【完整升级版】北师大版七年级数学下册《第一章整式》教案

合集下载

北师大版七年级数学下册1.1《整式》教案

北师大版七年级数学下册1.1《整式》教案

七年级数学教案——《1.1 整式》新课程改革的推行,本着以人为本的指导思想,突出人的终身发展。

就人的培养目标而言,着重于培养会学习、善思考、能创造的新型人才,以适应我国社会多方面发展的需要及人的发展的需要。

这就要求我们必须改变过去那种重知识的传授、以学生获取知识为目的的培养目标的旧观念。

而新的教学目的的制定,确立了课堂教学必须多用启发式、讨论式、合作式等形式多样的教学方式来进行。

因此,对于学生来说,也要改变过去那种只是被动接受的学习方式,而是要自主参与整个过程,主动地去获取新的知识,更重要的是要学会获取知识的方法。

在这一点上,我们有必要、也有责任对学生作出指导。

下面以《整式》为例,尝试一下新教法,并简要说明本人在这里的用意与体会,欢迎各位领导和同事评议。

一、教学目标知识目标:1、在现实情境中进一步理解用字母表示数的意义,发展符号感。

2、了解整式产生的背景和整式的概念,能求出整式的次数、单项式的系数、多项式的项的系数和次数。

3、初步培养学生的观察——分析和归纳——概括能力,使学生初步认识特殊与一般的辩证关系.能力目标:1、培养学生的自学能力。

2、培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神。

情感目标:1、培养学生的探索精神;2、培养学生的爱国主义热情。

3、在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

二、教学重点:1、单项式的概念,系数和次数。

2、基本理解多项式的概念和正确确定多项式的次数和项数。

三、教学难点:1、系数是负数或分数时的情形。

2、多项式的次数和项的次数混淆。

四、教法:新的课堂教学采用“情境—问题—探究—反思—提高”,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本课主要的教法为:学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、主动发展。

新北师大版七年级数学下册第一章教案

新北师大版七年级数学下册第一章教案

第一章:整式的运算一、知识定位(两个板块)幂的有关运算 整式的乘除运算 二、设计思路 整章的教学目标 设计思路 本章突出几点 三、各节的具体分析 .1.1同底数幂的乘法教学目标知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算过程与方法:经历探索同底数幂乘法运算性质的过程,并从同底数幂乘法法则的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力情感态度与价值观:通过同底数幂乘法法则的推导和应用,使学生初步理解“特殊——一般——特殊”的认知规律和辨证唯物主义思想,体味科学思想方法,接受数学文化的熏陶,激发学生探索创新精神。

教学重点:幂的运算性质.教学难点:幂的运算性质.教学方法:尝试法,讨论法,归纳法。

教学准备:课堂教学过程设计一、运用实例 导入新课引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题? 要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法.(写出课题:第一章 整式的乘除)本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:1.乘方的意义:求n 个相同因数a 的积的运算叫乘方,即na n a a a a =⋅⋅⋅个,其中a 叫底数,n 叫指数,n a (乘方的结果)叫幂。

(同底数幂的乘法)在此我们先复习乘方、幂的意义.二、复习提问2.指出下列各式的底数与指数:(1)43;(2)3a ;(3)2()b a +;(4)32-)(;(5)32- 其中,32-)(与32-的含义是否相同?结果是否相等?42-)(与42-呢? 三、讲授新课1.利用乘方的意义,提问学生,引出法则计算231010⨯解:231010⨯=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=5102.引导学生建立幂的运算法则将上题中的底数改为a ,则有23a a ⋅=(aaa)·(aa)=aaaaa=5a即23a a ⋅235a +==a用字母m ,n 表示正整数,则有即n m n m a a a +=⋅3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么?(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.四、应用举例 变式练习例1 计算:(1)471010⨯; (2)52x x ⋅解:(1)11474710101010==⨯+; (2) 75252x x x x ==⋅+提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.例2 计算:(1)62a a ⋅- (2)3)()(x x -⋅- (3)1+⋅m m y y解:(1) 8626262)(a a a a a a -=-=⋅-=⋅-+;(2) 3)()(x x -⋅-=4431)()x -x x =-=+( (3) 1211++++==⋅m m m m m y y y y师生共同解答,教师板演,并提醒学生注意:(1)中22)a a --与(的差别;(3)中的指数有字母,计算方法与数字相同,计算后指数要合并同类项.(2)中44)(x x =-学生如不理解,可先引导学生回忆学过的有理数的乘方.课堂练习计算:(1)651010⋅; (2)37a a ⋅; (3)23y y ⋅;(4)b b ⋅5; (5)66a a ⋅; (6)55x x ⋅. 对于第(2)小题,要指出y 的指数是1,不能忽略.五、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.2a -的底数a ,不是-a .计算22a a ⋅-的结果422)(a a a -=⋅-,而不是422)(a a =-+.5.若底数是多项式时,要把底数看成一个整体进行计算板书设计:1.1同底数幂的乘法底数不变 指数相加n m n m a a a +=⋅教学反思:1.2幂的乘方与积的乘方(1)教学目标:1.经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

【最新】北师大版七年级数学下册第一章《整式》学案

【最新】北师大版七年级数学下册第一章《整式》学案

新北师大版七年级数学下册第一章《整式》学案新知识记 1.整式及有关知识(1)定义:单项式和多项式统称整式. (2)单项式①定义:数字与字母的乘积.②次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.③系数:单项式中的数字因数即为单项式的系数. (3)多项式①定义:几个单项式的和叫做多项式. ②次数:一个多项式中,次数最高的项的次数叫做这个多项式的次数. ③项数:一个多项式中有几个单项式就有几项. 典例精析例1:下列整式中,次数与项数相同的有哪些?①7 ②-x ③1-s 2+3t ④πx +1 ⑤53a 2b -2bc +3 ⑥6xy【点拨】先分别找出每小题的次数与项数,再判断它们是否一致. ①单项式,次数是0. ②单项式,次数是1(一致.) ③多项式,二次三项式. ④多项式,一次二项式.注意:πx 是第一项,是一次的.π只能出现在某一个单项式或项的系数中. ⑤多项式,三次三项式(一致). ⑥单项式,次数是2. 解:次数与项数相同的②⑤. 例2 :若12n axy+-是关于x 、y 的单项式, 且系数为-6,次数为3, 则a =________,m =________.【点拨】 “关于x 、y 的单项式”说明只有x 、y 才是单项式中的字母,a 只是系数的一课前热身 前课之鉴1.某校学生总数为x,其中女生人数占总数的25,女生人数为25x ; 2.一个长方体的底面是边长为a 的正方形,高是h ,表面积是 224a ah +课内过关 练习精选3. 下列说法正确的是( D )A.单项式A 的系数是0B.单项式a 的次数是0C.a1是单项式 D.1是单项式 4. 下列代数式中整式有( B )x 1, 2x +y , 31a 2b , πy x -, xy 45, 0.5, a A.4个B.5个C.6D.7个5.多项式a 2-21ab 2-b 2有__3___项,其中-21ab 2的次数是___3__.6.小明家去年结余6000元,估计今年可结余10000元,并且今年收入比去年高15%,支出比去年低10%.(1)若去年支出x 元,求去年收入多少元?今年的收入和支出各多少? (2)若今年支出x 元,则今年收入多少元,去年的收入和支出各多少? 解:(1)去年收入(6000+x)元,今年收入(1+15%)(6000+x)元,今年支出0.9x 元; (2) 今年收入(10000+x)元, 去年的收入10000+x 115%+元,去年支出110%x-元课外闯关 能力拓展7.下面说法中正确的是( B )A.一个代数式不是单项式,就是多项式B.单项式是整式C.整式是单项式D.以上说法都不对8. 下列说法错误的是( D )A .单项式a 的系数和次数都是1 B.数字0也是单项式 C .23xy-是系数为23-的二次单项式 D.2x x +是多项式9.若-3axy m 是关于x 、y 的单项式,且系数为-6,次数为4,则a =___2_____,m =__3_ . 10.有一个多项式876253 (x)x y x y x y -+-+,按照此规律些写下去,则这个多项式的第八项是 7xy - . 11.已知多项式222312akab b a +-+-不含ab 的项,求113k-()的值。

数学初一下北师大版第一章整式的运算教案

数学初一下北师大版第一章整式的运算教案

数学初一下北师大版第一章整式的运算教案●课时安排17课时第一课时●课题§1.1整式●教学目标(一)教学知识点1.在现实情景中进一步理解用字母表示数的意义,进展符号感.2.了解整式产生的背景和整式的概念,能求出整式的次数.〔二〕能力训练要求1.能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探究过程,培养符号感.2.进一步培养学生认识特别与一般的辩证关系.〔三〕情感与价值观通过丰富有味的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,进展“用数学”的信心.●教学重点单项式的系数、次数,多项式的项数、次数等概念.●教学难点对整式有关概念的理解.●教学方法讲授——自主探究相结合.通过学生自主探究现实情景中用字母表示数的问题,认识代数式的作用.在此基础上,通过教师讲解,掌握整式的有关概念.●教具预备1.教师所用三角板.小黑板●教学过程Ⅰ.创设问题情景,引入新课[师]在七年级上册中,我们差不多学习了用字母表示数,代数式等内容,这节课我们进一步认识代数式的表示作用.例如:特别多小城镇里都有水塔,水塔能够用来储水,维持水压,每天水都不停地流进和流出水塔.一般地,白天,当人们从事生产活动时,流出水塔的水比流进水塔的水多;夜晚,当人们休息时,流进水塔的水比流出的水多.〔1〕假如水以每小时a升的速度流进水塔,那么4小时后,流进水塔多少升水,假设a=20000升,计算一下结果;〔2〕假如水以每小时a升的速度流进水塔,同时又以每小时b升的速度流出水塔,那么4小时后,水塔里的储水量变化了多少?[生]〔1〕4小时后,流进水塔的水为4a升;当a=20000升时,4小时后,流进水塔的水为:4a=4×20000=80000升;〔2〕4小时后,水塔里的储水量变化了(4a-4b)升.[师]在上述问题中列出的代数式4a,4a-4b基本上整式,这节课我们就来学习整式的概念.Ⅱ.在实际情景中,明确整式的有关概念 出示投影片〔§1.1A):问题串小明房间的窗户如图1-1所示,其中上方的装饰物由两个四分之一圆和一个半圆组成〔它们的半径相同〕.图1-1〔1〕装饰物所占的面积是多少?〔2〕窗户中能射进阳光的部分的面积是多少?〔窗框面积忽略不计〕 〔3〕一个塑料三角尺如图1-2所示,阴影部分所占的面积是;图1-2〔4〕某校学生总数为x,其中男生人数占总数的53,男生人数为;〔5〕一个长方体的底面是边长为a 的正方形,高是h ,体积是. [师生共析]〔1〕装饰物是由两个四分之一圆和一个半圆组成,它们的半径相同,由图中的条件可知半径为4b,因此装饰物所占的面积恰好是半径为4b 的一个圆的面积即216b π;(2)窗户中能射进阳光的部分的面积应该是窗户的面积与装饰物所占面积的差即ab -216b π;(3)塑料三角尺阴影部分所占的面积是21ab -21mn ; (4)男生人数为53x ;(5)那个长方体的体积是a 2h .[师]我们观看上面列出的几个代数式能够发明:4a ,216b π,53x ,a 2h 等,基本上数字与字母的乘积.例如4a 是4与a 的积,216b π是16π与b 2的积,53x 是53与x 的积,a 2h 是1与a 2h 的积.像如此的代数式我们把它们都叫做单项式〔monomial).其中的数字因式如“4”“16π”“53”“1”是单项式的系数.一个单项式中,所有字母的指数和叫做那个单项式的次数.哪位同学能给我分析一下上面几个单项式的次数呢? [生]4a 的次数是1次;16πb 2的次数是2次;53x 的次数是1次;a 2h 的次数是3次. [师]特别好!你能给大伙解释一下a 2h 那个单项式的次数什么原因是3次吗?[生]这是因为a 2h 那个单项式中含字母a 和h .而a 的指数是2,h 的指数是1,所有字母的指数和所以是1+2=3喽.[师]这位同学特别认真,h 的指数是1,这一点特别容易被部分同学误认为是0.h 的指数应是1,只只是作为指数时省略不写,你还能回忆起什么时候“1”能够省略不写吗?[生]“1”作为系数时,“1”作为一个字母的指数时,“1”作为分母时. [师]同学们总结的特别好.[生]单独的一个数或一个字母是单项式吗?[师]是.单独的一个字母a ,我们能够看成1·a ,因此单独的一个字母系数是1,次数也是1,单独的一个非零的数的次数是0.[生]这确实是说,我们学过的所有有理数基本上单项式. [师]是的.[生]代数式4a -4b ,ab -16πb 2,21ab -21mn ,它们是什么样的式子呢? [师]代数式4a -4b 是单项式4a ,-4b 的和,像如此的几个单项式的和所形成的代数式,我们把它叫做多项式.请问:ab -16πb 2,21ab -21mn 是哪些单项式的和呢? [生]ab -16πb 2那个多项式是ab 与-16πb 2的和;21ab -21mn 是21ab 与-21mn 的和. [师]因此我们说ab -16πb 2那个多项式有两项,分别是ab ,-16πb 2.31x 2y +2y -1有几项呢?[生]31x 2y +2y -1有三项,分别是31x 2y ,2y ,-1. [师]每一项的次数是多少呢?[生]31x 2y 次数是3次,2y 的次数是1次,-1的次数是0.[师]在一个多项式中,次数最高项的次数,叫做那个多项式的次数.31x 2y 这一项在31x 2y +2y -1中次数最高,因此我们把31x 2y 的次数3作为多项式31x 2y +2y -1的次数,即31x 2y +2y -1是一个三次三项式.那么ab -16πb 2,21ab -21mn 是几次几项式呢? [生]它们基本上二次二项式.[师]我们刚才讨论了单项式和多项式,而且还明白了单项式的系数、次数;多项式的项数、次数.我们也就明白了整式,因为单项式和多项式统称为整式.研究单项式、多项式确实是在研究整式.在研究单项式和多项式的概念时,我们注意到在数字和字母之间只出现了乘法、加法、减法〔可转化为加法〕的运算,没有出现2÷x 即x 2,或x ÷2即2x 如此的式子,那么2x ,x2是整式吗?同学们不妨讨论一下.[师生共析]2x 能够写成21·x ,因此2x 是单项式,而x 2是数字与字母的商,因此不是单项式,更不是整式,因此整式最显著的特征是字母不能作分母.Ⅲ.议一议出示投影片〔§1.1B)小红和小兰房间窗户的装饰物如图1-3所示,它们分别由两个四分之一圆和四个半圆组成〔半径分别相同〕.图1-3〔1〕窗户中能射进阳光的部分的面积分别是多少?〔窗框面积忽略不计〕 〔2〕你能指出其中的单项式或多项式吗?它们的次数分别是多少?[生]左图小红房间的装饰物所占的面积相当于半径为2b 的圆的面积的一半,即8πb 2.窗户中能射进阳光的部分的面积为ab -8πb 2. 右图小兰房间的装饰物所占面积是半径为8b 的两个小圆的面积,即2×64πb 2=32πb 2.窗户中能射进阳光的部分的面积是ab -32πb 2. [生]ab -8πb 2和ab -32πb 2它们基本上多项式,且次数基本上2次. Ⅳ.练一练1.随堂练习〔课本P 4〕以下整式哪些是单项式,哪些是多项式?它们的次数分别是多少?a ,-31x 2y ,2x -1,x 2+xy +y 2解:单项式:a ,-31x 2y ;次数分别是1次和3次. 多项式:2x -1,x 2+xy +y 2;次数分别是1次和2次. 2.补充练习〔1〕以下说法正确的选项是〔〕 A.单项式A 的系数是0 B.单项式a 的次数是0C.a1是单项式 D.1是单项式〔2〕关于2×103·a ,以下说法中正确的选项是〔〕 A.系数是2,次数是1 B.系数是2,次数是4C.系数是2×103,次数是0D.系数是2×103,次数是1〔3〕出租汽车行驶3千米以内〔包括3千米〕的车费是7元,以后每行驶1千米,再加1元.假如某人坐出租汽车行驶了m 千米〔m 是整数,且m ≥3),那么车费是〔〕A.(7+m)元B.〔4+m)元C.〔7-m)元D.〔3+m)元〔4〕以下各式中,哪些是单项式?哪些是多项式?哪些不是整式?-2a 2,32xy ,51(m -n ),0,y x 4,1+3b ,x 2+x 1+1,x (5)写出系数是21,含有字母a 、b 、c 的五次单项式. 解:〔1〕D 〔2〕D 〔3〕B 〔4〕单项式:-2a 2,32xy ,0,x ; 多项式:51(m -n ),1+3b ; 不是整式:y x 4,x 2+x1+1 (5)21a 3bc ,21a 2b 2c ,21a 2bc 2,21ab 2c 2,21ab 3c ,21abc 3.Ⅵ.课时小结这节课我们要紧学习了整式的概念,特别整式中单项式和多项式的次数.在现实情景中进一步理解了用字母表示数的意义,进展符号感.Ⅶ.课后作业课本P5习题1.1问题解决1 其它题做为课外作业 Ⅷ.活动与探究多项式3x n -2-2x n -x n +1是四次三项式,那么单项式(2-n )x n -1y n +1的系数、次数分别是多少?[过程]依照多项式次数的定义,能够确定n 的值.因为n +1,n ,n -2相比较,n +1最大,因此n +1=4,n =3.把n =3代入(2-n )x n -1·y n +1中,单项式的系数、次数都能够确定.[结果]依照题意,得n +1=4,n =3;把n =3代入(2-n )x n -1y n +1中得单项式-x 2y 4.因此-x 2y 4的系数为-1,次数为6次.●板书设计§1.1整式1.单项式:数和字母的积的代数式为单项式 ①单项式的系数:单项式中的数字因数;②单项式的次数:单项式中所有字母的指数和;③单独的一个数和一个字母也是单项式;④单独的一个非零数次数是0.2.多项式:几个单项式的和在一个多项式中,次数最高项的次数叫做多项式的次数.3.课堂练习:〔由学生口答〕第二课时§1.2.1整式的加减〔一〕●教学目标〔一〕教学知识点1.经历用字母表示数量关系的过程,进展符号感.2.会进行整式加减运算,并能说明其中的算理.〔二〕能力训练要求1.在进行整式加减运算的过程中,进展学生有条理的思考及语言表达能力.2.在实际情景中,进一步进展学生的符号感.〔三〕情感与价值观要求1.在解决问题的过程中了解数学的价值,进展“用数学”的信心.2.在解决问题的过程中,获得成就感,培养学习数学的兴趣.●教学重点1.经历字母表示数的过程,进展符号感.2.会进行整式加减运算,并能说明其中的算理.●教学难点灵活地列出算式和去括号.●教学方法活动——讨论法教师利用活动游戏或依照情况创设情景,鼓舞学生通过讨论发明数量关系,运用符号进行表示,再利用所学的合并同类项、去括号的法那么验证自己的发明,从而理解整式加减运算的算理.●教具预备小黑板●教学过程Ⅰ.提出问题,引入新课[师]下面我们先来做一个游戏:〔1〕任意写一个两位数;〔2〕交换那个两位数的十位数字和个位数字,又得到一个数;〔3〕求那个两位数的和.[生]我取了一个两位数12;交换那个两位数的十位数字和个位数字,又得到数21;求得这两个数的和是33.我又取了一个两位数29;交换个位和十位上的数字得到92;求得这两个数的和是121.最后,我取了一个两位数31;交换个位和十位上的数字得到13;求得这两个数的和是44.观看能够发明这些和基本上11的倍数.例如33是11的3倍,121是11的11倍,44是11的4倍.[师]那个规律是不是对任意的两位数都成立呢?什么原因?〔鼓舞同伴之间互相讨论,相互启发〕[生]关于任意一个两位数,我们能够用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么那个两位数能够表示为:10a+b.交换那个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a.这两个数相加:〔10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b依照运算的结果,可知一个两位数,交换它十位和个位上数字,得到一个新两位数,这两数的和是11的倍数.[师]特别棒!〔10a+b)+(10b+a)是什么样的运算呢?10a+b与10b+a基本上什么样的代数式?[生]10a+b与10b+a是多项式,也确实是整式,因此(10a+b)+(10b+a)是整式的加法.[师]假如要是求这两个数的差,又如何列出计算的式子呢?[生]〔10a+b)-(10b+a).[师]这确实是整式的减法.你能发明它们的差有何规律吗?[生]〔10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b由此可知,这两个数的差是9的倍数.[师]我们借助于整式的加减法将实际问题中的数量关系用字母表示出来,并发明了其中的规律.在说明(10a+b)+(10b+a)是11的倍数时,每一步的依据的法那么是什么呢?(10a+b)-(10b+a)是9的倍数呢?[生]第一步的依据是去括号法那么;第二步是合并同类项法那么.[师]从上面的例子中能够发明整式的加减法能够帮我们解决实际情景中的问题.因此,我们这节课就来学习整式的加减.Ⅱ.合作讨论新课,学会运算整式的加减1.做一做图1-6两个数相减后,结果有什么规律?那个规律对任意一个三位数都成立吗?什么原因?[师]同学们先来按照上面所示的框图的步骤来讨论一下两个数相减后,结果有什么规律?[生]任取一个三位数,通过上述程序后结果一定是99的倍数.[师]是不是任意的三位数都有如此的规律呢?首先我们先要设出一个任意的三位数.如何设呢?[生]能够设百位、十位、个位上的数字分别为a,b,c,那么那个三位数为100a+10b+c.[师]任意的一个三位数为100a+10b+c,接下来我们按照框图所示的步骤可得:交换百位和个位上的数字就得到一个新数,是什么呢?[生]100c+10b+a.[师]两个数相减,可得到一个算式什么原因呢?[生](100a+10b+c)-(100c+10b+a).[师]什么原因在上面的算式中要加上括号呢?[生]“两个数相减”,而这两个三位数,我们基本上用多项式表示出来的,每一个多项式,它基本上一个整体,因此需加括号.[师]这一点特别重要,如何说明那个差确实是99的倍数呢?[生]化简可得,即(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =(100a -a )+(10b -10b )+(c -100c )=99a -99c也确实是说任意一个三位数,通过上述程序后结果一定是99的倍数. 2.议一议[师]在上面的问题中,涉及到整式的什么运算?说一说你计算的每一步依据?[生]在上面的问题中,我们涉及到整式的加减法.在进行整式的加减时,我们先去括号,再合并同类项.[师]在去括号和合并同类项时应注意什么呢? [生]我们上学期已学习过去括号和合并同类项.去括号时,特别要注意括号前面是“-”号的情况,去掉“-”号和括号时,里面的各项都需要变号;合并同类项时,先判断哪些项是同类项,利用加法结合律和合并同类项的法那么即可完成.3.例题讲解 [例1]计算(1〕2x 2-3x +1与-3x 2+5x -7的和(2〕(-x 2+3xy -21y 2)-(-21x 2+4xy -23y 2)(如此的题目,我们差不多训练过,因此可让学生自己完成,叫两个同学板演,同时教师深入到学生之中进行观看,关于发明的问题,能够通过让学生表达算理即去括号法那么和合并同类项法那么,自纠自改〕解:(1)(2x 2-3x +1)+(-3x 2+5x -7) =2x 2-3x +1-3x 2+5x -7 =2x 2-3x 2-3x +5x +1-7 =-x 2+2x -6(2)(-x 2+3xy -21y 2)-(-21x 2+4xy -23y 2) =-x 2+3xy -21y 2+21x 2-4xy +23y 2=-x 2+21x 2+3xy -4xy -21y 2+23y 2=-21x 2-xy +y 2注:1°列算式时,每一个多项式表示的是一个整体,因此必须加括号. 2°在第(2〕小题中,去括号要注意符号问题.[例2](1〕A=a 2+b 2-c 2,B=-4a 2+2b 2+3c 2,且A +B +C =0,求C . (2〕xy =-2,x +y =3,求代数式(3xy +10y )+[5x -(2xy +2y -3x )]的值. 分析:(1〕可用逆运算来代入求解;(2〕求代数式的值,一般是先化简,再求值,那个地方应注意整体代入. 解:(1〕依照A +B +C =0,可得C =-A -B 即C =-(a 2+b 2-c 2)-(-4a 2+2b 2+3c 2) =-a 2-b 2+c 2+4a 2-2b 2-3c 2 =-a 2+4a 2-b 2-2b 2+c 2-3c 2 =3a 2-3b 2-2c 2(2)原式=3xy +10y +[5x -2xy -2y +3x ] =3xy +10y +5x +3x -2xy -2y =3xy -2xy +10y -2y +5x +3x =xy +8x +8y =xy +8(x +y )当xy =-2,x +y =3时原式=xy +8(x +y )=-2+8×3 =-2+24=22. Ⅲ.随堂练习出示投影片(§1.2.1C)1.计算:(1〕(4k 2+7k )+(-k 2+3k -1) (2)(5y +3x -15z 2)-(12y -7x +z 2)2.解以下各题(1)-5ax 2与-4x 2a 的差是;(2)与4x 2+2x +1的差为4x 2;(3)-5xy 2+y 2-3与的和是xy -y 2;(4)A =x 2-x +1,B =x -2,那么2A -3B =; (5)比5a 2-3a +2多32a 2-4的数是. 1.解:(1)原式=4k 2+7k -k 2+3k -1 =4k 2-k 2+7k +3k -1 =3k 2+10k -1(2)原式=5y +3x -15z 2-12y +7x -z 2=5y -12y +3x +7x -15z 2-z 2 =-7y +10x -16z 22.解:(1)-5ax 2-(-4x 2a )=-5ax 2+4ax 2=-ax 2;(2)设所求整式为A ,那么 A -(4x 2+2x +1)=4x 2A =4x 2+4x 2+2x +1=8x 2+2x +1;也可依照:被减式=差+减式,列式求解. (3)(xy -y 2)-(-5xy 2+y 2-3) =xy -y 2+5xy 2-y 2+3 =xy +5xy 2-2y 2+3(4)2A -3B =2(x 2-x +1)-3(x -2) =2x 2-2x +2-3x +6 =2x 2-5x +8(5)设那个数为A ,那么A -(5a 2-3a +2)=32a 2-4 A =(32a 2-4)+(5a 2-3a +2)=317a 2-3a -2注:在上述求解的过程中,可利用逆运算来求解.Ⅳ.课时小结[师]这节课我们学习了整式的加减,你有何收获和体会呢?[生]在实际情景中,利用整式的加减发明了一般规律,使我们认识到学习整式加减的重要性.[生]整式加减运算的步骤是遇到括号先去括号,再合并同类项.[生]在去括号时,特别注意括号前是“-”号的情况.……Ⅴ.课后作业1.课本P 8、习题1.2,第1、2、3题;2.自己设计一个数字游戏,并用整式加减运算说明其中的规律.●板书设计§1.2.1整式的加减(一)【一】做一做,议一议【二】练一练(由学生板演)注:1°括号前是“-”号,去掉“-”号和括号,里面的各项都变号;2°在列算式时,突出括号的整体作用;3°在求解一些整式时,注意用逆运算或方程的思想.●备课资料【一】参考例题[例1]A +B =3x 2-5x +1,A -C =-2x +3x 2-5,当x =2时,求B +C 的值.解:B +C =(A +B )-(A -C )=(3x 2-5x +1)-(-2x +3x 2-5)=3x 2-5x +1+2x -3x 2+5=-3x +6 当x =2时,原式=-3x +6=-3×2+6=0评述:先观看分析到B +C =A +B -A +C =(A +B )-(A -C )是解此题的关键.因此,一定要先观看,再分析.[例2]有理数a 、b 、c 如图1-7所示,化简|a +b |-|c -a |.图1-7解:由得:a <0,b >0,c <0且|a |<|b |,|c |>|a |,因此a +b >0,c -a <0.|a +b |-|c -a |=(a +b )-[-(c -a )]=a +b +c -a =b +c评述:要化简掉绝对值符号,必须判定被绝对值的数的正负,然后由绝对值定义化掉绝对值符号.[例3]y x xy +=2,求代数式yxy x y xy x -+-+-3353的值.解:由yx xy +=2,得xy =2(x +y ) y xy x y xy x -+-+-3353=xyy x xy y x 3)(5)(3++--+ =)(6)()(10)(3y x y x y x y x +++-+-+=)(5)(7y x y x ++-=-57. 评述:此题运用了“整体”代换的思想,把xy 和x +y 分别看作“整体”,添括号在形成“整体”的过程中起了特别重要的作用.[例4]三角形的周长为48,第一边长为3a +2b ,第二边长的2倍比第一边少a -2b +2,求第三边长.解:依照题意,得48-(3a +2b )-21[(3a +2b )-(a -2b +2)]=48-3a -2b -21[3a +2b -a +2b -2]=48-3a -2b -21[2a +4b -2]=48-3a -2b -a -2b +1=49-4a -4b因此第三边的长为49-4a -4b . 评述:先求出第二边,利用等式第二边×21=第一边-(a -2b +2),求得第二边为21[(3a +2b )-(a -2b +2)]再利用三角形的周长即可解出答案.第三课时§1.2.2整式的加减(二)●教学目标(一)教学知识点1.在探究规律的过程中,进一步体会符号表示的意义.2.经历“由特别的例子进行归纳、建立、猜想、用符号表示,并给出证明”这一重要的数学探究过程.3.体会整式加减的必要性,并进一步熟练整式加减运算,并用它来比较不同的算法.(二)能力训练要求1.在进一步体会符号表示的意义的同时,进展符号感.2.在探究过程中进展推理能力和运算能力.(三)情感与价值观要求1.学会与同学合作交流,在合作交流的过程中获益.2.在探究规律的过程中,获得成功的体验,增强学数学的信心.●教学重点1.进一步在探究规律的过程中,进展符号感.2.体会整式加减运算的必要性,熟练掌握整式加减运算.3.经历“由特例归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探究过程.●教学难点利用整式的加减运算,解决简单的实际问题.●教学方法探究——交流法教师让学生在探究规律的过程中,学会交流、合作,并能用整式的加减来解决生活中简单问题.●教具预备小黑板●教学过程Ⅰ.创设问题情景,引入新课让学生看课本回答1.什么原因总是1089?用不同的三位数再做几次,结果基本上1089吗?你能发明其中的缘故吗?图1-8[师]我们来做上面的数字游戏,取满足条件的一个三位数,按图示所给定的程序运算,结果是1089吗?然后用不同的满足条件的三位数再做几次,结果一样吗?请同学们独立完成然后回答.[生]我试了几个数,结果基本上1089.[师]你能解释其中的缘故吗?[生]依照题意,可设个位上的数字是a,十位上的数字是b,百位上的数字那么为(a+2),因此那个三位数为100(a+2)+10b+a.交换百位上的数字与个位上的数字,可得到一个较小的三位数即100a+10b+(a+2).按图示所给定程序,得[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-(a+2)=100a-100a+10b-10b+200+a-a-2=200-2=198 即按照给定的程序的前三步,运算结果都为198,如此,接着程序的后两步可得到1089.也确实是任何一个满足条件的三位数,按照题目给定的顺序,结果总是1089.[师]真棒!我们已学会了用整式的加减运算解释这一实际情景,用整式的加减运算还能解释哪些现象呢?这一节课,我们接着来学习整式的加减运算及它的应用.Ⅱ.探究规律,体会整式运算的必要性下面是用棋子摆成的“小屋子”.摆第1个“小屋子”需要5枚棋子,摆第2个需要枚棋子,摆第3个需要枚棋子.图1-9按照如此的方式接着摆下去.(1)摆第10个如此的“小屋子”需要多少枚棋子?(2)摆第n个如此的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决那个问题吗?与同伴进行交流.(教师教学中要鼓舞学生独立思考的基础上探究出规律.鼓舞学生算法多样化,并可实际操作探究规律)[生]实际操作能够发明摆后面一个“小屋子”,总比它前面一个多用6枚棋子.摆第2个“小屋子”需要(5+6)枚即11枚棋子,摆第3个需要(5+6×2)枚即17枚棋子,……摆第10个如此的“小屋子”需要(5+6×9)枚即59枚棋子.进而能够概括出摆第n 个“小屋子”需用5+6(n -1)=6n -1枚棋子.[师]特别好.这位同学能抓住图形变化的规律.有没有别的方法呢?[生]通过观看还能够发明,摆前几个“小屋子”分别用的棋子数5,11,17,23,从而也概括出规律来,即摆第n 个如此的“小屋子”需要(6n -1)枚棋子.[生]老师,我也有一种方法,将图1-9的“小屋子”拆成上下两部分,上面部分是一个“三角形”(第一个为一个点),下面部分能够看成一个“正方形”,摆第n 个“小屋子”分别需要2n -1和4n 枚棋子(如图1-10).图1-10如此摆第n 个“小屋子”共用的棋子数为(2n -1)+4n =6n -1.[师]特别好!有的同学对数敏感,通过数棋子数发明了规律;有的同学对图形的组成比较敏感,将图分成两部分(上面部分是“三角形”,下面部分是“正方形”)发明了规律.最后都推出第n 个如此的“小屋子”需(6n -1)枚棋子.我相信同学们一定还有其他的方法.下面同学们可相互交流各自的想法,或许你会有新的发明.(教师鼓舞学生充分交流,并引导学生认真倾听他人的想法)Ⅲ.例题讲解[例1]计算:(1)(3a 2b +41ab 2)-(43ab 2+a 2b )(2)7(p 3+p 2-p -1)-2(p 3+p )(3)-(31+m 2n +m 3)-(32-m 2n -m 3)[师]该例题是整式加减的运算,我们该如何进行整式的加减呢?[生]假如遇到有括号,应先去括号,然后再合并同类项.[师]下面我们就请三位同学到黑板上解答.其余同学来对他们的解答作出评价.[生]解:(1)(3a 2b +41ab 2)-(43ab 2+a 2b )=3a 2b +41ab 2-43ab 2-a 2b=2a 2b -21ab 2;(2)7(p 3+p 2-p -1)-2(p 3+p )=7p 3+7p 2-7p -7-2p 3-2p=5p 3+7p 2-9p -7;(3)-(31+m 2n +m 3)-(32-m 2n -m 3)=-31-m 2n -m 3-32+m 2n +m 3=-1[生]这三个同学做得都特别好.特别是括号前是“-”号,容易出现变号问题.但这三个同学步骤清晰,符号处理准确无误.[师]祝贺他们!大伙明白我们学习数的加法运算,除可列算式外,还能够列竖式.整式的加减法可不能够列竖式.Ⅳ.试一试(课本P 11)求多项式2a +3b -5c 与-4a -11b +8c 的和时,能够利用竖式的方法:c b a c b a c b a 382532 8114)+---+--++ 利用这种方法计算以下各题.计算过程中需要注意什么?(1)(5x 2+2x -7)-(6x 2-5x -23)(2)(a 3-b 3)+(2a 3-b 2+b 3)[师]同学们先阅读用竖式求两个整式的和的方法,然后试着回答在计算过程中需要注意什么?[生]列竖式时要注意每个整式中的同类项要对齐.[师]下面我们就用竖式的方法求出上面两个小题.[生]解:(1)列成竖式为:(2)列成竖式为:Ⅴ.练一练(P 10、随堂练习)1.火车站和飞机场都为旅客提供“打包”服务.假如长、宽、高分别为x 、y 、z 米的箱子按如图1-11所示的方式“打包”,至少需要多少米的“打包”带?(其中灰色线为“打包”带)图1-112.某花店一枝黄色康乃馨的价格是x 元,一枝红色玫瑰的价格是y 元,一枝白色百合的价格是z 元,下面这三束鲜花的价格各是多少?这三束鲜花的总价是多少元?图1-12解:1.由图可知:至少需要(2x +4y +6z )米的打包带.2.第(1)束鲜花的价格为(3x +2y +z )元;第(2)束鲜花的价格为(2x +2y +3z )元;第(3)束鲜花的价格为(4x +3y +2z )元.这三束花的总价钱为:(3x +2y +z )+(2x +2y +3z )+(4x +3y +2z )=3x +2y +z +2x +2y +3z +4x +3y +2z =9x +7y +6z (元) Ⅵ.课时小结[师生共同总结]这节课我们要紧学习了如下内容:(1)在探究规律的问题中进一步体会符号表示的意义,进展符号感;(2)经历了“由特例进行归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探究过程,进展了推理能力;(3)体会整式加减运算的必要性,并运用整式加减比较不同的算法.Ⅶ.课后作业课本习题1.3,第1、2题●板书设计§1.2.2整式的加减(二)【一】数字游戏解:设百位数字为a +2,十位数字为b ,个位数字为a ,依照图示程序,得:[100(a +2)+10b +a ]-[100a +10b +(a +2)]=100a +200+10b +a -100a -10b -a -2=200-2=198最后两步程序,得198+891=1089因此满足条件的三位数按图示程序最后总能得到1089.【二】探究规律(投影片§1.2.2B)方法一:第1个共5个棋子;第2个共(5+6)个棋子;第3个共(5+2×6)个棋子;……第n 个共5+6(n -1)个棋子,即(6n -1)个棋子.方法二:由5、11、17……可归纳出第n 个共有(6n -1)个棋子.方法三:将“小屋子”分成两部分,也可推出第n 个“小屋子”共有(2n -1)+4n =(6n -1)个棋子.【三】例题(§1.2.2C)(学生板演)【四】练一练(§1.2.2D)【五】课时小结●备课资料【一】参考练习1.a 2b -(-3ab 2)+(-4a 2b )-2ab 2=;2.(23a 3-32ab 2)+(32ab 2-23a 3)=;3.2x 3-3x 2+5x -1+=-x 2+6x +3;4.-(2x 2+3x -5)=3x 2-2x +1;5.当x =-2时,代数式ax 3+bx -7的值是+5;那么当x =2时,代数式ax 3+bx -7的值是.6.求以下各式的值(1)求当a =-1,b =-3,c =1时,代数式21a 2b -[23a 2b -(3abc -a 2c )-4a 2c ]-3abc 的值;(2)假如|y -3|+(2x -4)2=0,求2x -y 的值.7.A =x 3+x 2+x +1,B =x +x 2,计算(1)A +B (2)B +A (3)A -B(4)B -A8.长方形的一边等于2a +3b ,另一边比它小b -a ,计算长方形的周长.答案:1.ab 2-3a 2b2.03.-2x 3+2x 2+x +44.5x 2+x -45.-196.(1)6(2)17.(1)x 3+2x 2+2x +1(2)x 3+2x 2+2x +1(3)x 3+1(4)-x 3-18.10a +10b第四课时●课题§1.3同底数幂的乘法●教学目标(一)教学知识点1.经历探究同底数幂的乘法运算性质的过程,进一步体会幂的意义.2.了解同底数幂乘法的运算性质,并能解决一些实际问题.(二)能力训练要求1.在进一步体会幂的意义时,进展推理能力和有条理的表达能力.2.学习同底幂乘法的运算性质,提高解决问题的能力.(三)情感与价值观要求在进展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心.●教学重点同底数幂的乘法运算法那么及其应用.●教学难点同底数幂的乘法运算法那么的灵活运用.●教学方法引导启发法教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用.●教具预备小黑板●教学过程Ⅰ.创设问题情景,引入新课[师]同学们还记得“a n ”的意义吗?[生]a n 表示n 个a 相乘,我们把这种运算叫做乘方.乘方的结果叫幂,a 叫做底数,n 是指数.[师]我们回忆了幂的意义后,下面看这一章最开始提出的问题(出示投影片§1.3A): 问题1:光的速度约为3×105千米/秒,太阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?问题2:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?[生]依照距离=速度×时间,可得:地球距离太阳的距离为:3×105×5×102=3×5×(105×102)(千米)比邻星与地球的距离约为:3×105×3×107×4.22=37.98×(105×107)(千米)[师]105×102,105×107如何计算呢?[生]依照幂的意义:105×102= 105)1010101010(个⨯⨯⨯⨯×102)1010(个⨯ =10710101010个⨯⋅⋅⋅⨯⨯⨯。

北师大版七年级数学下册教学设计(含解析):第一章整式的乘除7整式的除法

北师大版七年级数学下册教学设计(含解析):第一章整式的乘除7整式的除法

北师大版七年级数学下册教学设计(含解析):第一章整式的乘除7整式的除法一. 教材分析北师大版七年级数学下册第一章整式的乘除7整式的除法,主要介绍了整式除法的基本概念和运算法则。

本节内容是在学习了整式的乘法的基础上进行的,是对整式乘法的进一步拓展和延伸。

通过本节内容的学习,学生能够掌握整式除法的基本运算方法,并能够运用整式除法解决一些实际问题。

二. 学情分析学生在学习本节内容之前,已经学习了整式的乘法,对于整式的运算已经有了一定的基础。

但是,学生对于整式除法的理解和运用还不够熟练,需要通过本节课的学习来进一步巩固和提高。

同时,学生对于算式运算的规律和技巧还需要进一步的引导和培养。

三. 教学目标1.理解整式除法的概念,掌握整式除法的运算方法。

2.能够运用整式除法解决一些实际问题。

3.培养学生的运算能力和逻辑思维能力。

四. 教学重难点1.整式除法的概念和运算方法。

2.运用整式除法解决实际问题。

五. 教学方法采用讲授法、示范法、练习法、问题驱动法等教学方法,通过教师的引导和学生的积极参与,使学生能够理解和掌握整式除法的概念和运算方法,并能够运用整式除法解决一些实际问题。

六. 教学准备1.PPT课件。

2.教学素材和练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出整式除法的概念,激发学生的学习兴趣。

示例:已知一个数的平方加上这个数等于18,求这个数。

2.呈现(10分钟)教师通过PPT课件,呈现整式除法的定义和运算方法,引导学生理解和掌握。

示例:单项式除以单项式,多项式除以单项式,单项式除以多项式。

3.操练(10分钟)学生分组进行练习,教师巡回指导,及时纠正错误,帮助学生巩固所学内容。

(1)计算:(a+b)÷a=?(2)计算:6x²÷3x=?(3)计算:12x³y²÷4x²y=?4.巩固(10分钟)学生独立完成练习题,教师选取部分学生的作业进行讲解和分析,帮助学生进一步巩固所学内容。

整式的运算(北师大版七年级下第一章 教案)

整式的运算(北师大版七年级下第一章  教案)

第 一 章第 5 节 平方差公式一、教学目标1、知识与能力:会推导平方差公式,并能运用公式进行简单的计算2、过程与方法:在探索平方差公式的过程中,培养符号感和推理能力3、情感与态度:在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美 二、教学重点:掌握平方差公式的特点,能熟练运用公式三、教学难点:理解平方差公式的结构特征,灵活应用平方差公式 四、教学过程 1、课前预习预习书P20-P21,思考:能运用平方差公式的多项式相乘有什么特点? 预习作业:(1)()()22-+x x (2)(m+3)(m-3) (3)(-x+y )(-x-y ) (4)()()a a 3131-+ (5)()()y x y x 55-+ (6)(2x+1)(2x-1)2、师生研习以上习题都是求两数和与两数差的积,大家应该不难发现它们的规律.用公式可以表示为:()()=-+b a b a ( )-( )我们称它为平方差公式平方差公式的推导 (a +b )(a -b )= (多项式乘法法则)= (合并同类项) 即:两个数的和与这两个数的差的积等于这两个数的平方差 平方差公式结构特征:① 左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数; ② 右边是乘式中两项的平方差。

即用相同项的平方减去相反项的平方 例1计算:(1)(23)(32)x x -++ (2)(32)(23)b a a b +- (3)(41)(41)a a ---+ 变式训练:1、用平方差公式计算:(1)1111()()2323x y x y -+; (2)22(27)(72)m m ---; 注意:(1)公式的字母a b 、可以表示数,也可以表示单项式、多项式;(2)要符合公式的结构特征才能运用平方差公式 例2.下列各式都能用平方差公式吗? (1)()()c a b a -+(2)()()x y y x +-+ (3)()()n m n m +-- (4)(3)(3)a a -+--(5)(3)(3)a a +--(6)(3)(3)a a ---(7))32)(32(b a b a -+ (8))32)(32(b a b a -+-(9))32)(32(b a b a +-+- (10))32)(32(b a b a ---(11)()()ab x x ab ---33能否用平方差公式,最好的判断方法是:两个多项式中:两项相等,两项互为相反数 在平方差这个结果中谁作被减数,谁作减数,你还有什么办法确定?相等数的平方减去相反数的平方3、达标练习1、判断(1)()()22422b a a b b a -=-+( ) (2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x ( ) (3)()()22933y x y x y x -=+-- ( ) (4)()()22422y x y x y x -=+--- ( ) (5)()()6322-=-+a a a ( ) (6)()()933-=-+xy y x ( ) 2、填空:(1)()()=-+y x y x 3232 (2)()()116142-=-aa(3)()949137122-=⎪⎭⎫ ⎝⎛-b a ab(4)()()229432y x y x-=-+4、课堂小结回顾小结:熟记平方差公式,会用平方差公式进行运算。

北师大版初中数学七年级下册《整式》教学设计

北师大版初中数学七年级下册《整式》教学设计

北师大版初中数学七年级下册《整式》教学设计北师大版初中数学七年级下册《整式》教学设计各位评委、老师们:下午好,我是,今天说课的题目是《关于“整式”的教学设计》。

“整式”这节课是北师大版七年级下册第一章“整式的运算”的教学内容。

我说课的顺序是:首先是分析教材,提出重点,然后是分析学情,提出难点和学案设计思路;接下来,由教材和学情分析制定出本课的三维目标。

最后围绕目标,设计学案流程、学生学习方式和教学方式。

一、教材分析1、本章内容及地位“整式的运算”是上期“字母表示数”的后继续学习。

在上期的教材中,强调了字母表示数的意义,发展了学生符号感,感性认识了单项式的系数,探究了合并同类项和去括号法则。

本章的主要内容是整式的相关概念和整式五则运算。

因此,本章既是上期知识的后续学习,也为将来方程和函数等代数知识的学习提供认识基础。

2、教材内容安排及作用本课内容是“整式的运算”这一章的起始课。

本课内容主要是整式的6个概念,它是代数知识中最基本的概念,具体是:单项式及系数次数概念、多项式及次数概念、整式概念。

因此,本课的概念认识水平将直接影响整式五则运算的学习。

它既复习巩固了上册知识,又为后续学习提供认知基础,起到了承上启下的作用。

3、教材的设计意图及目标教材首先以“窗帘”背景引入,列出两个代数式,感受学习整式的必要性;然后通过“做一做”,列出3个代数式,再次获得“字母表示数”的体验,试图让学生经历符号化的过程;在此基础上,分别对五个代数式特征进行归纳,形成单项式和多项式概念,然后以同化的方式得出其他概念;接下来,对引入背景进行变式处理,让学生再次经历符号化过程,并运用所学概念进行判别。

教材的最后,提供了5道巩固练习题和一则阅读材料,其中,全部习题都是为了复习同化概念,两个习题和阅读材料中体现了符号化过程。

结合数学课程标准的要求,我们不难看出,教材定位了两大目标:一是了解整式概念,二是经历符号化过程,但重点还是了解整式概念。

北师大版七年级下数学第一章《整式的乘除》全套教案

北师大版七年级下数学第一章《整式的乘除》全套教案

北师大版七年级下第一章《整式的乘除》教案1.1《同底数幂的乘法》教案教学目标1、理解法则中“底数不变、指数相加”的意义;能熟练地应用同底数幂乘法法则进行计算.2、从同底数幂乘法法则的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力和逻辑推理能力.重点:同底数幂的乘法法则及法则的正确应用.难点:同底数幂的乘法法则的推导.教学流程一、复习与回顾回忆乘方、幂等概念.二、创设情境,引出课题,探索新知师:看来同学们对以前所学的知识还有印象.哎,有一件事情虽然过去两年多了,但是我相信大家一定印象深刻——那就是2008年北京奥运会.你们还记得奥运场馆的标志性建筑是什么吗?——对,鸟巢和水立方!非常壮观,被列入北京十大建筑,同时也是世界上著名的节能环保建筑.你们认为他们最漂亮的是什么时候呢?到了晚上他们就更漂亮了,是因为什么?(灯光)可能大家有所不知,这里所需要的灯光大部分都不是来自发电厂,而是来自太阳能.(出示: 中国奥委会为了把2008年北京奥运会办成一个环保的奥运会,很多建筑都做了节能的设计,据统计:奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量.那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?)师:你们能列式吗?(学生讨论得出108×105)师:108、105我们称之为什么?(幂)师:我们再来观察底数有什么特点?生1:都是10生2:是一样的师:像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法.(揭示课题)1、探索108×105等于多少?(鼓励学生大胆猜想?)13②1040③10040④1013学生可能会出现以下几种情况:①100师:那到底谁得猜想是正确呢?小组合作讨论(师提示:根据幂的意义)生回答师板演:108 × 105=(10× 10×…×10)×(10 × 10×…×10) (8个10) (5个10) =10×10×…×10 13个10 =1013 即:108 × 105=108+5 2、出示问题: a 6 · a 9=(a · a …a )×(a · a …a ) 6个a 9个a =a · a …a 15个a =a 15即:a 6 · a 9=a 6+93 、观察以上两个式子,你有什么发现?师:这是两个特殊的式子,他们的指数分别是8,5;6,9.同底的两数任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗? a m · a n 怎么计算?板书:a m · a n = a m +n (m 、n 都是正整数)师补充解释m 、n 都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述.板书:同底数幂相乘底数不变,指数相加. 出示:1、计算下列各式,结果用幂的形式表示:(1)(-9)2 ×(-9)5 (2)x m ·x 3m +1 (3)(x +y )3 ×(x +y ) 教学(1)指名回答,师板演完整步骤,(2)(3)学生独立完成,要求书写完整的解答步骤. 师概括底数a 可以是任意有理数,也可以是单项式或多项式. 出示:2、计算下列各式,结果用幂的形式表示:(1)a ·a 3 ·a 6 (2)(-m )3 ×(-m )5 ×(-m )教学(1)学生齐答,师板演完整步骤,(2)学生独立完成后师提问:你对法则有什么新的认识吗? 出示:3、计算下列各式,结果用幂的形式表示:(1) -m 2 ×(-m )6(2)a ·(-a )2 ·(-a )3教学 :小组合作,讨论完成.问:此类题有何特征?解题时应注意哪些问题?第1题(1)的教学活动目的让学生掌握解题的书写步骤,(2)(3)让学生独立完成进一步巩固解题的书写步骤,第3题小组合作解题.本例的教学活动既有教师的引导,学生独立思考又有学生的合作交流,从而优化学生的思维体现了思维的合理化、严格化、程序化,特别是小组合作,能使学生在同伴交流过程中也培养了团体合作意识. 师问: a 8+a 8等于多少? 生可能会快速回答:等于a 16师追问 a 8 ·a 8等于多少? 生:等于a16 生在回答a 16时立即发现了问题 师再追问:那么说a 8+a 8= a 8 ·a 8? 生思考片刻:a 8+a 8=2 ·a 8该教学活动让学生产生思想冲突,并由教师的追问使他们自己产生疑问,再让学生经过“比较”解决冲突,也避免了以后出现同类项与同底数幂相乘产生混淆. 三、巩固新知课件出示下面计算对吗?如果不对,应怎样改正?师:思考一至二分钟举手回答,可挑选自己喜欢的题目回答.给学生充足的思维空间,养成思考习惯,让学生自主挑选回答主要是让后进生也能在课堂上体验成功,有成就感;且该教学活动亦能培养学生仔细观察问题的习惯. 四、活用法则提问:已知 a m = 3 , a n =5 , 求 a m +n 的值. 五、归纳小结1、同桌之间用今天学到的知识,每人出一个最好的题让同伴解答.看谁出题最好、又看谁解答最棒!2、叙述本节课的收获.236a a a ⋅=(2)66a a a ⋅=(3)831177⋅=-(4)(-7)()3332a a a ⋅=(1)《1.2幂的乘方与积的乘方》教案一、教学目标:1.了解积的乘方的运算性质,并能解决一些实际问题.2.经历探索积的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、教学重难点:重点:积的乘方运算性质:(ab )n = a n b n (n 是正整数). 难点:幂的运算性质的综合运用及混合运算.三、教学过程设计:本节课设计了七个教学环节:复习回顾、探索交流、知识扩充、巩固新知、公式逆用、课堂小结、布置作业. 第一环节:复习回顾活动内容:复习前几节课学习的有关幂的三个知识点.1.幂的意义: 2.同底数幂的乘法运算法则(m 、n 为正整数)3.幂的乘方运算法则(a m )n =a mn (m 、n 都是正整数) 第二环节:探索交流活动内容:地球可以近似地看做是球体,如果用V ,r 分别代表球的体积和半径,那么.地球的半径约为6×103 km ,它的体积大约是多少立方千米? 本环节是这节课最为重要的环节之一,充分借助教材提供的求地球体积的情境,引导学生思考“(6×103)3等于多少”,同时分析这种运算的特征,展开对“积的乘方”运算的探索,教师还可以在课上可以对直接学生进行升级式提问: (1)根据幂的意义,(ab )3表示什么?(2)为了计算(化简)算式ab ·ab ·ab ,可以应用乘法的交换律和结合律.又可以把它写成什么形式?(3)由(ab )3=a 3b 3 出发,你能想到更为一般的公式吗?活动目的:经历了前两节课的探究,在本课中可以启发学生自主从具体特殊的数字问题到抽象的字母,新的挑战更会激起学生学习的兴趣,达到更好的学习效果. 第三环节:知识扩充nan a a a a =⨯⨯⨯个n m n ma a a+=⋅334r V π=活动内容:积的乘方的运算法则:(ab )n =a n b n 积的乘方,等于每一因数乘方的积.公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质? 怎样用公式表示? 进一步探讨出答案(abc )n =a n ·b n ·c n 第四环节:巩固新知 活动内容: 1.计算:(1)(3x ) ; (2)(-2b ); (3)(-2xy ); (4)(3a ). 2.完成引例的求地球体积问题.3.下面的计算是否正确?如有错误请改正. (1); (2). 4.课本随堂练习 第五环节:公式逆用 活动内容:计算:(1)2×5; (2)2×5;(3)(-5)× (-2); (4)2× 4×(-0.125); (5)0.25×4;(6)8×0.125.第六环节:课堂小结活动内容:师生互相交流本堂课上应该掌握的积的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调. 第七环节:布置作业1.完成课本习题1.2的1、2.2.拓展作业:你能用几何图形直观的解释(3b )2=9b 2吗?《1.3同底数幂的除法》教案教学目标:1、理解同底数幂的除法运算法则,能解决实际问题;2、理解零指数和负整指数的意义.教学重点:同底数幂的除法运算法则及其应用.2542n844)(ab ab =2226)3(q p pq -=-338816154441001001213教学难点:对零指数和负整指数意义的理解.教学过程:一、创设问题情景,引入新课在上节课,我们计算过地球和太阳的体积,如果地球的体积大约是,太阳的体积大约为,请问,太阳的体积是地球体积的多少倍? 教师活动1、引导学生讨论,说出自己的思考过程.2、这种运算叫同底数幂的除法.学生活动 可能的思考过程:二、探索同底数幂的除法运算法则 试一试:计算(1) (2) (a ≠0) (3) (m ﹥n )(4)(p ﹥y ) 教师活动引导学生从以上特例中归纳出一般性的规律,并用自己的语言将规律描述出来. 启发学生从幂的意义等角度说明这一性质的依据.(m ,n 是正整数,且m ﹥n ,a ≠o )3111005.9千米⨯3171005.9千米⨯11171010÷611611111711171010101010101005.91005.9)1(=⨯==⨯⨯610610111010111711171010101010101010101010101005.91005.9)2(=⨯⋅⋅⋅⨯=⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯⨯==⨯⨯个个个471010÷35a a ÷nm 33÷y p)2()2(-÷-nm an m an am n m a a a a a a a aa a a a --=⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅=÷个个个)(学生活动1、交流、讨论,说明每一个问题的结果和每一步运算的理由.2、观察运算前后指数和底数的变化,归纳出同底数幂除法的运算性质:(a ≠0,m ,n 都为正整数,且m ﹥n ,) 练一练:例1、计算(写出完整答案)师生互动: 注:1、公式中的底数a 可以表示数、单项式、多项式等.2、前后底数必须化成完全一致. 想一想:1000=10() 8=2( ) 100=10() 4=2( ) 10=10() 2=2( ) 1=10() 1=2()猜一猜: 0.1=10()=2( )0.01=10()=2( )0.001=10()=2( ) 教师活动:1、引导学生观察上列式子中等式左右形式的变化,提出合理猜想.2、启发学生对新发现的问题(零指数幂、负整指数幂)进行归纳、描述.(a ≠0)(a ≠0,P 为正整数) 学生活动1、观察“想一想”中,幂都大于1,当指数减1时,幂为原来的(或). nm n m a a a -=÷47)1(a a ÷36)())(2(x x -÷-36))(3(x x ÷-)())(4(4xy xy ÷122)5(-+÷m m b b 35)())(6(m n n m -÷-4101000=4216=21418110=a pp a a 1=-101212、提出猜想,解决新问题.3、解释猜想的合理性.例2、用小数或分数表示下列各数:解: 三、过手训练1、判断正误,并改正.( ) ( ) ,,得 ( )2、计算:(n 为正整数)3、(1)(2)若=1,则x = ;若则 , .(3)计算:(4)已知. 四、课时小结1.同底数幂的除法运算法则,底数不变,指数相减.2.都为整数,“m >n ”的条件可以取消;3.当m =n 时,(a ≠0),4.当m <n 时, 310)1(-2087)2(-⨯4106.1)3(-⨯001.010********)1(33===-6418118187)2(2220=⨯=⨯=⨯--00016.00001.06.11016.1106.1)3(44=⨯=⨯=⨯-23636)1(a a a a ==÷÷1)1)(2(0-=-12)3(0=130=32=58))(1(m m ÷-)())(2(7x y y x -÷-2332)3(++÷m m a a []1232)()()4(+--÷+n ny x y x ==÷+m ,x x xm 则若5212123+x ,313=x=x1=-1x 320)21()31()2004()3(-+----计算:的值求已知y x y x b a -==25,5,5)4(n m aa a nm nm.,-=÷10===÷-a a a a nm n m ),1(1)(为正整数p a a aa aa a pp mn m n nm n m ====÷-----五.课后作业《1.4整式的乘法》教案一、学习目标:理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.二、学习重点:单项式乘法法则及其应用.三、学习难点:理解运算法则及其探索过程.四、预习准备(1)预习书P14-15(2)思考:单项式与单项式相乘可细化为几个步骤?(3)预习作业:1)(-a5)5=2)(-a2b)3 =3)(-2a)2(-3a2)3=4)(-y n)2y n-1=五、学习过程:整式包括单项式和多项式,从这节课起我们研究整式的乘法,先学习单项式乘以单项式.例1.利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:(1)2x2y·3xy2(2)4a2x5·(-3a3bx)单项式乘以单项式的乘法法则:单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:法则实际分为三点:(1)①系数相乘——有理数的乘法;此时应先确定结果的符号,再把系数的绝对值相乘.②相同字母相乘——同底数幂的乘法;(容易将系数相乘与相同字母指数相加混淆)③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.(2)不论几个单项式相乘,都可以用这个法则.(3)单项式相乘的结果仍是单项式.例2.计算:(1)(-5a2b3)(-3a)=(2)(2x)3(-5x2y)=(3) =________(4)(-3ab )(-a 2c )2·6ab (c 2)3= 注意:先做乘方,再做单项式相乘. 练习: 1. 判断:单项式乘以单项式,结果一定是单项式 ( ) 两个单项式相乘,积的系数是两个单项式系数的积 ( ) 两个单项式相乘,积的次数是两个单项式次数的积 ( ) 两个单项式相乘,每一个因式所含的字母都在结果里出现( ) 2. 计算:(6)0.4x 2y ·(xy )2-(-2x )3·xy 3拓展:3.已知a m =2,a n =3,求(a 3m +n )2的值. 4.求证:52·32n +1·2n -3n ·6n +2能被13整除. 5.回顾小结:单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.《1.5平方差公式》教案教学目标:1.会推导平方差公式并能正确运用公式进行计算.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用. (四)教学重点,难点教学重点:探索平方差公式的过程. 教学难点:理解平方差公式的特征.二.教材处理22232332⎪⎭⎫⎝⎛-⋅xy y x )31()2)(1(2xy xy ⋅)3()2)(2(32a b a -⋅-)105()104)(3(45⨯⨯⨯52322)()3)(4(b a b a -⋅-)31()43()32)(5(2532c ab c bc a ⋅-⋅-21.)(351221的值,求)若(n m b a b a b an n m +=⋅⋅-++1.突出重点:学生通过自主探究,剪纸拼图的方法发现和认识平方差公式.2.突破难点:学生通过尝试对公式特征的语言叙述,认识和理解公式本质的内容.三.学法指导1.由问题情境产生思考,激发对新知的求知欲.2.通过动手剪纸拼图,认识和解释情境中的问题,同时,发现数学知识,感受知识的发生和发展过程.3.通过交流辨析,进一步理解平方差公式四.教学具准备大正方形纸板,剪刀.五.教学过程(一)创设问题情景,引入新课1、在一个边长为a米的正方形草坪的一角修建一个正方形的水池,改建后草坪的面积是?aabb2、你能利用面积知识,用不同的形式表示阴影部分的面积吗?试试看!同桌可交流讨论,然后把你的想法说给大家听.(教师巡视同学们拼图的情况,了解同学们拼图的想法.)3、可能拼出的情况:(1)可以拼成长方形把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(a-b),长是a;下面的小长方形长是(a-b),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(a-b),我们可以将这两个边重合,这样就拼成了一个如图所示的图形(阴影部分),它的长和宽分别为(a+b),(a-b),面积为(a+b)(a-b).(2)还可以拼成长方形长方形,大长方形的长和宽分别为(a +b ),(a -b ),则其面积为(a +b )(a -b ).(3)可以拼成梯形把剩下的图形(即阴影部分)沿折痕(对角线)剪开,得到两个直角梯形,我们可以注意到,两个直角梯形的高均为(a -b ),所以我们可以将这两个边重合,然后按右图拼接成梯形. 这个梯形的上底为2b ,下底为2a ,则其面积为(2a +2b )(a -b ),化简为(a +b )(a -b ).(4)可以拼成平行四边形21ababa abba bab abba b a ab babab个直角梯形的高均为(a-b),所以我们可以将这两个边重合,然后按右图拼接成平行四边形.由剪拼过程我们可以知道,这个平行四边形的边长为(a+b),高为(a-b).所以这个平行四边形的面积为(a+b)(a-b).师:“对于同一个图形,不论用什么方法来求它的面积,这个面积改不改变?计算你所拼出的几何图形的面积,你能发现什么?”(学生通过拼图来探索这一图形面积的求法,在此过程中,教师对学生所拼图形给予充分的评价并鼓励学生从中发现知识,交流自己的观点)设计意图:通过动手剪纸拼图,让学生经历平方差公式的探索,在认识和解释情境的过程中,发现数学知识,感受知识的发生和发展过程.4、你能用你学过的多项式乘多项式的知识来验证你的发现吗?设计意图:学生利用多项式乘多项式的法则计算(a+b)(a-b),验证自己的猜想.(二)得出概念1、(a+b)(a-b)=a2-b2这个公式称为平方差公式(1)你能用语言叙述这个公式吗?设计意图:锻炼学生的总结能力及语言表达能力.“两个数的和乘以两个数的差等于它们的平方差.”(2)你能用多项式乘法法则说明理由吗?设计意图:体会数学的逻辑性及利用平方差公式计算的简洁性.2、自主交流,合作探索:利用平方差公式计算的关键是什么?怎样确定?利用平方差公式计算的关键:确定a和b.其中两个完全相同的项为a,另两个只有符号不同的项为b,其结果等于符号相同的数的平方减去符号不同数的平方.3、现学现卖:按要求填写下面表格组讨论得出结果,然后教师给出答案.注意:根据学生层次的不同,若学生不能观察出公式特征,教师可增加启发性的问题,如:“两个多项式有什么相同,有什么不同?”“两项的符号都不同吗?”“等于什么?”学生由此观察发现公式的特征.(三)例题教学1、(1)(2x +y )(2x -y ) (2)(x +2)(x -2) (3)(-5a +3b )(-5a -3b ) (4)(m +n )(n -m )(可让学生先自己尝试计算,然后让部分学生上黑板,其他学生在练习本上完成,同桌交流答案,教师巡视,对错误进行辨析,最后由教师规范书写步骤.) 2、活学活用: 运用平方差公式计算:1)59.8 ×60.2 2)101 ×99(其中第1题师生共同分析式子特点,由教师给出规范步骤,第二题让同学板演或口答.) (四)实战演练1、我问你答:请你为你的同桌出一道能用平方差公式计算的问题.(在练习本上完成,先由同桌同学互查互纠,教师巡视过程中,如果有有争议的问题,提出来由老师解决.对共性的错误,教师展示给同学辨析,纠正错误.) 2、小试牛刀:下列各式的计算是否正确?如不正确,应怎样改正? 1)(x +4)(x -4)=x 2-4; ( ) 2)(a +2b )(a -2b )=a 2-4b ; ( ) 3)(-2y +3)(2y +3)=4y 2–9. ( ) 3、应用拓展:运用平方差公式计算:(1)(x +2y )(x -2y ) (2)(2a -b )(b +2a ) (3)(4a +3b )(4a -3b ) (4)(-3m +2n )(3m +2n ) 4、请你支招有一位狡猾的地主, 把一块边长为a 米正方形的土地.租给李老汉种植.今年,他对李老汉说:“我把你这块地一边增加4米,另一边减少4米,继续租给你,你也没有吃亏,你看如何?”李老汉一听,觉得好象没有吃亏,就答应.同学们,你们觉得李老汉有没有吃亏?(五)课堂小结:1、通过本节课的学习,你认为:21214a4(1)什么是平方差公式?一般两个二项式相乘的积应是几项式?(2)平方差公式中字母a、b可以是那些形式?(3)怎样判断一个多项式的乘法问题是否可以用平方差公式?2、师生总结:(1)平方差公式:(a+b)(a-b)=a2-b2(2)我们在运用平方差公式时,要注意以下几点:①公式中的字母a、b可以是任意代数式;②利用平方差公式计算的关键是:准确确定a和b;③完全相同的看作a,只有符号不同的看作b.(六)布置作业《1.6完全平方公式》教案一、教学目标1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.二、教学重难点(一)教学重难点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.(二)教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.三、教学方法引导学生从面积入手发现并猜测完全平方公式,通过合作探索讨论用所学的知识对公式进行验证.四、教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡”活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡”活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1[师]你能用不同的方式表示试验田的面积吗?(学生思考面积的表示方法)法一:改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.法二:也可以把试验田的总面积看成四部分的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过对比试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料表明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度利用多项式的乘法运算推导出这样的公式呢?想一想:(1)(a+b)2等于什么?你能用多项式乘法法则说明理由吗?(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)用多项式乘法法则可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2[师]你能用语言描述这个公式吗?(引导学生用语言描述公式,学生齐读)两个数的和的平方等于这两个数的平方和加上它们积的2倍. (2)(a -b )2等于什么?你是怎样想的. (学生讨论,探索结论,学生自己回答解决方法)(学生很容易模仿上面的方法用多项式乘法来解决,老师可以适当的引导学生利用刚才验证的公式来解决整个问题,寻求一个问题的多种解法)法一:(a -b )2=(a -b )(a -b )=a 2-ab -ba +b 2=a 2-2ab +b 2.法二:因(a +b )2=a 2+2ab +b 2中的a 、b 可以是任意数或单项式、多项式.我们用“-b ”代替公式中的“b ”,利用上面的公式就可以得到(a -b )2=[a +(-b )]2. [师生共析](a -b )2=[a +(-b )]2=a 2+2·a ·(-b )+(-b )2=a 2-2ab +b 2. 于是,我们得到又一个公式:(a -b )2=a 2-2ab +b 2 [师]你能用语言描述这个公式吗?(学生模仿上面公式的描述试着自己描述,请学生回答) 两个数的差的平方等于这两个数的平方和减去它们积的2倍. 2.应用、升华[例1]利用完全平方公式计算:(1)(2x -3)2; (2) (4x +5y )2; (3) (mn -a )2.分析:利用完全平方公式计算,第一步先选择公式;第二步,明确谁是a ,谁是b ,准确代入公式;第三步化简. Ⅲ、随堂练习 计算:(1)(x -2y )2;(2)(2xy +x )2;(3)(n +1)2-n 2. (学生演板,互相批改)解:(1)(x -2y )2=(x )2-2·x ·2y +(2y )2=x 2-2xy +4y 2 (2)(2xy +x )2=(2xy )2+2·2xy ·x +(x )2=4x 2y 2+x 2y +x 2 (3)方法一:(n +1)2-n 2=n 2+2n +1-n 2=2n +1.方法二:(n +1)2-n 2=[(n +1)+n ][(n +1)-n ]=2n +1. Ⅳ、课后作业《1.7整式的除法》教案教学目标:215121212141515151542511.知识与技能:理解整式除法运算的算理,会进行简单的整式除法运算.2.过程与方法:经历探索整式除法运算法则的过程,发展有条理的思考及表达能力. 3. 情感与态度:体会数学在生活中的广泛应用教学重点:单项式除以单项式的整式除法运算.教学难点:单项式除以单项式运算法则的探究过程.教学过程设计:第一环节:复习回顾 活动内容:复习准备 1.同底数幂的除法同底数幂相除,底数不变,指数相减.2.单项式与单项式相除的法则:单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的因式. 第二环节:情境引入活动内容:你知道需要多少杯子吗?图(1)的瓶子中盛满了水,如果将这个瓶子中的水全部倒入图(2)的杯子中,那么一共需要多少个这样的杯子?(单位:cm )第三环节:探究新知 活动内容:1.直接出示问题,由学生独立探究. 计算下列各题,说说你的理由.2.总结探究方法),,,0(n m n m a a a a n m n m >≠=÷-且都是正整数=÷-=÷+=÷+xy xy xy a ab b a d bd ad )2()3()3()2(132)()((1)瓶28(2)杯子方法1:利用乘除法的互逆 方法2:类比有理数的除法3.总结多项式除以单项式的法则多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 第四环节:例题讲解 活动内容:例、计算:做一做:小明在爬一小山时,第一阶段的平均速度为 v ,所用时间为 t 1;第二阶段的平均速度为v ,所用时间为 t 2.下山时,小明的平均速度保持为4v .已知小明上山的路程和下山的路程是相同的,问小明下山用了多长时间? 第五环节:课堂练习 活动内容:1.想一想,下列计算正确吗?2. 计算2)2(2)2()3(3)3(3)3()2()(1233222-=÷-∴-=⋅-+=÷+∴+=⋅++=÷+∴+=⋅+y xy xy xy xy xy xy y b ab a ab b a ab b a a b ab b a d bd ad bd ad d b a )()(02.302.0371)14.021(7)14.021(=+=⨯+=÷+例如21)2()2()3(31)3()3()2(1123322-=⋅-=÷-+=⋅+=÷++=⋅+=÷+y xy xy xy xy xy xy bab a ab b a a ab b a ba dbd ad d bd ad )()()类比得到()21()213()4(3)69()3(3)61527()2(2)86()1(222223xy xy xy y x xy xy y x a a a a b b ab -÷+-÷-÷+-÷+2122322223223232)21()642()3(32)5()15105()2(5.06)63()1(y xy x y y xy y x b ab a ab ab b a b a xxy xy y x -+-=-÷+-++=-÷--=÷-第六环节:处理情境问题活动内容:你知道需要多少杯子吗?图(1)的瓶子中盛满了水,如果将这个瓶子中的水全部倒入图(2)的杯子中,那么一共需要多少个这样的杯子?(单位:cm )答:一共需要 个这样的杯子.第七环节:知识小结活动内容:师生互相交流总结本节课上应该掌握的多项式除以单项式的相关知识,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生畅谈个人的学习感受. 第八环节:布置作业xy xy y x d c d c d c m mc mb ma yy xy 7)34()4()2()6()3()()2()3()1(222332÷+-÷-÷++÷+hH a h a a H a a h a H a a h a H a 212)2()4()2()(248221212212222222222+=÷+÷=⎥⎦⎤⎢⎣⎡÷⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅⋅÷⎥⎥⎦⎤⎢⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅⋅+⋅⎪⎭⎫ ⎝⎛⋅⋅ππππππππππ(1)瓶28(2)杯子 h H 212+。

七年级数学下册《第一章,整式的乘法》教案1 (新版)北师大版

七年级数学下册《第一章,整式的乘法》教案1 (新版)北师大版

山东省枣庄市峄城区吴林街道中学七年级数学下册《第一章,整式的乘法》教案1 (新版)北师大版教学目标1.在具体情境中了解单项式与多项式乘法的意义,会进行单项式与多项式的乘法运算.2.经历探索单项式与多项式乘法法则的过程,理解单项式与多项式相乘的算理,体会乘法分配律的重要作用及转化的数学思想,发展学生有条理的思考和语言表达能力.3.在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣.教学重点和难点重点:法则的理解与掌握.难点:求几何图形阴影部分面积.教法及学法指导:以学生活动为主线,通过精心设计的问题导语启发、点拨,引导学生观察、探究、讨论、对比、归纳、发现、创造等参与活动的综合形式教学. 在学习过程中,给学生足够的合作交流空间,加深对法则的探索过程及对算理的理解,指导学生在课堂实践活动中,自主探索,合作交流,获得知识, 提高技能,培养创造意识.课前准备:多媒体课件教学过程一、前置诊断,开辟道路1、如何进行单项式乘单项式的运算?你能举例说明吗?2、计算:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅- 3、写一个多项式,并说出它的项数.设计意图:首先引导学生回忆单项式乘单项式的运算法则,目的是为探索单项式乘以多项式法则做好铺垫,因为最终我们要将它转化为单项式乘以单项式,所以这里通过活动1、2来进行回顾十分必要.有上一课时的课堂学习加上课后作m 1x m 1x业的巩固,学生应该能够熟练应用法则进行计算,所以问题2设置的综合性较上节课的练习更强一些.问题3的设置为今天的新课学习奠定基础.二、创设情境 引入新课延续上节课的问题情境,师出示问题:才艺展示中,小颖也作了一幅画,所用纸的大小如图所示,她在纸的左、右两边各留了m 81x 的空白,这幅画的画面面积是多少? (先让学生独立思考,之后全班交流.交流时引导学生呈现出自己的思考过程) 师:同学们想一想你有那些方法?生1:先表示出画面的长和宽,由此得到画面的面积为)41(x mx x -; 生2:先求出纸的面积,再减去两块空白处的面积,由此得到画面的面积为2241x mx -师:(启发学生):两种方法得到的答案不一样,到底哪种方法对?生:(短暂的思考之后), 都对 师:由此可得)41(x mx x -=2241x mx -这个等式. 师:(引导学生观察这个算式,)请同学们思考 :式子的左边是什么运算?能不能用学过的法则说明这个等式成立的原因?生:(讨论交流后总结出):式子的左边是一个单项式与一个多项式相乘,利用乘法分配律可得)41(x mx x -=x x mx x 41⋅-⋅,再根据单项式乘单项式法则或同底数幂的乘法性质得到x x mx x 41⋅-⋅=2241x mx -,即)41(x mx x -=2241x mx - 由此引出本节课的学习内容:单项式乘以多项式.板书课题1.4整式乘法(二). 设计意图:从问题情境开始引起学生兴趣,好奇心.激发求知欲.在探索的过程中学生很自然地体会到学习积的乘方运算的必要性,了解数学与现实世界的联系. 从实际问题出发,学生通过对同一面积的不同表达,引出单项式乘以多项式这个形式.教师再引导学生运用乘法分配律、同底数幂乘法的性质说明上述等式成立的原因,由此引出新课.三、设问质疑,探究尝试师:在刚才的数学活动基础上,教师再提出以下两个问题:问题1:)2(x abc ab +⋅及)(2p n m c -+⋅等于什么?你是怎样计算的?问题2: 如何进行单项式与多项式相乘的运算?(要求学生先独立思考,再在四人小组内交流,之后全班交流.)生1:ab ·abc +ab ·2x=a 2b 2c +2abx 师:说说你是怎样计算的?根据是什么?生1:第一步根据乘法分配律,第二步根据单项式乘以单项式。

七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版

七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版

七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版一. 教材分析《北师大版七年级数学下册》第一章整式的乘除1.4整式的乘法1教案,主要讲解整式的乘法运算。

整式的乘法是初中学员需要掌握的重要内容,它涉及到代数表达式的简化与变换,对于学生理解和运用代数知识具有重要意义。

二. 学情分析七年级的学生已经掌握了整数四则运算和基本的代数知识,对整式的加减法有了初步的了解。

但学生在整式的乘法运算上可能还存在一定的困难,特别是对于多项式乘以多项式的规则和不定式的确定。

因此,在教学过程中,需要注重引导学生理解和掌握整式乘法的基本规则和方法。

三. 教学目标1.让学生理解整式乘法的概念和意义。

2.掌握整式乘法的基本运算规则。

3.能够熟练进行整式的乘法运算。

4.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:整式乘法的基本运算规则和运算方法。

2.教学难点:多项式乘以多项式的过程和不定式的确定。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过问题引导,让学生思考和探索整式乘法的规则;通过案例分析,让学生理解和掌握整式乘法的运算方法;通过小组合作,让学生互相讨论和解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪和黑板。

3.准备教学PPT或教案文档。

七. 教学过程1. 导入(5分钟)通过一个实际问题引入整式乘法的学习,例如:“已知长方形的面积为长乘以宽,如果一个长方形的长是10cm,宽是5cm,求这个长方形的面积。

”让学生思考和探索如何将长和宽相乘得到面积。

2. 呈现(15分钟)呈现整式乘法的定义和基本规则,通过PPT或教案文档,介绍整式乘法的概念和意义,以及整式乘法的基本运算规则。

同时,给出一些具体的例子,让学生理解和掌握整式乘法的运算方法。

3. 操练(15分钟)让学生进行整式乘法的练习,可以是书面的练习题,也可以是口头的练习题。

北师大版七年级数学下册第一章整式的乘除1.1同底数幂的乘法(教案)

北师大版七年级数学下册第一章整式的乘除1.1同底数幂的乘法(教案)
北师大版七年级数学下册第一章整式的乘除1.1同底数幂的乘法(教案)
一、教学内容
本节内容选自北师大版七年级数学下册第一章“整式的乘除”中的1.1节“同底数幂的乘法”。主要内容包括:
1.同底数幂乘法法则:am•an=am+n(m、n是正整数);
2.同底数幂乘法的性质:当底数相同时,指数相加;
3.举例说明同底数幂乘法在生活中的应用;
3.重点难点解析:在讲授过程中,我会特别强调同底数幂乘法法则和指数相加的概念这两个重点。对于难点部分,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与同底数幂乘法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用模型或卡片展示同底数幂乘法的计算过程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了同底数幂乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对同底数幂乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:在讲解指数相加的概念时,可使用数学教具或幻灯片展示,如2^3表示3个2相乘,2^2表示2个2相乘,那么2^3•2^2就是5个2相乘,即2^5,从而引导学生理解指数相加的含义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《同底数幂的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过相同底数的幂相乘的情况?”(如:计算2的3次方和2的2次方的乘积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索同底数幂乘法的奥秘。

七年级数学(北师大版)下册第一章整式的运算教案

七年级数学(北师大版)下册第一章整式的运算教案

(第一章整式的运算)回顾与思考(一)教学目标:1.知识与技能目标:运用问题的形式帮助学生梳理全章的内容,建立一定的知识体系。

鼓励学生在独立思考的基础上,开展小组交流,使学生在反思与交流的过程中,加深对已学知识的理解,结合具体实例体会知识,加强知识间的联系,。

2.过程与方法:结合具体问题体会知识间的内在联系,以及本章学习中所采用的主要思想方法,发展抽象、概括能力,形成知识体系。

3.情感态度与价值观:在独立思考的基础上积极参与讨论,敢于发表自己的观点,从交流中获益;在解决问题的过程中了解数学的价值,发展“用数学“的信心。

教学重点:梳理所学内容:整式的概念及相关的运算性质、运算法则、乘法公式的理解与运用,会解相关的题目,形成知识间的体系。

教学难点:建立相关的知识体系,使新旧知识成为一个有机整体。

课前准备:多媒体及课件板书设计:回顾思考整式整式乘法练习整式的加减整式除法幂的性质回顾与思考(二)教学目标:1.知识与技能目标:在运用知识解决具体问题的过程中,加深对全章知识体系的理解。

发展推理能力和有条理的表达能力。

2.过程与方法:体会数学的应用价值及在解决问题过程中与他人合作的重要性。

培养学生在独立思考的基础上,积极参与对数学问题的讨论,并敢于发表自己的观点。

3.情感态度与价值观:进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识。

教学重点:进一步理解整式的概念及相关的运算、性质、运算法则、乘法公式的理解与运用,会解相关的题目,建立起相关的知识体系。

教学难点:灵活应用运算性质、运算法则、乘法公式解决问题。

课前准备:多媒体及课件教学过程:板书设计:回顾与思考(2)本章知识框架图习题与解答。

北师大版七年级下册数学第一章《整式的乘法》教案

北师大版七年级下册数学第一章《整式的乘法》教案

北师大版七年级代数下册第一章第五节“整式的乘法”的第二课时教案知识 1.感受整式乘法的现实意义。

目标 2.掌握单项式与单项式相乘.单项式与多项式相乘的法则,并能运用法则计算。

能力 1.在探索新知过程中体会从特殊到一般,从具体到抽象的认知过程。

目标2.在探索过程中渗透转化思想数学离不开运算,回忆我们从接触数学到现在共学了哪些运算?数学运算又经历了数的运算到式的运算的一个飞跃,进入中学我们已经学过哪些式的运算本节课继续学习有关整式的运算------整式的乘法整式分为几类?你认为整式的乘法有几种分类?学习目标1、掌握单项式与单项式相乘、单项式与多项式相乘的法则。

2、能用运算法则进行计算。

3、在探索新知的过程中体会学习方法、规律。

一.创设情景,由数的运算开始: 光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?生口述师板书:(3×105)×(5×102)生思考:如何计算? 一生上黑板板演过程并讲出每一步依据一生上黑板板演过程并讲出每一步依据二.探究新知1.把上式中的有些数字改为字母.如3x5·5x2及ac5·bc2等,又如何计算呢?让每个学生先独立尝试,相互交流2.想一想:(1)这两个算式在运算上有何共同点?(2)请用自己的语言概括单项式与单项式相乘的法则系数相同字母字母只在一个单项式里含有的字母(3)再请一位同学起来总结这一法则用单项式去乘多项式的(),再把所得的积()。

(4)看课件边填空边理解3、生自编一道单项式×单项式的题,并完成之后同位间互换到做互改,找两生上黑板,如(1)3x·(-2x2y) (2)(-1/2a2b) ·(-2a)并交换完成。

4、师在以上两题基础上改编:(3)3x·(-2x2y) 2 (4)(-1/2a2b) (-2a)(-4ab2)同学们一起来挑战,找两生上黑板,做完后交流、讨论。

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法一. 教材分析北师大版七年级数学下册第一章整式的乘除4整式的乘法,这部分内容是学生在学习了整式的加减法之后,进一步深化对整式的运算法则的理解。

本节内容主要包括整式乘法的基本概念、运算法则以及具体的运算方法。

通过这部分的学习,使学生能够熟练掌握整式的乘法运算,为后续学习分式的乘除法和函数的初步概念打下基础。

二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,例如整式的加减法、有理数的乘除法等。

但是,对于整式的乘法,学生可能还存在着一定的困惑,例如整式乘法的运算法则、如何快速准确地进行计算等。

因此,在教学过程中,需要结合学生的实际情况,用学生熟悉的生活实例引入整式的乘法,让学生在理解的基础上掌握整式的乘法运算。

三. 说教学目标1.知识与技能目标:使学生理解整式乘法的概念,掌握整式乘法的运算法则,能够熟练地进行整式的乘法运算。

2.过程与方法目标:通过合作交流、自主探究的学习过程,培养学生解决问题的能力,提高学生的数学思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:整式乘法的概念、运算法则以及运算方法。

2.教学难点:整式乘法的运算方法,尤其是如何正确地合并同类项。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、自主探究法等,引导学生主动参与学习,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、教学卡片等辅助教学,使学生更直观地理解整式的乘法运算。

六. 说教学过程1.引入新课:通过生活实例,引导学生思考如何计算两个多项式的乘积,激发学生的学习兴趣。

2.讲解整式乘法的概念和运算法则:引导学生通过合作交流、自主探究的方式,总结整式乘法的运算法则。

3.演示整式乘法的运算方法:通过多媒体课件或教学卡片,展示整式乘法的具体运算过程,让学生更直观地理解。

北师大版七年级数学下册第一章整式的运算教案

北师大版七年级数学下册第一章整式的运算教案

北师大版七年级数学下册第一章整式教案1.1 整式教学目标:1.在现实情景中进一步理解用字母表示数的意义,发展符号感.2.了解整式产生的背景和整式的概念,能求出整式的次数.教学重点:整式的概念与整式的次数.教学难点:整式的次数.教学过程:一、整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.注:①单独一个数与一个字母也是单项式.②形如21+x 形式的代数式不是单项式. (2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.注:单独一个数的次数是0次.(3)多项式的概念:几个单项式的和叫做多项式.注:①多项式概念中的和指代数和,即省略了加号的和的形式.②多项式中不含字母的项叫做常数项.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.二、定义的补充:(1)单项式的系数:单项式中的数字因数叫做单项式的系数.注:①单个字母的系数为1;②单项式的系数包括符号.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.三、区别是否整式:关键:分母中是否含有字母?四、例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?ab +c ,ax 2+bx +c ,-5,π,2y x -,12-x x 例2:求下列各单项式的系数及次数:73xy,-ab 2c 例3:说出下列多项式为几次几项式? -31x -x 2y +2π,6x 3y 2-5+xy 3-x 2例4:根据题意列出代数式,并判断是否为整式.①ab 两数的积除以ab 两数的和;②ab 两数的积的一半的平方;③3月12日是植树节,七年级一班和二班的同学参加了植树活动,一班种了a棵树,二班种的比一班的2倍多b棵,这两个班一共种了多少棵树?④课本例题.五、当堂练习:1.若-2a m+2b4是7次单项式,则m=_______;2.多项式x2-3x-4共有_____项,次数是________.六、竞赛积累题:已知a=2,b=3,则()(A)ax3y2和bm3n2是同类项(B)3x a y3和bx3y3是同类项(C)bx2a+1y4和ax5y b+1是同类项(D)5m2b n5a和6n2b m5a 是同类项七、小结:本节课主要学习了单项式、多项式、整式的概念及单项式、多项式的次数及系数的概念.教学后记:1.2 整式的加减(1)教学目的:1.经历及字母表示数量关系的过程,发展符号感;2.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力.教学重点:会进行整式加减的运算,并能说明其中的算理. 教学难点:正确地去括号、合并同类项,及符号的正确处理. 教学过程:一、课前练习:1.填空:整式包括_____________和_______________2.单项式322y x 的系数是___________、次数是__________3.多项式3m 3-2m -5+m 2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________.4.下列各式,是同类项的一组是()(A )22x 2y 与31yx 2 (B )2m 2n 与2mn 2 (C )32ab 与abc5.去括号后合并同类项:(3a -b )+(5a +2b )-(7a +4b ).二、探索练习:1.如果用a 、b 分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________.2.如果用a 、b 、c 分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________.●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是____________________________,运算的结果是一个多项式或单项式.三、巩固练习:1.填空:(1)2a -b 与a -b 的差是__________________________;(2)单项式y x 25、y x 22-、22xy 、y x 24-的和为___________;(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需_______个棋子,n 个三角形需__________个棋子.2.计算:(1))134()73(22+-++k k k k ;(2))2()2123(22x xy x x xy x +---+; (3)[]14)2(53-++--a a a .3.(1)求272--x x 与1422-+-x x 的和;(2)求k k 742+与132-+-k k 的差.4.先化简,再求值:[]224)32(235x x x x ----,其中21-=x . 四、提高练习:1.若A 是五次多项式,B 是三次多项式,则A +B 一定是()(A )五次整式 (B )八次多项式 (C )三次多项式(D )次数不能确定2.足球比赛中,如果胜一场记3a 分,平一场记a 分,负一场记0分,那么某队在比赛胜5场,平3场,负2场,共积多少分?3.一个两位数与把它的数字对调所成的数的和,一定能被11整除,请证明这个结论.4.如果关于字母x 的二次多项式3322+-++-x nx mx x 的值与x 的取值无关,试求m 、n 的值.五、小结:整式的加减运算实质就是去括号和合并同类项.六、作业:第8页习题1、2、31.2 整式的加减(2)教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力.2.通过探索规律的问题,进一步体会符号表示的意义,发展符号感,发展推理能力.教学重点:整式加减的运算.教学难点:探索规律的猜想.活动准备:计算:(1)(-x+2x2+5)+(-3+4x2-6x);(2)求下列整式的值:(-3a2-ab+7)-(-3a2-ab+1,b=3.9),其中a=2教学过程:一、复习练习1.-3x2y-(-3xy2)+3x2y+3xy2;2.-3x2-4xy-6xy-(-y2)-2x2-3y2;3.(x-y)+(y-z)-(z-x)+2;4.-3(a3b+2b2)+(3a3b-14b2).此练习找四名同学写在黑板(或胶片)上,然后就他们的解题过程进行订正,复习上节课所学的主要内容之后,指出,今天我们继续学习整式的加减.二、新课例1 已知A=x3+2y3-xy2,B=-y3+x3+2xy2,求:(1)A+B;(2)B+A;(3)2A-2B;(4)2B-2A.解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2)=x3+2y3-xy2-y3+x3+2xy2=2x3+xy2+y3;(2)B+A=(-y3+x3+2xy2)+(x3+2y3-xy2)=-y3+x3-2xy2-x3+2y3-xy2=2x3+xy2+y3;(3)2A-2B=2(x3+2y3-xy2)-2(-y3+x3+2xy2)=2x3+4y3-2xy2+2y3-2x3-4yx2=-6xy2+6y3;(4)2B-2A=2(-y3+x3+2xy2)-2(x3+2y3-xy2)=-2y3+2x3+4xy2-2x3-4y3+2xy2=6xy2-6y3.通过以上四个小题,同学们能得出什么结论?引导学生得出以下结论:A+B=B+A,2A-2B=-(2B-2A),进一步指出本题中,我们用字母A、B代表两个不同的多项式,用了“换元”的方法.前面,我们所遇到的整式的计算中,单项式的字母指数都是具体的正整数,如果将正整数也用字母表示,又应该如何计算呢?例2 计算:(n,m是正整数)(1)(-5a n)-a n-(-7a n);(2)(8a n-2b m+c)-(-5b m+c-4a n).分析:此两小题中,单项式字母的指数中出现了字母,同一题中的n或m代表的是同一个正整数,因此,计算的方法与以前的方法完全一样.解:(1)(-5a n)-a n-(-7a n)=-5a n-a n+7a n=a n;(2)(8a n-2b m+c)-(-5b m+c-4a n)=8a n-2b m+c+5b m-c+4a n=12a n+3b m.下面,我们看两个与整式的加减有关的几何问题.例3 (1)已知三角形的第一条边长是a+2b,第二边长比第一条边长大(b-2),第三条边长比第二条边小5,求三角形的周长.(2)已知三角形的周长为3a+2b,其中第一条边长为a+b,第二条边长比第一条边长小1,求第三边的边长.第(1)问先由教师分析:三角形的周长等于什么?(三边之和),所以,要求周长,首先要做什么?引导学生得出“首先要用代数式表示出三边的长”的结论,而后板演.第(2)问由学生口答,教师板演.解:(1)(a+2b)+[(a+2b)+(b-2)]+[(a+2b)+(b-2)-5]=a+2b+(a+3b-2)+(a+3b-7)=a+2b+a+3b-2+a+3b-7=3a+8b-9.答:三角形的周长是3a+8b-9.(2)(3a+2b)-(a+b)-[(a+b)-1]=3a+2b-a-b-a-b+1=a+1.答:三角形的第三边长为a+1.三、课堂练习1.已知A=x3-2x2y+2xy2-y3,B=x3+3x2y-2xy2-2y3,求(1)A-B;(2)-2A-3B.2.计算:(3x n+1+10x n-7x)+(x-9x n+1-10x n).四、小结我们用了两节课的时间学习整式的加减,实际上,这两节课也可以说是对前面所学知识(主要是去括中与、合并同类项)的一个复习、一个提高,因此,同学们对于去括号、合并同类项等基本功一定要加强.五、作业1.已知A=x3+x2+x+1,B=x+x2,计算:(1)A+B;(2)B+A;(3)A-B;(4)B-A.2.已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,求C.3.三角形的三个内角之和为180º,已知三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15º,求每个内角的度数是多少.4.整理、复习本章内容.1.3 同底数幂的乘法(一)教学目标:1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.教学重点和难点:幂的运算性质.课堂教学过程设计:一、运用实例导入新课引例一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x +5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法.(写出课题:第七章整式的乘除)本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.二、复习提问1.乘方的意义.2.指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、讲授新课1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有a m·a n=a m+n.3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.四、应用举例变式练习例1计算:(1)107×104;(2)x2·x5.解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.例2 计算:(1)-a2·a6;(2)(-x)·(-x)3;(3)y m·y m+1.解:(1)-a2·a6=-(a2·a6)=-a2+6=-a8;(2)(-x)·(-x)3=(-x)1+3=(-x)4=x4;(3)y m·y m+1=y m+(m+1)=y2m+1.师生共同解答,教师板演,并提醒学生注意:(1)中-a2与(-a)2的差别;(3)中的指数有字母,计算方法与数字相同,计算后指数要合并同类项.(2)中(-x)4=x4学生如不理解,可先引导学生回忆学过的有理数的乘方.五、课堂练习计算:(1)105·106;(2)a7·a3;(3)y3·y2;(4)b5·b;(5)a6·a6;(6)x5·x5.对于第(2)小题,要指出y的指数是1,不能忽略.计算:(1)y12·y6;(2)x10·x;(3)x3·x9;(4)10·102·104;(5)y4·y3·y2·y;(6)x5·x6·x3.(1)-b3·b3;(2)-a·(-a)3;(3)(-a)2·(-a)3·(-a);(4)(-x)·x2·(-x)4.六、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.5.若底数是多项式时,要把底数看成一个整体进行计算教后记:教学时不要生硬地提出问题,应力求顺乎自然、水到渠成.讲课要注意联系过去尚不甚巩固的知识,将新旧知识有机地融合在一起.这节课就是以此为宗旨引入新课的.1.4幂的乘方与积的乘方(1)教学目标:1.经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.2.了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题.教学重点:会进行幂的乘方的运算.教学难点:幂的乘方法则的总结及运用.教学方法:尝试练习法,讨论法,归纳法.教学用具:投影仪、常用的教学用具活动准备:1.计算:(1)(x+y)2·(x+y)3;(2)x2·x2·x+x4·x;1a)4;(4)x3·x n-1-x n-(3)(0.75a)3·(42·x4.教学过程:通过练习的方式,先让学生复习乘方的知识,并紧接着利用乘方的知识探索新课的内容.一、探索练习:1.64表示_________个___________相乘.(62)4表示_________个___________相乘.a3表示_________个___________相乘.(a2)3表示_________个___________相乘.在这个练习中,要引导学生观察,推测(62)4与(a2)3的底数、指数.并用乘方的概念解答问题.2.(62)4=________×_________×_______×________=__________(根据a n·a m=a nm)=__________.(33)5=_____×_______×_______×________×_______=__________(根据a n·a m=a nm)=__________.(a2)3=_______×_________×_______=__________(根据a n·a m=a nm)=__________.(a m)2=________×_________=__________(根据a n·a m=a nm)=__________.(a m)n=________×________×…×_______×_______=__________(根据a n·a m=a nm)=__________.即(a m)n=______________(其中m、n都是正整数)通过上面的探索活动,发现了什么?幂的乘方,底数__________,指数__________.学生在探索练习的指引下,自主的完成有关的练习,并在练习中发现幂的乘方的法则,从猜测到探索到理解法则的实际意义从而从本质上认识、学习幂的乘方的来历.教师应当鼓励学生自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化)并运用自己的语言进行描述.然后再让学生回顾这一性质的得来过程,进一步体会幂的意义.二、巩固练习:1.计算下列各题:2)3]4;(3)[(-6)3]4;(1)(103)3;(2)[(3(4)(x2)5;(5)-(a2)7;(6)-(a s)3;(7)(x3)4·x2;(8)2(x2)n-(x n)2;(9)[(x2)3]7.学生在做练习时,不要鼓励他们直接套用公式,而应让学生说明每一步的运算理由,进一步体会乘方的意义与幂的意义.2.判断题,错误的予以改正.(1)a5+a5=2a10()(2)(s3)3=x6()(3)(-3)2·(-3)4=(-3)6=-36()(4)x3+y3=(x+y)3()(5)[(m-n)3]4-[(m-n)2]6=0()学生通过练习巩固刚刚学习的新知识.在此基础上加深知识的应用.三、提高练习:1.计算:5(P3)4·(-P2)3+2[(-P)2]4·(-P5)2[(-1)m]2n+1m-1+02002―(―1)19902.若(x2)n=x8,则m=_____________.3.若[(x3)m]2=x12,则m=_____________.4.若x m·x2m=2,求x9m的值.5.若a2n=3,求(a3n)4的值.6.已知a m=2,a n=3,求a2m+3n的值.小结:会进行幂的乘方的运算.作业:课本P16习题1.7:1、2、3.教学后记:1.4 积的乘方教学目的:1.经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力. 2.了解积的乘方的运算性质,并能解决一些实际问题. 教学重点:积的乘方的运算.教学难点:正确区别幂的乘方与积的乘方的异同. 教学过程: 一、课前练习: 1.计算下列各式:(1)_______25=⋅x x ;(2)_______66=⋅x x ;(3)_______66=+x x (4)_______53=⋅⋅-x x x ;(5)_______)()(3=-⋅-x x ; (6)_______3423=⋅+⋅x x x x ;(7)_____)(33=x ; (8)_____)(52=-x ;(9)_____)(532=⋅a a ; (10)________)()(4233=⋅-m m ;(11)_____)(32=n x . 2.下列各式正确的是()(A )835)(a a = (B )632a a a =⋅ (C )532x x x =+ (D )422x x x =⋅二、探索练习:1.计算:333___)(____________________________52⨯==⨯=⨯2.计算:888___)(____________________________52⨯==⨯=⨯ 3.计算:121212___)(____________________________52⨯==⨯=⨯ 从上面的计算中,你发现了什么规律?_________________________4.猜一猜填空:(1)(___)(__)453)53(⋅=⨯;(2)(___)(__)53)53(⋅=⨯m ; (3)(___)(__))(b a ab n ⋅=,你能推出它的结果吗?结论:积的乘方等于把各个因式分别乘方,再把所得的幂相乘. 三、巩固练习:1.计算下列各题:(1)(ab )6=( )6·( )6;(2)(2m )3=( )3·( )3=____;(3)(-52pq )2=( )2·( )2·( )2=____;(4)(-x 2y )3=( )3·( )3=____.2.计算下列各题:(1)_______)(3=ab ;(2)_______)(5=-xy ;(3)_____________)43(2==ab ;(4)_______________)23(32==-b a ; (5)____________)102(22==⨯;(6)____________)102(32==⨯-. 3.计算下列各题:(1)223)21(z xy -; (2)3)32(m n b a -; (3)n b a )4(32;(4)2242)(32ab b a -⋅;(5)32332)(3)2(b a b a -;(6)222)2()3()2(x x x ---+;(7)232324)3()(9n m n m -+;(8)422432)(3)3(a ab b a ⋅-⋅.四、提高练习: 1.计算:21)1(5.022003100100--⨯⨯-;2.已知32=m ,42=n ,求n m 232+的值;3.已知5=n x ,3=n y ,求n y x 22)(的值;4.已知552=a ,443=b ,335=c ,试比较a 、b 、c 的大小. 5.太阳可以近似地看做是球体,如果用V 、r 分别表示球的体积和半径,那么334r v π=,太阳的半径约为6×105千米,它的体积大约是多少立方米?(保留到整数) 五、小结:本节课学习了积的乘方的性质及应用,要注意它与幂的乘方的区别.六、作业:第18页习题 1、2、3、4、1.5同底数幂的除法教学目标:1.经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力. 2.了解同底数幂的除法的运算性质,并能解决一些实际问题.教学重点:会进行同底数幂的除法运算. 教学难点:同底数幂的除法法则的总结及运用. 教学方法:尝试练习法,讨论法,归纳法. 教学用具:投影仪 活动准备:1.填空:(1)=⋅24x x ;(2)2()=33a ;(3)=⎪⎭⎫ ⎝⎛-22332c b .2.计算:(1)()323322y y y -⋅,(2)()()23322416xy y x -+ 教学过程: 一、探索练习:(1)====÷46462222(1)====÷585810101010(3)()()()===个个个10101010101010101010101010101010⨯⨯⨯⨯⨯⨯⨯⨯⨯=÷n m nm(4)()()()()()()()()()()()()()()()()()()()=---=--------=---个-个-个3333333333333333⨯⨯⨯⨯⨯⨯⨯⨯=÷nmnm从上面的练习中你发现了什么规律?______________________________________猜一猜:()n m n m a a a n m >都是正整数,且,,0≠=÷二、巩固练习:1.填空:(1)=÷a a 5;(2)()()=-÷-25x x ; (3)÷16y =11y ;(4)÷25b b =;(5)()()=-÷-69y x y x2.计算: (1)()ab ab ÷4;(2)133+-÷-n m yy ;(3)()225225.041x x -÷⎪⎭⎫⎝⎛-(4)()()[]24655mn mn -÷-;(5)()()()y x x y y x -⋅-÷-48 3.用小数或分数表示下列各数:(1)0118355⎪⎭⎫ ⎝⎛;(2)23-;(3)24-;(4)365-⎪⎭⎫⎝⎛;(5)4.2310-⨯;(6)325.0- 三、提高练习:1.已知的值。

北师大版七年级下册数学教案:第一章《整式的乘除》复习

北师大版七年级下册数学教案:第一章《整式的乘除》复习

北师大版七年级下册数学教案:第一章《整式的乘除》复习一. 教材分析北师大版七年级下册数学第一章《整式的乘除》复习,主要内容包括整式乘法、整式除法、平方差公式、完全平方公式等。

这部分内容是学生学习代数的基础,对于培养学生的逻辑思维和运算能力具有重要意义。

二. 学情分析学生在之前的学习中已经掌握了整式乘除的基本运算方法,但部分学生对于平方差公式和完全平方公式的理解和运用仍有困难。

此外,学生在运算过程中容易出现的错误包括符号错误、顺序错误等。

三. 教学目标1.知识与技能:使学生掌握整式乘除的基本运算方法,能够熟练运用平方差公式和完全平方公式进行计算。

2.过程与方法:通过复习,提高学生的逻辑思维和运算能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:整式乘除的基本运算方法,平方差公式和完全平方公式的运用。

2.难点:平方差公式和完全平方公式的灵活运用,以及在实际问题中的应用。

五. 教学方法采用讲解法、练习法、讨论法等,结合多媒体教学手段,引导学生通过自主学习、合作交流,提高运算能力。

六. 教学准备1.教师准备:熟习教材内容,了解学生学情,设计教学活动。

2.学生准备:预习教材内容,了解整式乘除的基本运算方法。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾整式乘除的基本运算方法,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT展示平方差公式和完全平方公式,引导学生理解公式的推导过程,巩固记忆。

3.操练(10分钟)教师设计具有梯度的练习题,让学生独立完成,检查学生对平方差公式和完全平方公式的掌握程度。

4.巩固(10分钟)学生分组讨论,交流在做题过程中遇到的问题,互相学习,共同提高。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)教师设计综合性的题目,让学生运用所学知识解决实际问题,提高学生的应用能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。

北师大版七年级数学下册《第一章_整式》教案

北师大版七年级数学下册《第一章_整式》教案

第一章整式的运算主备:复备:七年级备课组审阅:课时安排:1.1整式 1课时1.2整式的加减 2课时1.3同底数幂的乘法 1课时1.4幂的乘方与积的乘方 2课时1.5同底数幂的除法 1课时1.6整式的乘法 3课时1.7平方差公式 2课时1.8完全平方公式 2课时1.9整式的除法 2课时复习与小结 2课时ab第一章 整式的运算1.1 整式教学目标:1.在现实情境中进一步理解字母表示数的意义,发展符号感。

2.了解整式产生的背景和整式的概念,能求出整式的次数。

3.进一步发展观察、归纳、分类等能力,发展有条理的思考及语言表达能力。

4.在解决问题的过程中了解数学的价值,发展“用数学”的信心。

教学重点:整式的概念与整式的次数。

教学难点:整式的次数。

教学方法:尝试练习法,讨论法,归纳法。

本节课的教学目标是: 教学过程:一、情境引入活动内容:逐渐递进地提供了一系列问题情境,要求学生列 出代数式,并试着将代数式分成两类。

1.一个三角尺如图所示,阴影部分所占的面积是____;2.某校学生总数为x ,其中男生人数占总数的53,该校男生人数为___; 3.一个长方体的底面是边长为a 的正方形,高为h ,体积是___; 4.小明房间的窗户如图所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同)。

⑴装饰物所占的面积是多少?⑵窗户中能射进阳光的部分的面积是多少?(窗框面积忽略不计)二、概念的教学活动内容:在讲解完单项式、多项式、整式的概念及整式的次数后,立即让学生把上一环节中的代数式进行归类并求出它们的次数。

单项式、多项式的概念与其次数 注意:(1)区分判别字母在分子中与字母在分母中的式子是否整式。

(2)多项式是“几个单项式的和”中的和如何理解。

(3)单独一个数或一个字母也是单项式,而单独一个非零的次数是0。

(4)单独一个字母的次数是1。

(5)常见错误多项式的次数就是把多项式的所有字母的指数相加。

与单项式的次数混淆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(此文档为word格式,下载后您可任意编辑修改!)第一章整式的运算主备:复备:七年级备课组审阅:1.1 同底数幂的乘法教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。

教学过程:一、复习回顾活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:二、情境引入活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

三、讲授新课1.利用乘方的意义,提问学生,引出法则:计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则:将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即a m·a n=a m+n.3.引导学生剖析法则(1)等号左边是什么运算? (2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.三、应用提高活动内容:1.完成课本“想一想”:等于什么?2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

3.独立处理例2,从实际情境中学会处理问题的方法。

4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。

四、拓展延伸活动内容:计算:(1)-a2·a6 (2)(-x)·(-x)3(3)y m·y m+1 (4)(5)(6).(7)(8)(9)x5·x6·x3 (10)-b3·b3(11)-a·(-a)3 (12)(-a)2·(-a)3·(-a)五、课堂小结活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

六、布置作业1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

2.完成课本习题1.4中所有习题。

教学反思1.4 幂的乘方与积的乘方(一)教学目标:1.经历探索幂的乘方运算性质的过程,进一步体会幂的意义。

了解幂的乘方的运算性质,并能解决实际问题。

2.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力。

学习幂的乘方的运算性质,提高解决问题的能力。

3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心,感爱数学的内在美。

教学重点:会进行幂的乘方的运算。

教学难点:幂的乘方法则的总结及运用。

教学方法:尝试练习法,讨论法,归纳法。

教学过程:一、复习回顾活动内容:复习已学过的幂的意义及幂运算的运算法则1. 幂的意义2. (m 、n 为正整数)同底数幂相乘,底数不变,指数相加。

二、情境引入活动内容:根据已经学习过的知识,带领学生回忆并探讨以下实际问题1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm 3 。

甲正方体的棱长是乙正方体的 5 倍,则甲正方体的体积 V 甲 = cm 3 。

2. 乙球的半径为 3 cm, 则乙球的体积V 乙 = cm 3甲球的半径是乙球的10倍,则甲球的体积V 甲 = cm 3 .如果甲球的半径是乙球的n 倍,那么甲球体积是乙球体积的 倍。

地球、木星、太阳可以近似地看作球体。

木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的 倍和 倍.三、探究新知活动内容:1.通过问题情境继续研究:为什么?让学生清楚运算之间的关系,题目所描述的是10的2次幂的三次方,其底数是幂的形式,然后根据幂的意义展开运算,去探究运算的过程。

2.计算下列各式,并说明理由 .(1) (62)4 ; (2) (a 2)3 ; (3) (a m )2 ; (4) (a m )n .仿照前面,来研究以上四个题目的运算情况,实际上做到(3)题时可以猜想(4)题的结果,也为后面幂的乘方的法则推导带来指导性。

完成本节课的主要教学任务。

通过上面的探索活动,发现了什么?幂的乘方,底数__________,指数__________。

四、落实基础活动内容:一、完成教科书例题1【例1】计算:(1) (102)3 (2) (b 5)5 (3) (a n )3(4) -(x 2)m (5) (y 2)3 · y (6) 2(a 2)6 - (a 3)4二、随堂练习1.计算:(1) (103)3 (2) -(a 2)5 (3) (x 3)4 · x 2(4) [(-x )2 ]3 (5) (-a )2(a 2)2 (6) x ·x 4 – x 2 · x 3 .2.判断下面计算是否正确?如果有错误请改正:(1) (x 3)3 = x 6 (2)a 6 · a 4 = a 24五、联系拓广活动内容:把所学知识面拓广,幂的运算都在指数上做文章,这节课的拓广题,也是以指数变化为主。

⑴ a 12 =(a 3)( ) =(a 2)( )=a 3 a ( )=( )3 =( )4⑵ 32﹒9m =3( )⑶ y 3n =3, y 9n = .⑷ (a 2)m +1 = .⑸ [(a -b )3]2 =(b -a )( ) (6)若4﹒8m ﹒16m =29 , 则m = .(7)如果 2a =3 ,2b =6 ,2c =12, 那么 a 、b 、c 的关系是 .六、课堂小结活动内容:师生互相交流本堂课上应该掌握的幂的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调。

特别要注意已经学习过的两种幂的运算——同底数幂的乘法与幂的乘方,它们之间的整合也是这堂课要掌握的。

七、布置作业:完成课本习题1.5 教学反思1.4 幂的乘方与积的乘方(二)教学目标:1.经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2.了解积的乘方的运算性质,并能解决一些实际问题。

教学重点:会进行积的乘方的运算。

教学难点:正确区别幂的乘方与积的乘方的异同。

教学方法:探索、猜想、实践法。

教学过程:一、复习回顾:活动内容:复习前几节课学习的有关幂的三个知识点:1.幂的意义2.同底数幂的乘法运算法则(m 、n 为正整数)3.幂的乘方运算法则(a m )n =a m n (m 、n 都是正整数)二、探索交流活动内容:本环节是这节课最为重要的环节之一,教师应该注意在授课中学会调动学生的学习兴趣,比如在课上可以对学生进行升级式提问:(1)根据幂的意义,(ab)3表示什么?(2)为了计算(化简)算式ab ·ab ·ab ,可以应用乘法的交换律和结合律。

又可以把它写成什么形式?(3)由特殊的 (ab)3=a 3b 3 出发, 你能想到一般的公式吗?此环节的三个连贯性问题用到了刚刚复习到的幂的意义及根据其建立的数学模型。

三、知识扩充活动内容:1.借助刚刚探讨的结果,完成课本19页“做一做”的三个问题。

(3×5)7=3( )×5( )(3×5)m =3( )×5( ) (ab)n =a ( )b ( )2.学会复述积的乘方的运算法则:(ab )n =a n b n积的乘方等于把各个因式分别乘方,再把所得的幂相乘。

3.公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质? 怎样用公式表示?4.进一步探讨出答案(abc)n =a n ·b n ·c n四、巩固新知活动内容:1.课本21页数学理解判断题:下面的计算是否正确?如有错误请改正.(1);(2)2.课本【例2】计算:(1)(3x )2 ; (2)(-2b )5 ;(3)(-2x y )4 ; (4)(3a 2)n .3.【例3】地球可以近似地看做是球体,如果用V , r 分别代表球的体积和半径,那么。

地球的半径约为6×103 千米,它的体积大约是多少立方千米?4.课本随堂练习1五、公式逆用活动内容:1.逆用的一组相关习题(1)23×53 ;(2) 28×58 (3) (-5)16 × (-2)15 ; (4) 24 × 44 ×(-0.125)4 2.混合运算习题:(1) a 3·a 4·a+(a 2)4 +(-2a 4)2(2) 2(x 3)2·x 3 –(3x 3)3+(5x )2·x 7(3)0.25100×4100(4) 812×0.12513六、提高练习:1、计算:2、已知, 求的值。

3、已知 求的值。

4、已知,,,试比较a 、b 、c 的大小。

七、课堂小结:活动内容:师生互相交流本堂课上应该掌握的积的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调。

特别要注意已经学习过的四种幂的运算之间的整合也是这堂课要掌握的。

八、布置作业:完成课本习题1.6 教学反思1.5 同底数幂的除法教学目标:1.了解同底数幂除法的运算性质,并解决一些实际问题。

2.理解零指数幂和负指数幂的意义。

3.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力;提高学生观察、归纳、类比、概括等能力。

4.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养。

教学重点:会进行同底数幂的除法运算。

教学难点:同底数幂的除法法则的总结及运用。

教学方法:尝试练习法,讨论法,归纳法。

教学过程:一、情境引入活动内容:一种液体每升含有 1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死 109 个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的? 二、了解同底数幂除法的运算及应用活动内容:活动1先让学生作“做一做”:计算下列各式,并说明理由(m >n )从中归纳出同底数幂除法的运算性质。

相关文档
最新文档