换热器设计说明书

合集下载

换热器课程设计说明书

换热器课程设计说明书

一 设计任务与条件现试设计一台正戊烷冷凝器,实现正戊烷蒸汽由160C ︒冷却至40C ︒,正戊烷的流量为7200h kg /,操作压力为0.175MPa 。

水蒸气的入口水温为30C ︒,出口水温为40C ︒。

二 设计计算〈一〉 确定设计方案 (1) 选择换热器的类型正戊烷蒸汽: 160C ︒→40C ︒ 冷却水: 30C ︒→40C ︒因为壳体与传热管壁温差大于50C ︒,初步确定选用带有补偿圈的固定管板式换热器。

(2)管程安排考虑到冷却水若走壳程由于流速较低易结垢,确定水蒸气走管程正戊烷饱和蒸汽走壳程。

〈二〉确定物性数据正戊烷蒸汽定性温度: 100240160=+=T )(C ︒ 冷却水定性温度: 3524030=+=t )(C ︒正戊烷蒸汽在100℃,0.175MPa 条件下的有关物性数据如下:06.4)1000273(314.8072.01017531=+⨯⨯⨯==RT PM ρ)/(3m kg)/(1057.131,K kg J c p ⋅⨯= )/(0128..01K m W ⋅=λ s Pa ⋅⨯=-5110874.0μ水在35℃时的有关物性数据如下: 31/7.995m kg =ρ )/(10174.431,C kg J c p ︒⋅⨯=)/(6176.01C m W ︒⋅=λ s Pa ⋅⨯=-511075μ 〈三〉估算传热面积 (1)热流量8.376)40160(57.13600/7200,,=-⨯⨯=∆⋅⋅=T c q Q h p h m T )(kW(2)冷却水用量9.32709)3040(10147.43600108.37633,,=-⨯⨯⨯⨯=∆⋅=t c Q q c p T cm )/(h kg (3)平均传热温差,按逆流算3.44304040160ln)3040()40160(=-----=∆m t )(C ︒(4)初算传热面积 由于在高压力下操作,假设)/(1102C m W K ︒⋅=则估算的传热面积为3.773.44110108.3763=⨯⨯=∆=m T t K Q S 估)(2m 〈四〉工艺结构尺寸 (1)管径和管内流速选用mm mm 5.225⨯φ较高级冷拔传热管(碳钢),取管内流速为s m u i /6.0=。

换热器设计说明书

换热器设计说明书
1
3 U 形管换热器设计计算及强度校核...........................................................................................33 3.1 筒体、封头的厚度计算及压力试验校核 ....................................................................... 33 3.1.1 筒体厚度计算 ........................................................................................................ 33 3.1.2 前端管箱筒体计算 ................................................................................................ 34 3.1.3 前端管箱封头计算 ................................................................................................ 35 3.1.4 后端封头计算 ........................................................................................................ 36 3.2 水压试验校核 ................................................................................................................... 37 3.2.1 筒体的水压试验校核 ............................................................................................ 37 3.2.2 前端管箱封头,后端封头的水压试验校核......................................................... 39 3.3 法兰和螺栓 ....................................................................................................................... 40 3.3.1 垫片的选择及计算 ..............................................பைடு நூலகம்............................................... 40 3.3.2 螺栓的选择及计算 ................................................................................................ 41 3.3.3 法兰的选择 ............................................................................................................ 42 3.4 开孔补强计算 ................................................................................................................... 43 3.4.1 进口接管①、出口接管⑤ .................................................................................... 43 3.4.2 进口接管② ............................................................................................................ 45 3.4.3 出口接管④ ............................................................................................................ 47 3.5 管板及换热管的选择计算 ............................................................................................... 50 3.5.1 换热管的尺寸及排布 ............................................................................................ 50 3.5.2 管板的设计计算 .................................................................................................... 50

换热器设计手册

换热器设计手册

换热器设计手册换热器设计手册第一部分:引言换热器在许多工业领域中起着至关重要的作用,能够有效地传递热量和冷却介质。

本手册旨在提供关于换热器设计的详细说明和指导,以确保设计和运行的安全性、可靠性和高效性。

第二部分:换热器的基本原理和分类2.1 换热器的基本原理换热器是通过将热量从一个介质传递到另一个介质来实现的。

基于传热原理,换热器可以分为传导、对流和辐射换热器。

2.2 换热器的分类根据换热介质的流动方式和传热机理,换热器可以分为管壳式换热器、板式换热器、螺旋板换热器等。

第三部分:换热器设计的影响因素3.1 流体参数流体参数包括流体的流量、温度、压力、热导率等。

这些参数将直接影响到换热器的传热效果和换热面积的确定。

3.2 材料选择换热器的材料选择对其使用寿命和换热效率有着重要的影响。

应根据介质的性质和工作环境进行材料选择,并考虑材料的耐腐蚀性、导热性等因素。

3.3 热负荷计算通过计算热负荷,可以确定换热器的尺寸和换热面积。

热负荷计算依赖于流体参数和换热器的设计要求。

第四部分:换热器的设计步骤4.1 确定换热方式根据介质的性质和工艺要求,选择合适的换热方式,如对流换热、辐射换热或传导换热。

4.2 计算传热面积根据热负荷计算结果,确定换热器的传热面积。

传热面积的计算需要考虑流体参数和介质的传热特性。

4.3 确定换热器尺寸和形状根据换热器的传热面积和流体参数,确定换热器的尺寸和形状。

应确保设计的换热器能够有效地传递热量和具有合理的流体阻力。

4.4 选择材料根据介质的性质和工作环境,选择合适的材料。

应考虑材料的耐腐蚀性、导热性和可加工性等因素。

第五部分:换热器的安装和维护5.1 安装要求换热器的安装应符合相关的安全标准和操作规程。

在安装过程中,应注意保护换热器的密封性和防止外部损坏。

5.2 运行和维护换热器的运行和维护需要定期检查和保养。

应注意定期清洗换热器以防止结垢和污垢的堆积,避免影响换热器的传热效果。

换热器设计手册

换热器设计手册

换热器设计手册1. 引言本文档旨在提供有关换热器的设计手册。

换热器是一种常见的设备,用于在热力系统中传递热量,实现能量的转移。

本手册将介绍换热器的基本原理、设计流程以及设计考虑事项。

2. 换热器的基本原理换热器是通过流体之间的热传导和对流传热来实现热量转移的设备。

换热器通常由两个流体通道组成,分别称为热源侧和热载体侧。

热源侧是热量的来源,热载体侧是热量的传递介质。

换热器的基本原理是通过接触面积的增加和流体之间的温度差来实现热量的传递。

3. 换热器设计流程3.1 确定热传导方式在进行换热器设计之前,需要确定热传导的方式。

根据不同的传热方式,可以选择不同类型的换热器,如管壳式换热器、板式换热器等。

3.2 确定流体参数在设计过程中,需要确定流体的参数,包括流量、温度等。

这些参数将对换热器的尺寸和性能产生影响。

3.3 确定换热器尺寸根据流体参数和传热需求,可以计算出换热器的尺寸。

这包括换热器的长度、直径或面积等。

3.4 确定传热系数换热器的传热系数是一个重要的设计参数,它决定了换热器的换热效率。

在设计过程中,需要考虑流体的性质、换热器的材料和结构等因素,来确定传热系数。

3.5 进行换热器设计计算在确定了上述参数之后,可以进行具体的换热器设计计算。

这包括确定换热面积、管道布置、管束数量等。

4. 换热器设计考虑事项4.1 热量传递效率在进行换热器设计时,需要考虑热量传递的效率。

热量传递效率是换热器性能的重要指标,直接影响换热器的能耗和传热效果。

4.2 材料选择在选择换热器的材料时,需要考虑流体的性质、工作条件和成本等因素。

常用的材料包括钢、铜、不锈钢等。

4.3 清洁和维护换热器在使用过程中,会积累一些污垢和沉积物,这会影响换热器的性能。

因此,在设计过程中需要考虑清洁和维护的便利性。

5. 结论通过本文档的介绍,我们了解了换热器的基本原理、设计流程以及设计考虑事项。

换热器的设计是一个复杂的过程,需要综合考虑多个因素。

换热器设计说明书

换热器设计说明书

1 绪论1.1 课题介绍本次设计为余热回收装置中软水预热器的设计,主要任务是设计一台立式管壳式换热器。

管壳式换热器又称列管式换热器,它适用于冷却,冷凝,加热、蒸发及废热回收等方面。

是理论研究水平最高、设计技术最完善、标准化和规范化历史最悠久以及计算机程序软件开发最早的换热设备,在石油、化工生产中应用十分广泛。

它的工艺设计一般是指传热设计和压降(或流动)设计,传热尤为复杂[1]。

目前在食品行业中,粮食干燥作业中多用列管式换热器,这种换热器结构简单,制造容易,检修方便。

干燥行业中,换热器的热介质是烧烟煤与无烟煤混合燃料产生的高温烟道气。

在管内流动,冷介质是空气,在管外横向冲刷管子流动[2]。

固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。

当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。

特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。

固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。

固定管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。

这种换热器管程可以用隔板分成任何程数。

固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格范围广,故在工程上广泛应用。

壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。

当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。

固定管板式换热器的特点是:旁路渗流较小、造价低、无内漏。

固定管板式换热器的缺点是,壳体和管壁的温差较大,易产生温差力,壳程无法清洗,管子腐蚀后连同壳体报废,设备寿命较低,不适用于壳程易结垢场合。

换热器课程设计说明书

换热器课程设计说明书

换热器原理与设计课程设计计算说明书设计题目换热器原理与设计课程设计学院(系):机电工程学院专业:能源与动力工程班级:姓名:学号:指导老师:完成日期:新余学院目录第一部分确定设计方案1.1选择换热器的类型两流体温度变化情况:热流体进口温度130℃,出口温度40℃。

冷流体进口温度30℃,出口温度40℃。

从两流体温度来看,估计换热器的管壁温度和壳体壁温之差很大,因此初步确定选用浮头式列管换热器,而且这种型式换热器管束可以拉出,便于清洗;管束的膨胀不受壳体约束。

1.2流动空间及流速的确定由于煤油的粘度比水的大,井水硬度较高,受热后易结垢,因此冷却水走管程,煤油走壳程。

另外,这样的选择可以使煤油通过壳体壁面向空气中散热,提高冷却效果。

同时,在此选择逆流。

选用ф25×2.5的碳钢管,管内流速取u i=0.75m/s。

第二部分确定物性数据定性温度:可取流体进、出口温度的平均值。

壳程煤油的定性温度为: T=(130+40)/2=85℃管程冷却水的定性温度为:t=(30+40)/2=35℃根据定性温度,分别查取壳程和管程流体的有关物性数据。

煤油在90℃下的有关物性数据如下:密度ρo= 810kg/m3定压比热容 cp o=2.3kJ/(kg·℃)导热系数λo=0.13W/(m·℃)粘度μo=0.00091 Pa·s冷却水在32℃下的物性数据:密度ρi=994kg/m3定压比热容 cp i=4.187kJ/(kg·℃)导热系数λi=0.626 W/(m·℃)粘度μi=0.000727 Pa·s第三部分工艺流程图第四部分 计算总传热系数4.1热负荷的计算以煤油为计算标准算它所需要被提走的热量: Q=qc Δt=2.39×108330×24x2.22x (130-40)=7.034x106KJ/h=1953.8KW4.2平均传热温度计算两流体的平均传热温差,暂按单壳程、多管程计算。

换热器设计任务书

换热器设计任务书

换热器设计任务书任务书。

任务名称:换热器设计。

任务目标:设计一种高效、安全、经济的换热器,用于在工业和商业领域中传递热能,以满足不同行业的需求。

任务内容:1、了解不同行业的换热器需求和相关标准,包括但不限于石化、化工、电力等。

2、根据需求和应用场景,选择合适的换热器类型和材料,考虑热传导、热容量、压力、温度、腐蚀等因素。

3、进行换热器的结构设计和参数计算,包括但不限于热传导和对流计算,材料强度计算等。

4、进行动态模拟和仿真,验证设计的有效性和安全性。

5、编写换热器设计报告,详细说明设计方案、参数计算、仿真结果和成本估算等内容。

6、根据实际需求进行改进和优化,提高换热器的效率、安全性和经济性。

任务时间:2个月。

任务成果:1、符合行业标准和应用场景的高效换热器设计方案;2、结构设计和参数计算文件;3、换热器的动态模拟和仿真结果;4、完整的换热器设计报告,包括设计方案、参数计算和成本估算等;5、满足需求的高效、安全、经济的换热器产品。

任务要求:1、具有相关机械、热力学、材料等专业知识,能够独立完成换热器设计和计算;2、熟悉相关的设计软件和仿真工具,能够进行结构设计、参数计算和动态仿真;3、具有优秀的工程实践能力和分析能力;4、能够与团队合作,与产品开发、销售等部门沟通;5、严格遵守质量标准和安全规范,确保设计符合相关规定和要求。

任务执行计划:任务启动:1周。

资料搜集和分析:1周。

方案设计、参数计算:2周。

动态仿真、优化:2周。

文档编写、团队汇报:1周。

交付产品和报告:1周。

任务验收标准:设计的换热器符合相关安全规范和质量标准;设计的换热器在动态仿真中表现出较好的性能和稳定性;最终交付的产品和报告符合甲方的需求和规定。

责任部门:任务发起人:甲方。

执行团队:乙方(由甲方指定)。

审核人:丙方(由甲方指定)。

项目经理:由乙方自选一名人员担任。

以上为换热器设计任务书,希望能对有关方面提供帮助!。

热交换器设计说明书

热交换器设计说明书

结构设计管箱设计参照标准GB151-2014壳体内径DN=450mm,材料为Q235,许用应力[δ]=125Mpa,壳体厚度δ=8mm,采用卷制。

接管管程接管:Ф159×8,无缝钢管,材料为10号钢,L=100mm。

壳程接管:Ф219×8,无缝钢管,材料为10号钢,L=100mm。

管板固定管板材料为Q235 Pg=1.6Mpa,厚度b=40mm。

具体尺寸(:mm)DN D D1 D2 D3 D4 D5 d2450 565 530 500 447 487 450 18螺栓规格数量 bf b PsPtM16 24 30 40 0.6 1.0折流板选取弓形折流板,上下缺口,材料Q235,缺口高度h=112.5mm,板间距ls=237.5mm,进出口板间距Ls,i =ls,o=260mm,厚度δ=6mm,外径D b=446.5mm,折流板数目9,经计算换热与结构均符合要求。

拉杆材料为Q235,选用Ф=16的拉杆4根,具体位置及装配方式见装配图,一端与管板采用螺纹连接,另一端用螺母固定在折流板上。

封头选用材料为16Mn的椭圆形标准封头,取壁厚8mm。

H=137 h=25 Di=450分程隔板选用材料Q235,厚度为8mm,宽450mm,长489mm,一端为和封头形状相同的圆冠,另一端为平面,分程隔板焊于管箱内。

支座(JB-T4712.1-2007)DN450 120包角焊制,单筋,带垫板L 1 b1δ1δ2b3δ3弧长 b4δ4e L2420 120 8 8 96 8 540 200 6 48 290容器法兰甲型平焊法兰:JB/T4701-2000,材料为16Mn,许用应力为16barDN D D1 D2D3D4δ d 螺栓规格数量450 565 530 500 490 487 30 18 M16 20接管法兰板式平焊平面法兰管程接口:PN=16bar DN=159mm A1=168.3mmD K L C 螺栓规格数量 B265 225 18 20 M16 8 161壳程接管:PN=6bar DN=219mm A1=219.1mmD K L C 螺栓规格数量 B320 280 18 22 M16 8 222旁路挡板材料为Q235,厚度为10mm ,宽度为31mm ,1对,长度为1430m 。

换热器设计说明书

换热器设计说明书

换热器设计说明书
换热器是一种常见的传热设备,广泛应用于许多工业领域中。


为传热过程中的重要组成部分,换热器的设计十分关键,直接影响着
传热效率和设备的使用寿命。

因此,如何设计一款功能稳定、高效节
能的换热器,成为众多工程师的追求目标。

在换热器的设计中,需要从以下几个方面进行考虑:
1.设计选型:选择合适的换热器类型,根据实际需求确定尺寸、
材质和流量等参数。

比如可选择板式换热器、管式换热器和壳管式换
热器等。

2.传热计算:根据传热原理,对换热器的传热面积、传热系数等
进行计算和分析,确定合适数值,以保证传热效率的提高。

3.流体力学计算:进行流体力学分析,确定流体流动状态和阻力,以保证设备的正常运行和安全性。

4.材料选择:选择合适的材料,以确保设备的耐腐蚀性、耐热性
和耐压性等。

5.结构设计:设计合理的结构,保证设备的稳定性、耐用度和易
于维护等。

6.工艺参数:根据实际工艺参数确定换热器的工作温度、压力、
流量等参数,以保证设备的正常运行。

总之,换热器的设计过程需要充分考虑各个因素的综合因素,而且需要依据实际需求和应用环境来进行选择和优化。

同时,还需要不断进行改进与创新,以满足新技术、新工艺、新材料的需求,提升热交换设备的性能和效率。

换热器设计说明书

换热器设计说明书

工程热力学与传热学课程设计管壳式换热器设计说明书目录一、设计任务书———————————11、换热器的概念及意义2、固定管板式换热器构造3、工作原理4、设计参数二、设计计算书———————————31、换热管的材料、内径、长度、管间距等确实定2、壳体内径3、管程接收直径4、折流板缺口高度、间距、数目以及折流板直径5、壳程接收直径确实定6、传热面积和传热面积之比三、计算表格四、设计结果汇总表—————————7五、设计自评————————————8六、参考文献————————————9一、设计任务书1、换热器的概念及意义在化工生产中为了实现物料之间能量传递过程需要一种传热设备。

这种设备统称为换热器。

在化工生产中,为了工艺流程的需要,往往进展着各种不同的换热过程:如加热、冷却、蒸发和冷凝。

换热器就是用来进展这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递到温度较低的流体,以满足工艺上的需要。

它是化工炼油,动力,原子能和其他许多工业部门广泛应用的一种通用工艺设备,对于迅速开展的化工炼油等工业生产来说,换热器尤为重要。

换热器在化工生产中,有时作为一个单独的化工设备,有时作为某一工艺设备的组成局部,因此换热器在化工生产中应用是十分广泛的。

任何化工生产中,无论是国内还是国外,它在生产中都占有主导地位。

2、固定管板式换热器构造3、工作原理:管壳式换热器和螺旋板式换热器、板式换热器一样属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。

管程和壳程分别通过两不同温度的流体时,温度较高的流体通过换热管壁将热量传递给温度较低的流体,温度较高的流体被冷却,温度较低的流体被加热,进而实现两流体换热工艺目的。

4、设计参数:二、设计计算书根据设计任务书进展设计计算:204565''2'1max =-=-=∆t t t ℃ 252550'2''1min =-=-=∆t t t ℃热损失系数取0.98传热量:()()kJ t t c M Q L p 48098.0506561.244.14''1'121=⨯-⨯⨯=-=η 冷却水量:()()s kg t t c M p 73.52545187.4480'2''222=-⨯=-逆流时的对数平均数温差:41.222025ln 2025ln minmax min max 1=-=∆∆∆-∆=∆⋅t t t t t c m 参数;P 、R5.025652545'2'1'2''2=--=--=t t t t P 75.025455065'2''2''1'1=--=--=t t t t R设计本管壳式换热器为2壳程-4管程<2-4>型,那么975.0=ψ 有效平均温差:85.214.22975.01=⨯=∆=∆⋅c m m t t ψ 初选传热系数:()C kg w K ︒⋅=300'0 估算传热面积:2'0'022.7385.21300480000m t K Q F m =⨯=∆= 管子材料:铝制管5.320⨯φ管程所需流通截面:222100573.0110003.57m M A t =⨯==ωρ每程管数:根43013.000573.044221=⨯⨯==ππd A n t每根管长:m l d nZ F l t 60'0==取π管子排列方式为:等边三角形 管间距s=26mm 分程隔板槽处管间距mm l E 40=平行于流向的管距mm s s p 5.2230cos =⨯=ο垂直于流向的管距mm s s n 1330sin =⨯=ο 拉杆直径取12mm 估计管壳直径mm 400≤ 管排列可做如下草图那么六边形层数为6层,一台管子数为86=t n ,一台拉杆数为4根一台传热面积为24.32602.086m dl n c =⨯⨯⨯=ππ 两台传热面积:2''08.64m F =管束中心至最外层管束中心距离为0.135m ,管束外缘直径m D L 29.0=壳体m 325.0取S D 那么长径比5.18325.06==s D l管程接收直径:6895.511100073.513.113.122⨯=⨯==φρω取M D 管程雷诺数:1793110725013.010001Re 621222=⨯⨯⨯==-μρωd 管程换热系数:52469.417931023.0013.0621.0Re 023.04.08.04.08.0122=⨯⨯⨯=⨯=τλαP d 折流板形式选弓形,折流板缺口高度m D h S 08.035.025.025.0=⨯== 折流板的圆心角为120度,折流板间距取m l s 4.0=,折流板数目为14块,折流板上管孔数为60个,折流板上管孔直径m d H 0204.0=,通过折流板管子数为56个,折流板缺口处管子数为30根,折流板直径m D b 3.0=。

换热器 设计手册

换热器 设计手册

换热器设计手册第一部分:换热器概述换热器是工业生产中常用的设备,用于将热能从一个流体传递到另一个流体,以实现热能的平衡和利用。

在化工、能源、制药、食品等行业都有广泛的应用。

本手册将以换热器的设计、选择、运行与维护为主要内容,为工程师和操作人员提供全面的指导和参考。

第二部分:换热器设计原理1. 热传导原理:介绍热量在换热器中的传导过程,包括对流、传导、辐射等热传导方式。

2. 换热器工作原理:介绍不同类型换热器的工作原理,如壳管式、板式、螺旋式等。

3. 换热器设计参数:详细介绍换热器设计中的参数,如传热系数、流体速度、材料选取等。

第三部分:换热器设计流程1. 换热器类型选择:根据不同工艺要求和流体特性选择合适的换热器类型。

2. 换热器计算及模拟:对换热器进行热平衡计算和流体模拟,确定换热器的尺寸和传热面积。

3. 换热器结构设计:设计换热器壳体、管束、管板、密封装置等结构。

4. 材料选取:根据工作条件和流体性质选择合适的材料,包括金属、非金属等。

5. 换热器性能分析:对设计的换热器进行性能评估,确保满足工艺要求。

第四部分:换热器运行与维护1. 换热器安装与调试:介绍换热器的安装、泄漏检测、气密性测试等。

2. 换热器运行优化:讲述换热器的操作技巧和运行优化方法,包括流体控制、温度调节等。

3. 换热器维护与保养:指导换热器的定期检查、清洗、维护和更换零部件。

第五部分:换热器设计案例分析通过实际的换热器设计案例,分析不同场景下的换热器选型、设计、运行和维护过程,并总结经验和教训。

结语本手册以换热器设计为主线,系统介绍了换热器的原理和应用,涵盖了设计、选择、运行和维护的全过程。

希望通过本手册的阅读,读者能够对换热器设计有全面的了解,并能在实际工程中有效应用。

换热器设计手册

换热器设计手册

换热器设计手册
设计一个换热器的手册可以包含以下内容:
1. 引言:介绍换热器的定义、作用和使用范围。

2. 换热基础知识:解释热传递的基本概念和换热原理,包括传热方式、热传递方程和换热系数。

3. 换热器的分类:介绍各种常见的换热器类型,如壳管式换热器、板式换热器、螺旋板式换热器等,以及它们的特点和应用领域。

4. 换热器的设计步骤:详细阐述换热器设计的步骤,包括确定传热面积、计算传热量、选择换热器类型和尺寸、确定管道布局、计算流体流量等。

5. 换热器设计中的参数:介绍影响换热器性能的关键参数,如流体温度差、表面积比、管程系数、传热系数等,并提
供计算方法和工程经验。

6. 设计中的问题和解决方案:列举可能在换热器设计中遇
到的常见问题和解决方法,如阻力损失、结垢问题、流体
腐蚀等。

7. 换热器的实施与维护:介绍换热器的安装、调试和维护
要点,包括清洗方法、检查周期和维修常识。

8. 设计案例与实例分析:提供一些换热器设计案例和实例
分析,以帮助读者更好地理解设计过程和技巧。

9. 相关标准与规范:列举与换热器设计相关的国际和行业
标准,如ASME、API和GB等,并提供参考链接和书目。

10. 常用的换热器软件与工具:介绍常用的换热器设计软件和在线计算工具,以方便读者进行设计和计算。

最后,手册还可以提供参考文献、索引和图表以增加阅读的便利性和可读性。

换热器说明书

换热器说明书

9.2 换热器的设计与选型9.2.1 概述换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足过程工艺条件的需要,同时也提高能源利用率的主要设备之一。

对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。

通常在化工厂的建设中,换热器约占总投资的10~20%。

在石油炼厂中,换热器约占全部工艺设备投资的35~40%。

换热器包括过程流股的冷却器,加热器,塔的再沸器和冷凝器,以及不同温位的工艺物流相互进行显热交换的换热器。

根据工艺要求掌握物料流量、温度、压力、化学性质、物性参数等特性等,初步确定设计方案。

在设计过程中,主要考虑如下几个方面的问题。

1) 满足工艺和操作的要求设计出来的流程和设备首先要保证质量,操作稳定,这就必须配置必要的阀门和计量仪表等。

并在确定方案时,考虑流体的流量,温度和压力变化时采取什么措施来调剂节,而在设备发生故障时,检修应方便。

2) 满足经济上的要求既能满足工艺操作的要求,又使施工简便,材料来源容易,价格低。

如果有废热可利用,要尽量节省热能,充分利用废热,或者采取适当的措施达到降低成本的目的。

3) 保证生产安全在工艺流程和操作中若有爆炸,中毒等危险性,要考虑安全措施。

又如设备材料的强度验算,除按规定应有一定的安全系数外,还应考虑由于设备中压力突然升高或者造成真空而需要安装安全阀9.2.2 换热器的分类1.按工艺功能分类:可分为冷却器、加热器、再沸器、冷凝器、蒸发器、过热器、废热锅炉等。

2.按传热方式和结构分类:可分为间壁传递热量式和直接接触传递热量式,其中间壁传递热量式又可分为:①管壳式换热器:固定管板式、浮头式、填料函式、U型管式、滑动管板式。

②板式换热器:板翅式、螺旋板式、伞板式、波纹板式。

③管式换热器:空冷式、套管式、喷淋管式、箱管式。

④液膜式换热器:升降模式、括板薄膜式、离心薄膜式。

换热器设计手册 (2)

换热器设计手册 (2)

换热器设计手册1. 引言换热器是一种用于将热量从一个介质传递到另一个介质的设备。

它广泛应用于工业生产、能源系统和空调等领域中。

换热器的设计对于确保良好的热量传递效率至关重要。

本手册将介绍换热器设计的基本原理、常见的换热器类型以及设计过程中需要考虑的关键因素。

2. 换热器基本原理换热器的基本原理是利用热传导和流体运动来实现热量的传递。

换热器通常由两种介质流体通过分离的通道流动,介质1流经一个通道,介质2流经另一个通道。

换热器的目的是将介质1中的热量传递给介质2,或者将介质2中的热量传递给介质1。

换热器的热量传递可以通过对流、传导和辐射等多种机制来实现。

对流是指流体与固体表面之间的热量传递,传导是指通过固体材料的热传导来实现热量传递,辐射是指由于温度差引起的热辐射。

在换热器设计中,通常会根据具体情况选择合适的热传递机制。

3. 常见的换热器类型3.1 管壳式换热器管壳式换热器是一种常见的换热器类型,它由一个壳体和多个管束组成。

介质1通过壳体外部流动,介质2则通过管束内部流动。

热量通过管壁传递,从而实现介质1和介质2之间的热量交换。

管壳式换热器具有较大的热交换面积,适用于处理大流量和高温度差的情况。

3.2 板式换热器板式换热器是一种将多个金属板堆叠在一起形成的换热器。

介质1和介质2分别通过相邻的板间流动,热量通过板之间的传导实现热量传递。

板式换热器具有紧凑的结构和较高的热交换效率,适用于处理低流量和小温度差的情况。

3.3 管束式换热器管束式换热器由多个管束组成,每个管束内部流动的介质可以与其他管束中的介质进行热量交换。

管束式换热器适用于多个介质之间需要进行热量交换的情况。

3.4 其他类型的换热器除了上述常见的换热器类型,还有许多其他类型的换热器,如螺旋板式换热器、管栅板式换热器等。

根据具体的应用场景和要求,可以选择合适的换热器类型。

4. 换热器设计过程换热器设计的过程通常可以分为以下几个步骤:4.1 确定热量传递要求首先要确定换热器需要传递的热量,包括热负荷和传热表面积等参数。

换热器设计说明书

换热器设计说明书
7
这次换热器的课程设计从设计上来看,我设计的换热器基本符合工业上用的换热器标准,换热器多适用于烟道内,结构大致由换热管和换热箱组成。包括由多根换热管两端分别插入上管板和下管板组成的管束,换热管中为空气流道,管束的多个换热管间为烟气流道,管束通过连接集合箱使空气依次从多组管束的换热管中流过。我设计的烟气温度是620 ,比实际气体要低,所以各种参数的选择与实际情况有些差别。
。空气出口Biblioteka 缩段的出口圆截面积ƒ3为:,
,又知出口收缩角 查《有色冶金炉设计手册》附录六得渐缩局部阻力系数为:
查阅相关表格可知:换热管入口的局部阻力系数 ,换热管出口 ,空气在空气室内转180°的局部阻力系数 ,换热器空气入口与出口的温度补偿系数按下式计算:
换热器内空气侧阻力系数为:
空气侧形阻压按公式计算为:
εh.g=εCO2+βεH2O=0.086+1.08×0.059=0.150
εh.w=εCO2+βεH2O=0.078+1.08×0.066=0.149
因此,系统的辐射率为:
烟气对管群的辐射传热系数为αh.f
则烟气侧传热系数αh为:
αh=αh,c+αh,r=38.4+6.8=45.2
解得:αh=45.2W/(m2.℃)
烟道断面宽度B=1.392m。则在其宽度上排列的换热管列数为:
m= = =10列
顺烟气流向排列M排,则 (排)
图2-1一个行程管群排列图
3
在换热器热计算中,假定换热器无热损失,两流体在换热器中无流量损失,无相变,比热容不变,仅有显热变化。
(1)有效换热量Q
所谓有效换热量是指空气从20℃被加热到350℃从烟气所吸收的热量。由于相应温度下空气的比热容分别为 和 则有效换热量为:

(完整word版)换热器毕业设计说明书

(完整word版)换热器毕业设计说明书

摘要换热器是化工生产过程中的重要设备,它能够实现介质之间热量交换。

广泛应用于石油、化工、制药、食品、轻工、机械等领域.U型管式换热器是换热器的一种,它只有一个管板,结构简单,密封面少,且U形换热管可自由伸缩,不会产生温差应力,因此可用于高温高压的场合。

一般高压、高温、有腐蚀介质走管程,这样可以减少高压空间,并能减少热量损失,节约材料,降低成本。

甲烷化换热器,是合成氨生产中的重要设备之一,它能将27℃的H2N2混合气升温至274℃,同时将339℃的H2N2精制气降温至90℃。

甲烷化换热器一般选用U型管换热器,它由一台Ⅰ型甲烷化换热器与一台Ⅱ型甲烷化换热器连接组成。

其中Ⅰ型甲烷化换热器将27℃的H2N2混合气升温至150℃,同时将215℃的H2N2精制气降温至90℃;Ⅱ型甲烷化换热器能将150℃的H2N2混合气升温至274℃,同时将339℃的H2N2精制气降温至215℃。

本次设计主要根据GB150《钢制压力容器》及GB151《管壳式换热器》对设备的主要受压元件进行了设计及强度计算,又结合HG/T20615《钢制管法兰》、JB/T 4712《容器支座》等其它压力容器相关标准,对其它各部件进行设计,最终完成了Ⅱ型甲烷化换热器的设计。

关键词:换热器;甲烷化换热器AbstractHeat exchanger is important in the process of chemical production equipment, which can be achieved between the heat exchange media。

Widely used in petroleum, chemical,pharmaceutical, food, light industry, machinery and other fields。

U—tube heat exchanger is a heat exchanger, it has only one tube plate, simple structure, less sealing surface, and the U—shaped tubes are free to stretch, no thermal stress, it can be used for high temperature and pressure of the occasion . General high—pressure, high temperature, corrosive media, take control process, thus reducing the pressure of space,and can reduce heat loss and saving materials and reduce costs。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《化工原理》课程设计浮头式列管换热器说明书设计者:曾凡岐班级:12生物工程2学号:G1245222日期:2014年7月4日--2014年7月15日指导教师:林静雯设计成绩:日期:设计任务书1.设计题目:浮头式列管式换热器2.设计原始数据:(1)油品处理能力为5000kg/h;进口温度:140℃;出口温度:40℃,压力为0.3mPa。

(2)冷却水入口温度27℃,出口温度37℃,压力,压力为0.4mPa。

3.设计要求:设计能完成上述任务的列管(管壳)式换热器。

(1)工艺设计:确定设备的主要工艺尺寸,如:管径、管长、管子数目、管程数目等,计算K0。

(2)结构设计:确定管板、壳体、封头的结构和尺寸;确定连接方式、管板的列管的排列方式、管法兰、接管法兰、接管等组件的结构。

(3)绘制列管式换热器的工艺条件图及编写课程设计说明书。

4.设计时间:2014年6月30日------2014年7月06日一、确定工艺方案1、选择换热器的类型两流体温的变化情况:热流体进口温度140℃出口温度℃;冷流体进口温度27℃,出口温度为37℃。

本设计从列管式换热器中选择:列管式换热器又称管壳式换热器,在化工生产中被广泛使用。

它的结构简单、坚固、制造较容易,处理量大,适应性能,操作弹性较大,尤其在高温、高压和大型装置中使用更为普遍。

列管式换热器主要有以下几种:(1)固定管板式的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。

一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

(2)浮头式换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。

其优点是:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

(3)U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。

管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。

其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。

优点是结构简单,质量轻,适用于高温高压条件。

本设计的物料为油品,物料要从140℃降到40℃,这还要考虑到热胀冷缩的问题,一般的列管换热器,因为没有伸缩性能,容易损坏设备。

用浮头式列管换热器这个问题可以很好的解决,同时浮头式列管换热器还有:清洗方便,管束可以抽出,清洗管壳、管程;介质间温差不受限值;可在较高的温度和压力下工作,一般温度≤450℃,压力≤6.4MPa ;可用于结垢比较严重的场合;可用于管程易腐蚀的场合等优点。

因此初步选定本设计的换热器类型为浮头式列管换热器。

2、管程安排管壳程选择条件:(1)不洁净或易结垢的液体宜在管程,因管内清洗方便,但U形管式的不宜走管程;(2)腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀;(3)压力高的流体宜在管内,以免壳体承受压力;(4)饱和蒸汽宜走壳程,饱和蒸汽比较清洁,而且冷凝液容易出;(5)被冷却的流体宜走壳程,便于散热;(6)若两流体温差大,对于刚性结构的换热器,宜将给热系数大的流体通入壳程,以减小热应力;(7)流量小而粘度大的流体一般以壳程为宜,因在壳程100>Re 即可达到湍流。

但这不是绝对的,如果流动阻力损失允许,将这种流体通入管内并采用多管程结构,反而会得到更高的给热系数。

由于油品温差变化较大,而冷却水变化较小,油品走壳程可以通过换热器外壳散掉一部分热量,又综合上面提到的压力高的流体宜在管内,以免壳体承受压力,所以本设计采取水走管程油品走壳程的设计方案。

二、确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。

故壳程油品的定性温度为:T=90240140=+℃油品在90℃下的有关物性数据如下:密度 ρo=825 kg/m3定压比热容 cpo=2.22kJ/(kg ·℃)导热系数 λo=0.140 W/(m ·℃)粘度 μo=0.000715 Pa ·s管程流体的定性温度为t=3222737=+℃ 被加热物品水在32℃下的物性数据:密度 ρ1=994.3kg/m3定压比热容 cp 1=4.24 kJ/(kg ·℃)导热系数 λ1=0.618 W/(m ·℃)粘度 μ1=0.000818 Pa ·s三、热量和物料的衡算1.热量衡算(1)Q 1=11t c m po ∆其中:m 1 :油品的处理能力, kg/h ;C p0: 油品定压比热容, kJ/(kg ·℃);1t ∆:油体的进出口温度差, ℃;将已知数据代入得:Q 1=5000×3.297×(140-40)=1110000kJ/h =308.33kw(2)平均传热温差先按照纯逆流计算可用公式: t t tt t m ∆∆∆∆∆-=2121ln℃;:平均传热温差,t m ∆℃;:冷却水进出口温差,2t ∆ ℃;:油品进出口温差,1t ∆m t ∆=K 5.43274037140ln )2740()37140(=-----(3)传热面积 由于壳程气体的压力较高,故可选取较大的K 值。

假设K=250W/(㎡k)则估算的传热面积为 Ap=23135.285.432501033.308m t K Q m =⨯⨯=∆ 其中:;:油品热流量,W Q 1);/(2K m W K ⋅:估计的总传热系数,:平均传热温差,℃;t m ∆2.物料衡算 选用公式t c Q q p m ∆=11其中 :;:油品热流量,W Q 1;:冷却水定压比热容,)*/(1C kg kj c p ︒℃;:冷却水进出口温差,t ∆ 代入: q m =ipi t c Q ∆1=h kg s kg /26179/27.7101024.41033.30833==⨯⨯⨯四、浮头式换热器主要工艺尺寸计算1.管根数的计算选用Φ25×2.5较高级冷拔传热管(碳钢),取管内流速u 1=1.3m/s 。

可依据传热管内径和流速确定单程传热管数。

Ns=u d q i m 2143600πρ 其中:V:流体流速,m /s ;d:管内径,mm ;本设计选取ф25×2.5 mmu :管内流速,m /s ;本设计选取u=1 m /sρ1:冷却水密度,kg /m 3;本设计选取994.3kg /m 3 将数据代入得:183.102.0785.0)3.9943600/(26179436002211=⨯⨯⨯=u d q i πρ2.管长度的计算按单程管计算,所需的传热管长度为 L=s o pn d A π其中:Ap :传热面积,㎡;d 0 :管的内径,m ;n s :管的根数,个;代入数据可得:L=m n d A s o p2018025.014.335.28≈⨯⨯=π按单程管设计,传热管过长,宜采用多管程结构。

根据本设计实际情况,采用标准设计,现取传热管长l=6m ,则该换热器的管程数为 Np=4620≈=l L 传热管总根数 Nt=18×4=72 3.壳层计算冷流体温升热流体温降=两流体最初温差冷流体温升=--=--==12211112),(t t T T R t T t t P R P f ψ R=10273740140=-- P=0885.027*******=-- 按双壳程,四管程结构,查下图得96.0=∆t ε平均传热温差 41.7643.50.96=⨯=∆=∆∆塑m t m t t ε℃由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取双壳程合适。

4.传热管排列和分程方法排列方式:正三角形、正方形直列和错列排列,见下图。

采用正方形排列法取管心距t=1.25d 0,则 t=1.25×25=31.25≈32㎜隔板中心到离其最.近一排管中心距离计算S=t/2+6=32/2+6=22㎜各程相邻管的管心距为44㎜。

管数的分成方法,每程各有传热管18根。

5.壳体内径 采用多管程结构,壳体内径可按下式估算。

取管板利用率η=0.75 ,则壳体内径为 D=1.05t η/T N其中:t:管心距,mm;N T :管根数,个;代入可得:D=1.05t mm N T 32957.0/723205.1/=⨯=η按卷制壳体的进级档,可取D=400mm6.折流板安装折流挡板的目的是为提高壳程对流传热系数,为取得良好的效果,挡板的形状和间距必须适当。

对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。

由图2-2可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。

挡板的间距对壳体的流动亦有重要的影响。

间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。

一般取挡板间距为壳体内径的0.2~1.0倍。

a.切除过少b.切除适当c.切除过多采用弓形折流板,去弓形之流板圆缺高度为壳体半径的25%,则切去的圆缺高度为H=0.25×200=100m ,故可取h=100mm 取折流板间距B=150mm折流板数目N B =39115060001=-=-折流板间距传热管长 折流板圆缺面水平装配, 7.接管壳程流体进出口接管:取接管内气体流速为u 1=1m/s ,则接管内径为046.0114.3)8253600/(5000436004D 1001q=⨯⨯⨯==u πρ其中: ;:油品的流量,kg/h 0q;:管内油品流速,s m u /1 圆整后可取管内径为50mm 。

管程流体进出口接管:取接管内液体流速u 2=2m/s ,则接管内径为068.0214.3)3.9943600/(2617942=⨯⨯⨯=D圆整后去管内径为70mm五、传热面面积的核算1.壳程表面传热系数 用下式计算。

14.03155.0010)(Pr Re 36.0wed μμλα= (1)当量直径,依下式得e d =m d d t oo 02.0]423[422=-ππ ;:管心距,m t d 0:管径,m ; (2)壳程流通截面积,依下式得013.0)32251(150400)1(=-⨯=-=t d BD s o o;:壳程流通截面积,2m s ;:折流板间距,m B;:壳体内径,m D;:传热管外径,m d 0;:管心距,m t(3) 壳程流体流速及其雷诺数分别为流速计算su q 000ρ=;:壳程流体流速,s m u /0 ;:油品体积,30m q ;:壳程流通截面积,20m s代入 : s m u o /13.0013.0)8253600/(5000=⨯=雷诺数计算 μρ0Re u d =其中:;:当量直径,m d 0 ;:管外油品流速,s m u /0;℃的密度,:油品在3/90m kg ρ ;℃的粘度,:油品在s P ⋅a 900μ代入: 300010715.082513.002.0Re 3=⨯⨯⨯=-o(4)普朗特数计算λμ0Pr c p =;℃:油品的定压比热容,)/(0⋅kg kj cp;℃的粘度,:油品在s P ⋅a 900μ ;℃℃的导热系数,:油品在)/(900⋅m W λ 34.1114.0000715.01022.2Pr 30=⨯⨯=粘度校正 1)(14.0≈wμμK m w o ⋅=⨯⨯⨯=23155.0/46334.11300002.014.036.0α (2)管内表面传热系数 按下式。

相关文档
最新文档