6数控机床电气驱动

合集下载

数控机床电气控制(1)

数控机床电气控制(1)

数控机床电气控制(1)数控机床电气控制是数控技术的重要组成部分,它主要负责控制和驱动数控机床的各个部件,在保证机床精度和生产效率的同时,也是实现数控加工自动化的基础。

下面就数控机床电气控制的相关内容进行详细阐述:一、数控机床电气控制的基本原理数控机床电气控制的基本原理是将外部的指令信号通过数控装置解码处理后,转换成高速脉冲信号输出给各种指令信号对应的电机驱动器,以控制机床各个部件的运动。

其中,电机驱动器可以根据不同的控制方式进行选择,如步进电机驱动器、伺服电机驱动器等。

二、数控机床电气控制的主要功能1、数据处理功能:包括位置控制、运动规划和插补计算等。

2、控制信号输出功能:输出高速数据脉冲信号,控制电机驱动器的运动。

3、报警保护功能:根据机床状态监测,判断是否存在故障,并及时报警提示、保护机床不受损坏。

4、通讯功能:与上位机进行通讯,实现各种数据的互换。

三、数控机床电气控制的发展趋势1、智能化:未来的数控机床电气控制要拥有更高的自主判断能力和智能化,能够自主调整运动参数,及时处理异常情况,提高机床的生产能力。

2、模块化:模块化设计是未来的发展方向,将复杂的电气控制板块分解成多个小模块,各模块之间通过通讯接口进行数据交换,提高系统扩展性和可靠性。

3、高速化:随着机床运动速度的提高,未来数控机床电气控制需满足更高的速度要求,使运动控制信号更加精确,减小误差,保证产品精度。

总之,数控机床电气控制是数控技术中不可或缺的组成部分,其发展趋势将对数控技术的应用和发展带来更为深远的影响。

随着技术的不断进步和应用的不断拓展,数控机床电气控制将在未来的大规模工业生产中扮演越来越重要的角色。

数控复习题

数控复习题

《数控技术及应用》第一章绪论(一)数控技术的产生及其应用领域开环控制系统用于经济型数控机床上。

数控机床加工依赖于各种数字化信息。

绕X轴旋转的回转运动坐标轴是A轴。

(二)数控机床的分类、组成、及各部分的作用(三)数字控制系统的分类、组成其工作原理对步进电机施加一个电脉冲信号,步进电机就回转一个固定的角度,这个角度叫做步距角,电机的总角位移和输入脉冲的数量成正比,而电机的转速则正比于输入脉冲的频率。

数控系统所规定的最小设定单位就是脉冲当量。

数控机床的种类很多,如果按加工轨迹分则可分为点位控制、直线控制和连续控制。

根据控制运动方式的不同,机床数控系统可分为点位数控系统和连续数控系统。

点位控制的特点是,可以以任意途径达到要计算的点,因为在定位过程中不进行加工。

(四)数控技术的发展趋势及其与现代制造系统的关系第二章数控加工程序的编制1.数控机床的机床坐标系与工件坐标系的含义是什么?答:机床坐标系是机床上固有的坐标系。

一般利用机床机械结构的基准来确定,在说明书中均有规定。

工件坐标系是在编程时使用,由编程人员在工件上指定某一个点作为原点,并在其上建立工件坐标系。

工件坐标系的原点在机床坐标系中称为调整点,它的选择应使工件上最大尺寸能加工出来。

数控机床上有一个机械原点,该点到机床坐标零点在进给坐标轴方向上的距离可以在机床出厂时设定,该点称机床参考点。

(一)数控机床程序编制的目的、步骤和方法数控加工程序的编制方法主要有手工编程和自动编程两类。

(二)工件加工程序的格式和代码G代码可以分为模态G代码和非模态G代码,非模态指令只能在本程序段内有效。

数控编程中,主轴功能字S指定的是主轴每分钟转速(r/min)。

进给功能字F常用mm/min或mm/r单位。

(三)手工编程方法通常在命名或编程时,不论何种机床,都一律假定工件静止刀具移动。

确定数控机床坐标轴时,一般应先确定Z轴。

数控铣床的默认加工平面是XY平面。

数控机床的标准坐标系是以右手直角笛卡尔坐标系来确定的。

机械《机床电气控制》教案

机械《机床电气控制》教案

机械《机床电气控制》教案第一章:绪论1.1 课程介绍解释机床电气控制课程的目标和重要性。

概述机床电气控制的基本概念和历史。

1.2 机床电气控制系统的组成介绍机床电气控制系统的常见组成部分,例如电源、控制器、执行器等。

解释各部分的功能和相互作用。

1.3 机床电气控制技术的发展趋势探讨机床电气控制技术的发展历程。

介绍当前机床电气控制技术的发展趋势和未来展望。

第二章:电气元件2.1 电源介绍机床电气控制系统中电源的作用和类型。

解释不同电源的特点和应用场景。

2.2 控制器讲解控制器的功能和工作原理。

介绍常见的控制器类型,如继电器控制器、PLC控制器等。

2.3 执行器解释执行器的作用和分类。

探讨不同执行器的工作原理和应用领域。

第三章:电气控制原理3.1 控制逻辑介绍电气控制逻辑的基本概念和常用符号。

解释逻辑运算和逻辑门电路的工作原理。

3.2 控制电路设计讲解控制电路设计的基本原则和方法。

探讨如何根据机床需求设计合适的控制电路。

3.3 控制电路实例分析分析具体的机床控制电路实例。

解释电路的工作原理和功能。

第四章:PLC控制系统4.1 PLC基本原理介绍可编程逻辑控制器(PLC)的定义和工作原理。

解释PLC的主要组成部分和功能。

4.2 PLC编程讲解PLC编程的基本语言和指令系统。

探讨如何使用PLC编程实现机床控制功能。

4.3 PLC控制系统设计讲解PLC控制系统设计的基本步骤和方法。

探讨如何根据机床需求设计合适的PLC控制系统。

第五章:机床电气控制系统的维护与故障诊断5.1 机床电气控制系统的维护讲解机床电气控制系统的日常维护和保养方法。

解释如何检查和解决问题以保持系统正常运行。

5.2 故障诊断与维修介绍故障诊断的基本方法和技巧。

探讨如何诊断和修复机床电气控制系统中常见的故障。

第六章:典型机床电气控制系统的分析6.1 数控机床电气控制系统介绍数控机床电气控制系统的组成及特点。

分析数控机床的主轴驱动、进给驱动和辅助装置的控制原理。

数控技术及应用第6章 数控机床的电气驱动-步进电动机

数控技术及应用第6章 数控机床的电气驱动-步进电动机

工作方式
步进电机的工作方式可分为:三相单三拍;三相单、 步进电机的工作方式可分为:三相单三拍;三相单、 双六拍;三相双三拍等 双六拍;三相双三拍等。“单”是指每次只有一相 绕组通电,“三拍”是指每三次换接为一个循环。
一、三相单三拍
(1)三相绕组联接方式:Y 型 三相绕组联接方式: (2)三相绕组中的通电顺序为: 三相绕组中的通电顺序为: A相 → B相 → C相 通电顺序也可以为: 通电顺序也可以为: A 相 → C 相→ B 相
A 相通电使转子1、3齿和 AA' 对齐。 相通电使转子1 对齐。
A
B'
A C' B
B'
C' B
A'
C
A'
C
B相通电,转子2、4齿 相通电,转子 、 齿 相通电 相轴线对齐, 和B相轴线对齐,相对 相轴线对齐 A相通电位置转 °; 相通电位置转30° 相通电位置转
C相通电再转 ° 相通电再转30° 相通电再转
(3)工作过程 ) A 相通电,A 方向的磁 相通电,
A
B' 4 1 2 3 A'
通经转子形成闭合回路。 通经转子形成闭合回路。
C' B
若转子和磁场轴线方向 原有一定角度, 原有一定角度,则在磁 场的作用下,转子 场的作用下,
C
被磁化,吸引转子, 被磁化,吸引转子,由于磁力线总是要通过磁 阻最小的路径闭合, 阻最小的路径闭合,因此会在磁力线扭曲时产 生切向力而形成磁阻转矩,使转子转动,使转、 生切向力而形成磁阻转矩,使转子转动,使转、 定子的齿对齐停止转动。 定子的齿对齐停止转动。
2、步进电动机
工作原理: 工作原理 : 步进电机是利用电磁铁原理,将脉冲 脉冲 线位移或角位移的电动机。每来一个 信号转换成线位移或角位移 线位移或角位移 信号 电脉冲,电机转动一个角度,带动机械移动一小 段距离。 特点: 特点:(1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变转动方向。 (4)角位移量或线位移量与电脉冲数成正比。

数控机床主轴驱动变频控制

数控机床主轴驱动变频控制

数控机床主轴驱动变频控制一、前言数控机床是传统机床向智能化方向发展的结果,其操作简单、精度高、效率高等特点,使得其在现代制造业中大有用处。

数控机床中的主轴驱动控制是其中的一个重要环节,其精度和可靠性对整个机床的操作效果有着至关重要的作用。

本篇文档将主要介绍数控机床主轴驱动变频控制相关知识。

二、数控机床主轴驱动变频控制的原理数控机床的主轴驱动控制系统主要是由相关电气元件组成的变频器控制系统。

变频器就是将市电通过整流、滤波、逆变后输出一定的频率、电压并控制电机转速的电子装置。

在数控机床的主轴驱动系统中,变频器通过对电机控制进行电压和频率的调整,来实现主轴的旋转,进而控制其转速和输出功率。

变频器输出的频率、电压均可调整,因此可以通过控制变频器的输出,来实现对主轴的速度调节。

电气控制系统通过实时监测机床运行状态、主轴运行状态、机床速度、主轴转速等信息,根据预先设定的运转条件,通过控制变频器输出的电压、频率实现对机床的工作状态并实现对主轴的速度调节。

三、数控机床主轴驱动变频控制的优点与传统机床的主轴驱动方式相比,数控机床主轴驱动变频控制有诸多优点,主要体现在以下几个方面:1.可调性强:通过对变频器的控制,可以实现精确的主轴转速调节,可以满足不同需求的工件加工。

2.精度高:由于采用了电气控制系统,可以实现主轴转速的精确控制,进而实现加工精度的提高。

3.效率高:数控机床主轴驱动变频控制由于能够实现电气控制,减少了机械传动过程中的机械损耗,因此其效率远高于传统机床主轴驱动方式。

4.运转平稳:变频器可以调节输出电压和频率,可以进一步实现对主轴转速的控制,从而实现机床运转的平稳。

四、数控机床主轴驱动变频控制的应用数控机床主轴驱动变频控制技术的应用相当广泛,可以应用于各种数控机床类型,包括数控车床、数控加工中心、数控铣床等。

特别是在高速、高精度、高效率的加工应用中,其优势更加明显。

五、数控机床主轴驱动变频控制的维护和保养为了确保数控机床主轴驱动变频控制系统的长期稳定运行,必须进行日常的维护和保养。

数控机床电气控制电路设计实例

数控机床电气控制电路设计实例
的继电器。电流继电器的线圈串入电路中,以反映电路电流的变化, 且其线圈匝数少、导线粗、阻抗小。 2电压继电器
电压继电器的输入量是电路电压的大小,它根据输入电压的大 小而动作。与电流继电器类似,电压继电器也分为欠电压继电器和 过电压继电器两种。
四、时间继电器 时间继电器在控制电路中用于时间的控制。
按其动作原理可分为电磁式、空气阻尼式、电动式和电子式等; 按延时方式可分为通电延时型和断电延时型。
而且要求刀具由一点到另一点之间的运动轨迹为一条直线,并能控 制位移的速度。 (3)轮廓控制系统
也称连续控制系统。其特点是能够同时对两个或两个以上的坐 标轴进行连续控制。
2. 按伺服系统控制方式分类 (1)开环伺服系统
数控装置根据信息载体上的指令信号,经控制运算发出指令脉
冲,使伺服驱动元件转过一定的角度,并通过传动齿轮、滚珠丝杠 螺母副,使执行机构(如工作台)移动或转动。 (2)闭环伺服系统
4. 按功能水平分类 (1)经济型数控系统(又称简易数控系统) 这一类型的数控系统一般为开环控制,采用的CPU为单板机或单片 机,用数码管显示或单色小液晶显示或CRT字符显示。 (2)普及型数控系统(又称全功能数控系统) 这类系统一般为半闭环控制,采用16位或32位CPU,9 in(228 6mm)单色显示器(1 in=25 4mm)。 (3)高性能数控系统 这类系统一般为全闭环控制,采用的微型计算机为32位以上的CPU, 显示器为彩色CRT或TFT液晶显示器.内存大于150 KB。
从第一台数控机床问世到现在的50多年中,数控技术的发展非 常迅速,集计算机技术、现代控制技术、微电子技术、传感检测技 术、信息处理技术、网络通信技术、液压气动技术、光电子技术以 及传统的机械制造技术为一体,得到了广泛的应用,在数控机床是 关系到国家战略地位和体现国家综合国力水平的重要基础性产业, 其水平高低和拥有量多少是衡量一个国家工业现代化的重要标志, 在国防建设上亦具有重要的战略意义。

机床电气控制

机床电气控制

机床电气控制机床电气控制,是指通过电气信号对机床的各个部件进行控制和调节的过程。

它是现代机床制造的重要组成部分,是机床自动化和智能化的实现必要手段。

机床电气控制的主要内容包括:电气传动系统、数控系统、机床保护系统等。

一、电气传动系统机床电气控制的重要组成部分是电气传动系统。

电气传动系统是指通过电气信号,对机床的电动机等执行元件进行调节,控制机床的动力输出,实现有效的加工作业。

电气传动系统分为两个部分:主轴驱动系统和进给系统。

主轴驱动系统是指控制主轴电动机的运转状态,以便实现高速、稳定的主轴转动。

当主轴电机正常工作时,它承担了机床的高精度加工和高负荷加工的任务,切削热能利用率较高,能够实现高水平的产品质量。

进给系统是指控制进给电机的转速、转矩、切削速度等参数,以实现对工件加工的控制。

进给控制系统的设计需要考虑到极限速度、车削速度、加工功率等多个参数,设置合理的控制范围和响应机制,确保加工的稳定性和安全性。

二、数控系统随着工业化和信息技术的不断发展,数控技术已经成为现代机床中不可或缺的一部分。

数控是指通过数字信号,对机床的运动、位置、加工参数进行精密控制,实现加工工艺的可编程、可执行和可监测。

数控系统主要包括CPU、执行器、编程器和显示器等。

CPU是数控系统的核心部分,是用于控制加工数据流、计算加工轨迹、调节加工参数的计算机芯片。

执行器是指数控系统中的动作控制器,用于控制机床的运动和加工过程。

编程器是用于将加工程序转换为数控程序的设备,包括数控语言、宏指令和参数化编程等。

显示器用于显示加工过程和加工结果的数控界面,包括图形界面和文字界面等。

三、机床保护系统机床保护系统是机床电气控制的重要组成部分,主要用于检测机床的运行情况和设备的状态,及时发现故障,保护设备的安全可靠运行。

机床保护系统主要包括以下几个方面:1、过流保护系统:用于检测主轴电机和进给电机的电流是否过大,超负荷时自动切断电源,保护电机和随之工件的损伤。

数控车床驱动系统的安装与调试指导书

数控车床驱动系统的安装与调试指导书

数控车床驱动系统的安装与调试指导书一、引言数控车床是一种装备有数控装置的机床,能够通过数字编程来控制刀具在工件上的运动,实现自动加工工序的机床。

而数控车床驱动系统是数控车床的核心部件之一,负责控制刀架和刀具的运动。

本指导书旨在向用户提供数控车床驱动系统的安装与调试指导,以确保系统的正确安装和可靠运行。

二、安装前的准备工作1. 确保车床和驱动系统都处于关机状态,并断开电源。

2. 提前准备好所需的安装工具和设备,如扳手、螺丝刀、电缆等。

3. 仔细阅读驱动系统的产品说明书和安装手册,了解系统的组成和安装要求。

三、安装步骤1. 解包并检查设备:将驱动系统从包装箱中取出,检查是否有任何损坏或缺陷。

请务必保存所有包装材料和配件,以备之后的维修和保养。

2. 安装电源线:将驱动系统的电源线插入电源插座,并确保插头牢固连接。

3. 连接信号线:使用所提供的信号线将驱动系统与数控控制器连接。

依据系统的连接图和说明书,逐一连接各个信号线。

4. 安装驱动模块:根据系统的结构和布局,将驱动模块安装到指定位置。

使用所提供的螺丝和螺母将驱动模块牢固固定。

5. 连接电机:根据车床与驱动系统的配合,将电机与驱动系统连接。

确保连接正确无误,且电机固定可靠。

6. 接通电源:检查所有连接点是否牢固,并确保电源线与插座连接稳定。

接通电源,启动驱动系统,并观察指示灯是否亮起,以确认系统是否正常启动。

四、调试步骤1. 检查连接:仔细检查所有连接点,确保电机和控制器之间的连接正确稳定。

2. 参数设置:根据车床的具体参数和加工要求,在数控控制器上进行参数设置。

确保速度、行程、加速度等参数设置符合实际需求。

3. 轴向校准:采用数控控制器的校准功能,对车床的各个坐标轴进行校准。

校准时需注意安全,避免车床在校准过程中受到损坏。

4. 运行测试:在调试模式下,通过数控控制器发送指令,观察刀架和刀具的运动是否符合预期。

根据测试结果,对系统进行必要的调整和校准。

《数控机床电气维修》课件

《数控机床电气维修》课件

数控机床电气安全的基本原则
确保操作者、维修人员和其他相关人员的安全是首要任 务。遵循国家和行业标准,制定并执行安全操作规程。
数控机床电气安全规范
定期检查和维护电气系统,确保其正常运行。对电气元 件和线路进行定期检查,及时发现并处理潜在的安全隐 患。
数控机床电气安全防护措施与设备
防护措施
采取必要的接地、隔离、滤波等措施, 以减少或消除漏电流、过电压、过电流 等对人身和设备的危害。
观察法、测量法、替换法、调试法
数控机床电气故障诊断技巧
先外部后内部、先机械后电气、先静后动、先公用后专用
数控机床电气故障排除步骤与实例
数控机床电气故障排除步骤
了解故障现象、分析故障原因、确定故障部位、排除故障
数控机床电气故障排除实例
主轴电机无法启动、刀架无法换刀、加工精度异常
REPORT
CATALOG
制定合理的维修流程,提高 维修效率。
提高数控机床电气维修效率的方法与技巧
快速定位故障点
通过观察、测试等方法快速找到故障位置。
备件管理
合理储备常用备件,缩短维修时间。
团队合作
维修人员之间密切配合,共同完成维修任务 。
数控机床电气维修技术的发展趋势与展望
技术升级与创新
随着数控机床技术的不断发展,电气维修技术也 需要不断升级和创新。
工具
万用表、示波器、电桥、绝缘电阻表等。
数控机床电气元件的维修步骤与实例
2. 使用工具检测元件性能 参数。
1. 检查元件外观,确定是 否损坏。
步骤
01
03 02
数控机床电气元件的维修步骤与实例
3. 根据检测结果,判断元件是否需 要更换或修复。
4. 执行维修操作,如更换元件或修复 电路。

第1章 数控机床电气控制概述

第1章 数控机床电气控制概述

第1章数控机床电气控制概述
图1-5开环控制系统结构
第1章数控机床电气控制概述 (2)闭环控制系统 闭环控制系统的机床上安装有检测装置,直接对工作台的位移量 进行检测,当数控装置发出进给指令信号后,经伺服驱动系统使工 作台移动时,安装在工作台上的位置检测装置把机械位移量变为电 量,反馈到输入端与输入设定指令信号进行比较,得到的差值经过 转换和放大,最后驱动工作台向减少误差的方向移动,直到误差值 消除停止移动。闭环系统具有很高的控制精度。图1-6为闭环数控 系统的结构图
第1章 数控机床电气控制概述
第1章 数控机床电气控制概述
• • • • • 1.1数控机床电气控制系统的组成及特点 1.2数控机床的分类及性能指标 1.3数控机床电气控制系统发展 1.4数控机床自动控制基础 思考题与习题
第1章数控机床电气控制概述
第1章 数控机床电气控制概述
1.1数控机床电气控制系统的组成及特点 • 1.1.1 数控机床电气控制系统的组成 • 数字控制(NC,Numerical Control,简称数控)技术 是用数字化信息进行控制的自动制技术,采用数控 技术的控制系统称为数控系统,装备了数控系统的机 床即为数控机床。 • 数控机床电气控制系统由数控装置(CNC, Computer Numerical Control)、主轴驱动系统、进给伺服系统、 检测反馈系统、机床强电控制系统、编程装置等几部 分组成。数控机床电气控制系统的组成如图1-1所示。
第1章数控机床电气控制概述
图1-3 数控铣床直线控制轨迹示意图
图1-2 数控钻床点位控制示意图
图1-4数控铣床轮廓加工示意图
第1章数控机床电气控制概述
(3)轮廓控制系统 轮廓控制系统又称连续控制系统,其特点是数控系统能够对两个 或两个以上的坐标轴同时进行连续控制。加工时不仅要控制起点和 终点,还要控制整个加工过程中每点的速度和位置。图1-4为数控 铣床轮廓加工示意图。 2.按工艺用途分类 (1)金属切削类数控机床 金属切削类数控机床和传统的通用机床产品种类类似,有数控车 床、数控铣床、数控钻床、数控磨床、数控镗床以及加工中心机床 等。数控加工中心是带有自动换刀装置,在一次装夹后,可以进行 多种工序加工的数控机床。

数控机床电器控制系统的组成

数控机床电器控制系统的组成

数控机床电器控制系统的组成数控机床是一种高精度、高效率的机床,它能够实现复杂零件的加工。

数控机床的核心是数控系统,而电器控制系统则是数控系统中的一个重要组成部分。

本文将介绍数控机床电器控制系统的组成。

一、数控机床电器控制系统的基本组成数控机床电器控制系统包括电器控制柜、电源、电机、传感器、执行器等组成部分。

其中,电器控制柜是数控机床电器控制系统的核心部分,它包括主控制板、驱动板、电源板、交流接触器、断路器等。

主控制板是数控机床电器控制系统的中央处理器,它负责接收数控系统发出的指令,并将其转化为电信号发送给驱动板。

驱动板则负责控制电机的转动,它通过接收主控制板的信号,控制电机的转速和方向。

电源板则负责为整个电器控制系统提供电源,它将输入的交流电转化为直流电,并为各个部件提供稳定的电压和电流。

交流接触器和断路器则负责保护电器控制系统的安全。

交流接触器在电器控制系统中扮演着开关的角色,它可以控制电器的通断,从而实现电器的启动和停止。

断路器则可以在电器控制系统出现故障时自动断开电路,从而保护整个系统的安全。

二、数控机床电器控制系统的主要功能数控机床电器控制系统的主要功能包括:1、控制电机的转速和方向。

数控机床电器控制系统通过驱动板控制电机的转速和方向,从而实现机床的运动。

2、控制机床的进给速度。

数控机床电器控制系统可以通过控制电机的转速和方向,从而控制机床的进给速度。

3、保护机床的安全。

数控机床电器控制系统可以通过交流接触器和断路器保护机床的安全,避免机床因电器故障而受到损坏。

4、监测机床的状态。

数控机床电器控制系统可以通过传感器监测机床的状态,从而实现机床的自动化控制。

三、数控机床电器控制系统的优点数控机床电器控制系统具有以下优点:1、高精度。

数控机床电器控制系统可以精确控制机床的运动,从而实现高精度的加工。

2、高效率。

数控机床电器控制系统可以实现机床的自动化控制,从而提高加工效率。

3、可靠性高。

数控机床电器控制系统采用模块化设计,各个模块之间相互独立,从而提高了系统的可靠性。

数控机床主传动系统

数控机床主传动系统
伺服驱动系统通常由伺服电机、控制器和驱动器组成,通过调整电机的输入电压或 电流实现主轴的精确位置和速度控制。
伺服驱动系统的性能决定了数控机床的动态特性和加工精度。
主轴与卡盘
主轴是数控机床主传动系统的输 出部件,它能够带动刀具或工件
旋转。
主轴通常采用高精度轴承和刀具 夹紧装置,以确保加工过程中的
稳定性和精度。
类型与分类
类型
数控机床主传动系统根据其结构和工作原理的不同,可以分为多种类型,如机械主传动系统、液压主 传动系统、电气主传动系统等。
分类
数控机床主传动系统还可以根据其传动方式的不同进行分类,如带传动、链传动、齿轮传动等。不同 类型的数控机床主传动系统具有不同的特点和应用范围,需要根据具体的加工需求和加工条件进行选 择。
主轴定位精度与重复定位精度
主轴定位精度
主轴在特定位置的准确度,决定了加 工零件的尺寸精度。定位精度越高, 加工精度越好。
重复定位精度
主轴在相同位置的重复精度,反映了 主轴运动的稳定性。重复定位精度越 高,主轴运动越稳定。
热稳定性与动态特性
热稳定性
主轴在切削过程中抵抗温度变化的能力,热稳定性越高,加工过程中主轴的性能越稳定。
动态特性
主轴在动态切削过程中的表现,包括振动、噪声等。动态特性越好,切削过程越平稳,加工表面质量越高。
04
主传动系统的控制技术
数控编程与加工技术
数控编程
根据加工需求,使用数控编程语言(如G代码)对机床进行编程,以控制主轴的运动轨 迹和加工过程。
加工工艺
根据工件材料、加工要求和刀具特性,选择合适的加工工艺,如粗加工、半精加工和精 加工等,以确保加工质量和效率。
特点
数控机床主传动系统具有高精度、高 效率、高稳定性等特点,能够满足复 杂、高效、高ห้องสมุดไป่ตู้度的加工需求。

数控机床电气控制课程设计

数控机床电气控制课程设计

数控机床电气控制课程设计前言随着数控技术的发展,数控机床已经成为现代工业中不可或缺的一部分。

而其电气控制系统的设计是其关键技术之一。

本文将介绍一种基于PLC控制器的数控机床电气控制系统设计方案。

设计方案系统架构本方案采用的是基于PLC控制器的电气控制系统设计方案。

具体来说,这个系统架构包括了以下几个部分:1.PLC控制器2.电气输入/输出模块3.人机界面4.步进电机驱动器5.直线电机驱动器6.伺服电机驱动器其中,PLC控制器是整个电气控制系统的核心,它负责控制整个系统的运行状态。

电气输入/输出模块则是负责接受电气控制信号并控制相关设备的运行。

人机界面则是负责与操作者进行交互的部分,包括显示系统的运行状态和控制参数。

步进电机驱动器、直线电机驱动器和伺服电机驱动器则分别是控制不同类型电机的部分。

控制策略在本方案中,控制策略采用的是开环控制策略。

具体来说,PLC控制器会根据运动轨迹和速度来控制步进电机和直线电机的运动。

而在伺服电机中,控制器将使用位置和速度反馈来控制伺服电机的运动。

接口设计人机界面通过使用触摸屏来实现交互。

在此基础上,系统将提供一个简单的图形界面,显示系统的运行状态和控制参数。

此外,还将提供一组操作按键,用于控制系统的开关与运行状态。

系统测试在实际使用前,本方案还需要进行一系列测试以检验电气控制系统的性能和可靠性。

首先,可将系统的控制参数设置到不同的值,并运行系统进行验证。

其次,对于系统中可能出现的故障,需要事先制定紧急处理措施。

最后,需要对整个系统进行长时间的稳定性测试,以确保其能持续稳定地运行。

总结本文介绍了一种基于PLC控制器的数控机床电气控制系统设计方案,并讨论了其系统架构、控制策略和接口设计。

此外,还介绍了对该系统进行测试的必要性。

通过这些措施,能有效提高数控机床的电气控制精度和效率,为现代工业生产提供技术支持。

5.第五章 数控机床电气控制线路

5.第五章 数控机床电气控制线路
图5.1 数控机床电气组成结构框图
1
第一节 数控车床电气控制线路
数控车床的机械部分比同规格的普通车床更为紧凑简洁。 主轴传动为一级传动,去掉了普通机床主轴变速齿轮箱, 采用了变频器实现主轴无级调速。进给移动装置采用滚 珠丝杠,传动效率高、精度高、摩擦力小。
2
1.1 数控车床的主要工作情况
一般经济型数控车床的进给均采用步进电动机,进给电 动机的运动由NC装置实现信号控制。 数控车床的刀架能自动转位。换刀电动机有步进、直流 和异步电动机之分,这些电动刀架的旋转、定位均由NC 数控装置发出信号,控制其动作。而其他的冷却、液压 等电气控制跟普通机床差不多。 现以经济型CK0630型数控车床为例,说明普通数控车床
20
图 5.11 数控系统控制步进驱动接线图原理图
21
4、数控系统对电动刀架的控制:
(1)、直流型电动机电动刀架
数控系统控制电动刀架,主要控制刀架电动机的正反转, 所反应的刀号数送给数控系统.从数控系统输入信号接 口来看,低电平有效。由于电动机电流不是太大,故 选用数控系统能驱动的功率继电器。
数控系统控制电动刀架电动机的接线原理图如图5.12 所 示 。 P3 口 的 O6(P3.6) 和 O7 ( P3.7) 控 制 KA3 、 KA4继电器,由于输出低电平有效,故中间继电器另一端 接+24V。三个微动开关信号SQ1~ SQ3分别接P3口 的I1(P3.21)、I2(P3.22)、I3(P3.23),信号低 电平有效。图5.12中,用 KA3、KA4的触点控制直流 电动机正反转,而直流电源 DC27V的产生通过变压器 和整流桥等电路产生。
31
图5.19 CLK脉冲与DIR信号波形
图5.20 数控系统与步进驱动的接口图

数控机床的电气控制系统设计

数控机床的电气控制系统设计

数控机床的电气控制系统设计一、本文概述《数控机床的电气控制系统设计》这篇文章主要探讨了数控机床电气控制系统的基本设计原理、实现方法及其在实际应用中的优化策略。

数控机床作为现代制造业的核心设备,其电气控制系统的设计直接关系到机床的性能、稳定性和加工精度。

因此,对数控机床电气控制系统的深入研究与设计优化,对于提升机床的整体性能、提高生产效率以及降低运行成本具有重要意义。

本文将首先介绍数控机床电气控制系统的基本组成和工作原理,包括数控系统、伺服驱动系统、传感器与检测装置等关键组成部分的功能与特点。

随后,文章将重点分析电气控制系统的设计要点,包括硬件设计、软件设计、控制算法选择等方面,以及如何根据机床的具体需求和加工要求来进行合理的系统设计。

本文还将探讨电气控制系统设计中的关键技术问题,如抗干扰设计、故障诊断与处理、系统可靠性保障等,并介绍相应的解决方案和策略。

文章将总结数控机床电气控制系统设计的发展趋势和未来挑战,为相关领域的研究与实践提供参考和借鉴。

通过本文的阅读,读者可以全面了解数控机床电气控制系统的设计原理与实践方法,掌握关键技术的实现与应用,为数控机床的设计、制造和维护提供有力支持。

二、数控机床电气控制系统概述数控机床的电气控制系统是数控机床的重要组成部分,负责实现机床的运动控制、加工过程监控、故障诊断与保护等功能。

电气控制系统的设计直接关系到数控机床的性能、稳定性和加工精度。

随着科技的发展,数控机床电气控制系统也在不断进化,从早期的简单电路控制,发展到现在的基于微处理器、PLC(可编程逻辑控制器)以及CNC(计算机数控)系统的复杂控制。

数控机床电气控制系统主要由电源电路、输入/输出电路、控制核心、驱动电路、传感器电路以及安全保护电路等部分组成。

其中,控制核心通常使用CNC装置,它能够解析编程好的加工指令,转化为对机床运动的精确控制信号。

驱动电路则负责将控制信号放大,以驱动电动机等执行机构实现所需的运动。

机床电气控制与PLC

机床电气控制与PLC

机床电气控制与PLC1. 介绍机床电气控制是机床制造中的核心技术之一。

它涉及到机床运动控制、工艺控制、安全控制等方面的内容。

而在现代机床中,PLC(可编程逻辑控制器)作为一种常用的控制设备,被广泛应用于机床的电气控制系统中。

本文将介绍机床电气控制系统的基本原理、PLC的工作原理以及机床电气控制与PLC的应用。

2. 机床电气控制系统的基本原理机床电气控制系统是由电机、传感器、执行器、控制器等组成的系统。

其基本原理是通过控制器对电机、传感器、执行器等进行控制,从而实现机床的工艺控制、运动控制以及安全控制。

在机床电气控制系统中,电机作为输出装置,负责驱动工作台、主轴等进行运动。

传感器用于检测机床的运动状态、位置以及工件的尺寸等信息,并将其转化为电信号。

执行器则根据控制信号驱动相关的机构运动,如气缸、伺服电机等。

控制器则根据输入的信号进行逻辑运算和控制操作,实现对机床的精确控制。

3. PLC的工作原理PLC是一种专门用于工业自动化控制的硬件设备。

它的工作原理主要包括输入模块、中央处理器、输出模块等组成。

输入模块负责接收外部信号,如传感器的信号等,并将其转化为与PLC内部相兼容的信号。

中央处理器是PLC的核心部分,它对输入信号进行处理、判断,并根据预设的程序逻辑生成相应的输出信号。

输出模块则将处理后的信号输出到执行器,驱动相关的机构进行运动。

PLC的一个重要特点是可编程性,用户可以通过编程控制器内部的逻辑和功能,实现对机床电气控制系统的灵活调整和优化。

4. 机床电气控制与PLC的应用机床电气控制与PLC的应用广泛存在于各种机床中,如数控机床、自动化生产线等。

在数控机床中,PLC可以完成对机床的运动控制、工艺控制以及安全控制。

通过编写PLC的程序,可以实现对机床运动轨迹的精确控制,使其按照预定的路径进行运动。

同时,PLC还可以对机床的主轴转速、进给速度等进行调节,以满足对工件加工的要求。

此外,PLC还能监视机床的安全状态,当出现异常情况时,如过载、碰撞等,能够及时采取相应的措施保护机床和工作人员的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-7-21
通常将伺服系统分为开环系统和闭环系统。开环系统 通常主要以步进电动机作为控制对象,闭环系统通常以直 流伺服电动机或交流伺服电动机作为控制对象。
2013-7-21
速度环由速度调节器、电流调节器及功率驱动 放大器等部分组成,利用测速发电机、脉冲编码器 等速度传感元件,作为速度反馈的测量装置。位置 环是由CNC装置中位置控制、速度控制、位置检测 与反馈控制等环节组成,用以完成对数控机床运动 坐标轴的控制。数控机床运动坐标轴的控制不仅要 完成单个轴的速度位置控制,而且在多轴联动时, 要求各移动轴具有良好的动态配合精度,这样才能 保证加工精度、表面粗糙度和加工效率。
3.步进电动机的工作原理
当A相绕组通电时,转子的齿与定子AA上的齿对齐。若A相断电,B相通 电,由于磁力的作用,转子的齿与定子BB上的齿对齐,转子沿顺时针方向转 过,如果控制线路不停地按A→B→C→A…的顺序控制步进电动机绕组的通断 电,步进电动机的转子便不停地顺时针转动。若通电顺序改为A→C→B→A…, 步进电动机的转子将逆时针转动。这种通电方式称为三相三拍,而通常的通电 方式为三相六拍,其通电顺序为A→AB→B→BC→C→CA→A…及 A→AC→C→CB→B→BA→A…,相应地,定子绕组的通电状态每改变一次,转 子转过。因此在本例中,三相三拍的通电方式其步距角等于,三相六拍通电方 式其步距角 θ 等于15° 2013-7-21
2013-7-21
4.2.2 步进电动机的驱动电源由步进电动机的工作原理知 道,要使电动机正常的一步一步地运行,控制脉冲必须按一 定的顺序分别供给电动机各相,例如三相单拍驱动方式,供 给脉冲的顺序为A→B→C→A或A→C→B→A,称为环形脉冲 分配。脉冲分配有两种方式:一种是硬件脉冲分配(或称为 脉冲分配器),另一种是软件脉冲分配,是由计算机的软件 完成的。 环形分配器可用数字集成电路系列中的基本门电路和触发 器构成,但这样构成的环形分配器过于复杂。实用的环形分配 器均是集成化的专用电路芯片,这些芯片通常还包括除脉冲分 配控制之外的其他功能
2013-7-21
(1)伺服系统的作用
1) 数控伺服系统具有放大控制信号的能力。
2)根据CNC装置发出的控制信息对机床移动部件的位置和速度 进行控制。
(2)数控机床对伺服系统应具有的基本性能
1)高精度:伺服系统的精度指输出量能够复现输入量的精确 程度。由于数控机床执行机构的运动是由伺服电动机直接驱 动的,为了保证移动部件的定位精度和零件轮廓的加工精度, 要求伺服系统应具有足够高的定位精度和联动坐标的协调一 致精度。一般的数控机床要求的定位精度为0.01~0.001mm, 高档设备的定位精度要求达到0.1μm以上。在速度控制中,要 求高的调速精度和比较强的抗负载扰动能力。即伺服系统应 具有比较好的动、静态精度。
2013-7-21
轴向分相反应式步进电动机结构原理图
各段定子铁心形如内齿轮,由硅钢片叠成。转子形如外齿 轮,也由硅钢片叠成。各段定子上的齿在圆周方向均匀分布, 彼此之间错开1/5齿距,其转子齿彼此不错位。当设置在定 子铁心环形槽内的定子绕组通电时,形成一相环形绕组,构 成图中所示的磁力线。
2013-7-21
360 /(mzk )
式中m相m拍时,k=1;m相2m拍时,k=2。 对于上图所示的单定子、径向分相、反应式步进电动机,当它以三相三拍通电 方式工作时,其步距角为
360 /(mzk ) 360 /(3 40 1) 3
若按三相六拍通电方式工作,则步距角为
360 /(mzk ) 360 /(3 40 2) 1.5
(1)伺服式:输出力矩在百分之几到十分之几(N•m)只能驱动较小的负 按输出力矩大小
载,要与液压扭矩放大器配用,才能驱动机床工作台等较大的负载 (2)功率式:输出力矩在5~50 N•m以上,可以直接驱动机床工作台等较大 的负载
按定子数
(1)单定子式;(2)双定子式;(3)三定子式;(4)多定子 式
按各相绕组分布
2013-7-21
(2)驱动执行元件分类,可分为直流电动机伺服系统、交流 电动机伺服系统、步进电动机伺服系统。 (3)按有无检测元件和反馈环节分类,伺服系统可以分为开 环伺服系统、闭环伺服系统和半闭环伺服系统。开环伺服 系统与闭环伺服系统如前所述。半闭环与闭环伺服系统的 结构一致,只是位置检测元件不直接安装在最终运动部件 上(工作台),而是传动装置的一个环节上(如丝杠或传 动轴上),由于传动链有一部分在位置环以外,在位置环 以外的传动精度得不到系统的补偿,因此其控制精度低于 闭环伺服系统。但对于闭环伺服系统,由于受机械变形、 温度变化、振动以及其他因素的影响,系统的稳定性较差。 同时由于半闭环的反馈量测量方便等特点,使半闭环伺服 系统也得到广泛应用。 (4)按输出被控制量的性质分类,可分为位置伺服系统、 速度伺服系统.
2013-7-21
(1)径向分相式:电机各相按圆周依次排列 (2)轴向分相式:电机各相按轴向依次排列
2013-7-21
2013-7-21
2.步进电动机的结构
目前,我国使用的步进电动机多为反应式步进电动机。在 反应式步进电动机中,有轴向分相和径向分相两种。图所示 是一典型的单定子、径向分相、反应式(转子是带齿的铁心 (反应式)或磁钢(混合式),无绕组。 )伺服步进电动机的结构 原理图 步进电动机可构成A、B、C 三相控制绕组,故称三相步进 电动机。若任一相绕组通电, 便形成一组定子磁极,其方向 即图中所示的NS极。在定子的 每个磁极上面向转子的部分, 又均匀分布着5个小齿,这些 小齿呈梳状排列,齿槽等宽, 齿间夹角为。转子上没有绕组, 只有均匀分布的40个齿,其大 小和间距与定子上的完全相同。 1-绕组 2-定子铁心 3-转子铁
第四章 进给运动控制
2013-7-21
4.1 概 述
1. 数控机床伺服系统的概念 数控机床伺 服系统 是以数 控机床 移动部件 (如工作台、主轴或刀具等)的位置和速度为控 制对象的自动控制系统,也称为随动系统、拖动 系统或伺服机构。它接受CNC装置输出的插补指令, 并将其转换为移动部件的机械运动(主要是转动 和平动)。伺服系统是数控机床的重要组成部分, 是数控装置和机床本体的联系环节,其性能直接 影响数控机床的精度、工作台的移动速度和跟踪 精度等技术指标。
2013-7-21
4.进给伺服电动机的类型 伺服电动机为数控伺服系统的重要组成部分,是速度和 轨迹控制的执行元件。 数控机床中常用的伺服电机: 直流伺服电机(调速性能良好)
交流伺服电机(主要使用的电机)
步进电机(适于轻载、负荷变动不大) 直线电机(高速、高精度)
2013-7-21
1.由于直流伺服电动机使用机械(电刷、换向器)换向,因此 存在许多缺点。而直流伺服电动机优良的调速特性正是通 过机械换向得到的,因而这些缺点无法克服。 2.交流伺服电动机与直流伺服电动机相比最大的优点在于 它不需要维护,制造简单,适合于在恶劣环境下工作。目 前,国外的交流伺服系统已实现了全数字化,即在伺服系 统中,除了驱动级外,全部功能均由微处理器完成,可高 速、实时地实现前馈控制、补偿、最优控制、等功 能。 应 用于进给驱动的交流伺服电动机有交流同步电动机与异步 电动机两大类。 由于数控机床进给驱动的功率一般不大(数百至数千瓦), 而交流异步电动机的调速指标一般不如交流同步电动机, 因此大多数进给伺服系统采用永磁式交流同步电动机。
1. 步进电动机分类 步进电动机的分类方法很多,根据不同的分类方 式,可将步进电动机分为多种类型,如类 方 式




按力矩产生的原理
(1)反应式:转子无绕组,由被激磁的定子绕组产生反应力矩实 现步进运行 (2)激磁式:定、转子均有激磁绕组(或转子用永久磁钢),由 电磁力矩实现步进运行
综上所述,可以得到如下结论:
(1)步进电动机定子绕组的通电状态每改变一次,它的转子便转过一个确定的 角度,即步距角;
(2)改变步进电动机定子绕组的通电顺序,转子的旋转方向随之改变; (3)步进电动机定子绕组通电状态的改变速度越快,其转子旋转的速度越快, 即通电状态的变化频率越高,转子的转速越高; (4)步进电动机步距角与定子绕组的相数m、转子的齿数z、通电方式k有关, 可用下式表示:
(3)为了满足快速响应的要求,即随着控制信号的变化, 电动机应能在较短的时间内达到规定的速度;
(4)电动机应能承受频繁启动、制动和反转的要求。
2013-7-21
2.伺服驱动系统的分类 (1)驱动方式分类 液压伺服系统、气压伺服 系统和电气伺服系统
伺服系统可以分为电液伺服系统和电气伺服系统,电液伺 服系统的执行元件是电液脉冲马达和电液伺服马达。但由于 该系统存在噪音、漏油等问题,其逐渐被电气伺服系统所取 代。 电气伺服系统全部采用电子元件和电动机部件,操作方 便,可靠性高。 目前电气伺服系统的驱动元件主要有步进 电动机、直流伺服电动机和交流伺服电动机,有关这些驱动 元件的工作原理可以参阅本章中的相关内容。
2013-7-21
2)良好的稳定性 稳定性是指系统在给定输入作用下,经过短时 间的调节后达到新的平衡状态;或在外界干扰作用下,经过短 时间的调节后重新恢复到原有平衡状态的能力。稳定性直接影 响数控加工的精度和表面粗糙度,为了保证切削加工的稳定均 匀,数控机床的伺服系统应具有良好的抗干扰能力,以保证进 给速度的均匀、平稳。 3.动态响应速度快 动态响应速度是伺服系统动态品质的重要 指标,它反映了系统的跟踪精度。目前数控机床的插补时间一 般在20ms以下,在如此短的时间内伺服系统要快速跟踪指令信 号,要求伺服电动机能够迅速加减速,以实现执行部件的加减 速控制,并且要求很小的超调量。
2013-7-21
4.调速范围要宽,低速时能输出大转矩。机床的调速范围 RN是指机床要求电动机能够提供的最高转速nmax和最低转 速nmin之比,即:
RN
n max n min
相关文档
最新文档