高三物理一轮复习功能关系、能量守恒教学设计
高考物理一轮复习功能关系能量守恒定律学案新人教
第四节功能关系能量守恒定律(对应学生用书第89页)[教材知识速填]知识点1 功能关系1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.2.做功对应变化的能量形式(1)合外力的功等于物体的动能的变化.(2)重力做功引起物体重力势能的变化.(3)弹簧弹力做功引起弹性势能的变化.(4)除重力和系统内弹力以外的力做功等于物体机械能的变化.易错判断(1)做功的过程一定会有能量转化.(√)(2)力对物体做了多少功,物体就有多少能.(×)(3)力对物体做功,物体的总能量一定增加.(×)知识点2 能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化和转移的过程中,能量的总量保持不变.2.适用范围能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适用的一条规律.3.表达式ΔE减=ΔE增,E初=E末.易错判断(1)能量在转化或转移的过程中,其总量会不断减少.(×)(2)能量的转化和转移具有方向性,且现在可利用的能源有限,故必须节约能源.(√)(3)滑动摩擦力做功时,一定会引起能量的转化.(√)[教材习题回访]考查点:对功能关系理解1.(粤教版必修2P89T2)(多选)平直公路上行驶中的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭合线圈,线圈中产生电流.上述不同现象中所包含的相同的物理过程是( )A .物体克服阻力做功B .物体动能转化为其他形式的能量C .物体势能转化为其他形式的能量D .物体机械能转化为其他形式的能量 [答案] AD考查点:能量的转化与守恒2.(沪科版必修2P 77T 5改编)上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法正确的是( )A .摆球机械能守恒B .总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能C .能量正在消失D .只有动能和重力势能的相互转化 [答案] B考查点:功能关系的计算3.(沪科版必修2P 55T 1)(多选)某人用手将质量为1 kg 的物体由静止向上提起1 m ,这时物体的速度为2 m/s ,g 取10 m/s 2,下列说法中正确的是( )A .手对物体做功12 JB .合外力做功2 JC .合外力做功12 JD .物体克服重力做功10 J [答案] ABD考查点:能量的转化与守恒4.(人教版必修2P 82T 2改编)三峡水力发电站是我国最大的水力发电站,平均水位落差约135 m ,水的流量约1.35×104m 3/s.船只通航需要约3 500 m 3/s 的流量,其余流量全部用来发电.水流冲击水轮机发电时,水流减少的机械能有20%转化为电能.(1)按照以上数据估算,三峡发电站的发电功率是多少?(2)设三口之家生活用电平均为0.5 kW ,如果三峡电站全部用于城市生活用电,它大约可以满足多少个百万人口城市的生活用电?[解析](1)用于发电的水流量Q =(1.35×104-3.5×103) m 3/s =1.0×104m 3/s 发电功率P =mgh t ×20%=ρVgh t ×20%=ρQgh×20%=2.7×109W.(2)可供给用户数n =2.7×1090.5×103=5.4×106人口数为N =3n =16.2×106故可满足16个百万城市的生活用电[答案](1)2.7×109 W (2)16个(对应学生用书第90页)对功能关系的理解及应用几种常见功能关系的对比各种力做功对应能的变化定量关系合力的功动能变化合力对物体做功等于物体动能的增量W合=E k2-E k1重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性势能增加,且W弹=-ΔE p=E p1-E p2只有重力、弹簧弹力做功不引起机械能变化机械能守恒ΔE=0非重力和弹力的功机械能变化重力和弹力之外的力做正功,物体的机械能增加,做负功,机械能减少,且W其他=ΔE一对相互作用的滑动摩擦力做的总功内能变化作用于系统的一对滑动摩擦力一定做负功,系统内能增加Q=fs相对[题组通关]1.(多选)悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m的运动员刚入水时的速度为v,水对他的阻力大小恒为F,那么在他减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度)( ) A.他的动能减少了(F-mg)hB.他的重力势能减少了mgh-12 mv2C.他的机械能减少了FhD.他的机械能减少了mghAC [合力做的功等于动能的变化,合力做的功为(mg-F)h,动能减少了(F-mg)h,A正确;重力做的功等于重力势能的变化,故重力势能减小了mgh,B错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh,C正确,D错误.]2.(2020·陕西西安联考)(多选)如图541所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.杆上的A点与定滑轮等高,杆上的B 点在A 点正下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( ) 【导学号:84370232】图541A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d[题眼点拨] ①“轻绳”和“光滑直杆”说明质量为m 的环下滑过程中,与重物组成的系统机械能守恒;②“到达B 处”要利用环沿绳的速度分量等于重物上升的速度. CD [环到达B 处时,对环的速度进行分解,可得v 环cos θ=v 物,由题图中几何关系可知θ=45°,则v 环=2v 物,B 错;因环从A 到B ,环与重物组成的系统机械能守恒,则环减少的机械能等于重物增加的机械能,C 对;当环到达B 处时,由题图中几何关系可得重物上升的高度h =(2-1)d ,A 错;当环下落到最解得H =43低点时,设环下落高度为H ,由机械能守恒有mgH =2mg(H 2+d 2-d),d ,故D 正确.]对能量守恒定律的理解及应用1.对能量守恒定律的两点理解(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等. (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.2.能量转化问题的解题思路(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初、末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE 减和增加的能量总和ΔE 增,最后由ΔE 减=ΔE 增列式求解.[多维探究]考向1 能量守恒定律的简单应用1. 蹦极是一项既惊险又刺激的运动,深受年轻人的喜爱.如图542所示,蹦极者从P 处由静止跳下,到达A 处时弹性绳刚好伸直,继续下降到最低点B 处,B 离水面还有数米距离.蹦极者(视为质点)在其下降的整个过程中,重力势能的减少量为ΔE 1、绳的弹性势能的增加量为ΔE 2、克服空气阻力做的功为W ,则下列说法正确的是( )图542A .蹦极者从P 到A 的运动过程中,机械能守恒B .蹦极者与绳组成的系统从A 到B 的过程中,机械能守恒C .ΔE 1=W +ΔE 2D .ΔE 1+ΔE 2=WC [下落过程中有空气阻力做功,所以机械能不守恒,A 、B 项错误;根据能量守恒,在下落的全过程,有ΔE 1=W +ΔE 2,故C 项正确,D 项错误.]如图所示,A 、B 、C 质量分别为m A =0.7 kg ,m B =0.2 kg ,m C =0.1 kg ,B 为套在细绳上的圆环,A 与水平桌面的动摩擦因数μ=0.2,另一圆环D 固定在桌边外侧,离地面高h 2=0.3 m .当B 、C 从静止下降h 1=0.3 m ,C 穿环而过,B 被D 挡住,不计绳子质量和滑轮的摩擦,取g =10 m/s 2,若开始时A 离桌边足够远.试求:(1)物体C 穿环瞬间的速度;(2)物体C 能否到达地面?如果能到达地面,其速度多大?[解析](1)由能量守恒定律得:(m B +m C )gh 1=12(m A +m B +m C )v 21+μm A gh 1可求得:v 1=256 m/s.(2)设物体C 到达地面时的速度为v 2,由能量守恒定律得: m C gh 2=12(m A +m C )v 22-12(m A +m C )v 21+μm A gh 2可求得:v 2=6610 m/s ,故物体C 能到达地面,到达地面时的速度为6610m/s. [答案](1)25 6 m/s (2)能 6610m/s 考向2 涉及弹簧(或橡皮绳)类的能量守恒问题2.在儿童乐园的蹦床项目中,小孩在两根弹性绳和蹦床的协助下实现上下弹跳.如图543所示,某次蹦床活动中小孩静止时处于O 点,当其弹跳到最高点A 后下落可将蹦床压到最低点B ,小孩可看成质点,不计空气阻力,下列说法正确的是( )图543A.从A运动到O,小孩重力势能减少量大于动能增加量B.从O运动到B,小孩动能减少量等于蹦床弹性势能增加量C.从A运动到B,小孩机械能减少量小于蹦床弹性势能增加量D.若从B返回到A,小孩机械能增加量等于蹦床弹性势能减少量A [从A运动到O,小孩重力势能减少量等于动能增加量与弹性绳的弹性势能的增加量之和,选项A正确;从O运动到B,小孩动能和重力势能的减少量等于弹性绳和蹦床的弹性势能的增加量,选项B错误;从A运动到B,小孩机械能减少量大于蹦床弹性势能增加量,选项C错误;若从B返回到A,小孩机械能增加量等于蹦床和弹性绳弹性势能减少量之和,选项D错误.] 3.(2020·河南名校联考)如图544所示,在某竖直平面内,光滑曲面AB与水平面BC平滑连接于B点,BC右端连接内壁光滑、半径r=0.2 m的四分之一细圆管CD,管口D端正下方直立一根劲度系数k=100 N/m的轻弹簧,弹簧一端固定,另一端恰好与管口D端平齐.一个质量为1 kg的小球放在曲面AB 上,现从距BC的高度h=0.6m处静止释放小球,它与BC间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N=2.5mg的作用力,通过CD后,在压缩弹簧过程中小球速度最大时弹簧的弹性势能E p=0.5 J.重力加速度g取10 m/s2.求:图544(1)小球在C处受到的向心力大小;(2)在压缩弹簧过程中小球的最大动能E km;(3)小球最终停止的位置.【导学号:84370233】[题眼点拨] ①“对上管壁有F N的作用力”要想到在c点时向心力的来源;②“速度最大时弹簧的弹性势能E p=0.5 J”要利用速度最大时小球重力等于弹簧弹力的条件分析弹簧的形变量.[解析](1)小球进入管口C端时,它与圆管上管壁有大小为F N=2.5mg的相互作用力,故对小球由牛顿第二定律有F N+mg=F n解得F n=35 N.(2)在压缩弹簧过程中,速度最大时合力为零.设此时小球离D 端的距离为x 0,则有kx 0=mg 解得x 0=mgk=0.1 m 在C 点,有F n =mv 2Cr解得v C =7 m/s由能量守恒定律有mg(r +x 0)=E p +(E km -12mv 2C )解得E km =mg(r +x 0)+12mv 2C -E p =6 J.(3)小球从A 点运动到C 点过程,由动能定理得 mgh -μmgs=12mv 2C解得B 、C 间距离s =0.5 m小球与弹簧作用后返回C 处动能不变,小球的动能最终消耗在与BC 水平面相互作用的过程中. 设小球与弹簧作用后在BC 上运动的总路程为s′,由能量守恒定律有 μmgs′=12mv 2C解得s′=0.7 m故最终小球在BC 上距离C 为0.5 m -(0.7 m -0.5 m)=0.3 m(或距离B 端为0.7 m -0.5 m =0.2 m)处停下.[答案](1)35 N (2)6 J (3)停在BC 上距离C 端0.3 m 处(或距离B 端0.2 m 处)如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L.现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 向下运动刚到C 点时的速度; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能.[解析](1)A 与斜面间的滑动摩擦力F f =2μ mgcos θ,物体A 向下运动到C 点的过程中,根据能量守恒定律可得:2mgLsin θ+12·3mv 20=12·3mv 2+mgL +F f L解得v =v 20-gL.(2)从物体A 接触弹簧,将弹簧压缩到最短后又恰回到C 点,对系统应用动能定理 -F f ·2x=0-12×3mv 2 解得x =v 202g -L2.(3)弹簧从压缩到最短到恰好能弹到C 点的过程中,对系统根据能量守恒定律可得:E p +mgx =2mgxsin θ+F f x 所以E p =F f x =3mv 204-3mgL4.[答案](1)v 20-gL (2)v 202g -L2(3)3mv 204-3mgL 4考向3 能量守恒定律与图象的结合问题4.(多选)如图545所示,一质量为m 的小球以初动能E k0从地面竖直向上抛出,已知运动过程中受到恒定阻力f =kmg 作用(k 为常数且满足0<k<1).图中两条图线分别表示小球在上升过程中动能和重力势能与其上升高度之间的关系(以地面为零势能面),h 0表示上升的最大高度.则由图可知,下列结论正确的是( )图545A .E 1是最大势能,且E 1=E k0k +2B .上升的最大高度h 0=E k0k +1mgC .落地时的动能E k =kE k0k +1D .在h 1处,物体的动能和势能相等,且h 1=E k0k +2mgBD [因小球上升的最大高度为h 0,由图可知其最大势能E 1=E k0k +1,又E 1=mgh 0,得h 0=E k0k +1mg ,A 项错误,B 项正确.由图可知,小球上升过程中克服阻力做功为E k0-E k0k +1,因小球所受阻力恒定,且上升和下落高度相等,则小球下落过程中克服阻力做功为E k0-E k0k +1,则小球落地时的动能E k =E k0k +1-⎝ ⎛⎭⎪⎫E k0-E k0k +1=1-k k +1E k0,C 项错误.在h 1处,小球的动能和势能相等,则有E k0-(mg +f)h 1=mgh 1,解得h 1=E k0k +2mg,D 项正确.]摩擦力做功与能量的转化关系1.对摩擦生热的理解(1)从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量.(2)从能量的角度看,是其他形式能量的减少量等于系统内能的增加量.2.两种摩擦力做功情况比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数和等于零一对滑动摩擦力所做功的代数和不为零,总功W=-F f·l相对,产生的内能Q=F f·l相对相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功[母题] 如图546所示,在竖直平面内,粗糙的斜面轨道AB的下端与光滑的圆弧轨道BCD相切于B,C 是最低点,圆心角∠BOC=37°,D与圆心O等高,圆弧轨道半径R=1.0 m,现有一个质量为m=0.2 kg 可视为质点的小物体,从D点的正上方E点处自由下落,D、E距离h=1.6 m,小物体与斜面AB之间的动摩擦因数μ=0.5.sin 37°=0.6,cos 37°=0.8,g取10 m/s2.求:图546(1)小物体第一次通过C点时对轨道的压力;(2)要使小物体不从斜面顶端飞出,斜面至少要多长;(3)若斜面已经满足(2)要求,请首先判断小物体是否可能停在斜面上.再研究小物体从E点开始下落后,整个过程中系统因摩擦所产生的热量Q.【导学号:84370234】[题眼点拨] ①“粗糙斜面”要利用μ=0.5分析物体是否会停在斜面上;②“光滑圆弧”要想到物体有可能最终在圆弧上往复性运动.[解析](1)小物体从E点到C点,由能量守恒定律得mg(h+R)=12mv2C①在C点,由牛顿第二定律得F N-mg=mv2CR②联立①②式解得F N=12.4 N.根据牛顿第三定律可知小物体对轨道的压力大小为12.4 N,方向竖直向下.(2)从E→D→C→B→A 过程,由动能定理得 W G +W f =0③ W G =mg[(h +Rcos 37°)-L AB sin 37°] ④ W f =-μmgcos 37°·L AB⑤联立③④⑤式解得L AB =2.4 m.(3)因为mgsin 37°>μmgcos 37°(或μ<tan 37°),所以,小物体不会停在斜面上.小物体最后以C 为中心,B 为一侧最高点沿圆弧轨道做往返运动,从E 点开始直至运动稳定,系统因摩擦所产生的热量Q =ΔE p⑥ΔE p =mg(h +Rcos 37°)⑦联立⑥⑦式解得Q =4.8 J.[答案](1)12.4 N 方向竖直向下 (2)2.4 m (3)小物体不会停在斜面上 4.8 J[母题迁移]迁移1 传送带问题中摩擦力做功分析1.如图547所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体经过一段时间能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程中,下列说法正确的是( )图547A .电动机做的功为12mv 2B .摩擦力对物体做的功为mv 2C .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgvD [由能量守恒可知,电动机做的功等于物体获得的动能和由于摩擦而产生的内能,选项A 错误;对物体受力分析知,仅有摩擦力对物体做功,由动能定理知,其大小应为12mv 2,选项B 错误;传送带克服摩擦力做功等于摩擦力与传送带对地位移的乘积,可知这个位移是物体对地位移的两倍,即W =mv 2,选项C 错误;由功率公式知电动机增加的功率为μmgv,选项D 正确.]如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. [解析](1)由题图可知,皮带长x =hsin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1 匀速运动的位移为x -x 1=v 0(t -t 1) 解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m 所以加速度a =v 0t 1=2.5 m/s 2由牛顿第二定律有:μmgcos θ-mgsin θ=ma 解得:μ=32. (2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量. 在时间t 1内,皮带运动的位移 x 皮=v 0t 1=1.6 m在时间t 1内,工件相对皮带的位移 x 相=x 皮-x 1=0.8 m 在时间t 1内,摩擦生热 Q =μmgcos θ·x 相=60 J 工件获得的动能E k =12mv 20=20 J工件增加的势能E p =mgh =150 J电动机多消耗的电能W =Q +E k +E p =230 J. [答案](1)32(2)230 J 迁移2 “滑块—木板”问题中摩擦力做功分析2.(2020·衡水四调)如图548甲所示,质量M =1.0 kg 的长木板A 静止在光滑水平面上,在木板的左端放置一个质量m =1.0 kg 的小铁块B ,铁块与木板间的动摩擦因数μ=0.2,对铁块施加水平向右的拉力F ,F 大小随时间变化如图乙所示,4 s 时撤去拉力.可认为A 、B 间的最大静摩擦力与滑动摩擦力大小相等,取重力加速度g =10 m/s 2.求:甲 乙 图548(1)0~1 s 内,A 、B 的加速度大小a A 、a B ; (2)B 相对A 滑行的最大距离x ; (3)0~4 s 内,拉力做的功W ; (4)0~4 s 内系统产生的摩擦热Q.[题眼点拨] ①“木板A 静止在光滑水平面上”说明若水平方向对木板A 施力,木板A 会做加速运动;②“F 大小随时间变化如图乙所示”,要根据数据分析A 、B 两物体是否发生相对滑动. [解析](1)在0~1 s 内,A 、B 两物体分别做匀加速直线运动 根据牛顿第二定律得μmg=Ma A F 1-μmg=ma B代入数据得a A =2 m/s 2,a B =4 m/s 2.(2)t 1=1 s 后,拉力F 2=μmg,铁块B 做匀速运动,速度大小为v 1: 木板A 仍做匀加速运动,又经过时间t 2,速度与铁块B 相等. v 1=a B t 1又v 1=a A (t 1+t 2) 解得t 2=1 s设A 、B 速度相等后一起做匀加速运动,运动时间t 3=2 s ,加速度为a F 2=(M +m)a a =1 m/s 2木板A 受到的静摩擦力f =Ma<μmg,A 、B 一起运动 x =12a B t 21+v 1t 2-12a A (t 1+t 2)2 代入数据得x =2 m.(3)时间t 1内拉力做的功W 1=F 1x 1=F 1·12a B t 21=12 J时间t 2内拉力做的功W 2=F 2x 2=F 2v 1t 2=8 J 时间t 3内拉力做的功W 3=F 2x 3=F 2(v 1t 3+12at 23)=20 J4 s 内拉力做的功W =W 1+W 2+W 3=40 J.(4)系统的摩擦热Q 只发生在t 1+t 2时间内,铁块与木板相对滑动阶段,此过程中系统的摩擦热Q =μmg·x=4 J.[答案](1)2 m/s 24 m/s 2(2)2 m (3)40 J (4)4 J3利用Q=F f x相对计算热量Q时,关键是对相对路程x相对的理解.例如:如果两物体同向运动,x相对为两物体对地位移大小之差;如果两物体反向运动,x相对为两物体对地位移大小之和;如果一个物体相对另一个物体往复运动,则x相对为两物体相对滑行路径的总长度.2019-2020学年高考物理模拟试卷一、单项选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,已知电源的内阻为r,外电路的固定电阻R0=r,可变电阻Rx的总电阻为2r,在Rx的滑动触头从A端滑向B端的过程中()A.Rx消耗的功率变小B.电源输出的功率减小C.电源内部消耗的功率减小D.R0消耗的功率减小2.如图所示,在铁芯上、下分别绕有匝数n1=800和n2=200的两个线圈,上线圈两端u=51sin314tV的交流电源相连,将下线圈两端接交流电压表,则交流电压表的读数可能是A.2.0V B.9.0VC.12.7V D.144.0V3.如图,两个小球分别被两根长度不同的细绳悬于等高的悬点,现将细绳拉至水平后由静止释放小球,当两小球通过最低点时,两球一定有相同的( )A.速度B.角速度C.加速度D.机械能4.下列说法正确的是()A.β衰变所释放的电子是原子核外电子电离形成的B.贝克勒尔通过实验发现了中子C.原子从a能级状态跃迁到b能级状态时吸收波长为λ1的光子;原子从b能级状态跃迁到c能级状态时发射波长为λ2的光子,已知λ1>λ2,那么原子从a能级状态跃迁到c能级状态时将要吸收波长为212λλλ-的光子D.赫兹首次用实验证实了电磁波的存在5.人类对物质属性的认识是从宏观到微观不断深入的,下列说法正确的是()A.晶体的物理性质都是各向异性的B.露珠呈现球状是由于液体表面张力的作用C.布朗运动是固体分子的运动,它说明分子永不停歇地做无规则运动D.当分子力表现为斥力时,分子力和分子势能总是随分子间距离的减小而减小6.地质勘探发现某地区表面的重力加速度发生了较大的变化,怀疑地下有空腔区域。
高中物理《功能关系、能量守恒》优质课教案、教学设计
《功能关系、能量守恒》教学设计教学环节和教学内容【新课引入,知识回顾】力做能量变化功重力重力势能变化,重力做正功,重力势能减少弹簧弹力摩擦产生摩擦热力动能变化,,动能增加机械能变化,,机械能减少电场力做功教师活动复习基础知识,开始新课重点强调:摩擦力做功与产生摩擦热的关系机械能变化域外力做功的关系学生活动填写基础知识表格思考并回答问题设计意图调动学生头脑中已有的已知信息,为问题的解决做好铺垫工作选择重点强调、突出、重点记忆【典型例题讲解】【例】如图所示,木块A 放在木块B 上左端,用力F 将A 拉至B 的右端,第一次将B 固定在地面上,F 做功为W1 ,生热为Q1 ;第二次让B 可以在光滑地面上自由滑动,A 拉至B 的右端,这次F 做的功为W2 ,生热为PPT 展示物体的运动过程明确物体受力、运动过程学生思考,讨论理解让学生直观感受物体的运动情景如图所示,一足够长的木板在水平地面上运动,速度v0=10m/s 时,将一相对于地面静止的物块轻放到木板右端,面上有一轻 学生讨 解论、讲解、生 A 点, 自然 纠错 B 点。
水平桌放 置的轨道为 半 径 R = 左上角 120° 竖直直径, P 距 离是 h = =0.4kg 的物到 C 点, 释 糙水平桌面如图所示, 一根原长为 L 的轻弹簧. 竖直放置, 下端固定在水平地面上, 一个质量为 m 的小球, 在弹簧的正上方从距地提出问题:若空气阻力不计, 结果将如何?思考、回答问题、发 现 问 题、解决问题让学生更好的明确机械能守恒、能量守恒定律面高为 H 处自由下落并压缩弹 簧. 若弹 簧的 最大 压缩 量为 x ,小球下落过程受到的空气阻 力恒为 f ,则小球下落的整个过 程中, 小球动能的增量为 , 小球重力势能的增量为, 弹簧弹性势能的增量为 _ _ _. 小球机械能的减少量 , 小球和弹簧组成的系统机械 能的减少量如图所示, 水平桌培养学生的良好的题思维、提高学的课堂参与度弹簧, 左端固定在 状态时其右端位于 面右侧有 一竖直 MNP , 其 形 状 1.0m 圆环剪去了 的圆弧, MN 为其点 到 桌 面 的 数 值2.4m 。
功能关系能量守恒定律 教学设计教案
功能关系能量守恒定律教学设计教案第一章:能量守恒定律简介1.1 能量守恒定律的定义1.2 能量守恒定律的历史发展1.3 能量守恒定律的重要性和应用范围第二章:能量的种类与转换2.1 机械能2.2 热能2.3 电能2.4 化学能2.5 能量转换的原理和方式第三章:功能关系的基本概念3.1 功的定义3.2 功率的概念3.3 效率的计算3.4 功能关系的表达式第四章:功能关系能量守恒定律的证明4.1 能量守恒定律的数学表达式4.2 能量守恒定律的实验验证4.3 能量守恒定律的微观解释第五章:功能关系能量守恒定律的应用5.1 机械系统中的能量守恒5.2 热力学系统中的能量守恒5.3 电学系统中的能量守恒5.4 化学反应中的能量守恒第六章:能量守恒定律在日常生活和工业中的应用6.1 交通工具的能量转换与守恒6.2 照明设备中的能量转换与守恒6.3 热机的工作原理与能量守恒6.4 节能减排与能量守恒的关系第七章:功能关系能量守恒定律在不同学科领域的应用7.1 物理学中的能量守恒应用7.2 化学工程中的能量守恒应用7.3 生物学中的能量守恒应用7.4 环境科学中的能量守恒应用第八章:能量守恒定律在现代科技中的应用8.1 太阳能电池的能量转换与守恒8.2 风力发电的能量转换与守恒8.3 核能发电的能量转换与守恒8.4 未来能源技术的发展趋势第九章:功能关系能量守恒定律的哲学思考与伦理问题9.1 能量守恒定律与宇宙的终极命运9.2 能量守恒定律与人类生存的关系9.3 能源消耗与可持续发展9.4 能源伦理问题探讨第十章:能量守恒定律的教学实践与评价10.1 能量守恒定律的教学目标与方法10.2 能量守恒定律的教学设计与实施10.3 学生学习评价与反思10.4 教学资源的整合与拓展重点和难点解析一、能量守恒定律简介难点解析:理解能量守恒定律的重要性及其在各个领域的应用。
二、能量的种类与转换难点解析:掌握各种能量之间的转换关系和能量守恒在转换过程中的体现。
高中物理_功能关系 能量守恒复习课教学设计学情分析教材分析课后反思
功能关系能量守恒课标解读:1.举例说明功是能量变化的量度。
2.了解自然界中存在多种形式的能量。
知道能量守恒是最基本、最普遍的自然规律之一。
学习目标:1.掌握功和能的对应关系,特别是合力功、重力功、弹力功、除重力外其他力的功、一对摩擦力的功,分别对应的能量转化关系。
2.理解能量守恒定律,并能分析解决有关问题。
知识梳理:一、功能关系1、做功的过程就是能量转化的过程,能量的转化必需通过做功来实现。
功是,即做了多少功就有多少能量发生了转化。
功关系式变化关系合力的功W合= 合力做正功,增加合力做负功,减少重力的功W G = 重力做正功,重力势能重力做负功,重力势能除重力(或系统内弹力)外其他力做功W其他= 其他力做正功,其他力做负功,一对滑动摩擦力做的总功W克=fx相对=∆E 一对滑动摩擦力做的负功等于产生的内能。
思维拓展:(1)弹簧弹力做功与弹性势能变化的关系:(2)分子力做功与分子势能变化的关系:(3)电场力做功与电势能变化的关系:二、能量守恒定律1、内容:能量既不会凭空,也不会凭空消失,它只能从一种形式为另一种形式,或者从一个物体到另一个物体,在的过程中,能量的总量不变。
2、表达式:∆E减 =分类探究,各个击破考点一:功能关系的理解与应用例1.下列关于功和能的说法中正确的是()A.功就是能,能就是功B.功是能量的量度C.功可以变为能,能可以变为功D.功是能量转化的量度,它们具有相同的单位例2、如图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中( )A.物块A的重力势能增加量一定等于mghB.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和考点二:摩擦力做功与能量的关系例3、如图所示,质量为M、长度为l的小车静止在光滑水平面上,质量为m的小物块以一定的初速度冲上小车的最左端.物块和小车之间摩擦力的大小为F f,当小车运动的位移为x 时,物块刚好滑到小车的最右端.若小物块可视为质点,求Mm间摩擦力对M、m做的功各为多少?两摩擦力总功为多少?变式训练:物块滑到右端后与小车一起沿粗糙水平面向右匀减速运动,又移动了x,求此过程中Mm间摩擦力对M、m做的功各为多少?两摩擦力总功为多少?规律总结:①.一对静摩擦力的总功 ;②.一对滑动摩擦力的总功为,且等于系统内能的增加量。
2019年新课标高考一轮复习学案设计:功能关系,能量守恒定律
高考物理一轮复习B.16mglD.12mgl求物块滑到轨道上的B点时对轨道的压力;若物块与木板间的动摩擦因数μ=0.2,求物块从平板车右端滑出时平板车的速度;若锁定平板车并在上表面铺上一种特殊材料,其动摩擦因数从左向右随距离均匀变化如右.小木块在长木板上滑行的时间t=2 s.在整个运动过程中由于摩擦产生的热量为8 J;2.相对位移一对相互作用的滑动摩擦力做功所产生的热量Q=F f·x相对,其中x相对是物体间相对路径长度.为两物体对地位移大小之差;如果两物体反向运动,果两物体同向运动,x相对移大小之和.点时弹簧的弹性势能一定大于在B点时的弹性势能点时,弹簧的弹性势能大于W-32μmga到达B点时速度的大小,以及它离开圆轨道后落回到能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.点时的速度大小;向下运动,刚到C点过程中,对A和B整体,由动能定理:在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F内,若拉力F的变化如图乙所示,2 s后木板进入μ2=0.25的粗糙水平面,在图丙内木板和物块的v-t图象,并求出0~4 s内物块相对木板的位移大小和整个系统因摩把物块和木板看成整体,由牛顿第二定律得F=(m+m)aB.变小D.不能确定人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,物体增加的机械能物体增加的机械能3mg3mg.球克服绳拉力做的功等于球减少的机械能点做斜抛运动点做平抛运动,小孩重力势能减少量大于动能增加量,小孩动能减少量等于蹦床弹性势能增加量,小孩机械能减少量小于蹦床弹性势能增加量,小孩机械能增加量等于蹦床弹性势能减少量,弹丸的动能一直在增大的过程中,弹丸在E点的动能一定最大,弹丸的机械能先增大后减少弹丸增加的机械能大于从E到C弹丸增加的机械能.矩形板受到的摩擦力大小为4 N滑块经过圆弧轨道的C点时对地板的压力大小及在斜面上上升的最大高度;滑块第一次返回风洞速率为零时的位置;间运动的总路程.滑块在风洞中A点由静止释放后,设经过C点时速度为v,由动能定理得刚离开地面时,物体C沿斜面下滑的距离;刚离开地面的过程中细线的拉力对物体C做的功.。
2024届高考一轮复习物理教案(新教材鲁科版):功能关系 能量守恒定律
第4讲 功能关系 能量守恒定律目标要求 1.熟练掌握几种常见的功能关系,并会用于解决实际问题.2.掌握一对摩擦力做功与能量转化的关系.3.会应用能量守恒观点解决综合问题.考点一 功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的. (2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等. 2.常见的功能关系能量功能关系表达式势能重力做的功等于重力势能减少量W =E p1-E p2=-ΔE p弹力做的功等于弹性势能减少量 电场力做的功等于电势能减少量 分子力做的功等于分子势能减少量动能合外力做的功等于物体动能变化量 W =E k2-E k1=12m v 2-12m v 02机械能 除重力和弹力之外的其他力做的功等于机械能变化量W 其他=E 2-E 1=ΔE 摩擦产生 的内能 一对相互作用的滑动摩擦力做功之和的绝对值等于产生的内能 Q =f ·s 相对 电能克服安培力做的功等于电能增加量W 电能=E 2-E 1=ΔE1.一个物体的能量增加,必定有别的物体的能量减少.( √ ) 2.合力做的功等于物体机械能的改变量.( × )3.克服与势能有关的力(重力、弹簧弹力、电场力等)做的功等于对应势能的增加量.( √ ) 4.滑动摩擦力做功时,一定会引起机械能的转化.( √ )功的正负与能量增减的对应关系(1)物体动能的增加与减少要看合外力对物体做正功还是做负功.(2)势能的增加与减少要看对应的作用力(如重力、弹簧弹力、电场力等)做负功还是做正功.(3)机械能的增加与减少要看重力和弹簧弹力之外的力对物体做正功还是做负功.考向1功能关系的理解例1(多选)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab与水平面的夹角为60°,光滑斜面bc与水平面的夹角为30°,顶角b处安装一定滑轮.质量分别为M、m(M>m)的两滑块A和B,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动,A、B不会与定滑轮碰撞.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.轻绳对滑轮作用力的方向竖直向下B.拉力和重力对M做功之和大于M动能的增加量C.拉力对M做的功等于M机械能的增加量D.两滑块组成系统的机械能损失等于M克服摩擦力做的功答案BD解析根据题意可知,两段轻绳的夹角为90°,轻绳拉力的大小相等,根据平行四边形定则可知,合力方向与轻绳方向的夹角为45°,所以轻绳对滑轮作用力的方向不是竖直向下的,故A错误;对M受力分析,受到重力、斜面的支持力、轻绳的拉力以及滑动摩擦力作用,根据动能定理可知,M动能的增加量等于拉力、重力以及摩擦力做功之和,而摩擦力做负功,则拉力和重力对M做功之和大于M动能的增加量,故B正确;由除重力和弹力之外的力对物体做的功等于物体机械能的变化量可知,拉力和摩擦力对M做的功之和等于M机械能的增加量,故C错误;对两滑块组成系统分析可知,除了重力之外只有摩擦力对M做功,所以两滑块组成的系统的机械能损失等于M克服摩擦力做的功,故D正确.例2(多选)如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其减速运动的加速度大小为34g ,此物体在斜面上能够上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了mghB .机械能损失了12mghC .动能损失了mghD .克服摩擦力做功14mgh答案 AB解析 加速度大小a =34g =mg sin 30°+f m ,解得摩擦力f =14mg ,机械能损失量等于克服摩擦力做的功,即fs =14mg ·2h =12mgh ,故B 项正确,D 项错误;物体在斜面上能够上升的最大高度为h ,所以重力势能增加了mgh ,故A 项正确;动能损失量为克服合力做功的大小,动能损失量ΔE k =F 合s =34mg ·2h =32mgh ,故C 项错误.考向2 功能关系与图像的结合例3 (多选)(2020·全国卷Ⅰ·20)一物块在高3.0 m 、长5.0 m 的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s 的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s 2.则( )A .物块下滑过程中机械能不守恒B .物块与斜面间的动摩擦因数为0.5C .物块下滑时加速度的大小为6.0 m/s 2D .当物块下滑2.0 m 时机械能损失了12 J答案AB解析由E-s图像知,物块动能与重力势能的和减小,则物块下滑过程中机械能不守恒,故A正确;由E-s图像知,整个下滑过程中,物块机械能的减少量为ΔE=30 J-10 J=20 J,重力势能的减少量ΔE p=mgh=30 J,又ΔE=μmg cos α·s,其中cos α=s2-h2s=0.8,h=3.0m,g=10 m/s2,则可得m=1 kg,μ=0.5,故B正确;物块下滑时加速度的大小a=g sin α-μg cos α=2.0 m/s2,故C错误;物块下滑2.0 m时损失的机械能为ΔE′=μmg cos α·s′=8 J,故D错误.考点二摩擦力做功与能量转化两种摩擦力做功特点的比较类型比较静摩擦力做功滑动摩擦力做功不同点能量的转化只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能(1)一部分机械能从一个物体转移到另一个物体(2)一部分机械能转化为内能,此部分能量就是系统机械能的损失量一对摩擦力的总功一对静摩擦力所做功的代数和总等于零一对滑动摩擦力做功的代数和总是负值,总功W=-fs相对,即发生相对滑动时产生的热量相同点做功情况两种摩擦力对物体可以做正功,也可以做负功,还可以不做功例4(多选)如图所示,一个长为L,质量为M的木板,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度v0,从木板的左端滑向另一端,设物块与木板间的动摩擦因数为μ,当物块与木板相对静止时,物块仍在长木板上,物块相对木板的位移为d,木板相对地面的位移为s,重力加速度为g.则在此过程中()A.摩擦力对物块做的功为-μmg(s+d)B.摩擦力对木板做的功为μmgsC.木板动能的增量为μmgdD.由于摩擦而产生的热量为μmgs答案AB解析根据W=Fl cos θ,其中l指物体的位移,而θ指力与位移之间的夹角,可知摩擦力对物块做的功W1=-μmg(s+d),摩擦力对木板做的功W2=μmgs,A、B正确;根据动能定理可知木板动能的增量ΔE k=W2=μmgs,C错误;由于摩擦而产生的热量Q=f·Δx=μmgd,D 错误.例5(多选)(2019·江苏卷·8)如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()A.弹簧的最大弹力为μmgB.物块克服摩擦力做的功为2μmgsC.弹簧的最大弹性势能为μmgsD.物块在A点的初速度为2μgs答案BC解析物块处于最左端时,弹簧的压缩量最大,然后物块先向右加速运动再减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg,选项A错误;物块从开始运动至最后回到A点过程,由功的定义可得物块克服摩擦力做的功为2μmgs,选项B正确;物块从最左侧运动至A点过程,由能量守恒定律可知E p=μmgs,选项C正确;设物块在A点的初速度大小为v0,对整个过程应用动能定理有-2μmgs=0-12,解得v0=2μgs,选项D错误.2m v0考点三能量守恒定律的理解和应用1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.理解(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.例6(2023·福建省百校联合测评)如图甲所示,轻弹簧下端固定在倾角为θ=37°的粗糙斜面底端,质量为m=1 kg的物块从轻弹簧上端上方某位置由静止释放,测得物块的动能E k与其通过的路程s的关系如图乙所示(弹簧始终处于弹性限度内),图像中O~s1=0.4 m之间为直线,其余部分为曲线,s2=0.6 m时物块的动能达到最大.弹簧的长度为l时,弹性势能为E p=12k(l0-l)2,其中k为弹簧的劲度系数,l0为弹簧的原长.物块可视为质点,不计空气阻力,物块接触弹簧瞬间无能量损失,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.则()A.物块与斜面间的动摩擦因数为0.2B.弹簧的劲度系数k为25 N/mC.s3为0.8 mD.物块在斜面上运动的总路程大于s3答案 D解析物块接触弹簧前,由动能定理得mgs1sin θ-μmgs1cos θ=E k1,解得μ=0.25,故A错误;由能量守恒定律得mgs2sin θ=μmgs2cos θ+E k2+12k(s2-s1)2,解得k=20 N/m,故B错误;由能量守恒定律得mgs3sin θ=μmgs3cos θ+12k(s3-s1)2,解得s3=(0.6+0.25) m,故C错误;物块的路程为s3时mg sin θ+μmg cos θ<k(s3-s1),物块还会反向沿斜面向上运动,所以物块在斜面上运动的总路程大于s3,故D正确.例7如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子始终与斜面平行,A的质量为2m=4 kg,B的质量为m=2 kg,初始时物体A到C点的距离L=1 m,现给A、B一初速度v0=3 m/s,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹回到C点.已知重力加速度大小g=10 m/s2,不计空气阻力,整个过程中轻绳始终处于伸直状态.求在此过程中:(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能. 答案 (1)2 m/s (2)0.4 m (3)6 J解析 (1)在物体A 向下运动刚到C 点的过程中,对A 、B 组成的系统应用能量守恒定律可得 μ·2mg cos θ·L =12×3m v 02-12×3m v 2+2mgL sin θ-mgL ,解得v =2 m/s.(2)对A 、B 组成的系统分析,在物体A 从C 点压缩弹簧至最短后恰好返回到C 点的过程中,系统动能的减少量等于因摩擦产生的热量,即12×3m v 2-0=μ·2mg cos θ·2x其中x 为弹簧的最大压缩量 解得x =0.4 m.(3)设弹簧的最大弹性势能为E pm ,从C 点到弹簧被压缩至最短过程中由能量守恒定律可得 12×3m v 2+2mgx sin θ-mgx =μ·2mg cos θ·x +E pm ,解得E pm =6 J.应用能量守恒定律解题的步骤1.首先确定初、末状态,分清有几种形式的能在变化,如动能、势能(包括重力势能、弹性势能、电势能)、内能等.2.明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式.例8 如图所示,一自然长度小于R 的轻弹簧左端固定,在水平面的右侧,有一底端开口的光滑圆环,圆环半径为R ,圆环的最低点与水平轨道相切,用一质量为m 的小物块(可看作质点)压缩弹簧右端至P 点,P 点到圆环最低点距离为2R ,小物块释放后,刚好过圆环的最高点,已知重力加速度为g ,小物块与水平面间的动摩擦因数为μ.(1)弹簧的弹性势能为多大?(2)改变小物块的质量,仍从P 点释放,要使小物块在运动过程中不脱离轨道,小物块质量满足的条件是什么? 答案 (1)2μmgR +52mgR(2)m 1≤m 或m 2≥4μ+54μ+2m解析 (1)小物块恰好过圆环最高点,则由牛顿第二定律有mg =m v 2R从小物块释放至运动到最高点的过程中,由能量守恒定律有E p =μmg ·2R +mg ·2R +12m v 2,联立可解得E p =2μmgR +52mgR(2)要使小物块在运动过程中不脱离轨道,有两种情况:①小物块能够通过最高点;②小物块在运动过程中最高到达与圆心等高处.①设小物块质量为m 1,在最高点满足m 1g ≤m 1v 12R ,从小物块释放至运动到最高点的过程满足E p =2μm 1gR +2m 1gR +12m 1v 12,解得m 1≤m②设小物块质量为m 2,当小物块运动的最高点不高于圆心时,满足h ≤R ,此时E p =2μm 2gR +m 2gh ,解得m 2≥4μ+54μ+2m .课时精练1.(多选)如图所示,在粗糙的桌面上有一个质量为M 的物块,通过轻绳跨过定滑轮与质量为m 的小球相连,不计轻绳与滑轮间的摩擦,在小球下落的过程中,下列说法正确的是( )A .小球的机械能守恒B .物块与小球组成的系统机械能守恒C .若小球匀速下降,小球减少的重力势能等于物块与桌面间摩擦产生的热量D .若小球加速下降,小球减少的机械能大于物块与桌面间摩擦产生的热量答案CD解析在小球下落的过程中,轻绳的拉力对小球做负功,小球的机械能减少,故A错误;由于物块要克服摩擦力做功,物块与小球组成的系统机械能不守恒,故B错误;若小球匀速下降,系统的动能不变,则根据能量守恒定律可知,小球减少的重力势能等于物块与桌面间摩擦产生的热量,故C正确;若小球加速下降,则根据能量守恒定律可知,小球减少的机械能等于物块与桌面间摩擦产生的热量及物块增加的动能之和,所以小球减少的机械能大于物块与桌面间摩擦产生的热量,故D正确.2.某同学用如图所示的装置测量一个凹形木块的质量m,弹簧的左端固定,木块在水平面上紧靠弹簧(不连接)并将其压缩,记下木块右端位置A点,静止释放后,木块右端恰能运动到B1点.在木块槽中加入一个质量m0=800 g的砝码,再将木块左端紧靠弹簧,木块右端位置仍然在A点,静止释放后木块离开弹簧,右端恰能运动到B2点,测得AB1、AB2长分别为27.0 cm和9.0 cm,则木块的质量m为()A.100 g B.200 g C.300 g D.400 g答案 D解析根据能量守恒定律,有μmg·AB1=E p,μ(m0+m)g·AB2=E p,联立解得m=400 g,D正确.3.风力发电机是由风力带动叶片转动,叶片再带动转子(磁极)转动,使定子(线圈,不计电阻)中产生电流,实现风能向电能的转化.若叶片长为l,设定的额定风速为v,空气的密度为ρ,额定风速下发电机的输出功率为P,则风能转化为电能的效率为()A.2Pπρl2v3 B.6Pπρl2v3 C.4Pπρl2v3 D.8Pπρl2v3答案 A解析风能转化为电能的工作原理为将风的动能转化为输出的电能,设风吹向发电机的时间为t,则在t时间内吹向发电机的风柱的体积为V=v t·S=v tπl2,则风柱的质量M=ρV=ρv tπl2,因此在t时间内吹过的风的动能为E k=12M v2=12ρv tπl2·v2,在t时间内发电机输出的电能E=P·t,则风能转化为电能的效率为η=EE k =2Pπρl2v3,故A正确,B、C、D错误.4.(多选)如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m 的小球自A 点的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 点运动到B 点的过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功12mgRD .克服摩擦力做功12mgR答案 CD解析 小球从P 点运动到B 点的过程中,重力做的功W G =mg (2R -R )=mgR ,故A 错误;小球沿轨道到达最高点B 时恰好对轨道没有压力,则有mg =m v B 2R ,解得v B =gR ,则此过程中机械能的减少量为ΔE =mgR -12m v B 2=12mgR ,故B 错误;根据动能定理可知,合外力做功W 合=12m v B 2-0=12mgR ,故C 正确;根据功能关系可知,小球克服摩擦力做的功等于机械能的减少量,则W 克f =ΔE =12mgR ,故D 正确.5.一木块静置于光滑水平面上,一颗子弹沿水平方向飞来射入木块中.当子弹进入木块的深度达到最大值2.0 cm 时,木块沿水平面恰好移动1.0 cm.在上述过程中系统损失的机械能与子弹损失的动能之比为( )A .1∶2B .1∶3C .2∶3D .3∶2 答案 C解析 根据题意,子弹在摩擦力作用下的位移为s 1=(2+1) cm =3 cm ,木块在摩擦力作用下的位移为s 2=1 cm ;系统损失的机械能转化为内能,根据功能关系,有ΔE 系统=Q =f ·Δs =f (s 1-s 2);子弹损失的动能等于子弹克服摩擦力做的功,故ΔE k 子弹=fs 1;所以ΔE 系统ΔE k 子弹=23,所以C 正确,A 、B 、D 错误.6.(多选)(2023·福建省厦门外国语学校月考)商场的智能扶梯如图所示,扶梯与水平面之间的夹角为θ,扶梯没有站人时以较小的速度v 1匀速向上运动,当质量为m 的人踏上自动扶梯的水平踏板时,扶梯会自动以加速度a 向上匀加速运动,经过时间t 加速到较大速度v 2后再次匀速向上运动.已知在扶梯加速过程中人上升的竖直高度为h ,人手未接触扶梯扶手,重力加速度为g .则( )A .扶梯在加速过程中人处于超重状态B .加速过程中踏板对人的摩擦力不做功C .加速过程扶梯对人做的功为12m (v 22-v 12)D .当扶梯以速度v 2匀速运动时,支持力做功的功率为mg v 2sin θ 答案 AD解析 扶梯在加速过程中,竖直方向上,人所受的合力向上,支持力大于重力,因此人处于超重状态,A 正确;加速过程中,踏板对人摩擦力水平向右,人在水平向右的方向上有位移,因此摩擦力对人做正功,B 错误;根据能量守恒定律,加速过程扶梯对人做的功W =12m (v 22-v 12)+mgh ,C 错误;扶梯匀速运动时,支持力等于重力,因此支持力做功的功率P =mg v 2sin θ,D 正确.7.(2023·江苏南京市十一校调研)如图所示,倾角θ=30°的粗糙斜面固定在地面上,长为l 、质量为m 、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端平齐,重力加速度为g .用细线将物块与软绳连接,物块由静止释放后向下运动,直到软绳刚好全部离开斜面(此时物块未到达地面),在此过程中( )A .物块的机械能逐渐增加B .软绳的重力势能共减少了14mglC .物块减少的重力势能等于软绳克服摩擦力所做的功D .软绳减少的重力势能大于其增加的动能与克服摩擦力所做的功之和 答案 B解析 物块克服细线的拉力做功,其机械能逐渐减少,A 错误;软绳重力势能减少量ΔE p 减=mg ·l 2-mg ·l 2sin θ=14mgl ,B 正确;因为物块的机械能减小,则物块的重力势能减小量大于物块的动能增加量,机械能的减小量等于拉力做功的大小,由于拉力做功大于克服摩擦力做功,所以物块重力势能的减少量大于软绳克服摩擦力所做的功,C 错误;细线的拉力对软绳做正功,对物块做负功,则物块的机械能减小,软绳的机械能增加,软绳重力势能的减少量一定小于其动能的增加量,故软绳重力势能的减少量小于其动能的增加量与克服摩擦力所做功的和,D 错误.8.(多选)(2023·重庆市调研)将一初动能为E 的物体(可视为质点)竖直上抛,物体回到出发点时,动能为E2,取出发点位置的重力势能为零,整个运动过程可认为空气阻力大小恒定,则该物体动能与重力势能相等时,其动能为( ) A.E 4 B.3E10 C.3E 7 D.4E 9答案 BC解析 设上升的最大高度为h ,根据功能关系有f ·2h =E -E 2=E2,根据能量守恒可得E =mgh+fh ,求得mgh =34E ,fh =14E ,求得f =13mg ,若在上升阶段离出发点H 处动能和重力势能相等,由能量守恒定律有E k +mgH =E -fH ,E k =E p =mgH ,联立解得E k =mgH =37E ,若在下降阶段离出发点H ′处动能和重力势能相等,由能量守恒定律有E k ′+mgH ′=E -f (2h -H ′),E k ′=E p ′=mgH ′,联立解得E k ′=mgH ′=310E ,故选B 、C.9.(2023·山西太原市高三模拟)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移s 和对应的速度,作出物块的动能E k -s 关系图像如图乙所示.其中,0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 根据动能定理可得μmg Δs =ΔE k ,代入数据可得m =ΔE k μg Δs =0.300.2×10×(0.25-0.10) kg=1 kg ,所以A 错误;由题图乙可知动能最大时弹性绳弹力等于滑动摩擦力,则有k Δs 1=μmg ,Δs 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmg s m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δs m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确. 10.如图所示,在某竖直平面内,光滑曲面AB 与粗糙水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2 m 的14细圆管CD ,管口D 端正下方直立一根劲度系数为k =100 N/m的轻弹簧,弹簧一端固定于地面上,另一端恰好与管口D 端平齐.一个质量为1.0 kg 的物块放在曲面AB 上,现从距BC 的高度为h =0.6 m 处由静止释放物块,它与BC 间的动摩擦因数μ=0.5,物块进入管口C 端时,它对上管壁有N =2.5mg 的作用力,通过CD 后,在压缩弹簧过程中物块速度最大时弹簧的弹性势能E p =0.5 J .重力加速度g 取10 m/s 2.求:(1)在压缩弹簧过程中物块的最大动能E km ; (2)物块最终停止的位置.答案 (1)6 J (2)停在BC 上距离C 端0.3 m 处(或距离B 端0.2 m 处)解析 (1)在压缩弹簧过程中,物块速度最大时所受合力为零.设此时物块离D 端的距离为x 0,则有kx 0=mg ,解得x 0=mgk=0.1 m 在C 点,物块受到上管壁向下的作用力N ′=2.5mg 和重力,有N ′+mg =m v C 2r ,解得v C =7 m/s.物块从C 点到速度最大时,由能量守恒定律有mg (r +x 0)=E p +E km -12m v C 2,解得E km =6 J(2)物块从A 点运动到C 点的过程中, 由动能定理得mgh -μmgs =12m v C 2-0解得B 、C 间距离s =0.5 m物块与弹簧作用后返回C 处时动能不变,物块的动能最终消耗在与BC 水平面相互作用的过程中.设物块第一次与弹簧作用返回C 处后,物块在BC 上运动的总路程为s ′,由能量守恒定律有:μmgs ′=12m v C 2,解得s ′=0.7 m ,故最终物块在BC 上距离C 点为x 1=0.5 m -(0.7 m-0.5 m)=0.3 m(或距离B 端为x 2=0.7 m -0.5 m =0.2 m)处停下.11.(多选)(2023·山东济南市十一校检测)如图所示为某缓冲装置的模型图,一轻杆S 被两个固定薄板夹在中间,轻杆S 与两薄板之间的滑动摩擦力大小均为f ,轻杆S 露在薄板外面的长度为l .轻杆S 前端固定一个劲度系数为3fl 的轻弹簧.一质量为m 的物体从左侧以大小为v 0的速度撞向弹簧,能使轻杆S 向右侧移动l 6.已知弹簧的弹性势能E p =12kx 2,其中k 为劲度系数,x 为形变量.最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.下列说法正确的是( )A .欲使轻杆S 发生移动,物体m 运动的最小速度为1010v 0 B .欲使轻杆S 发生移动,物体m 运动的最小速度为63v 0C .欲使轻杆S 左端恰好完全进入薄板,物体m 运动的速度大小为62v 0D .欲使轻杆S 左端恰好完全进入薄板,物体m 运动的速度大小为263v 0答案 BD解析 当轻杆刚要移动时,对轻杆受力分析,设此时弹簧弹力大小为F ,压缩量为x ,由平衡条件知F =kx =2f ,代入k 的值可得x =23l ,设欲使轻杆S 发生移动,物体m 运动的最小速度为v1,则由能量守恒定律有12m v12=12k(23l)2,由题意知,物体以大小为v0的速度撞向弹簧,能使轻杆S向右侧移动l6,由能量守恒定律有12m v02=2f×l6+12m v12,联立可得v1=63v0,故A错误,B正确;设物体m的运动速度大小为v2时,轻杆S左端恰好完全进入薄板,则由能量守恒定律有12m v22=2f×l+12m v12,可解得v2=263v0,故C错误,D正确.。
功能关系与能量守恒定律的教案
7.6 功能关系与能量守恒定律【教学目标】 1.知道能量的定义,理解不同能量之间的转化,理解功是能量转化的量度. 2.知道能量守恒定律是自然界最普遍规律之一,了解守恒思想的重要性. 3.运用能量守恒定律分析生产、生活中能量转化的实际问题,体会能量守恒. 4.用几种典型的功能关系,解决问题.【教学重难点】 1.理解功是能量转化的量度,理清几种典型的功能关系. 2.会应用能量守恒定律分析生产、生活中能量转化的实际问题,体会能量守恒.【课时安排】1 课时【教学设计】课前预学1.能量守恒定律:阅读课本“能量守恒定律”,回答: ⑴能量守恒定律的内容是什么? ⑵引用教材上的话,说明导致能量守恒定律最后确立的两类重要事实是什么? ⑶举出生活中能量守恒的例子.⑷历史上曾有人设想制造一种不需要消耗任何能源就可以不断做功的机器,即永动机,这样的机器能不能制成?为什么?2.回顾前面所学内容,完成下面填空:⑴做功的过程就是的转化过程.做了多少功,就有多少转化.功是能量转化的量度.(“增量”是终态量减去始态量)⑵物体动能的增量由来量度:W 总=物体重力势能的增量由来量度:WG=是弹性势能变化的量度,即:W 弹=; ; ;【预学疑难】课内互动 【新课导入】前面我们认识了多种能量,学会了求做功的方法.通过课前预学,我们初步认识了做功和能量转化之间的几种关系.知道了能量守恒定律,下面来看几个问题.【新课教学】 1.常见的几种功与能量的关系 【讨论探究】学生活动:填空(检测学生预学情况) ⑴合外力对物体所做的功等于物体动能的增量,W 总=ΔEk=Ek2-Ek1,即动能定理. ⑵重力做功等于重力势能的减少量. WG=-ΔEp=Ep1-Ep2 ⑶弹簧弹力做功等于弹性势能的减少量. W 弹=-ΔEp=Ep1-Ep2 师生总结: 能是状态量,功是过程量.不同形式的能量之间的转化是通过做功实现的. 学生活动: 引导学生用上面的(1)(2)两个功能关系推导证明:除系统内的重力和弹簧的弹力外, 其他力做的总功等于系统机械能的增量,表达式: W 其他=ΔE. ⑷除系统内的重力和弹簧的弹力外,其他力做的总功等于系统机械能的增量,表达式: W 其他=ΔE. 【核心解读】 ①除重力或弹簧的弹力以外的其他力做多少正功,物体的机械能就增加多少. ②除重力或弹簧的弹力以外的其他力做多少负功,物体的机械能就减少多少. ③除重力或弹簧的弹力以外的其他力不做功,物体的机械能守恒.【典例导学】例 1.如图所示,卷扬机的绳索通过定滑轮用力 F 拉位于粗糙斜面上的木箱,使之沿 斜面加速向上移动.在移动过程中,下列说法正确的是(CD)A.F 对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和 B.F 对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和 C.木箱克服重力所做的功等于木箱增加的重力势能 D.F 对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的 功之和 要求:每个选项的判断都要有上面所学的理论支持. 解析:设木箱克服重力做的功为 WG,克服摩擦力做的功为 Wf. 由动能定理有:WF-Wf-WG=ΔEk 即:WF=ΔEk+WG+Wf=ΔEk+ΔEp+Wf 故选项 D 正确. 克服重力做的功 WG=ΔEp,故选项 C 正确. 答案:CD 思考:D 答案还可以用什么方法解呢? 引导学生用第④个功能关系解题. 【核心解读】 做功的过程就是能量转化的过程,做了多少功就有多少形式的能转化为其他形式的 能;一定要注意什么力做功和什么形式的能相互转化的对应关系. 2.摩擦力做功中的功能关系 例 2.一块长木板 B 放在光滑的水平面上,在 B 上放一物体 A,现以恒定的水平外力 F 拉 B,由于 A、B 间摩擦力的作用,A 将在 B 上滑动,如图所示.以地面为参考系,A、 B 都向前移动一段距离,在此过程中( ) A.外力 F 做的功等于 A 和 B 动能的增量 B.B 对 A 的摩擦力所做的功等于 A 动能的 增量C.A 对 B 的摩擦力所做的功等于 B 对 A 的摩擦力所做的功 D.外力 F 对 B 所做的功等于 B 动能的增量与 B 克服摩擦力做的功之和 提示: 研究对象及过程的明确是关键;受力分析,运动分析依然是重点. 解析:从功能关系的角度来说,A、B 组成的系统中还有内能产生,故 WF=ΔEkA+ΔEkB +ΔQ.从动能定理的角度来说,A、B 动能的增量应为所有力做功的总和,包括一对滑动 摩擦力,而这对滑动摩擦力做的功之和并不为 0,故 A 错误.由动能定理可知,B 正确.两 物体在摩擦力作用下的位移不相等,故 C 错误. 正解:对于 A,WBA=ΔEkA,故 B 正确. 设 B 克服摩擦力做的功为 Wf,由动能定理得:WF-Wf=ΔEkB 即:WF=ΔEkB+Wf.故 D 正确. 【核心解读】一对滑动摩擦力对系统做总功是系统机械能转化为内能的量度,即:f·S 相=Q.3.用能量转化和守恒解题教师引导:在课前预学中我们已初步知道了能量守恒定律的相关内容,我们一起看前面的问题.学生活动: 对能量守恒定律的理解:某种形式的能量减少,一定存在 另一种形式的能量增加 ,且减少量和增加量相等;某个物体的能量减少,一定存在 另外物体的能量增加,且减少量和增加量相等.【典例导学】例 3.如图所示,水平传送带以速度 v 匀速运动,一质量为 m 的小木块由静止轻放到传送带上.若小木块与传送带之间的动摩擦因数为 μ,当小木块与传送带相对静止时,转化为内能的能量为( )vA.mv2B.2mv2C.14mv2D.12mv2AB提示:进行详实的动力学分析,但从功能关系的角度解题.解析:由能量守恒定律可知,传动轮对皮带做的功等于木块动能的增加和转化的内能.由于皮带保持匀速运动,故木块加速过程中传动轮对它的牵引力大小 F=μmg 所以有: WF=ΔEk+ΔQ 即 μmg·μvg2 =12mv2+ΔQ 所以 ΔQ=12mv2. 答案:D【核心解读】用能量转化和守恒解题时一定要注意做功的结果导致了哪些能量增加,哪些能量减少,减少量等于增加量.【课堂小结】应用能量转化和守恒定律解题的基本步骤是:先确定研究对象及过程,并做好受力 分析,再分析有哪些力做功,哪些力不做功,做功的结果导致了哪些能量增加,哪些能量减少,减少的能量一定等于增加的能量,据此列出等式 E减 E增 .【板书设计】1.常见的几种功与能量的关系 ⑴W 总=ΔEk=Ek2-Ek1 ⑵WG=-ΔEp=Ep1-Ep2 ⑶W 弹=-ΔEp=Ep1-Ep2 ⑷W 其他=ΔE 2.摩擦力做功中的功能关系 ⑸f·S 相=Q 3.用能量转化和守恒解题 解题时一定要注意做功的结果导致了哪些能量增加,哪些能量减少,减少量等于增加 量 4.课堂小结由做功与能的转化关系人手,认识 E减 E增【随堂训练】1.上端固定的一细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对 此现象下列说法正确的是( )A.摆球机械能守恒 B.总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能 C.能量正在消失 D.只有动能和重力势能的相互转化2.某人用手将 m=1kg 的物体由静止向上提升 1m,物体获得速度为 2m/s,则( )A.物体的重力势能增加 12JB.人对物体做功为 12JC.物体的机械能增加 10JD.合外力对物体做功为 12J课后提升 1.自动充电式电动车的前轮装有发电机,发电机与蓄电池连接,骑车者用力蹬车或 电动车自动滑行时,发电机向蓄电池充电,将一些机械能转化成电能储存起来.现使车以 5000 J 的初动能在水平路面上自由滑行,第一次关闭自动充电装置,其动能随位移的变化 关系如图线①所示;第二次启动自动充电装置,其动能随位移的变化关系如图线②所示.假Ek/J5000 ①2500 ②设两次滑行的空气阻力及地面阻力都保持恒定且相等,则第二次向蓄电池所充的电能是() A.2000 JB.2500 J C.3000 J D.5000 J2.在将物体举高的过程中,下列说法哪些正确( )A.举力所做的功等于物体机械能的增加B.克服重力做的功等于机械能的增加C.举力和重力做功的代数和等于物体动能的增加D.物体所受合力做的功等于物体机械能的增加3.质量为 m 的物体,从静止开始,以 g/2 的加速度竖直下落高度 h 的过程中 ( )A.物体的机械能守恒B.物体的机械能减少 mgh/2C.物体的重力势能减少 mgh D.物体克服阻力做功 mgh/24. 如图,一质量均匀的不可伸长的绳索重为 G,A、B 两端固定在天花板上,今在最低点 C 施加一竖直向下的力将绳拉至 D,在此过程中绳索 AB 的重心位置将( )A.逐渐升高 C.先降低后升高B.逐渐降低 D.始终不变第4题5.如图所示,木块 A 放在木板 B 上的左端,用恒力 F 将 A 拉至 B 的右端。
高三物理一轮复习 功能关系能量守恒导学案
班级:组别:姓名:组内评价:教师评价:(等第)课题:功能关系、能量守恒定律【学习目标】理解功能关系,掌握能量守恒定律。
【重点难点】功能关系的应用【自主学习】教师评价:(等第)一、功能关系1.功能关系:做功的过程就是转化过程,做多少功就有多少某种形式的能转化为其他形式的能。
2.功是能量转化的。
3.常见力做功与能量转化的对应关系:⑴重力所做的功等于能的变化⑵弹簧的弹力所做的功等于能的变化⑶合外力所做的功等于能的增加⑷只有重力和弹簧的弹力做功,守恒⑸重力和弹簧的弹力以外的力所做的功等于能的增加⑹克服一对滑动摩擦力所做的净功等于能的增加⑺电场力所做的功等于能的减少⑻克服安培力所做的功等于能的增加二、能的转化和守恒定律能量既不会凭空产生,也不会凭空消失,它只能从一种形式为别的形式,或从一个物体到另一个物体.在转化或转移的过程中其总量不变,这就是能的转化和守恒定律.表达式:自主测评:1、质量为3kg的物体在空中以8m/s2的加速度竖直下降2m的过程中,物体的机械能 (填“增加”或“减少”) J,重力势能(“增加”或“减少”) J,动能(“增加”或“减少”) J.2、以初速度v0竖直上抛一个质量为m的小球,小球运动过程中所受阻力F阻大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功为()3、水平地面上原来分散平放着n块砖,每块砖的质量均为m,厚度均为d,某人以靠墙的一块砖做底,将分散的砖一块一块的仍平放着叠放起来,则在这一过程中,此人至少做功()4、如图所示轻弹簧一端固定在墙上的O点,处于自然长度状态时,另一端在B点.今将一质量为m的物体靠在弹簧的右端,并用力向左推物体,压缩弹簧至A点,然后由静止释放物体,物体在水平面上滑行到C点停止.已知AC距离为S,若将物体拴接在弹簧的右侧,同样将其推至A点,再由静止释放,弹簧与物体将振动至最后静止,则振动的总路程L与S相比较,下列关系正确的是( )A.L一定小于S B.L一定等于SC.L一定大于S D.L小于、等于S都有可能5:一滑块放在如图所示的凹形斜面上,斜面固定于水平地面,用拉力F沿斜面向下拉小滑块,小滑块沿斜面运动了一段距离.若已知在这过程中,拉力F所做的功为A,斜面对滑块的作用力所做的功为B,重力所做的功为C,空气阻力所做的功为D,则小滑块的动能的增量为,重力势能的增量为,机械能的增量为.6:在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功等于()7. 2010·江苏如图所示,平直木板AB 倾斜放置,板上的P 点距A 端较近,小物块与木板间的动摩擦因数由A 到B 逐渐减小,先让物块从A 由静止开始滑到B 。
高中物理能量守恒教案
高中物理能量守恒教案
一、教学目标:
1. 理解能量守恒定律的概念和应用;
2. 掌握能量转化和能量守恒的相关知识;
3. 能够分析和解决与能量守恒相关的问题;
二、教学内容:
1. 能量守恒定律的基本概念;
2. 机械能守恒定律;
3. 热能守恒定律;
4. 能量转化和能量守恒的应用;
三、教学重点和难点:
1. 理解并应用能量守恒定律;
2. 理解机械能守恒定律和热能守恒定律的应用;
3. 解决与能量守恒相关的问题;
四、教学方法:
1. 理论讲解结合例题练习;
2. 实验观察和数据分析;
3. 课堂讨论和合作学习;
五、教学过程:
1. 引入:通过实例引入能量守恒定律的概念;
2. 理论讲解:讲解能量守恒定律的基本原理和应用;
3. 例题练习:老师对几道相关例题进行讲解和解答;
4. 实验探究:进行相关实验,观察并记录实验数据;
5. 数据分析:学生根据实验数据进行相关分析和总结;
6. 课堂讨论:学生分组讨论并分享实验结果,思考解决相关问题;
7. 练习测试:布置相关练习和测试题,检验学生学习效果;
8. 总结反思:对本节课的学习内容进行总结和反思。
六、教学资源:
1. 教材、课件、实验器材;
2. 相关试题、练习题、考试卷;
七、教学评估:
1. 学生表现及讨论参与程度;
2. 课堂练习和测试成绩;
3. 实验数据记录和分析能力。
以上为高中物理能量守恒教案范本,希最对您有所帮助。
高考物理 专题5-4 功能关系 能量守恒定律(教学案)
【高频考点解读】1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系。
2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题。
【热点题型】热点题型一功能关系的理解和应用例1(2018年江苏卷)如图所示,轻质弹簧一端固定,另一端连接一小物块,O 点为弹簧在原长时物块的位置.物块由A 点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B 点.在从A 到B 的过程中,物块()A.加速度先减小后增大B.经过O 点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功【答案】AD【变式探究】【2017·新课标Ⅲ卷】如图,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂。
用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l 。
重力加速度大小为g 。
在此过程中,外力做的功为A .19mgl B .16mgl C .13mglD .12mgl【答案】A【变式探究】质量为m的物体由静止开始下落,由于空气阻力影响,物体下落的加速度为45g,在物体下落高度为h的过程中,下列说法正确的是() A.物体的动能增加了45mghB.物体的机械能减少了45mghC.物体克服阻力所做的功为45mghD.物体的重力势能减少了45mgh解析:由牛顿第二定律有mg-f=ma,由a=45g得f=15mg,利用动能定理有W=Fh=45mgh=ΔE k,选项A正确;判断机械能的变化要看除重力外其他力的做功情况,-fh=-15mgh=ΔE,说明阻力做负功,机械能减少1 5mgh,选项B错误;物体克服阻力做功应为15mgh,选项C错误;高度下降了h,则重力势能减少了mgh,选项D错误。
答案:A【提分秘籍】1.对功能关系的进一步理解(1)做功的过程就是能量转化的过程。
不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现到不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
2020版高考物理一轮复习第5章第3节功能关系能量守恒定律教学案新人教版(最新整理)
第3节功能关系能量守恒定律知识点一| 对功能关系的理解及其应用1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化。
(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.2.做功对应变化的能量形式(1)合外力对物体做的功等于物体的动能的变化。
(2)重力做功引起物体重力势能的变化。
(3)弹簧弹力做功引起弹性势能的变化.(4)除重力和系统内弹力以外的力做的功等于物体机械能的变化.错误!(1)做功的过程一定会有能量转化。
(√)(2)力对物体做了多少功,物体就有多少能. (×)(3)力对物体做功,物体的总能量一定增加. (×)考法对功能关系的理解及其应用1.(2018·天津高考)滑雪运动深受人民群众喜爱.某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中( )A.所受合外力始终为零B.所受摩擦力大小不变C.合外力做功一定为零D.机械能始终保持不变C[运动员做匀速圆周运动,所受合外力指向圆心,A项错误;由动能定理可知,合外力做功一定为零,C项正确;运动员所受滑动摩擦力大小等于运动员重力沿滑道向下的分力,随滑道与水平方向夹角的变化而变化,B项错误;运动员动能不变,重力势能减少,所以机械能减少,D项错误。
]2。
(2018·全国卷Ⅰ)如图所示,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动。
重力加速度大小为g.小球从a点开始运动到其轨迹最高点,机械能的增量为( )A.2mgR B.4mgR C.5mgR D.6mgRC[设小球运动到c点的速度大小为v c,则对小球由a到c的过程,由动能定理有F·3R-mgR=错误!mv错误!,又F=mg,解得v c=2错误!,小球离开c点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用下做匀减速直线运动,由牛顿第二定律可知,小球离开c点后水平方向和竖直方向的加速度大小均为g,则由竖直方向的运动可知,小球从离开c点到其轨迹最高点所需的时间为t=v cg=2错误!,在水平方向的位移大小为x=错误!gt2=2R.由以上分析可知,小球从a点开始运动到其轨迹最高点的过程中,水平方向的位移大小为5R,则小球机械能的增加量为ΔE=F·5R=5mgR,C正确,A、B、D错误。
一轮复习导学案--功能关系和能量守恒
第讲功、能关系和能量守恒学习目标:1.几种功和能的关系2.会用功能关系和能量守恒解决物理问题重点难点:会用功能关系和能量守恒解决物理问题【知识清单】1.合外力做功是动能变化的量度合力做正功,动能,增加的动能等于;合力做负功,动能,减小的动能等于2.重力做功是重力势能变化的量度重力做正功,重力势能,增加的重力势能等于;重力做负功,重力势能,减小的重力势能等于。
3.重力或弹力以外的力做功是物体机械能变化的量度其它力做正功,机械能,增加的机械能等于;其它力做负功,机械能,减小的机械能等于。
【例题详解】【例1】.一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2 m/s,则下列说法正确的是[ ]A.物体的机械能增加了12JB.合外力对物体做功12JC.物体的动能增加了2JD.重力势能增加了10 J【例2】.如图7-43所示,质量均为m的a、b两球固定在轻杆的两端,杆可绕O点在竖直平面内无摩擦转动,已知两物体距O点的距离L1>L2,今在水平位置由静止释放,则在a下降过程中,杆对b 球的作用力()图7-43A.方向沿bO,不做功B.方向沿bO,做正功C.方向与bO成一定夹角,做正功D.方向与bO成一定夹角,做负功【例3】右图是一种升降电梯的示意图,A为载人箱,B为平衡重物,它们的质量均为M,上下均有跨过滑轮的钢索系住,在电动机的牵引下电梯上下运动,如果电梯中载人的质量为m,匀速上升的速度为v,电梯即将到顶层前关闭电动机,依靠惯性上升h高度后停止,在不坊空气阻力和摩擦阻力的情况下,h为()A.gv22B.()mgvmM22+C.()mgvmM2+D.()mgvmM222+【例4】如图9所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【例5】如图所示,光滑坡道顶端距水平面高度为h,质量为m的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端恰位于滑道的末端O点。
2025高考物理备考复习教案 第六章 第4讲 功能关系 能量守恒定律
因为l 1 >l 2 ,则 cos θ 1 > cos θ 2
所以θ 2 >θ 1
返回目录
第4讲
功能关系
和在水平面上运动,图像的斜率相同,C错误.
返回目录
第4讲
功能关系
能量守恒定律
命题点3 功能关系的综合应用
5. [2021北京]秋千由踏板和绳构成,人在秋千上的摆动过程可以简化为单摆的摆
动,等效“摆球”的质量为m,人蹲在踏板上时摆长为l1,人站立时摆长为l2.不计空
气阻力,重力加速度大小为g.
(1)如果摆长为l1,“摆球”通过最低点时的速度为v,求此时“摆球”受到拉力T的
返回目录
第4讲
功能关系
能量守恒定律
方法点拨
两种摩擦力做功特点的比较
类型
能量的
转化
静摩擦力做功
机械能只能从一个物体转移到
另一个物体,而没有机械能转
化为其他形式的能
滑动摩擦力做功
(1)一部分机械能从一个物体转移到另
一个物体.
(2)一部分机械能转化为内能,此部分
能量就是系统机械能的损失量
返回目录
第4讲
返回目录
第4讲
功能关系
能量守恒定律
力做功
能的变化
只有重力或系统
机械能
内弹力做功
除重力和系统内
弹力之外的其他
力做功
不变化
机械能
变化
二者关系
机械能守恒,即ΔE=[6] 0
(1)其他力做多少正功,物体的机械能增加多少;
(2)其他力做多少负功,物体的机械能减少多少;
高考物理一轮复习 专题5.4 功能关系、能量转化和守恒定律教学案 新人教版-新人教版高三全册物理教学
2016高考物理一轮复习专题5.4 功能关系、能量转化和守恒定律教学案新人教版【2016考纲解读】1.掌握功和能的对应关系,特别是合力功、重力功、弹力功分别对应的能量转化关系2.理解能量守恒定律,并能分析解决有关问题.【重点知识梳理】一、功能关系功能量的变化合外力做正功动能增加重力做正功重力势能减少弹簧弹力做正功弹性势能减少电场力做正功电势能减少其他力(除重力、弹力外)做正功机械能增加二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.【高频考点突破】考点一功能关系的应用1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化用重力做功与重力势能变化的关系分析.3.只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析.4.只涉及电势能的变化用电场力做功与电势能变化的关系分析.例1、如图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中( )A.物块A的重力势能增加量一定等于mghB.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和D.物块A和弹簧组成系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和解析由于斜面光滑,物块A静止时弹簧弹力与斜面支持力的合力与重力平衡,当整个装置加速上升时,由牛顿第二定律可知物块A受到的合力应向上,故弹簧伸长量增加,物块A相对斜面下滑一段距离,故选项A错误;根据动能定理可知,物块A动能的增加量应等于重力、支持力及弹簧弹力对其做功的代数和,故选项B错误;物块A机械能的增加量应等于除重力以外的其他力对其做功的代数和,选项C正确;物块A 和弹簧组成的系统机械能增加量应等于除重力和弹簧弹力以外的其他力做功的代数和,故选项D正确.答案CD【变式探究】如图所示,一轻弹簧左端与物体A相连,右端与物体B相连,开始时,A、B均在粗糙水平面上不动,弹簧处于原长状态.在物体B上作用一水平向右的恒力F,使物体A、B向右运动.在此过程中,下列说法正确的是 ( )A.合外力对物体A所做的功小于物体A的动能增量B.外力F做的功与摩擦力对物体B做的功之和等于物体B的动能增量C.外力F做的功及摩擦力对物体A和B做功的代数和等于物体A和B的动能增量及弹簧弹性势能增量之和D.外力F做的功加上摩擦力对物体B做的功等于物体B的动能增量与弹簧弹性势能增量之和答案 C考点二摩擦力做功的特点及应用1.静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果: ①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q =F f s 相对.其中s 相对为相互摩擦的两个物体间的相对路程.【特别提醒】从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.例2、如图所示,质量为m 的长木块A 静止于光滑水平面上,在其水平的上表面左端放一质量为m 的滑块B ,已知木块长为L ,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F 拉滑块B .(1)当长木块A 的位移为多少时,B 从A 的右端滑出? (2)求上述过程中滑块与木块之间产生的内能.解析 (1)设B 从A 的右端滑出时,A 的位移为l ,A 、B 的速度分别为v A 、v B ,由动能定理得μmgl =12mv 2A(F -μmg )·(l +L )=12mv 2B又由同时性可得v A a A =v B a B (其中a A =μg ,a B =F -μmg m) 解得l =μmgLF -2μmg.(2)由功能关系知,拉力F 做的功等于A 、B 动能的增加量和A 、B 间产生的内能,即有F (l +L )=12mv 2A +12mv 2B +Q解得Q =μmgL . 答案 (1)μmgLF -2μmg(2)μmgL【变式探究】如图所示,一质量为m =2 kg 的滑块从半径为R =0.2 m 的光滑四分之一圆弧轨道的顶端A 处由静止滑下,A 点和圆弧对应的圆心O 点等高,圆弧的底端B 与水平传送带平滑相接.已知传送带匀速运行的速度为v 0=4 m/s ,B 点到传送带右端C 点的距离为L =2 m .当滑块滑到传送带的右端C 时,其速度恰好与传送带的速度相同.(g =10 m/s 2),求:(1)滑块到达底端B 时对轨道的压力; (2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q . 答案 (1)60 N ,方向竖直向下 (2)0.3 (3)4 J 解析 (1)滑块由A 到B 的过程中,由机械能守恒定律得:mgR =12mv 2B①物体在B 点,由牛顿第二定律得:F B -mg =m v2B R②由①②两式得:F B =60 N由牛顿第三定律得滑块到达底端B 时对轨道的压力大小为60 N ,方向竖直向下. (2)解法一:滑块在从B 到C 运动过程中, 由牛顿第二定律得:μmg =ma ③由运动学公式得:v 20-v 2B =2aL④由①③④三式得:μ=0.3⑤解法二:滑块在从A 到C 整个运动过程中, 由动能定理得:mgR +μmgL =12mv 20-0解得:μ=0.3(3)滑块在从B 到C 运动过程中,设运动时间为t 由运动学公式得:v 0=v B +at⑥ 产生的热量:Q =μmg (v 0t -L )⑦由①③⑤⑥⑦得:Q =4 J. 考点三 能量守恒定律及应用 列能量守恒定律方程的两条基本思路:(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等.例3、如图所示有一倾角为θ=37°的硬杆,其上套一底端固定且劲度系数为k =120 N/m 的轻弹簧,弹簧与杆间无摩擦.一个质量为m =1 kg 的小球套在此硬杆上,从P 点由静止开始滑下,已知小球与硬杆间的动摩擦因数μ=0.5,P 与弹簧自由端Q 间的距离为l =1 m .弹簧的弹性势能与其形变量x 的关系为E p =12kx 2.求:(1)小球从开始下滑到与弹簧自由端相碰所经历的时间t ; (2)小球运动过程中达到的最大速度v m ;(3)若使小球在P 点以初速度v 0下滑后又恰好回到P 点,则v 0需多大? 解析 (1)F 合=mg sin θ-μmg cos θa =F 合m =g sin θ-μg cos θ=2 m/s 2l =12at 2所以t =2la=1 s(2)小球从P 点无初速度滑下,当弹簧的压缩量为x 时小球有最大速度v m ,有mg sin θ-μmg cos θ=kx ,x =160m此过程由能量守恒定律可得:mg ·(l +x )sin θ=W 弹+μmg cos θ(l +x )+12mv 2m而W 弹=12kx 2代入数据解得:v m =113030m/s =2 m/s(3)设小球从P 点以初速度v 0下滑,压缩弹簧至最低点时弹簧的压缩量为x 1,由能量守恒有:mg (l +x 1)sin θ+12mv 20=μmg cos θ(l +x 1)+12kx 21小球从最低点经过Q 点回到P 点时的速度为0,则有: 12kx 21=mg (l +x 1)sin θ+μmg cos θ(l +x 1) 联立以上二式解得x 1=0.5 m ,v 0=2 6 m/s =4.9 m/s.答案 (1)1 s (2)2 m/s (3)4.9 m/s【变式探究】假设某足球运动员罚点球直接射门时,球恰好从横梁下边缘踢进,此时的速度为v .横梁下边缘离地面的高度为h ,足球质量为m ,运动员对足球做的功为W 1,足球运动过程中克服空气阻力做的功为W 2,选地面为零势能面,下列说法正确的是 ( ) A .运动员对足球做的功为W 1=mgh +12mv 2-W 2B .足球机械能的变化量为W 1-W 2C .足球克服阻力做的功为W 2=mgh +12mv 2-W 1D .运动员刚踢完球的瞬间,足球的动能为mgh +12mv 2答案 B解析 由功能关系可知:W 1=mgh +12mv 2+W 2,A 项错.足球机械能的变化量为除重力、弹力之外的力做的功.ΔE 机=W 1-W 2,B 项对;足球克服阻力做的功W 2=W 1-mgh -12mv 2,C 项错.D 项中,刚踢完球瞬间,足球的动能应为E k =W 1=mgh +12mv 2+W 2,D 项错。
高考物理一轮复习 专题5.4 功能关系、能量转化和守恒定律教学案-人教版高三全册物理教学案
专题5.4 功能关系、能量转化和守恒定律1.掌握功和能的对应关系,特别是合力功、重力功、弹力功分别对应的能量转化关系2.理解能量守恒定律,并能分析解决有关问题.一、功能关系的理解与应用1.对功能关系的理解(1)做功的过程就是能量转化的过程。
不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
2.几种常见的功能关系及其表达式1.两种摩擦力做功的比较(1)正确分析物体的运动过程,做好受力分析。
(2)利用运动学公式,结合牛顿第二定律分析物体的速度关系及位移关系。
(3)公式Q=F f·s相对中s相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则s相对为总的相对路程。
三、能量转化与守恒的应用1.对能量守恒定律的两点理解(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。
2.能量转化问题的解题思路(1)当涉及摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律。
(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减与增加的能量总和ΔE增,最后由ΔE减=ΔE增列式求解。
高频考点一对功能关系的理解与应用功是能量转化的量度。
力学中的功与对应的能量的变化关系如下表所示:【例1】如图甲所示,在倾角为37°的粗糙的足够长斜面的底端,一质量m=1 kg可视为质点的滑块压缩一轻弹簧,滑块与弹簧不连接,t=0时释放物块,计算机通过传感器描绘出滑块的vt图象如图乙所示,其中Oab段为曲线,bc段为直线。
在t1=0.1 s时滑块已上滑x=0.2 m的距离,g取10 m/s2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考、回忆、 倾听、勾画。
归纳和练习
思考、小结。
倾听、理解、练习、改错
倾听、理解练习、改错
倾听、理解、练习、改错
倾听、理解、练习、改错
练习、倾听、思考、笔记。
练习、改错、
交流讨论。
阅读、理解、归纳
倾听、理解、练习、改错
师生一起归纳几种常见的功能关系的表述,含表达式
二、复习摩擦力做功的特点,通过一些典型模型如滑块模板模型、滑块传送带模型、子弹打木块模型分析滑动摩擦力做功特点,会找对地位移、相对位移,并能计算摩擦生热。
知道系统中增加的能量和减少的能量,列出能量守恒关系式
三、传送带模型中的动力学和能量转化问题。
典型例题分析,变式题训练点评,高考题练习与讲评,高考趋势和方向
若一个物体参与了多个运动过程,若该过程涉及能量转化问题,并且具有功能关系的特点,则用动能定理、机械能守恒定律或能量守恒定律求解。
重、难点
1.功能关系,能量守恒2.滑动摩擦力做功,摩擦生热的计算,传送带模型中的动力学和能量转化问题 3.应用力学两大观点分析多过程问题,特别是解题方法的选取
学习内容
学生活动
2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题。
3.会分析系统内一对内力如支持力和压力、绳的拉力、一对静摩擦力、一对滑动摩擦力做功的特点,会找对地位移,相对位移。会计算摩擦生热。.
4.能熟练分析物体在各过程的受力情况和运动情况,会分析相邻过程的关联量,能找到解答问题的关键点.
5.能够根据不同运动过程的特点,合理选择物理规律。若一个物体参与了多个运动过程,而运动过程只涉及运动和力的问题或只要求分析物体的动力学特点而不涉及能量问题,或物体运动过程单一,求时间、位移、速度等,常用牛顿运动定律和运动学规律求解。
在讲义和练出高分中选出典型题,应用力学两大观点分析,选取恰当的方法解题
七、学生独立完成《步步高大一轮讲义》考点一到考点三,自行订正参考答案。黑笔做题,红笔改错。教师对学生自主复习过程中存在的疑难点及高考中重难点、常考点、常见典型题进行点拨、释疑
八、学生独立完成《步步高大一轮本课时专题练习》专题三,进行自我订正和学生小组互助讨论
九、学生独立完成练出高分上的 第三课时练习和专题三
十、教师选择性讲评,讲义和练出高分上归类讲,不逐一讲,不一讲到底
教学反思
学科思想的建立,方法的归纳与总结,学习习惯、书写习惯的养成,达成能力培养
功能关系,能量守恒定律
课题
功能关系,能量守恒定律
专题三 应用力学两大观点分析多过程问题
课时
6
授课班级
考点、知识点
学习目标
1.知道功是能量转化的量度,掌握重力的功、弹簧弹力的功、电场力做的功、合外力做功、除重力和弹力以外力做功,包括系统内力做功与对应的能量转化关系.学会从能量转化的角度来处理力学问题。
四、学科思想的树立,解题方法的归纳和总结。
五、应用力学两大观点分析多过程问题,特别是解题方法的选取。
若一个物体参与了多个运动过程,而运动过程只涉及运动和力的问题或只要求分析物体的动力学特点而不涉及能量问题,或物体运动过程单一,求时间、位移、速度等,常用牛顿运动定律和运动学规律求解
若一个物体参与了多个运动过程,若该过程涉及能量转化问题,并且具有功能关系的特点,则用动能定理、机械能守恒定律或能量守恒定律求解