浙江省湖州市吴兴区2019年九年一贯制学校九年级第二次中考模拟数学试题(图片版含答案)

合集下载

浙江省湖州市2019-2020学年中考数学二模考试卷含解析

浙江省湖州市2019-2020学年中考数学二模考试卷含解析

浙江省湖州市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )A.5 cm B.6 cm C.8 cm D.10 cm2.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=cx在同一坐标系中的图象可能是()A.B.C.D.3.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A.12B.25C.35D.7184.下列所给函数中,y随x的增大而减小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C.2yxD.y=x+15.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°6.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5 人数 2 4 3 8 3学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数B.加权平均数C.众数D.中位数7.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π8.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数9.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×10910.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.83B.8 C.43D.611.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.12.已知实数a<0,则下列事件中是必然事件的是()A .a+3<0B .a ﹣3<0C .3a >0D .a 3>0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由»BC,线段CD 和线段BD 所围成图形的阴影部分的面积为__.14.分解因式:24xy x =____15.一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.16.分解因式2x 2+4x +2=__________.17.如图,在平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(2,4),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在反比例函数y =kx的图象上,则k 的值为_____.18.已知三个数据3,x+3,3﹣x 的方差为23,则x=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC 内接于⊙O ,过点C 作BC 的垂线交⊙O 于D ,点E 在BC 的延长线上,且∠DEC =∠BAC .求证:DE 是⊙O 的切线;若AC ∥DE ,当AB =8,CE =2时,求⊙O 直径的长.20.(6分)如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .21.(6分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.22.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.23.(8分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.24.(10分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:①教师讲,学生听②教师让学生自己做③教师引导学生画图发现规律④教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图(1) 请将条形统计图补充完整;(2) 计算扇形统计图中方法③的圆心角的度数是;(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?25.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?26.(12分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,5MC的长.27.(12分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是度.若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+12BC=6+12×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.2.C【解析】【分析】根据二次函数图像位置确定a<0,c>0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a<0,c>0,∴正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.3.A【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为451= 902.故选A.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4.A【解析】【分析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.【详解】解:A.此函数为一次函数,y随x的增大而减小,正确;B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D.此函数为一次函数,y随x的增大而增大,错误.故选A.【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.5.D【解析】【详解】解:连接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故选:D6.C【解析】【分析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.B【解析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=12lr=12×6π×5=15π,故选B8.C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.9.A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】39000000000=3.9×1.故选A.【点睛】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.10.D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,∵BE=BF ,OE=OF , ∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC , ∴∠BAC=∠ABO , 又∵∠BEF=2∠BAC , 即2∠BAC+∠BAC=90°, 解得∠BAC=30°, ∴∠FCA=30°, ∴∠FBC=30°, ∵FC=2, ∴3 ∴3, ∴22AC BC -22(43)(23)-6,故选D .点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 11.D 【解析】 【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D . 【详解】解:观察图形可知图案D 通过平移后可以得到. 故选D . 【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转. 12.B。

浙江省湖州市2019-2020学年中考二诊数学试题含解析

浙江省湖州市2019-2020学年中考二诊数学试题含解析

浙江省湖州市2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点D D .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D2.如图,在四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 1.若S 2=48,S 1=9,则S 1的值为( )A .18B .12C .9D .13.下列说法中,正确的个数共有( ) (1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形; (3)在同圆中,相等的圆心角所对的弧相等; (4)三角形的内心到该三角形三个顶点距离相等; A .1个 B .2个 C .3个 D .4个422)30x y --=(,则x-y 的正确结果是( ) A .-1B .1C .-5D .55.下列各数中负数是( )A .﹣(﹣2)B .﹣|﹣2|C .(﹣2)2D .﹣(﹣2)3 6.关于2、6、1、10、6的这组数据,下列说法正确的是( ) A .这组数据的众数是6 B .这组数据的中位数是1 C .这组数据的平均数是6D .这组数据的方差是107.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( ) 用水量x (吨) 3 4 5 6 7 频数1254﹣xxA .平均数、中位数B .众数、中位数C .平均数、方差D .众数、方差 8.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =( )A .54°B .64°C .27°D .37°9.在以下四个图案中,是轴对称图形的是( )A .B .C .D .10.下列计算中,正确的是( )A .3322a a =()B .325a a a +=C .842a a a ÷=D .236a a =()11.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )A .B .C .D .12.若分式方程1x aa x -=+无解,则a 的值为( ) A .0B .-1C .0或-1D .1或-1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.14.已知Rt△ABC中,∠C=90°,AC=3,BC=7,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是_________.15.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.16.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)17.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.18x2x的取值范围是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?20.(6分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=25,CE=2,求线段AE的长.21.(6分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.22.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.23.(8分)试探究:小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE=;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.拓展延伸:小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:(1)求证:△ACF∽△FCE;(2)求∠A的度数;(3)求cos∠A的值;应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.24.(10分)计算:31|+(﹣1)2018﹣tan60°25.(10分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.26.(12分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)27.(12分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据作一个角等于已知角的作法即可得出结论.【详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB 于点E、F,第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.故选:D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.2.D【解析】【分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∴A作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.3.C【解析】【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.4.A【解析】由题意,得x-2=0,1-y=0,解得x=2,y=1.x-y=2-1=-1,故选:A.5.B【解析】【分析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数.故选B.【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.6.A【解析】【分析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为15(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=15[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.7.B【解析】【分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.8.C【解析】【分析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=12∠BOC=27°故选:C.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.A【解析】【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.D【解析】【分析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D.【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.11.A【解析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A.“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.D【解析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5【解析】【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.14.79 44xp p.【解析】【分析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,7,∴223(7)+.∵CD⊥AB,∴37.∵AD•BD=CD2,设AD=x,BD=1-x.解得x=94,∴点A在圆外,点B在圆内,r的范围是79 44x<<,故答案为79 44x<<.本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.15.23-2.【解析】【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解. 【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=1,∴22AF FM3,∵FP=FC=1,∴3-1,∴点P到边AB距离的最小值是3.故答案为3-1.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.16.>【解析】【分析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.甲组的平均数为:3626463+++++=4,S甲2=16×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=73,乙组的平均数为:4353465+++++=4,S乙2=16×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=23,∵73>23,∴S甲2>S乙2.故答案为:>.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.17.(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB12B1所在的象限为第一象限;∴OB2=2)2,B2在x轴正半轴;∴OB3=2)3,B3所在的象限为第四象限;∴OB4=(2)4,B4在y轴负半轴;∴OB5=(2)5,B5所在的象限为第三象限;∴OB6=(2)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).18.x2≥【解析】二次根式有意义的条件.【分析】根据二次根式被开方数必须是非负数的条件,要使x2-在实数范围内有意义,必须x20x2-≥⇒≥.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)100,35;(2)补全图形,如图;(3)800人【解析】【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30% 100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.20.(1)证明见解析;(2)证明见解析;(3)42. 【解析】 试题分析:(1)依据AE=EF ,∠DEC=∠AEF=90°,即可证明△AEF 是等腰直角三角形;(2)连接EF ,DF 交BC 于K ,先证明△EKF ≌△EDA ,再证明△AEF 是等腰直角三角形即可得出结论;(3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得EH=DH=CH=2,Rt △ACH 中,AH=32,即可得到AE=AH+EH=42.试题解析:解:(1)如图1.∵四边形ABFD 是平行四边形,∴AB=DF .∵AB=AC ,∴AC=DF .∵DE=EC ,∴AE=EF .∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形;(2)如图2,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED .∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE .∵∠DKC=∠C ,∴DK=DC .∵DF=AB=AC ,∴KF=AD .在△EKF 和△EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,∴△EKF ≌△EDA (SAS ),∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AF=2AE .(3)如图3,当AD=AC=AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD=AC ,ED=EC ,可得AE 垂直平分CD ,而CE=2,∴EH=DH=CH=2,Rt △ACH 中,AH=22252()()+=32,∴AE=AH+EH=42.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.21.(1)是;(2)见解析;(3)150°.【解析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS 证明△AEC ≌△BED ,得出AC=BD ,由等距四边形的定义得出AD=AB=AC ,证出AD=AB=BD ,△ABD 是等边三角形,得出∠DAB=60°,由SSS 证明△AED ≌△AEC ,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB 和∠ACD 的度数,即可得出答案.【详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:CD ==在图3中,由勾股定理得:CD ==(3)解:连接BD .如图1所示:∵△ABE 与△CDE 都是等腰直角三角形,∴DE=EC ,AE=EB ,∠DEC+∠BEC=∠AEB+∠BEC ,即∠AEC=∠DEB ,在△AEC 和△BED 中,,DE CE AEC BED AE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BED (SAS ),∴AC=BD ,∵四边形ABCD 是以A 为等距点的等距四边形,∴AD=AB=AC ,∴AD=AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB ﹣∠EAB=60°﹣45°=15°,在△AED 和△AEC 中,,AD AC DE CE AE AE =⎧⎪=⎨⎪=⎩∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴180301803075,75,22ACB ACD--∠==∠==o o o oo o∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【点睛】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.22.(1)详见解析;(2)72°;(3)【解析】【分析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵抽查的总人数为:(人)∴类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴ (恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)小张的发现正确;(2)详见解析;(3)∠A =36°;(451【解析】【分析】尝试探究:根据勾股定理计算即可;拓展延伸:(1)由AE 2=AC•EC ,推出=AC AE AE EC ,又AE =FC ,推出=AC FC FC EC,即可解问题; (2)利用相似三角形的性质即可解决问题; (3)如图,过点F 作FM ⊥AC 交AC 于点M ,根据cos ∠A =AM AF ,求出AM 、AF 即可; 应用迁移:利用(3)中结论即可解决问题;【详解】1;∵∠ACB =90°,BC =1,AC =2,∴AB∴AD =AE 1,∵AE 21)2=6﹣AC•EC =2×[2﹣(1)]=6﹣, ∴AE 2=AC•EC ,∴小张的发现正确;拓展延伸:(1)∵AE 2=AC•EC , ∴=AC AE AE EC∵AE =FC , ∴=AC FC FC EC , 又∵∠C =∠C ,∴△ACF ∽△FCE ;(2)∵△ACF ∽△FCE ,∴∠AFC =∠CEF , 又∵EF =FC ,∴∠C =∠CEF ,∴∠AFC =∠C ,∴AC =AF ,∵AE =EF ,∴∠A =∠AFE ,∴∠FEC =2∠A ,∵EF =FC ,∴∠C =2∠A ,∵∠AFC =∠C =2∠A ,∵∠AFC+∠C+∠A =180°,∴∠A =36°;(3)如图,过点F 作FM ⊥AC 交AC 于点M ,由尝试探究可知AE 51 ,EC =35∵EF =FC ,由(2)得:AC =AF =2,∴ME 35-,∴AM 51+ , ∴cos ∠A =514=AM AF ; 应用迁移: ∵正十边形的中心角等于36010︒=36°,且是半径为2的圆内接正十边形, ∴如图,当点A 是圆内接正十边形的圆心,AC 和AF 都是圆的半径,FC 是正十边形的边长时, 设AF =AC =2,FC =EF =AE =x ,∵△ACF ∽△FCE , ∴AF FC EF EC= , ∴22=-EF EF EF , ∴51=EF ,∴半径为251.【点睛】本题考查相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.24.1【解析】【分析】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】 31|+(﹣1)2118﹣tan61°=3﹣1+1﹣3=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.25.(1)25;(2)8°48′;(3).【解析】试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B 等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.试题解析:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.考点:频数(率)分布表;扇形统计图;列表法与树状图法.26.(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元. 考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.27.甲有钱752,乙有钱25.【解析】【分析】设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱x,乙有钱y.由题意得:15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,解方程组得:75225xy⎧⎪⎪=⎨⎪⎪=⎩,答:甲有钱752,乙有钱25.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.。

2019年浙江省湖州市中考数学第二次联合测评试卷附解析

2019年浙江省湖州市中考数学第二次联合测评试卷附解析

2019年浙江省湖州市中考数学第二次联合测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列说法正确的是( )A .矩形都是相似的B .有一个角相等的菱形都是相似的C .梯形的中位线把梯形分成两个相似图形D .任意两个等腰梯形相似2.过⊙O 内一点P 的最长的弦长为10cm ,最短的弦长为8cm ,则OP 的长为( )A .3cmB .5cmC .2cmD .3cm 3.如图,AB 是⊙O 的直径,∠C=30°,则∠ABD=( )A .30°B .40°C . 50°D . 60°4.二次函数342++=x x y 的图象可以由二次函数2x y =的图象平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,再向上平移1个单位长度B .先向左平移2个单位长度,再向下平移1个单位长度C .先向右平移2个单位长度,再向上平移1个单位长度D .先向右平移2个单位长度,再向下平移1个单位长度5.抛物线()223y x =++的顶点坐标是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(2,-3) 6.在四边形中,钝角最多能有( )A .1个B .2个C .3个D .4个 7.下列语句不是命题的个数是( )(1)大于90°的角都是钝角;(2)请借给我一枝钢笔;(3)小于零的数是负数;(4)如果a=0,那么ab=0.A .0个B .1个C .2个D .3个8.关于x 、y 的方程组232(1)10x y kx k y -=⎧⎨++=⎩的解互为相反数,则k 的值是( ) A . 8 B . 9 C .10 D . 119.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?设原计划每天修x 米,所列方程正确的是( )A .12012045x x -=+B .12012045x x -=+C .12012045x x -=-D .12012045x x -=- 10.下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有( )A .2个B .3个C .4个D .5个11.赵强同学借了一本书,共 280 页,要在两周借期内读完. 当他读了一半时,发现平均每天要多读 21 页才能在借期内读完. 他读前一半时,平均每天读多少页?如果设读前一 半时,平均每天读x 页,则下列方程中,正确的是( )A .1401401421x x +=-B .2802801421x x +=+ C .1401401421x x +=+ D .1010121x x +=+ 12.若2416()x x x ⋅⋅=,则括号内的代数式应为( )A . 2xB .4xC . 8xD .10x二、填空题13.若圆锥的母线长为3 cm ,底面半径为2 cm ,则圆锥的侧面展开图的面积 .14.函数22(1)23y x =---化为2y ax bx c =++的形式是 . 15.已知a 是方程210x x --=的一个根,则代数式3222a a --的值为 .16.如图所示,在□ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于点E ,则∠DAE= .17.不等式3x-9≤0的解集是 .18.有14个顶点的直棱柱是直 棱柱,有 条侧棱,相邻两条侧棱互相 .19.正三角形是轴对称图形,对称轴有 条.20.如图,是由四个形状大小完全相同的长方形拼成的图形,利用面积的不同表示法,写出一个代数恒等式: . 21.某市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是l6岁的概率是 .22.全等图形________是相似图形,但相似图形________是全等图形(填“一定”或“不一定”).23.估算方程2233x -=的解是 . 24.计算:(1)22222(43)3(2)a b ab a b ab ---+= ;(2) 22(32)5(1)5m mn ---+- 三、解答题25.小明站在窗口观察室外的一棵树. 如图所示,小明站在什么位置才能看到这棵树的全部?请在图中用线段表示出来.26.已知a 、b 、c 是△ABC 的三边,a 、b 、c 满足等式2(2)4()()b c a c a =+-,且有5a-3c=0,求 sinB 的值.27.如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(取3≈1.73,计算结果保留整数)28.设22131a =-,22253a =-,…,22(21)(21)n a n n =+--(n 为大于0的自然数).(1)探究n a 是否为 8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出1a ,2a ,…,n a 这一列数中从小到大排列的前 4个完全平方数,并指出当n 满足什么条件时,n a 为完全平方数. (不必说明理由).29.已知 x 等于它的倒数,求222169(2)(3)x x x x x +÷-+--的值.30.如图中AB=8 cm ,AD=5 cm ,BC=5 cm ,求CD 的长.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.D4.B5.A6.C7.B8.D9.B10.C11.C12.D二、填空题13.6π14.224833y x x =-+-15. -316.20°17.x ≤318.7,7,平行19.320.22()()4a b a b ab +=-+,或22()4()a b ab a b +-=-或22()()4a b a b ab +--= 21.92022. 一定、不一定23.如1x =-24.(1)221112a b ab - (2)611mn m --+三、解答题25.见上图虚线,小明应该站在 AB 的位置.26.由已知得222b c a =-,即222c a b =+,∴△ABC 是Rt △,∠C=90°, ∵530a c -=,∴35a c =. 设: a = 3k ,c= 5k ,∴b= 4k ,∴4sin 5b Bc ==. 27.解:∵AB =8,BE =15,∴AE =23,在Rt △AED 中,∠DAE =45° ∴DE =AE =23.在Rt △BEC 中,∠CBE =60°,∴CE =BE ·tan60°=153 ∴CD =CE -DE =15323≈2.95≈3即这块广告牌的高度约为3米.28.(1)因为22(21)(21)n a n n =+--=224414418n n n n n ++-+-=,又因为n 大于0的自然数,所以n a 是8的诰数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数.(2)这一列数中从小到大排列的前 4个完全平方数为16,64,144,256. n 为一个完全平方数的 2倍时,n a 为完全平方数.29.24x -,当1x =±时,243x -=-30.2 cm。

浙江省湖州市2019-2020学年九年级下学期数学中考一模试卷(含答案)

浙江省湖州市2019-2020学年九年级下学期数学中考一模试卷(含答案)

浙江省湖州市2019-2020学年九年级下学期数学中考一模试卷(含答案)一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,-3,-1四个数中,最小的数是()A. 0B. 1C. -3D. -1【答案】C【考点】有理数大小比较2.解不等式2x>6,正确的是()A. x<4B. x>4C. x<3D. x>3【答案】 D【考点】解一元一次不等式3.一组数据2,3,5,4,4,6的众数和平均数分别是()A. 4.5和4B. 4和4C. 4和4.8D. 5和4【答案】B【考点】平均数及其计算,众数4.某移动台阶如图所示,它的主视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图5.如图,已知点A,B,C在⊙O上,若∠ABC=130°,则∠AOC的度数是()A. 50°B. 60°C. 80°D. 100°【答案】 D【考点】圆周角定理,圆内接四边形的性质6.若命题“关于x的一元二次方程x2+bx+1=0有实数解”是假命题,b的值可以是()A. -3B. -2C. -1D. 2【答案】C【考点】命题与定理7.小明在学了尺规作图后,通过“三弧法”作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是()A. ∠A=60°B. △ACD是直角三角形(第,爱画)C. BC= CDD. 点B是△ACD的外心【答案】C【考点】等边三角形的性质,三角形的外接圆与外心,作图—复杂作图,锐角三角函数的定义8.如图,已知一个函数的图象由曲线AB,线段BC,射线CD组成,其中点A(-3,2),B(3,6),C(5,1),D(10,10),则此函数()A. 当x<3时,)随x的增大面增大B. 当x<3时,y随x的增大而减小C. 当x>3时,随x的增大面增大D. 当x>3时,随x的增大而减小【答案】A【考点】通过函数图像获取信息并解决问题9.如图,已知在平行四边形ABCD中,BD=BC,点E是AB的中点,连结DE并延长,与CB的延长线相交于点F,连结AF.若AD=5,tan∠BDC=2,则四边形AFBD的面积是()A. 20B.C. 10D.【答案】A【考点】平行四边形的判定与性质,解直角三角形10.已知A,B两地相距300千米,甲骑摩托车从A地出发匀速驶向B地当甲行驶lh后,乙骑自行车以20km/h的速度从B地出发匀速驶向A地.甲到达B地后马上以原速按原路返回,直至甲追上乙。

浙江省湖州市2019-2020学年中考第二次适应性考试数学试题含解析

浙江省湖州市2019-2020学年中考第二次适应性考试数学试题含解析

浙江省湖州市2019-2020学年中考第二次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S 四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个2.计算2311xx x-+++的结果为()A.2 B.1 C.0 D.﹣1 3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2 4.如图所示的几何体的左视图是()A.B.C.D.5.如图,已知函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+3x>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>06.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于()A.30°10′B.29°10′C.29°50′D.50°10′7.若点P (﹣3,y 1)和点Q (﹣1,y 2)在正比例函数y=﹣k 2x (k≠0)图象上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 28.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( )A .72.510-⨯B .70.2510-⨯C .62.510-⨯D .52510-⨯ 9.把a•1a -的根号外的a 移到根号内得( ) A .aB .﹣aC .﹣a -D .a - 10.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺11.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π-B .2233π-C .233π-D .233π- 12.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.14.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.15.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.16.若x2+kx+81是完全平方式,则k的值应是________.17.如图,反比例函数3yx(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为.18.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)图1 和图2 中,优弧»AB纸片所在⊙O 的半径为2,AB=23,点P为优弧»AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点 A 的对称点A′.发现:(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;(2)当BA′与⊙O 相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M,N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O 相切,当α=°时,点O′落在»NP上.(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.20.(6分)如图,AB∥CD,∠1=∠2,求证:AM∥CN21.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.22.(8分)计算:-2-2 - 12+2 1sin60π3⎛⎫-︒+-⎪⎝⎭23.(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?24.(10分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.25.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?26.(12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.27.(12分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF 是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△APE ≌△CPF (ASA ),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE ,∴△EFP 是等腰直角三角形,故③错误;∵△APE ≌△CPF ,∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =12S △ABC .故④正确, 故选C .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点.2.B【解析】【分析】按照分式运算规则运算即可,注意结果的化简.【详解】解:原式=231111x x x x -++==++,故选择B. 【点睛】本题考查了分式的运算规则.3.D【解析】【分析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥12m+3,∵关于x的一元一次不等式23m x≤﹣1的解集为x≥4,∴12m+3=4,解得m=1.故选D.考点:不等式的解集4.A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.5.C【解析】【分析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+3x>1的解集.【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.6.C【解析】【分析】根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【详解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故选C.【点睛】本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D 的度数和得出∠C=180°-∠D-∠COD .应该掌握的是三角形的内角和为180°.7.A【解析】【分析】分别将点P (﹣3,y 1)和点Q (﹣1,y 2)代入正比例函数y=﹣k 2x ,求出y 1与y 2的值比较大小即可.【详解】∵点P (﹣3,y 1)和点Q (﹣1,y 2)在正比例函数y=﹣k 2x (k≠0)图象上,∴y 1=﹣k 2×(-3)=3k 2,y 2=﹣k 2×(-1)=k 2,∵k≠0,∴y 1>y 2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.8.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】70.00000025 2.510-=⨯,故选:A .【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C【解析】【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)【详解】解:∵﹣1a>0,∴a<0,∴原式=﹣(﹣a)=.故选C.【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.10.B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.11.B【解析】【分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】解:由旋转可知AD=BD,∵∠ACB=90°∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=3AC=2,∴阴影部分的面积=23×2÷2−2602360π⨯=23−23π.故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 12.D【解析】【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A.【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=214.先将图2以点A为旋转中心逆时针旋转90︒,再将旋转后的图形向左平移5个单位.【解析】【分析】变换图形2,可先旋转,然后平移与图2拼成一个矩形.【详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.2 5【解析】【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【详解】解:列表如下:所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)=82. 205=故答案为2 5 .【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.16.±1【解析】试题分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案为±1.考点:完全平方式.17.9 4【解析】试题分析:如图,连接OB.∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=32×1=32.∵AE=BE,∴S△BOE=S△AOE=32,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣32=32.∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣32﹣32﹣32×32=.18.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值. 【详解】解: ∵∠AED=∠ABD (同弧所对的圆周角相等),∴tan∠AED=tanB=12 ADAB.故答案为:1 2 .【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.发现:(1)1,60°;(2)23;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】【分析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=12A'N=12MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在»PB时,连接MO′,则可知NO′=12 MN,可求得∠MNO′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,3∴22OB HB-222(3)1-=在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=12OB=1.∴BG=3.∵OG⊥BP,∴BG=PG=3.∴BP=23.∴折痕的长为23拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=12A'N=12MN=2∴A'C与半圆(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,∴α=45当O′在»PB上时,连接MO′,则可知NO′=12 MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案为:45°;30°.(3)∵点P,M不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.20.详见解析.【解析】【分析】只要证明∠EAM=∠ECN,根据同位角相等两直线平行即可证明.【详解】证明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题.21.(1)证明见解析;(2)BC=;.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.22. 742-【解析】 【分析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案. 【详解】解:原式=171144--+=-【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.23.解:(1)设甲公司单独完成此项工程需x 天,则乙公司单独完成此项工程需1.5x 天. 根据题意,得111x 1.5x 12+=, 解得x=1.经检验,x=1是方程的解且符合题意. 1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y 元,则乙公司每天的施工费为(y ﹣1500)元, 根据题意得12(y+y ﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元); ∴让一个公司单独完成这项工程,甲公司的施工费较少. 【解析】(1)设甲公司单独完成此项工程需x 天,则乙工程公司单独完成需1.5x 天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论. 24.(1)相切,理由见解析;(1)1. 【解析】 【分析】(1)求出OD//AC ,得到OD ⊥BC ,根据切线的判定得出即可; (1)根据勾股定理得出方程,求出方程的解即可. 【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(1)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即⊙O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.25.(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.26.(1)10;(2)25.【解析】【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=12(PQ+QB)=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴228445+=EF=125∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为5【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形27.(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B对应的数是1.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x.①点M、点N在点O两侧,则2-3x=2x,解得x=2;②点M、点N重合,则,3x-2=2x,解得x=2.所以经过2秒或2秒,点M、点N分别到原点O的距离相等.。

浙江省湖州市2019-2020学年第二次中考模拟考试数学试卷含解析

浙江省湖州市2019-2020学年第二次中考模拟考试数学试卷含解析

浙江省湖州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,右侧立体图形的俯视图是()A.B.C.D.2.据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为()A.0.3×1010B.3×109C.30×108D.300×1073.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8 B.10 C.21 D.224.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()A.众数B.中位数C.平均数D.方差5.下列运算正确的是()A.a•a2=a2B.(ab)2=ab C.3﹣1=13D.5510+=6.若等式(-5)□5=–1成立,则□内的运算符号为()A.+ B.–C.×D.÷7.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q8.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE 的度数是()A.135°B.120°C.60°D.45°9.如图,Rt△ABC中,∠C=90°,AC=4,BC=43,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2πB.4πC.6πD.8π10.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A. B.C.D.11.4的平方根是()A.2 B.±2 C.8 D.±812.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=cx在同一坐标系中的图象可能是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.使分式的值为0,这时x=_____.14.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.15.已知三个数据3,x+3,3﹣x的方差为23,则x=_____.16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.17.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.18.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=3,那么当点P运动一周时,点Q运动的总路程为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?20.(6分)如图,在▱ABCD中,AB=4,AD=5,tanA=43,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.21.(6分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:填空:这次被调查的同学共有人,a+b=,m=;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.22.(8分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x (万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?23.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD 于点E,且交BC于点F,AG平分∠BAC交CD于点G.求证:BF=AG.24.(10分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20 15 12 12B库25 20 10 8若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):①从甲库运往B库粮食吨;②从乙库运往A库粮食吨;③从乙库运往B库粮食吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?25.(10分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.26.(12分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).27.(12分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,2取1.414参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图.2.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】解:根据科学计数法的定义可得,3 000 000 000=3×109,故选择B.【点睛】本题考查了科学计数法的定义,确定n的值是易错点.3.D【解析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.4.B【解析】【分析】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.【详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.故选B.【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.5.C【解析】【分析】根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.【详解】解:A、原式=a3,所以A选项错误;B、原式=a2b2,所以B选项错误;C、原式=13,所以C选项正确;D、原式=25,所以D选项错误.故选:C.【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.6.D【解析】【分析】根据有理数的除法可以解答本题.【详解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选D.【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.7.C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P 点,故选C.考点:有理数大小比较.8.B【解析】【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选B.【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.9.B【解析】【分析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的14.【详解】在△ABC中,依据勾股定理可知,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积=2904360π⨯=4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键. 10.A 【解析】 【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上, ∴x=ax 2+bx+c , ∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点, ∴方程ax 2+(b-1)x+c=0有两个正实数根. ∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点,又∵-2ba >0,a >0 ∴-12b a -=-2b a +12a>0∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件, 故选A . 11.B 【解析】 【分析】依据平方根的定义求解即可. 【详解】 ∵(±1)1=4, ∴4的平方根是±1. 故选B . 【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键. 12.C【解析】【分析】根据二次函数图像位置确定a<0,c>0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a<0,c>0,∴正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法14.50°【解析】【分析】利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.【详解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.15.±1【解析】【分析】先由平均数的计算公式求出这组数据的平均数,再代入方差公式进行计算,即可求出x的值.【详解】解:这三个数的平均数是:(3+x+3+3-x)÷3=3,则方差是:13[(3-3)2+(x+3-3)2+(3-x-3)2]=23,解得:x=±1;故答案为:±1.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.1︒【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.17.1:4【解析】∵两个相似三角形对应边上的高的比为1∶4,∴这两个相似三角形的相似比是1:4∵相似三角形的周长比等于相似比,∴它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比. 18.4【解析】【分析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A 时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【详解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,=①当点P从O→B时,如图1、图2所示,点Q②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵3∴AQ=2∴OQ=2﹣1=1,则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=23,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q3+1+23故答案为4.考点:解直角三角形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.【解析】【分析】(1)可设甲种商品的销售单价x 元,乙种商品的销售单价y 元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;(1)可设销售甲种商品a 万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【详解】(1)设甲种商品的销售单价x 元,乙种商品的销售单价y 元,依题意有:23321500x y x y =⎧⎨-=⎩,解得900600x y =⎧⎨=⎩:. 答:甲种商品的销售单价900元,乙种商品的销售单价600元;(1)设销售甲种商品a 万件,依题意有:900a+600(8﹣a )≥5400,解得:a≥1.答:至少销售甲种商品1万件.【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.20.(1)127;(2)45(9﹣t );(3)①S =﹣23t 2+163t ﹣327;②S=﹣27t 2+1.③S=24175(9﹣t )2;(3)3或215或4或173. 【解析】【分析】(1)根据题意点R 与点B 重合时t+43t=3,即可求出t 的值; (2)根据题意运用t 表示出PQ 即可;(3)当点R 落在□ABCD 的外部时可得出t 的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ 绕点P 顺时针旋转90°,得到线段PR ,∴PQ=PR ,∠QPR=90°,∴△QPR 为等腰直角三角形.当运动时间为t 秒时,AP=t ,PQ=PQ=AP•tanA=43t . ∵点R 与点B 重合,∴AP+PR=t+43t=AB=3, 解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sinC=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB.S=S△PQR﹣S△KBR=12×3×3﹣12×t×47t=﹣27t2+1.③如图3中,当3<t<9时,重叠部分是△PQK.S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53, ∴t=9﹣103=173. 综上所述,满足条件的t 的值为3或215或4或173. 【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题. 21.50;28;8【解析】【分析】1)用B 组的人数除以B 组人数所占的百分比,即可得这次被调查的同学的人数,利用A 组的人数除以这次被调查的同学的人数即可求得m 的值,用总人数减去A 、B 、E 的人数即可求得a+b 的值; (2)先求得C 组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.【详解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°. 即扇形统计图中扇形C的圆心角度数为144°;(3)1000×2850=560(人).即每月零花钱的数额x元在60≤x<120范围的人数为560人.【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.22.(1)y=110x1.z=﹣110x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】【分析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax1(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x1.图②可得:函数经过点(0,30)、(100,10),设z=kx+b,则1002030k bb+=⎧⎨=⎩,解得:1k10b30⎧⎪⎨⎪⎩==,故z与x之间的关系式为z=﹣110x+30(0≤x≤100);(1)W=zx﹣y=﹣110x1+30x﹣110x1=﹣x1+30x=﹣15(x1﹣150x)=﹣15(x﹣75)1+1115,∵﹣15<0,∴当x=75时,W有最大值1115,∴年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y=360,得110x1=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=﹣15(x﹣75)1+1115的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.23.见解析【解析】【分析】根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG. 【详解】证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=12∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,∴∠BAF=∠ACG. 又∵AB=CA,∴B GACAB CABAF ACG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF≌△CAG(ASA),∴BF=AG【点睛】此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.24.(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.【解析】分析:(Ⅰ)根据题意解答即可;(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.详解:(Ⅰ)设从甲库运往A库粮食x吨;①从甲库运往B库粮食(100﹣x)吨;②从乙库运往A库粮食(1﹣x)吨;③从乙库运往B库粮食(20+x)吨;故答案为(100﹣x);(1﹣x);(20+x).(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.则1000600200xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,解得:0≤x≤1.从甲库运往A库粮食x吨时,总运费为:y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]=﹣30x+39000;∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.25.见解析【解析】试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD 全,由全等三角形对应边相等即可得AC=ED.试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD 中,∴△ABC≌△ECD(SAS),∴AC=ED.考点:平行线的性质;全等三角形的判定及性质.26.(1)C(2)(3)b<﹣且b≠﹣2或b>【解析】【分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又∵y=ax+b(a≠0),且点P位于AB右下方,∴b<﹣且b≠﹣2或b>.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.27.新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【解析】【分析】根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.【详解】解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=CDBC,∴CD=BCsin∠CBD=22.∵∠CBD=15°,∴BD=CD=22.在Rt△ACD中,sinA=CDAC,tanA=CDAD,∴AC=CDsinA≈220.59≈1.8,AD=CDtanA=2236tan︒,∴AB=AD﹣BD=2236tan︒﹣22=2 1.4140.73⨯﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【点睛】本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.。

2019年湖州市数学中考一模试卷(附答案)

2019年湖州市数学中考一模试卷(附答案)

2019年湖州市数学中考一模试卷(附答案)一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a在同一平面直角坐标系中的图象可能是( )A .B .C .D .2.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D3.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差 4.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =5.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++= D .()222349m n ++= 6.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .77.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94B .95分C .95.5分D .96分8.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )A .21.7米B .22.4米C .27.4米D .28.8米9.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=010.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)11.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1B.0,1C.1,2D.1,2,312.下列各式化简后的结果为32的是()A.6B.12C.18D.36二、填空题13.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.14.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .15.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.16.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)18.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).19.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.3.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选B . 【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.4.C解析:C 【解析】 【分析】分别计算出各项的结果,再进行判断即可. 【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误. 故选C 【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.5.D解析:D 【解析】 【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可. 【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=,又,a b 满足等式:229a b +=, ∴()222349m n ++=, 故选D . 【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.6.C解析:C 【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.7.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6, ∵四边形BMNC 是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66, 在Rt △AEM 中,tan24°=AMEM, ∴0.45=866AB, ∴AB=21.7(米), 故选A . 【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.C解析:C 【解析】解:设小路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出方程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C . 点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.10.D解析:D 【解析】 【分析】 【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1). 故选:D11.A解析:A 【解析】 【分析】 【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0, 解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.12.C解析:C【解析】A、6不能化简;B、12=23,故错误;C、18=32,故正确;D、36=6,故错误;故选C.点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC 的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:416.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作DF⊥CE于点F 在△DCF中∵CD=4mDF:CF=1:3解析:2m.【解析】【分析】延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.【详解】延长AD交BC的延长线于点E,作DF⊥CE于点F.在△DCF中,∵CD=4m,DF:CF=1:,∴tan∠DCF=,∴∠DCF=30°,∠CDF=60°.∴DF=2(m),CF=2(m),在Rt△DEF中,因为∠DEF=50°,所以EF=≈1.67(m)∴BE=EF+FC+CB=1.67+2+5≈10.13(m),∴AB=BE•tan50°≈12.2(m),故答案为12.2m.【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 19.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间5【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22125+=.考点:1.轴对称-最短路线问题;2.正方形的性质.20.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n 分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.三、解答题21.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1)证明见解析;(22【解析】【分析】(1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴BN=2. 考点:三角形的中位线定理,勾股定理.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)BC 与⊙O 相切,理由见解析;(2)①⊙O 的半径为2.②S 阴影=2233π-. 【解析】【分析】(1)根据题意得:连接OD ,先根据角平分线的性质,求得∠BAD =∠CAD ,进而证得OD ∥AC ,然后证明OD ⊥BC 即可;(2)设⊙O 的半径为r .则在Rt △OBD 中,利用勾股定理列出关于r 的方程,通过解方程即可求得r 的值;然后根据扇形面积公式和三角形面积的计算可以求得结果.【详解】(1)相切.理由如下:如图,连接OD.∵AD 平分∠BAC ,∴∠BAD =∠CAD.∵OA =OD ,∴∠ODA =∠BAD ,∴∠ODA=∠CAD,∴OD∥AC.又∠C=90°,∴OD⊥BC,∴BC与⊙O相切(2)①在Rt△ACB和Rt△ODB中,∵AC=3,∠B=30°,∴AB=6,OB=2OD.又OA=OD=r,∴OB=2r,∴2r+r=6,解得r=2,即⊙O的半径是2②由①得OD=2,则OB=4,BD=23,S阴影=S△BDO-S扇形ODE=12×23×2-2602360π⨯=23-23π25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。

浙江省湖州市2019年中考数学模拟试题

浙江省湖州市2019年中考数学模拟试题

浙江省湖州市2019届九年级中考第二次模拟考试数学试题一.选择题(每小题3分,满分30分)1.四个有理数﹣3、﹣1、0、2,其中比﹣2小的有理数是()A.﹣3 B.﹣1 C.0 D.22.若代数+1的值不小于﹣1的值,则x的取值范围是()A.x>37 B.x≥﹣37 C.x>D.x≥3.若一组数据2,4,x,5,7的平均数为5,则这组数据中的x和中位数分别为()A.5,7 B.5,5 C.7,5 D.7,74.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.5.如图,在⊙O中,A,B,D为⊙O上的点,∠AOB=52°,则∠ADB的度数是()A.104°B.52°C.38°D.26°6.下列说法中,正确的是()A.所有的命题都有逆命题B.所有的定理都有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题7.如图,在△ABC中,按以下步骤作图:分别以B,C为圆心,以大于BC的长为半径作弧,弧线两两交于M、N两点,作直线MN,与边AC、BC分别交于D、E两点,连接BD、AE,若∠BAC=90°,在下列说法中:①E为△ABC外接圆的圆心;②图中有4个等腰三角形;③△ABE是等边三角形;④当∠C=30°时,BD垂直且平分AE.其中正确的有()A.1个B.2个C.3个D.4个8.某中学举办运动会,在1500米的项目中,参赛选手在200米的环形跑道上进行,如图记录了跑得最快的一位选手与最慢的一位选手的跑步全过程(两人都跑完了全程),其中x 代表的是最快的选手全程的跑步时间,y代表的是这两位选手之间的距离,下列说不合理的是()A.出发后最快的选手与最慢的选手相遇了两次B.出发后最快的选手与最慢的选手第一次相遇比第二次相遇的用时短C.最快的选手到达终点时,最慢的选手还有415米未跑D.跑的最慢的选手用时4′46″9.如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为()A.B.C.D.10.一列动车从A地开往B地,一列普通列车从B地开往A地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y 与x之间的函数关系,下列说法中正确的是:()①AB两地相距1000千米;②两车出发后3小时相遇;③普通列车的速度是100千米/小时;④动车从A地到达B地的时间是4小时.A.1个B.2个C.3个D.4个二.填空题(满分24分,每小题4分)11.如果x的相反数是2019,那么x的值是.12.分解因式:x2﹣4x=.13.在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.14.若坡度i=,则坡角为α=15.如图,直线y=﹣x+2与x,y轴交于A、B两点,以AB为边在第一象限作矩形ABCD,矩形的对称中心为点M,若双曲线y=(x>0)恰好过点C、M,则k=.16.在△ABC中,∠C=90,AC=8cm,BC=6cm,D是AC中点,点P是边CA上的动点,以1cm/s的速度从C到A运动,经过ts后,以DP为半径的⊙D与边AB有两个交点,则t 的取值范围是.三.解答题17.(6分)计算: +2cos30°.18.(6分)如图,反比例函数的图象经过▱ABOD的顶点D,且点A、B的坐标分别为(0,4)、(﹣3,0),求这个反比例函数的解析式.19.(6分)如图,点A 、B 、C 是4×4网格上的格点,连接点A 、B 、C 得△ABC ,请分别在下列图中使用无刻度的直尺按要求画图.(1)在图1中,在AC 上找一点M ,使S △BCM =S △ABC ;(2)在图2中,在△ABC 内部(不含边界)找一点N ,使S △BCN =S △ABC .20.(8分)如图是某校九年级学生为灾区捐款情况抽样调查的条形图和扇形统计图.(1)求抽样调查的人数;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校九年级学生有1000人,据此样本估计九年级捐款总数为多少元?21.(8分)如图,A ,B ,C 是⊙O 上三点,其中=2,过点B 画BD ⊥OC 于点D .(1)求证:AB =2BD ;(2)若AB =2,CD =1,求图中阴影部分的面积.22.(10分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?23.(10分)如图,抛物线y=ax2+bx+2与直线y=﹣x交第二象限于点E,与x轴交于A(﹣3,0),B两点,与y轴交于点C,EC∥x轴.(1)求抛物线的解析式;(2)点P是直线y=﹣x上方抛物线上的一个动点,过点P作x轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M的坐标.24.(12分)如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连结AC,将△ACE沿AC翻转得到△ACF,直线FC与直线AB相交于点G.(1)求证:FG是⊙O的切线;(2)若B为OG的中点,CE=,求⊙O的半径长;(3)①求证:∠CAG=∠BCG;②若⊙O的面积为4π,GC=2,求GB的长.参考答案一.选择题1.解:由题意可得:﹣3<﹣2<﹣1<0<2,故选:A.2.解:根据题意得: +1≥﹣1,去分母得:3x+27+6≥2x+2﹣6,移项合并得:x≥﹣37,故选:B.3.解:∵数据2,4,x,5,7的平均数是5,∴x=5×5﹣2﹣4﹣5﹣7=7,这组数据为2,4,5,7,7,则中位数为5.故选:C.4.解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.5.解:∵∠AOB=52°,∴∠ADB=26°,故选:D.6.解:A、每个命题都有逆命题,所以A选项正确;B、每个定理不一定有逆定理,所以B选项错误;C、真命题的逆命题不一定是真命题,所以C选项错误;D、假命题的逆命题不一定是假命题,所以D选项错误.故选:A.7.解:由作法得MN垂直平分BC,则BE=CE,DB=DC,∵∠BAC=90°,∴BC为△ABC外接圆的直径,E点为△ABC外接圆的圆心,所以①正确;∵AE=BE=CE,DB=DC,∴△ABE、△AEC和△DBC都为等腰三角形,所以②错误;只有当∠ABC=60°时,△ABE是等边三角形,所以③错误;当∠C=30°时,∠ABC=60°,则△ABE是等边三角形,而∠DBC=∠C=30°,所以BD 为角平分线,所以BD⊥AE,所以④正确.故选:B.8.解:由图象可得,出发后最快的选手与最慢的选手相遇了两次,故选项A正确,出发后最快的选手与最慢的选手第一次相遇比第二次相遇的用时短,故选项B正确,最快的选手到达终点时,最慢的选手还有2×200+15=415米未跑,故选项C正确,跑的最快的选手用时4′46″,故选项D错误,故选:D.9.解:作PH⊥AD于H,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.∵∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.故选:A.10.解:由图象可得,AB两地相距1000千米,故①正确,两车出发后3小时相遇,故②正确,普通列车的速度是:=千米/小时,故③错误,动车从A地到达B地的时间是:1000÷()=4(小时),故④正确,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:∵x的相反数是2019,∴x的值是:﹣2019.故答案为:﹣201912.解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).13.解:任意摸出一个棋子,摸到黑色棋子的概率==.故答案为.14.解:∵坡度i=,∴tanα=,∴α=30°,故答案为:30°.15.解:∵y=﹣x+2,∴x=0时,y=2;y=0时,﹣x+2=0,解得x=4,∴A(4,0),B(0,2).∵四边形ABCD 是矩形,∴∠ABC =90°.设直线BC 的解析式为y =2x +b ,将B (0,2)代入得,b =2,∴直线BC 的解析式为y =2x +2,设C (a ,2a +2),∵矩形ABCD 的对称中心为点M ,∴M 为AC 的中点,∴M (,a +1).∵双曲线y =(x >0)过点C 、M ,∴a (2a +2)=(a +1),解得a 1=,a 2=﹣1(不合题意舍去),∴k =a (2a +2)=(2×+2)=.故答案为. 16.解:如图,过点D 作DE ⊥AB 于点E ,∵∠C =90,AC =8cm ,BC =6cm ,∴AB ==10∵点D 是AC 中点∴AD =4∵∠DAE =∠BAC ,∠C =∠DEA =90°∴△ADE ∽△ABC∴∴DE=∴DP>时,以DP为半径的⊙D与边AB有两个交点,∴0≤t<或故答案为:0≤t<或三.解答题(共8小题,满分66分)17.解:原式=2﹣2﹣2+2×=﹣.18.解:设这个反比例函数的解析式为y=,∵四边形ABOD是平行四边形,且A(0,4),B(﹣3,0),∴D的坐标为(3,4),∵反比例函数y=经过点D,∴k=3×4=12,则这个反比例函数解析式为y=.19.解:(1)在图1中,点M即为所求;(2)在图2中,点N即为所求.20.解:(1)由统计图可得,15÷30%=50(人)即抽样调查的人数为50;(2)该样本中捐款15元的有50﹣25﹣15=10(人),∴它所占的圆心角为:×360°=72°;(3)(5×15+10×25+15×10)÷50×1000=9500(元),答:九年级捐款总数为9500元.21.解:(1)如图,延长BD交⊙O于E,∵BD⊥OC,∴BE=2BD,=2,∵=2,∴=,∴AB=BE,∴AB=2BD;(2)如图,连接OB,设⊙O的半径为r,∵AB=2,CD=1,∴BD=,在Rt△OBD中,r2=(r﹣1)2+()2,解得:r=2,∵sin∠BOC=,∴∠BOC=60°,∴阴影部分的面积=﹣××1=﹣.22.解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,且符合题意,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.23.解:(1)由题意知A(﹣3,0),C(0,2)且EC∥x轴∴点E的纵坐标为2又∵点E在直线y=﹣x上∴x=﹣y=﹣2,∴点E(﹣2,2)∵点A(﹣3,0)、E(﹣2,2)在抛物线y=ax2+bx+2上∴,解得:∴所求抛物线的解析式为:(2)∵PG⊥x轴,PH⊥EO,点G在y=﹣x上,∴△PHG为等腰直角三角形,且G(m,﹣m),设PH的长为l令∴=∴∴所求l与m的函数关系式为:,l的最大值为:(3)点N是抛物线对称轴x=﹣1上的一个动点,抛物线上存在一动点M,若以M,A,C,N为顶点的四边形是平行四边形,则M点的坐标可能是理由如下:①以AC为平行四边形的一边时,则有MN∥AC且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L则∠ALF=∠ACO=∠FNM∴在△MFN与△AOC中,∠MFN=∠AOC,∠FNM=∠ACO,MN=AC ∴△MFN≌△AOC∴MF=AO=3∴点M到对称轴x=﹣1的距离为3,设点M(x,y),则|x+1|=3解得x=2或x=﹣4,∴当x=2时,y=,当x=﹣4时,y=∴②当AC为对角线时,高AC的中点为K,∵A(﹣3,0),C(0,2)∴∵点N在对称轴x=﹣1上,∴点N人横坐标为﹣1,设点M的横坐标为x,则有:,解得x=﹣2,此时y=2,∴M(﹣2,2)综上所述,M点的坐标可能是.24.(1)证明:连接OC,如图,∵OA=OC,∴∠OAC=∠OCA,∵△ACE沿AC翻折得到△ACF,∴∠OAC=∠FAC,∠F=∠AEC=90°,∴∠OCA=∠FAC,∴OC∥AF,∴∠OCG=∠F=90°,∴OC⊥FG,∴直线FC与⊙O相切;(2)解:连接BC.∵点B是Rt△OCG斜边的中点,∴CB=OG=OB=OC,∴△OCB是等边三角形,且EC是OB上的高,在Rt△OCE中,∵OC2=OE2+CE2,即OC2=OC2+()2,∴OC=2,即⊙O的半径为2.(3)①∵OC=OB,∴∠CBA=∠OCB,∵∠CAG+∠CBA=90°,∠BCG+∠BCO=90°,∴∠CAG=∠BCG.②∵4π=π•OB2,∴OB =2,由①可知:△GCB ∽△GAC ,∴=,即=,∴=, 解得GB =2.。

浙江省湖州市九年级数学中考二模试卷

浙江省湖州市九年级数学中考二模试卷

浙江省湖州市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2019·河南模拟) 下列四个选项中,计算结果最大的是()A .B . |﹣2|C . (﹣2)0D .2. (2分)关于x的一元二次方程x2+3x=0的根的说法正确的是()A . 没有实数根B . 只有一个实数根C . 有两个相等的实数根D . 有两个不相等的实数根3. (2分)如图,反比例函数y=的图象经过点A(2,1),若y≤1,则x的范围为()A . x≥1B . x≥2C . x<0或0<x≤1D . x<0或x≥24. (2分)(2018·房山模拟) 某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是()A . 该班学生一周锻炼时间的中位数是11B . 该班学生共有44人C . 该班学生一周锻炼时间的众数是10D . 该班学生一周锻炼12小时的有9人5. (2分)(2020·青浦模拟) 已知非零向量、,且有,下列说法中,错误的是()A . ;B . ∥ ;C . 与方向相反;D . .6. (2分) (2017九上·萧山月考) 如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连结CO,AD,∠BAD=20°,则下列说法中正确的是()A . ∠BOC=2∠BADB . CE=EOC . ∠OCE=40°D . AD=2OB二、填空题 (共12题;共13分)7. (1分) (2017八下·河东期中) 观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,…按上述规律,计算a1+a2+a3+…+an=________.8. (1分)因式x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣1),乙看错了b,分解的结果是(x ﹣2)(x+1),那么ab=________.9. (1分) (2019七上·台安月考) 已知式子:①3-4=-1;② ;③ ;④ ;⑤ 。

湖州市九年级数学中考二模试卷

湖州市九年级数学中考二模试卷

湖州市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2019·泰安) 在实数,,,中,最小的数是()A .B .C .D .2. (2分)如果关于x的方程x2-2x-k=0没有实数根,那么k的最大整数值是()A . -3B . -2C . -1D . 03. (2分)下列函数有最大值的是()A .B . y=-x2C .D . y=x2-24. (2分)(2019·盘龙模拟) 如图分别是某班全体学生上学时乘车、步行、骑车人数分布的条形统计图和扇形统计图(两图都不完整),下列结论错误的是()A . 该班总人数为50人B . 骑车人数占20%C . 乘车人数是骑车人数的2.5倍D . 步行人数为30人5. (2分)(2020·虹口模拟) 已知、和都是非零向量,在下列选项中,不能判定∥ 的是()A .B . ∥ ,∥C . + =0D . + =,﹣=6. (2分)(2017·永定模拟) 如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()A . 4cmB . 3 cmC . 2 cmD . 2 cm二、填空题 (共12题;共17分)7. (1分)(2013·玉林) 化简:=________.8. (1分)分解因式:x3﹣2x2﹣3x=________.9. (1分) (2019七上·台安月考) 已知式子:①3-4=-1;② ;③ ;④ ;⑤ 。

其中是方程的有________。

10. (1分)不等式组的解集为________ 。

11. (1分)(2018·宜宾模拟) 在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是________.12. (1分)(2018·上海) 如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x 的增大而________.(填“增大”或“减小”)13. (5分) (2019九上·武汉月考) 一只蚂蚁在如图所示的树枝上寻找食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是__.14. (2分)如图所示,在□ABCD中,两条对角线交于点O,有△AOB≌△________,△AOD≌△________.15. (1分)(2017·绥化) 半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为________.16. (1分)(2020·安徽模拟) 计算: ________.17. (1分)已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为________18. (1分) (2017九上·揭西月考) 如图,在三角形ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点组成的三角形与ABC相似,则AE=________.三、解答题 (共7题;共82分)19. (5分) (2019七下·梅江月考) 计算:.20. (10分) (2017七下·兴化期中) 解方程组:(1)(2)21. (15分)(2019·哈尔滨) 如图,在平面直角坐标系中,点O为坐标原点,直线y= x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称。

2019年浙江省湖州市吴兴区初中学业考试数学模拟试卷解析版

2019年浙江省湖州市吴兴区初中学业考试数学模拟试卷解析版

2019年浙江省湖州市吴兴区初中学业考试数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.的相反数是()A.﹣3B.3C.D.2.如图所示的几何体的主视图是()A.B.C.D.3.如图为我市5月某一周每天的最高气温统计,则这组数据(最高气温)的众数与中位数分别是()A.29,29B.29,30C.30,30D.30,29.54.下列命题中,是真命题的是()A.三点确定一个圆B.相等的圆心角所对的弧相等C.抛物线y=x2﹣x﹣6的顶点在第四象限D.平分弦的直径垂直于这条弦5.已知⊙O1与⊙O2的半径分别为3和4,若圆心距O1O2=1,则两圆的位置关系是()A.相交B.相离C.内切D.外切6.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网的()A.7.5米处B.8米处C.10米处D.15米处7.小明用一个半径为5cm,面积为15πcm2的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为()A.3cm B.4cm C.5cm D.15cm8.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35°B.55°C.65°D.70°9.若不等式组(x为未知数)无解,则函数y=(3﹣a)x2﹣x+的图象与x轴()A.相交于一点B.没有交点C.相交于一点或两点D.相交于一点或无交点10.如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则()A.S n=S△ABC B.S n=S△ABCC.S n=S△ABC D.S n=S△ABC二、填空题(共6小题,每小题4分,满分24分)11.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为cm.12.分解因式:x2﹣9=.13.在反比例函数y=图象的每一条曲线上,y随x的增大而减小,则k的取值范围.14.将抛物线y=x2的图象向右平移3个单位,则平移后的抛物线的解析式为.15.如图,等腰△ABC中,AB=BC=5cm,AC=3cm,将△ABC绕点A按顺时针旋转至△AB′C′,使点C′恰好落在边BC上.则BC′的长是cm.16.如图,在矩形ABCD中,AB=2,BC=4,⊙D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点H,此时两直角边与AD交于E,F两点,则tan∠EFO的值为.三、解答题(共8小题,满分66分)17.计算:+(﹣1)2009+(π﹣2)0.18.三楚第一山﹣﹣东方山是黄石地区的佛教圣地,也是国家AAA级游览景区.它的主峰海拔约为600米,主峰AB上建有一座电信信号发射架BC,现在山脚P处测得峰顶的仰角为α,发射架顶端的仰角为β,其中tanα=,tanβ=,求发射架高BC.19.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.20.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.21.有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.22.有一种规格为165cm×30cm的标准板材,可按如图所示的两种裁法得到规格为60cm×30cm的A型板材与规格为35cm×30cm的B型板材.(1)某公司装修需要A型板材140张,B型板材215张.现购得标准板材100张,恰好裁完.设按裁法一裁剪的标准板材为x张.①根据题意,完成以下表格:②按以上两种裁法的张数来分,共有哪几种裁剪方案?(2)若装修师傅购买标准板材若干张,按以上两种方法裁剪后,得到A型板材恰为140张,B型板材恰为a张(180<a<200),则购进的标准板材可以是张.(写出一个即可)23.如图1,在直角梯形ABCD中,AD∥BC,∠D=90°,AD=9cm,CD=12cm,BC=15cm.点P由点C出发沿CA方向匀速运动,速度为1cm/s;同时,线段EF由AB出发沿AD方向匀速运动,速度为1cm/s,且与AC交于Q点,连接PE,PF.当点P与点Q相遇时,所有运动停止.若设运动时间为t(s).(1)求AB的长度;(2)当PE∥CD时,求出t的值;(3)①设△PEF的面积为S,求S关于t的函数关系式;②如图2,当△PEF的外接圆圆心O恰在EF的中点时,则t的值为.(直接写出答案)24.如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使点B 落在D处,AD交OC于E.(1)求OE的长;(2)求过O,D,C三点抛物线的解析式;(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)为何值时,直线PF把△F AC分成面积之比为1:3的两部分.参考答案一、选择题(共10小题,每小题3分,满分30分)1.【解答】解:根据相反数的定义,得的相反数是.故选:D.2.【解答】解:几何体的主视图是:故选:A.3.【解答】解:从小到大排列为:28,29,30,30,30,31,31,30出现了3次,故众数为30,第4个数为30,故中位数为30.故选:C.4.【解答】解:A,不正确,应该是不在同一条直线上的三点确定一个圆;B,不正确,应该是在同圆或等圆中,相等的圆心角所对的弧相等;C,正确,可通过作图看出;D,不正确,因为这条弦应该是不为直径的其他弦;故选:C.5.【解答】解:根据题意,得R﹣r=4﹣3=1,圆心距O1O2=1,∴两圆内切.故选:C.6.【解答】解:设她应站在离网的x米处,根据题意得:,解得:x=10.故选:C.7.【解答】解:由扇形面积S=得,扇形的圆心角n=216度,则底面周长=6π,底面半径=6π÷2π=3cm.故选A.8.【解答】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°﹣∠AOC)÷2=110°÷2=55°.故选:B.9.【解答】解:∵不等式组(x为未知数)无解,∴a+2≥3a﹣2,解得a≤2,由△=(﹣1)2﹣4×(3﹣a)×=a﹣2≤0,∴函数y=(3﹣a)x2﹣x+的图象与x轴相交于一点或无交点.故选:D.10.【解答】解:∵S△BDnEn=S△CDnEn•CEn,∴DnEn=D1E1•CEn•,而D1E1=BC,CE1=AC,∴S△BDnEn=•BC••CEn=•CEn=BC•AC[]2=S△ABC•[]2,延长CD1至F使得D1F=CD1,∴四边形ACBF为矩形.∴===,对于=,两边均取倒数,∴=1+,即是﹣=1,∴构成等差数列.而=2,故=2+1•(n﹣1)=n+1,∴S△BDnEn=S△ABC•[]2,则S n=S△ABC.故选:D.二、填空题(共6小题,每小题4分,满分24分)11.【解答】解:根据垂线段最短知,当点P运动到OP⊥AB时,点P到到点O的距离最短,由垂径定理知,此时点P为AB中点,AP=8cm,由勾股定理得,此时OP==6cm.12.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).13.【解答】解:∵反比例函数y=图象的每一条曲线上,y随x的增大而减小,∴2k﹣2008>0,解得k>1004.故答案为:k>1004.14.【解答】解:根据题意y=x2的图象向右平移3个单位得y=(x﹣3)2.15.【解答】解:由旋转可知,AC=AC′,又AB=BC,∠ACC′=∠BCA,∴△ACC′∽△BCA,∴=,即=,解得CC′=1.8,BC′=BC﹣CC′=5﹣1.8=3.2cm.16.【解答】解:连接DH.∵在矩形ABCD中,AB=2,BC=4,∴BD==2.∵O是对称中心,∴OD=BD=.∵OH是⊙D的切线,∴DH⊥OH.∵DH=1,∴OH=2.∴tan∠ADB=tan∠HOD=.∵∠ADB=∠HOD,∴OE=ED.设EH为X,则ED=OE=OH﹣EH=2﹣X.∴12+X2=(2﹣X)2解得X=.即EH=又∵∠FOE=∠DHO=90°∴FO∥DH∴∠EFO=∠HDE∴tan∠EFO=tan∠HDE==.三、解答题(共8小题,满分66分)17.【解答】解:原式=4﹣2﹣1+1=2.18.【解答】解:在Rt△P AB中,tanα=.∴P A===1000(m).(3分)在Rt△P AC中,tanβ=.∴AC=P A•tanβ=1000•=625(m).(3分)∴BC=625﹣600=25(m).(2分)答:发射架高为25m.19.【解答】(1)证明:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.∴∠D′A′C′=∠BCA.∴△A′AD′≌△CC′B.(2)解:当点C′是线段AC的中点时,四边形ABC′D′是菱形.理由如下:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴C′D′=CD=AB.由(1)知AD′=C′B.∴四边形ABC′D′是平行四边形.在Rt△ABC中,点C′是线段AC的中点,∴BC′=AC.而∠ACB=30°,∴AB=AC.∴AB=BC′.∴四边形ABC′D′是菱形.20.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.21.【解答】解:(1)树状图如下:∴Q点的所有可能是Q(1,﹣1);Q(1,2);Q(1,﹣2);Q(2,﹣1);Q(2,2);Q(2,﹣2).(2)∵只有Q(1,﹣2),Q(2,﹣1)在直线y=x﹣3上,∴点Q 落在直线y =x ﹣3上的概率为:=.22.【解答】解:(1)①②由题意,得解得57.5≤x ≤60又∵x 是整数∴x =58,59,60答:共有三种裁剪方案:按裁法一裁剪58张,按裁法二裁剪42张;按裁法一裁剪59张,按裁法二裁剪41张;按裁法一裁剪60张,按裁法二裁剪40张.(2)设标准板中有m 张安裁法1裁剪,有n 张安裁法2裁剪,根据题意得:, 整理得:,解得44<n <48,由于n 为正整数,则n =45,46,47,则m =50,48,46,故标准板材为:95张,94张,93张.23.【解答】解:(1)过A 作AM ⊥BC 于M ,则四边形AMCD 是矩形;∴AD =MC =9cm ,AM =CD =12cm ;Rt △ABM 中,AM =12cm ,BM =BC ﹣MC =6cm ;由勾股定理,得:AB =6cm (只写答案给1分)(3分)(2)当PE∥CD时△AEP∽△ADC∴=∵∠D=90°,AD=9cm,CD=12cm,∴AC=.==15cm∴AP=15﹣t∴=(2分)解得t=(符合题意)∴当PE∥CD时,t=;(2分)(3)①过点E,F作EG⊥AC于G,FH⊥AC于H.易证AQ=AE=t(1分)在Rt△ADC中,sin∠DAC===∴EG=AE×sin∠DAC=t;∵AD∥BC∴∠ACB=∠DAC∴FH=CF×sin∠CAB=(15﹣t)=12﹣t∴S△PEF=S△PQE+S△PQF=+=(t+12﹣t)=﹣12t+90;(4分)②易知:AE=CP=t,AP=CF=CQ=15﹣t,∠EAP=∠FCP,∴△AEP≌△CPF,∴EP=PF;∵EF是⊙O的直径∴∠EPF=90°;∴△EPF是等腰直角三角形;易知EF=AB=6cm;∴S=×6×3=45cm2;代入①的函数关系式,得:﹣12t+90=45,解得t=.(3分)24.【解答】解:(1)∵四边形OABC是矩形,∴∠CDE=∠AOE=90°,OA=BC=CD.又∵∠CED=∠OEA,∴△CDE≌△AOE.∴OE=DE.∴OE2+OA2=(AD﹣DE)2,即OE2+42=(8﹣OE)2,解之,得OE=3.(2)EC=8﹣3=5.如图,过D作DG⊥EC于G,∴△DGE∽△CDE.∴,.∴DG=,EG=.∴D(.因O点为坐标原点,故可设过O,C,D三点抛物线的解析式为y=ax2+bx.∴解之,得∴(3)∵抛物线的对称轴为x=4,∴其顶点坐标为.设直线AC的解析式为y=kx+b,则解之,得∴.设直线FP交直线AC于H(m,m﹣4),过H作HM⊥OA于M.∴△AMH∽△AOC.∴HM:OC=AH:AC.∵S△F AH:S△FHC=1:3或3:1,∴AH:HC=1:3或3:1,∴HM:OC=AH:AC=1:4或3:4.∴HM=2或6,即m=2或6.∴H1(2,﹣3),H2(6,﹣1).直线FH1的解析式为y=x﹣.当y=﹣4时,x=.直线FH2的解析式为.当y=﹣4时,x=.∴当t=秒或秒时,直线FP把△F AC分成面积之比为1:3的两部分.。

2019年湖州市中考数学模拟试卷含答案解析

2019年湖州市中考数学模拟试卷含答案解析

浙江省湖州市2019年中考数学模拟试卷(解析版)一.选择题1.﹣5的相反数是()A. B. C. ﹣5 D. 52.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a63.若函数y=kx的图象经过点(﹣1,2),则k的值是()A. ﹣2B. 2C. ﹣D.4.如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A. 150°B. 130°C. 100°D. 50°5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.6.如图,点A为反比例函数y=﹣图象上一点,过点A作AB⊥x轴于点B,连结OA,则△ABO的面积为()A. 16B. 8C. 4D. 27.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠BAC=30°,则∠B等于()A. 20°B. 30°C. 50°D. 60°8.一个不透明布袋中有红球10个,白球2个,黑球x个,每个球除颜色外都相同,从中任取一个球,取得的球是红球的概率是,则x的值为()A. 5B. 4C. 3D. 29.如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为()A. B. 2 C. 4 ﹣4 D.10.如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P、点Q同时从点B出发,点P以2cm/s的速度沿B→A→C 运动,终点为C,点Q以1cm/s的速度沿B→C运动,当点P到达终点时两个点同时停止运动,设点P,Q 出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+ t(4≤t≤7);③线段PQ的长度的最大值为;④若△PQC与△ABC相似,则t= 秒.其中正确的是()A. ①②④B. ②③④C. ①③④D. ①②③二.填空题11.分解因式:x2﹣16=________12.不等式组的解集是________.13.一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.14.已知一组数据a1,a2,a3,a4的平均数是2019,则另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数是________.15.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y 的最小值为5,则h的值为________.16.如图,在矩形ABCD中,AB=3,BC=2,点F是BC的中点,点E是边AB上一点,且BE=2,连结DE,EF,并以DE,EF为边作▱EFGD,连结BG,分别交EF和DC于点M,N,则=________.三.解答题17.计算:24÷(﹣2)3﹣3.18.解方程:= .19.如图,已知在△ABC中,点D,E,F分别在BC,AB,AC边上.(1)当点D,E,F分别为BC,AB,AC边的中点时,求证:△BED≌△DFC;(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求的值.20.3月5日是学雷锋日,某校组织了以“向雷锋同志学习”为主题的小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以下信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共1200份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?21.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若tanC= ,⊙O的半径为2,求DE的长.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.综合题(1)【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;(2)【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB,BE,BD之间的数量关系,并说明理由.(3)【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.24.如图,抛物线y=ax2+ x+1(a≠0)与x轴交于A,B两点,其中点B坐标为(2,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=﹣x上的动点,当直线OP平分∠APB时,求点P的坐标;(3)如图2,在(2)的条件下,点C是直线BP上方的抛物线上的一个动点,过点C作y轴的平行线,交直线BP于点D,点E在直线BP上,连结CE,以CD为腰的等腰△CDE的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】相反数【解析】【解答】﹣5的相反数是5,故答案为:D.【分析】只有符号不同的两个数互为相反数.2.【答案】C【考点】幂的乘方与积的乘方【解析】【解答】(﹣a3)2=a6.故答案为:C.【分析】先判断结果的符号,然后再依据幂的乘方法则进行计算即可.3.【答案】A【考点】正比例函数的图象和性质【解析】【解答】把点(﹣1,2)代入正比例函数y=kx,得:2=﹣k,解得:k=﹣2.故答案为:A.【分析】将点(-1,2)代入函数的解析式可得到关于k的方程,从而可求得k的值.4.【答案】B【考点】平行线的性质【解析】【解答】如图所示,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故答案为:B.【分析】先依据平行线的性质求得∠1的同位角的度数,然后依据邻补角的定义求解即可.5.【答案】B【考点】中心对称及中心对称图形【解析】【解答】A、不是中心对称图形,A不符合题意;B、是中心对称图形,B符合题意;C、不是中心对称图形,C不符合题意;D、不是中心对称图形,D不符合题意;故答案为:B.【分析】将一个图形绕着某个点旋转180°,旋转后能够完全重合,则给图形为中心对称图形.6.【答案】D【考点】反比例函数系数k的几何意义【解析】【解答】设点A的坐标为(a,),∵AB⊥x轴于点B,∴△ABO是直角三角形,∴△ABO的面积是:=2,故答案为:D.【分析】依据反比例函数k的几何意义可得到△AOB的面积=|k|求解即可.7.【答案】B【考点】切线的性质【解析】【解答】∵AB为圆O的切线,∴OA⊥AB,∴∠OAB=90°,又∠BAC=30°,∴∠OAC=90°﹣30°=60°又∵OA=OC,∴△OAC为等边三角形,∴∠AOB=60°,则∠B=90°﹣60°=30°.故答案为:B.【分析】首先依据切线的性质可得到∠OAB=90°,接下来,可证明△OAC为等边三角形,最后,依据直角三角形两锐角互余求解即可.8.【答案】C【考点】概率公式【解析】【解答】根据题意得:= ,解得:x=3,则x的值为3;故答案为:C.【分析】根据题意可求得球的总数为10+2+x,然后依据概率公式列方程求解即可.9.【答案】D【考点】等腰三角形的性质,相似三角形的性质【解析】【解答】∵△ACD是以AC为底的等腰三角形,∴AD=CD,∵△BCD与△BAC相似,∴= ,设CD=x,BD=y,∴= = ,∴,解得:x=2y,∴y= ,∴x= ,∴CD= ,故答案为:D.【分析】依据等腰三角形的定义可得到AD=CD,然后再依据相似三角形对应边成比例得到,设CD=x,BD=y,然后可得到y与x之间的函数关系式.10.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】由图2可得到t=4时,y= 48 5 ,∴AB=2×4=8cm,∵∠A=90°,BC=10cm,∴AC=6cm,故①正确;②当P在AC上时,如图3,过P作PD⊥BC于D,此时:=7,∴4≤t≤7,由题意得:AB+AP=2t,BQ=t,∴PC=14﹣2t,sin∠C= ,∴= ,∴PD= ,∴y=S△BPQ= BQ•PD= t =﹣;故②正确;③当P与A重合时,PQ最大,如图4,此时t=4,∴BQ=4,过Q作GH⊥AB于H,sin∠,∴,∴QH= ,同理:BH= ,∴AH=8﹣= ,∴PQ= = = ;∴线段PQ的长度的最大值为;故③不正确;④若△PQC与△ABC相似,点P只有在线段AC上,分两种情况:PC=14﹣2t,QC=10﹣t,i)当△CPQ∽△CBA,如图5,则,∴,解得t=﹣8不合题意.ii)当△PQC∽△BAC时,如图5,∴,∴,t= ;∴若△PQC与△ABC相似,则t= 秒,故④正确;其中正确的有:①②④.故答案为:A.【分析】①由图2可知:t=4时,点P到达点A,故此可得到AB的长,然后依据勾股定理可求得AC的长,从而可对①作出判断;当P在AC上时,过P作PD⊥BC于D,先求得PC的长(用含t的式子表示),然后利用锐角三角函数的定义可求得PD的长,最后,依据三角形的面积公式进行解答即可;③过Q作GH ⊥AB于H,先依据锐角三教函数的定义得到QH的长,同理可得到BH的长,最后,依据勾股定理可求得PQ的长,④若△PQC与△ABC相似,点P只有在线段AC上,分两种情况:当△CPQ∽△CBA,当△PQC∽△BAC时,然后依据相似三角形的对应边成比例的性质求解即可.二.<b >填空题</b>11.【答案】(x+4)(x﹣4)【考点】平方差公式【解析】【解答】解:x2﹣16=(x+4)(x﹣4).【分析】依据平方差公式进行分解即可.12.【答案】﹣2<x≤1【考点】解一元一次不等式组【解析】【解答】解:解不等式x﹣1≤0,得:x≤1,解不等式2x+4>0,得:x>﹣2,则不等式组的解集为﹣2<x≤1,故答案为:﹣2<x≤1.【分析】先分别求得两个不等式的解集,然后再依据同大取大、同小取小,小大大小中间找出,大大小小找不着确定出不等式组的解集即可.13.【答案】2【考点】解直角三角形的应用-坡度坡角问题【解析】【解答】解:如图.Rt△ABC中,tanA= ,AB=10.设BC=x,则AC=2x,∴x2+(2x)2=102,解得x=2 (负值舍去).即此时小球距离地面的高度为2 米.【分析】依据坡度的定义可得到tanA=,设BC=x,则AC=2x,然后依据勾股定理可列出关于x的方程,从而可求得x的值,于是可得到BC的长.14.【答案】2019【考点】算术平均数【解析】【解答】解:由题意(a1+a2+a3+a4)=2019,∴a1+a2+a3+a4=8068,∴另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数= = =2019,故答案为2019.【分析】先依据均数的定义求得a1+a2+a3+a4的值,然后再求得a1+3,a2﹣2,a3﹣2,a4+5的值,最后依据平均数公式求解即可.15.【答案】﹣1或5【考点】二次函数的最值,二次函数图象上点的坐标特征【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故答案为﹣1或5.【分析】依据二次函数的性质可知若h<1≤x≤3,x=1时,y取得最小值5;若1≤x≤3<h,当x=3时,y取得最小值5,然后依据题意列方程求解即可.16.【答案】【考点】平行四边形的性质,矩形的性质,正方形的判定,相似三角形的判定与性质【解析】【解答】解:∵矩形ABCD中,AB=3,BC=2,点F是BC的中点,∴BF=1,AD=2,又∵BE=2,∴AE=BF=1,DE= =FG,又∵∠A=∠EBF=90°,∴△ADE≌△BEF,∴∠ADE=∠BEF,DE=EF,又∵∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=90°,∴四边形DEFG是正方形,∴∠EFG=90°,DG=DE= ,如图,过B作BH⊥EF于H,∵Rt△ABF中,EF= = ,∴BH= = ,∴Rt△BFH中,HF= = ,∵BH∥FG,∴△BHM∽△GFM,∴= = = ,∴FM= ×FH= ,∴EM=EF﹣FM= ﹣= ,∵EB∥DN,EM∥DG,∴∠EBM=∠DNG,∠EMB=∠DGN,∴△EBM∽△DNG,∴= = = .故答案为:.【分析】首先证明△ADE≌△BEF,依据全等三角形的性质可得到DE=EF,然后再证明四边形DEFG是正方形,则DG=DE= ,过B作BH⊥EF于H,依据勾股定理可得到EF的长,然后利用面积法可求得BH的长,接下来,再证明△BHM∽△GFM,依据相似三角形对应边成比例可求得FM的长,最后,再证明△EBM∽△DNG,从而可得到问题的答案.三.<b >解答题</b>17.【答案】解:原式=24÷(﹣8)﹣3=﹣3﹣3=﹣6.【考点】有理数的混合运算【解析】【分析】先算乘方,然后再计算除法,最后,再计算减法即可.18.【答案】解:去分母得:3x=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,接下来,求得整式方程的解,最后,再进行检验即可.19.【答案】(1)证明:∵点D,E,F分别为BC,AB,AC边的中点,∴DE和DF为△ABC的中位线,∴DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,∴△BED≌△DFC(2)解:DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,四边形AEDF为平行四边形,∴△BED∽△DFC,DF=AE=2,DE=AF,∴= = ,∴= ,∴= .【考点】全等三角形的判定与性质,平行线分线段成比例【解析】【分析】(1)依据三角形的中位线定理可得到DE∥AC,DF∥AB,然后依据平行线的性质可证明∠BDE=∠C,∠B=∠CDF,最后,再依据SAS证明△BED≌△DFC即可;(2)首先证明△BED∽△DFC,然后依据相似三角形的性质求解即可.20.【答案】(1)解:12÷10%=120(份),即本次抽取了120份作品.80分的份数=120﹣6﹣24﹣36﹣12=42(份),它所占的百分比=42÷120=35%.60分的作品所占的百分比=6÷120=5%;(2)解:1200×(30%+10%)=1200×40%=480(份)答:该校学生比赛成绩达到90分以上(含90分)的作品有480份.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)先依据条形统计图和扇形统计图可得到成绩为100分的频数以及所占的百分比,然后依据总数=频数÷百分比可求得总件数,然后再依据条形统计图可得到80分的频数,最后,再依据各部分所占的百分比即可;(2)先求得得分达到90分的百分比,最后,依据频数=总数×百分比求解即可.21.【答案】(1)证明:连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线(2)解:∵tanC= ,∴∠C=30°,又∵OE=2,∴OC=4,AC=6,在Rt△OCE中,tanC= ,∴CE=2 ,在Rt△ACD中,cosC= ,CD=3∴DE=CD﹣CE=3 ﹣2 = .【考点】角平分线的性质,切线的判定与性质,解直角三角形【解析】【分析】(1)连接OE.依据等腰三角形的性质和角平分线的定义可得到∠OEA=∠DAE,从而可证明OE∥AD,然后依据平行线的性质可证∠OEC=90°;(2)先依据特殊锐角三角函数值可求得∠C=30°,然后可求得AC=6,依据特殊锐角三教函数值可求得CE 和CD的长,最后依据DE=CD﹣CE求解即可.22.【答案】(1)解:设y与x的函数关系式为:y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=8x;当20≤x时,把(20,160),(40,288)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=6.4x+32.综上可知:y与x的函数关系式为y=(2)解:∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元)【考点】一元一次不等式组的应用,一次函数的应用【解析】【分析】(1)0≤x≤20时,y是x的正比例函数,设y=kx,将点(20,160)代入计算即可,当20≤x 时,y是x的一次函数将把(20,160),(40,288)代入y=kx+b求解即可;(2)依据B种苗的数量不超过35棵,但不少于A种苗的数量列出关于x的不等式组可求得x的取值范围,然后依据总费用W与x之间函数关系式,最后依据一次函数的性质求解即可.23.【答案】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD(2)解:EB=AB+BD;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD,∴EB=AB+BD(3)解:BE=3DB﹣3AB.理由:作DF∥BC交CA的延长线于F,如图3所示,则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC+∠DCE=180°,∵△ABC是等腰三角形,∴∠ABC=∠ACB,∴∠ADF=∠AFD=∠ABC,∵∠DEC=∠DCE,∴DE=DC,∠FDC+∠DEC=180°,∵∠DEC+∠DEB=180°,∴∠FDC=∠DEB,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,DB=CF,∵CF=AC+AF=AB+AF,∴DB=AB+AF,过点A作AG⊥DF于G,∵AF=AD,∴DF=2FG,在Rt△AFG中,∠AFG=90°﹣∠FAG=90°﹣∠BAC=30°,∴FG= AF,∴EB=DF=2FG= AF,∴AF= EB∴DB=AB+ BE,即:BE=3DB﹣3AB.【考点】全等三角形的判定与性质【解析】【分析】(1)作DF∥BC交AC于F,首先证明△ABC是等边三角形,然后再由AAS证明△DBE ≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,即可得出结论;(3)作DF∥BC交CA的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,再利用含30°的直角三角形的性质即可得出结论.24.【答案】(1)解:把B(2,0)代入y=ax2+ x+1,可得4a+1+1=0,解得a=﹣,∴抛物线解析式为y=﹣x2+ x+1,令y=0,可得﹣x2+ x+1=0,解得x=﹣1或x=2,∴A点坐标为(﹣1,0)(2)解:若y=﹣x平分∠APB,则∠APO=∠BPO,如图1,若P点在x轴上方,PB与y轴交于点A′,由于点P在直线y=﹣x上,可知∠POA=∠POA′=45°,在△APO和△A′PO中,∴△APO≌△A′PO(ASA),∴AO=A′O=1,∴A′(0,1),设直线BP解析式为y=kx+b,把B(2,0)、A′(0,1)两点坐标代入可得,解得,∴直线BP解析式为y=﹣x+1,联立,解得,∴P点坐标为(﹣2,2);若P点在x轴下方时,如图2,∠BPO≠∠APO,即此时没有满足条件的P点,综上可知P点坐标为(﹣2,2)(3)解:存在,如图3,作CH⊥PB于点H,∵直线PB的解析式为y=﹣x+1,∴F(0,1),tan∠BFO= = =2,∵CD∥y轴,∴∠BFO=∠CDF,tan∠CDF=tan∠BFO= =2,∴CH=2DH,设DH=t,则CH=2t,CD= t,∵△CDE是以CD为腰的等腰三角形,∴分两种情况:①若CD=DE时,则S△CDE= DE•CH= t•2t= ,②若CD=CE时,则ED=2DH=2t,∴S△CDE= DE•CH= •2t•2t=2t2,∵2t2<t2,∴当CD=DE时△CDE的面积比CD=CE 时大,设C (x,﹣x2+ x+1),则D(x,﹣x+1),∵C在直线PB的上方,∴CD= =(﹣x2+ x+1)﹣(﹣x+1)=﹣=﹣,当x=1时,CD 有最大值为,即t= ,t= ,∴S △CDE = = × = ,存在以CD为腰的等腰△CDE的面积有最大值,这个最大值是.【考点】二次函数的应用【解析】【分析】(1)将点B坐标代入到抛物线的解析式可求得a的值,令y=0,得到关于x的方程,然后解关于x的一元二次方程即可;(2)当点P在x轴上方时,连接BP交y轴于点A′,然后证明△APO≌△A′PO,依据全等三角形的性质可得到AO=A′O=1,从而可求得A′坐标,然后利用待定系数法可求得直线BP的解析式,联立直线y=-x,可求得P点坐标;当点P在x轴下方时,画图可知:∠BPO≠∠APO,即此时没有满足条件的P点;(3)过C作CH⊥DE于点H,由直线BP的解析式可求得点F的坐标,结合条件可求得tan∠BFO和tan∠CDF,可分别用DH表示出CH和CD的长,分CD=DE和CD=CE两种情况,分别用t表示出△CDE的面积,再设出点C的坐标,利用二次函数的性质可求得△CDE的面积的最大值.。

2019年浙江省湖州市中考数学全真模拟试卷附解析

2019年浙江省湖州市中考数学全真模拟试卷附解析

2019年浙江省湖州市中考数学全真模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A . 118B .112C .19D .16 2.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( ) x6.17 6.18 6.19 6.20 2y ax bx c =++ 0.03- 0.01- 0.02 0.04 A .6 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x <<3.菱形和矩形一定都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .每条对角线平分一组对角4.如图,下列不等式一定能成立的是( )A .∠5>∠3B .∠4>∠3C .∠6>∠2D .∠5>∠65.如图,长方体的长为 15、为 10、高为 20,点B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A . 5215B .25C . 1055+D .356.如果一个三角形有一个角是99°,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .钝角三角形或直角三角形7.观察下面图案,能通过右边图案平移得到的图案是( )8.下列图形中,轴对称图形的个数是( )A .1个B .2个C .3个D .4个二、填空题9.如图是一口直径AB 为4米,深BC 为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O 观赏月亮,则它们看见月亮的最大视角∠COD= 度,(不考虑青蛙的身高). 10.关于x 的方程2(1)10x k x +--=的一个根为2,那么k 的值为 .11.如图,将4根木条钉成的矩形木框变形成平行四边形ABCD 的形状,并使面积为原矩形面积的一半,则这个平行四边形的一个最小内角的值等于 .12.用计算器探索:已知按一定规律的一组数:1,12,13,…119,120.如果从中选出若干个数,使它们的和大于3,那么至少要选 个数.13.如果一个样本的方差是2.25,则这个样本的标准差是 .14.在长方形ABCD 中,AB = 2cm ,BC = 3cm ,则AD 与BC 之间的距离为 cm ,AB 与 DC 之间的的距离为 cm.15.如图,若 ∠1 =∠2,则 ∥ ,理由是 ;若∠4=∠3,则 ∥ ,理由是 .16. 某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 .17.如图,已知△ABC 中的∠C=50°,则放大镜下△ABC 中∠C=_______.18.长方形是轴对称图形,它有 条对称轴. 19.将x n -y n 分解因式的结果为(x 2+y 2)(x+y)(x-y),则n 的值为 .20.当a = 时,关于x 的方程22x 146x a +--=的解是0. 21.等腰梯形ABCD 中,AD ∥BC ,5AD =cm ,9BC =cm ,60C ∠=,则梯形的腰长是 cm .三、解答题22.观察图,图①是面积为 1 的等边三角形,连结它的各边中点,挖去中间的三角形得 到如图②所示,再分别连结剩下的三角形各边中点,挖去中间的三角形得到如图③所示,继续用同样方法将得到图④,图⑤,图⑥…图n .(1)图②中空自部分面积为 , 图③中空白部分面积为 ,图④中空白部分面积为 .(2)猜想:图③中空白部分面积为 ;(3)根据以上结论可推知,图n 中空白部分面积为 .23.已两个整数x 与y 的积为10.(1)求y 关于x 的函数关系式;(2)写出比例系数;(3)写出自变量x 的取值范围.24.如图,OP 平分∠MON ,点 A .B 分别在OP 、OM 上,∠BOA =∠BAO ,AB ∥ON 吗?为什么?25.如图,在△ABD和△ACE中,有下列四个等式:①AB= AC;②AD= AE;③∠1=∠2 ;④BD=CE.请你以其中三个等式作为条件,写在已知栏中,余下的作为结论,写在结论栏中,并说明结论成立的理由.已知:结论:说明理由:26.已知21xy=⎧⎨=⎩和33xy=⎧⎨=⎩是方程y kx b=+的解,求:(1)k,b的值;(2)当4y=时,x的值.27.在一个不透明的口袋中装有除颜色外一模一样的5个红球,3个蓝球和2•个黑球,它们已在口袋中被搅匀了,请判断以下事件是不确定事件、不可能事件、还是必然事件?(1)从口袋中任意取出一个球,是白球;(2)从口袋中一次任取两个球,全是蓝球;(3)从口袋中一次任取5个球,只有蓝球和黑球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、黑三种颜色的球都齐了.28.如图所示,图①和图②都是轴对称图形,依照①和②,把③,④也画成轴对称图形.29.画出如图所示的图形(阴影部分)绕点0逆时针方向旋转90°、l80°后所成的图形.30.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.B4.A5.B6.B7.C8.B二、填空题9.9010.12-11.30°12.513.1.514.2,315.AB;CD;同位角相等,两直线平行;AE;CF;内错角相等,两直线平行16.1517.50°18.219.420.321.4三、解答题22.(1) 34,916,2764;(2)81256;(3)13()4n-23.(1)∵两个整数x、y的积为 10,∴10 yx =(2)比例系数是 10;(3)x 取士 1,土2,士5,士10.24.AB∥ON说明∠BAO=∠NOA=∠BOA 25.已知:AB=AC ,AD=AE ,BD=CE , 结论:∠1 =∠2.理由:通过证明△ABD ≌△ACE(SSS)得到. 或已知:AB=AC ,AD=AE ,∠1=∠2, 结论:BD=CE.理由:通过证明△ABD ≌△ACE(SAS)得到. 26.(1)2k =,3b =-(2) 3.527.(1)不可能事件;(2)不确定事件;(3)不确定事件;(4)不确定事件 28.略29.略30.略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学中考模拟检测试卷数学答案2019.5一. 仔细选一选 (每小题3分, 共30分)二. 认真填一填 (每小题4分, 共24分)11. )(baa-;12.54;13. 10;14. 2:3:1:4;15.415;16.三、解答题(本大题共8小题,共66分.)17.(本小题6分)(1)解:原式=11111112-=+⨯-+--+xxxxxxx---------------2分当2=x时,原式=2---------------1分(2)解:原式=1+9+33-933⨯=10+33- 33=10 -------------3分18. (本小题6分)解:(1)∵点(1,)A n在双曲线y=上,∴n=---------------1分又∵A在直线3y x m=+上,∴3m=.------------1分(2)过点A作AM⊥x轴于点M.∵直线33233+=xy与x轴交于点B,∴0x=. 解得2x=-.∴点B的坐标为-20(,).∴2=OB.---------------1分∵点A的坐标为,∴1,3==OMAM.在Rt△AOM中,︒=∠90AMO,∴tan3==∠OMAMAOM.∴︒=∠60AOM.-------------2分由勾股定理,得2=OA.∴.OA OB=∴BAOOBA∠=∠.∴︒=∠=∠3021AOMBAO.-------------------1分19.(本题6分)解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;------------------1分(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:------------------2分(3)700×=56,------------------1分所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.------------------2分20.(本小题8分)(1)解:连接OD,BD,延长DC交BM于点E,∵BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上一点,DC⊥AN,∴DE⊥BO,∵AC=15cm,∴BE=EO=15cm,∵DO=30cm,∴cos∠EOD==,∴∠EOD=60°,KT∴=(cm ).-----------------5分(2)ππ102=r ,5=r .------------------3分21. (本小题8分)解:(1)由表格中数据可猜测,y 1是x 的一次函数.设y 1=kx +b 则 k +b =56 2k +b =58解得: k =2 b =54∴y 1=2x +54,经检验其它各点都符合该解析式,------------------3分 ∴y 1=2x +54(1≤x ≤7,且x 为整数). (2)设去年第x 月的利润为w 万元. 当1≤x ≤7,且x 为整数时,w =p 1(100-8-y 1)=(0.1x +1.1)(92-2x -54)=-0.2x 2+1.6x +41.8=-0.2(x -4)2+45,----------2分 ∴当x =4时,w 最大=45万元; 当8≤x ≤12,且x 为整数时,w =p 2(100-8-y 2)=(-0.1x +3)(92-x -62)=0.1x 2-6x +90=0.1(x -30)2,-----------------2分 ∴当x =8时,w 最大=48.4万元.∴该厂去年8月利润最大,最大利润为48.4万元.------------------1分22.(本小题10分)解:(1)∵CO =2,∴C (2,0).又∵AO =3OC =6,∴A (0,6) ---------------1分 可设BO =x ,且x >0;则:BC 2=(2+x )2,AB 2=AO 2+OB 2=36+x 2; 又∵BC =AB ∴(2+x )2=36+x 2,故:x =8, ∴B (-8,0) ---------------3分(2)过F 点作FK ⊥BC 于K ,可设F 点移动的时间为t ,且0<t <2, 则:BF =5t ,TO =FK =3t ;∴AT =6-3t , 又∵FE ∥BC ,∴△AFE ∽△ABC , 而AO ⊥BC 交EF 于T ,则:EF BC =ATAO ,∴EF 10 =6-3t6 ,即:EF =10-5t , 故:S △EFO =12 EF ×TO =12 (10-5t )×3t , 即:S △EFO =-152 (t -2)t ,∴当t =1时,△EFO 的面积达到最大值;---------------4分 (3)在(2)的基础上,E 、F 分别是AC 、AB 的中点, 若使D 为BC 的中点时, ED AB =FD AC =FE BC =12 又∵FO AB =EO AC =FEBC ∴FO =ED ,EO =FD ,EF =FE ,则:△EFD ≌△FEO故:存在满足条件的D 点,其坐标为(-3,0). ---------------2分23. (本小题10分)解:(1)如图1中,结论:DE ﹣BF =EF .理由如下:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°, ∵BF ⊥AG 于点F ,DE ⊥AG 于点E ,∴∠AFB =∠DEA =90°, ∵∠BAF +∠DAE =90°,∠DAE +∠ADE =90°,∴∠BAF =∠ADE , 在△ABF 和△DAE 中,,∴△ABF ≌△DAE ,∴BF =AE ,AF =DE ,∵AF ﹣AE =EF ,∴DE ﹣BF =EF .---------------3分(2)结论EF =DE +BF .如图2,∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =90°,∵BF ⊥AG 于点F ,DE ⊥AG 于点E , ∴∠AFB =∠DEA =90°,∵∠BAF +∠DAE =90°,∠DAE +∠ADE =90°,∴∠BAF =∠ADE ,在△ABF 和△DAE 中,,∴△ABF ≌△DAE ,∴BF =AE ,AF =DE ,∴EF =AF +AF =DE +BF .---------------3分(3)如图3中,结论:AC =BF +DE .---------------1分理由如下:连接B D .∵∠DBC +∠BDC +∠DCB =180°,∠DAE +∠ADE +∠AED =180°, 又∵∠DBC =∠DAE ,∠DCB =∠AED ,∴∠ADE =∠BDC , ∵∠BDC =∠BAF ,∴∠ADE =∠BAF ,∵AD =AB ,∠AED =∠AFB ,∴△ADE ≌△BAF ,∴AE =BF ,∵AD =AB ,∴∠ADB =∠ABD =∠ACD ,∵∠ADE =∠CDB ,∴∠CDE =∠ADB ,∴∠EDC =∠ECD ,∴DE =CE , ∴AC =BF +DE .---------------3分24.(本小题12分)解:(1)①设4)1(2+-=x a y ,将B (3,0)代入解得1-=a .---------------1分∴抛物线的解析式是:4)1(2+--=x y ,即322++-=x x y .令,则0322=++-x x ,11-=x ,32=x ,∴A (-1,0)∴3==OC OB ,∴∠CBO =∠OCB .---------------1分 31tan ==∠OC OA OCA . ∵23=BC ,,52=BD ,∴222BD CD BC =+,BCD ∆是直角三角形且︒=∠90BCD , ∴31tan ==∠BC CD DBC , 又∵∠DBC 和∠OCA 都是锐角,∴∠DBC =∠OCA .---------------1分∴∠DBA =∠ACB ;---------------1分0y=DC=②如图,设直线CD 切⊙P 于点E .连结PE 、P A ,作CF ⊥DQ 于点F . ∴PE ⊥CD ,PE =P A .由y =﹣x 2+2x +3,得对称轴为直线x =1,C (0,3)、D (1,4).∴DF =4﹣3=1,CF =1,∴DF =CF ,∴△DCF 为等腰直角三角形.∴∠CDF =45°,∴∠EDP =∠EPD =45°,∴DE =EP ,∴△DEP 为等腰三角形.设P (1,m ),D (1,4).∴4-=m DP ,∴422-=m EP ∴EP 2=(4﹣m )2. 在△APQ 中,∠PQA =90°,∴AP 2=AQ 2+PQ 2=[1﹣(﹣1)]2+m 2∴(4﹣m )2=[1﹣(﹣1)]2+m 2.整理,得m 2+8m ﹣8=0解得,m =﹣4±2.∴点P 的坐标为(1,﹣4+2)或(1,﹣4﹣2).---------------4分 ⑵G 的横坐标2-或1129-.---------------4分。

相关文档
最新文档