积13、所辑《黄花岗烈士事略》丐序于予14、尤倍重于三十年前15、并以为国人读兹编者序A判断句B状语后置C宾语前置 D 定语后置 E 疑问句。

相关文档
最新文档