01必修1 牛顿运动定律4-3牛顿第二定律
高中物理 人教版必修1第四章 牛顿运动定律 4.3牛顿第二定律 专题强化练:瞬时加速度问题
一、单选题1.如图所示,光滑水平面上,AB 两物体用轻弹簧连接在一起。
A B 、的质量分别为12m m 、,在拉力F 作用下,AB 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度大小为1a 和2a ,则( )A .1200a a ==,B .21212m a a a a m m ==+, C .12121212m m a a a a m m m m ==++, D .1122m a a a a m ==, 2.如图所示,质量为m 的光滑小球A 被一轻质弹簧系住,弹簧另一端固定于水平天花板上,小球下方被一梯形斜面B 托起保持静止不动,弹簧恰好与梯形斜面平行,已知弹簧与天花板夹角为30o ,重力加速度为210/g m s =,若突然向下撤去梯形斜面,则小球的瞬时加速度为( )A .0B .大小为210/m s ,方向竖直向下C .大小253/m s ,方向斜向右下方D .大小25/m s ,方向斜向右下方3.如图所示为两轻绳栓接一定质量的小球,两轻绳与竖直方向的夹角如图,则在剪断a 绳的瞬间,小球的加速度大小为a 1,剪断b 绳的瞬间,小球的加速度大小为a 2.则a 1:a 2为( )A .1:1B .2:1C .3:1D .23:14.如图所示,轻弹簧上端与一质量为1kg 的木块1相连,下端与另一质量为2kg 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态,现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ,已知重力加速度g 大小为210/m s ,则有( )A .10a = , 2215/a m s =B .21215/a a m s ==C .10a =, 2210/a m s =D .21210/a a m s == 5.如图所示,竖直放置在水平面上的轻质弹簧上叠放着质量均为2kg 的物块A 、B ,它们处于静止状态,若突然将一个大小为10N 、方向竖直向下的力施加在物块A 上,则此瞬间,A 对B的压力大小为(g=10m/s 2)( )A .10 NB .20 NC .25 ND .30 N6.质量为m 的物体放置在光滑的水平面上,左右两端分别固定一个弹簧,弹簧的另一端连着细绳,细绳跨过光滑定滑轮与质量为M =2m 的物体相连,如图所示。
人教版高中物理必修1-4.3《牛顿第二定律》教案
第四章牛顿运动定律第四节牛顿第二定律一、教学目标1、知识与技能:1.理解牛顿第二定律的内容、知道表达式的确切含义.2.知道牛顿第二定律如何简化,如何确定K值。
3.初步学会应用牛顿第二定律进行计算。
2、过程与方法:1.通过对上节课实验结论的总结,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律。
2.培养学生的概括能力、分析能力和判断推理能力.3、情感态度与价值观:1.渗透物理学研究方法的教育----实验、归纳、总结.2.通过牛顿第二定律的应用能深切感受到科学源于生活并服务于生活,激发学生学习物理的兴趣.二、教材分析1、本节课的地位和作用:(1)牛顿第二定律是动力学的核心规律,是高一教材的重点和中心内容,在高中物理力学部分占有很重要的地位,因而理解牛顿第二定律就显得特别关键。
本节内容是在前一节实验基础上得出加速度和力、质量三者间的关系,然后为解决比例系数而得出力的单位问题,而后再辅之于例题。
这样处理,知识点过渡自然。
一方面,为应用牛顿第二定律打下基础,另一方面体现了知识服务于生活的精神。
(2)与旧教材相比,把实验独立出来了,可以大大缓解本节课的压力;而例题中,加进了方法分析,突出体现了能力的培养。
2、本节课教学重点与难点:重点:牛顿第二定律的特点难点:(1)牛顿第二定律四性的理解及力、速度、速度变化、加速度间的关系(2)正交分解法的灵活应用。
三、教学思路与方法本节课教学思路:1、由学生回忆上节课的探究结论(F、m、a的关系)2、探究结论如何用数学表达式表示a ∝ F/m ,F = kma3、探究最简单的表达式F=ma4、通过各种探究、理解牛顿第二定律5、探究利用牛顿第二定律解决实例的步骤和方法。
本节课的教学方法有:探究、讲授、讨论、练习。
四、教学建议1.在理解牛顿第二定律的确切含义时,要正确处理好学生的一个难点---力、速度、速度的变化量、加速度几者之间的关系;总结归纳出牛顿第二定律的四性(矢量性、瞬时性、因果性、同体性)。
牛顿第二定律运动定律
牛顿第二定律运动定律牛顿第二定律,也称为运动定律,是描述物体运动时所受力与加速度之间关系的基本定律。
它是物理学中最重要的定律之一,由英国物理学家艾萨克·牛顿于17世纪提出。
牛顿第二定律的数学表达式为 F = ma,其中 F 表示物体所受合力的大小,m 表示物体的质量,a 表示物体在受力作用下的加速度。
根据这个定律,如果一个物体受到外力的作用,它的加速度将与所受的力成正比,与物体的质量成反比。
牛顿第二定律运动定律的重要性在于它不仅适用于静止物体,也适用于运动物体。
无论物体是在匀速运动还是在加速运动,只需考虑这个物体所受的合力和质量,即可确定其加速度。
在现实生活中,牛顿第二定律运动定律的应用非常广泛。
下面将介绍一些实际例子来展示这个定律的重要性和应用。
1. 汽车行驶当汽车行驶时,发动机提供的驱动力推动汽车前进。
根据牛顿第二定律,由于汽车的质量与所受的合力成反比,所以质量较大的汽车需要较大的驱动力才能达到相同的加速度。
因此,质量较大的汽车需要更长的时间才能加速到相同的速度。
2. 弹射运动弹射运动是许多体育比赛中常见的项目,如投掷项目、跳高等。
对于投掷项目,选手需要施加合适的力使投掷物飞得更远。
牛顿第二定律告诉我们,如果选手想要投掷物的速度增加,他们需要施加更大的力。
同样,跳高项目中,运动员需要通过加速跑、弹跳等动作来提高跳高的高度。
3. 自行车骑行骑自行车时,我们踩踏脚蹬给自行车提供动力。
根据牛顿第二定律,我们在踩脚蹬时施加的力越大,自行车的加速度就越大,速度也就越快。
同时,如果我们骑车过程中遇到了阻力,比如上坡或者逆风,我们需要施加更大的力才能保持速度或者克服阻力。
4. 摩擦力的作用摩擦力是物体运动中常见的阻力。
根据牛顿第二定律,摩擦力与物体质量成正比,与物体的加速度成反比。
这意味着,质量越大的物体受到的摩擦力越大,加速度越小。
例如,在水面上放置一张纸,我们可以轻易地将它推动。
而如果相同的纸放在凹凸不平的地面上,我们需要施加更大的力才能将其推动。
(完整版)人教版高中物理目录(必修版新教材课本目录)
高中物理目录新课标教材•必修1第一章运动的描述1 质点参考系和坐标系2 时间和位移3 运动快慢的描述──速度4 实验:用打点计时器测速度5 速度变化快慢的描述──加速度第二章匀变速直线运动的研究1 实验:探究小车速度随时间变化的规律2 匀变速直线运动的速度与时间的关系3 匀变速直线运动的位移与时间的关系4 自由落体运动5 伽利略对自由落体运动的研究第三章相互作用1 重力基本相互作用2 弹力3 摩擦力3 摩擦力4 力的合成5 力的分解第四章牛顿运动定律1 牛顿第一定律2 实验:探究加速度与力、质量的关系3 牛顿第二定律4 力学单位制5 牛顿第三定律6 用牛顿定律解决问题(一)7 用牛顿定律解决问题(二)高中物理目录新课标教材•必修2第五章机械能及其守恒定律1 追寻守恒量2 功3 功率4 重力势能5 探究弹性势能的表达式6 探究功与物体速度变化的关系7 动能和动能定理8 机械能守恒定律9 实验:验证机械能守恒定律10 能量守恒定律与能源第六章曲线运动1 曲线运动2 运动的合成与分解3 探究平抛运动的规律4 抛体运动的规律5 圆周运动6 向心加速度7 向心力8 生活中的圆周运动第七章万有引力与航天1 行星的运动2 太阳与行星间的引力3 万有引力定律4 万有引力理论的成就5 宇宙航行6 经典力学的局限性高中物理目录新课标教材•选修1-1 第一章电流1、电荷库仑定律2、电场3、生活中的静电现象4、电流和电源5、电流的热效应第二章磁场1、指南针与远洋航海2、电流的磁场3、磁场对通电导线的作用4、磁声对运动电荷的作用5、磁性材料第三章电磁感应1、电磁感应现象2、法拉第电磁感应定律3、交变电流4、变压器5、高压输电6、自感现象涡流7、课题研究:电在我家中第四章电磁波及其应用1、电磁波的发现2、电磁光谱3、电磁波的发射和接收4、信息化社会5、课题研究:社会生活中的电磁波高中物理目录新课标教材•选修1-2 第一章分子动理论内能1、分子及其热运动2、物体的内能3、固体和液体4、气体第二章能量的守恒与耗散1、能量守恒定律2、热力学第一定律3、热机的工作原理4、热力学第二定律5、有序、无序和熵6、课题研究:家庭中的热机第三章核能1、放射性的发现2、原子核的结构3、放射性的衰变4、裂变和聚变5、核能的利用第四章能源的开发与利用1、热机的发展和应用2、电力和电信的发展与应用3、新能源的开发4、能源与可持续发展5、课题研究:太阳能综合利用的研究高中物理目录新课标教材•选修2-1 第一章电场直流电路1、电场2、电源3、多用电表4、闭合电路的欧姆定律5、电容器第二章磁场1、磁场磁性材料2、安培力与磁电式仪表3、洛伦兹力和显像管第三章电磁感应1、电磁感应现象2、感应电动势3、电磁感应现象在技术中的应用第四章交变电流电机1、交变电流的产生和描述2、变压器3、三相交变电流第五章电磁波通信技术1、电磁场电磁波2、无线电波的发射、接收和传播3、电视移动电话4、电磁波谱第六章集成电路传感器1、晶体管2、集成电路3、电子计算机4、传感器高中物理目录新课标教材•选修2-2 第一章物体的平衡1、共点力平衡条件的应用2、平动和传动3、力矩和力偶4、力矩的平衡条件5、刚体平衡的条件6、物体平衡的稳定性第二章材料与结构1、物体的形变2、弹性形变与范性形变3、常见承重结构第三章机械与传动装置1、常见的传动装置2、能自锁的传动装置3、液压传动4、常用机构5、机械第四章热机1、热机原理热机效率2、活塞式内燃机3、蒸汽轮机燃气轮机4、喷气发动机第五章制冷机1、制冷机的原理2、电冰箱3、空调器高中物理目录新课标教材•选修2-3 第一章光的折射1、光的折射折射率2、全反射光导纤维3、棱镜和透镜4、透镜成像规律5、透镜成像公式第二章常用光学仪器1、眼睛2、显微镜和望远镜。
高中物理人教版必修1课件:第四章 牛顿运动定律+第3节 牛顿第二定律
【学习目标】 1.通过上节实验,能得出并准确描述牛顿第二定律. 2.理解力的单位的由来,理解关系式F=kma是如何变成F=ma的. 3.能从同时性、矢量性等各方面深入理解牛顿第二定律,理解为什么说牛顿第 二定律是连接运动学和力学的桥梁. 4.能运用牛顿第二定律分析和处理简单的问题.初步体会牛顿第二定律在认识 自然规律过程中的有效性和价值.
ห้องสมุดไป่ตู้
探寻基本知识 感悟解题规律 测评学习效果
探寻基本知识·树立物理观念
知识点一 牛顿第二定律
【情境导学】 1.静止在光滑水平面上的重物,受到一个很小的水平推力,在力刚开始作用 的瞬间,重物是否立即获得加速度,是否立即有了速度,为什么? 答案:是,否.力是产生加速度的原因,力与加速度具有同时性,故在力作用的 瞬间,物体立即获得加速度,但由Δv=aΔt可知,要使物体获得速度必须经过 一段时间. 2.用力去推水平地面上的大石块,却没有推动,是否说明这个力没有产生加 速度? 答案:否.当物体受到几个力作用时,每个力各自独立地使物体产生一个加速 度,但物体表现出来的加速度却只有一个,即各个力产生加速度的矢量和,石 块没被推动说明石块的合加速度为零,并不是这个力没产生加速度.
知识点二 力的单位
【情境导学】 在应用公式F=ma进行计算时,若F的单位用牛顿(N),m的单位用克(g)是否 可以? 答案:不可以.公式中的各量必须用国际单位.若不然,公式中的比例系数 就不再等于1.
【知识梳理】 1.单位:国际单位制中是 牛顿 ,符号是N. 2.1 N的物理意义:使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N, 即1 N= 1 kg·m/s2 . 3.比例系数k的意义:k的数值由F,m,a三个物理量的单位共同决定,若三量 都取国际单位,则k=1,牛顿第二定律的表达式可写作F= ma . 【思考判断】 1.若力、质量、加速度三个物理量都取国际单位,则公式F=kma的k就等于 1.( √ ) 2.1 N的力可以使质量为1 kg的物体,产生1 m/s2的加速度.( √ )
4-3牛顿第二定律
特别提醒: 物体的加速度的方向与物体所受的合外力是瞬时对应关 系,即a与合力F方向总是相同,但速度v的方向不一定与合 外力的方向相同。
第四章
3.牛顿第二定律
成才之路 ·物理 ·人教版 · 必修1
(2011· 广州高一检测)如图所示,粗糙水平面上的物体在 水平拉力F作用下做匀加速直线运动,现使F不断减小,则在 滑动过程中( )
解析:由牛顿第二定律F=ma,以及速度与加速度的关 v-v0 系a= t 可知:物体的速度为零时,只能说明在某一时刻 物体处于静止,但并不能说明物体没有加速度,若有加速 度,则合外力不为零,例如汽车启动瞬间,瞬时速度为零, 但速度却在变化,加速度不为零,汽车在牵引力作用下做变 速运动。A错误。合外力为零,物体可能在做匀速运动,B 错。物体所受合外力减小,只能说加速度数值在减小,在相
成才之路 ·物理 ·人教版 · 必修1
4.加速度的定义式与决定式: Δv a= Δt 是加速度的定义式,它给出了测量物体的加速度 F 的方法,这是物理上用比值定义物理量的方法;a= m是加速 度的决定式,它揭示了物体产生加速度的原因及影响物体加 速度的因素。
第四章
3.牛顿第二定律
成才之路 ·物理 ·人教版 · 必修1
第四章
3.牛顿第二定律
成才之路 ·物理 ·人教版 · 必修1
特别提醒: 1物体的加速度和合外力是同时产生的,不分先后,但 有因果性,力是产生加速度的原因,没有力就没有加速度。 F 1 2不能根据m= a 得出m∝F,m∝a的结论。物体的质量 m与物体受的合外力和运动的加速度无关。
第四章
3.牛顿第二定律
2.表达式 F= ma ,F为物体所受的 合外力 。
第四章
3.牛顿第二定律
高中物理 人教版必修一 4.3牛顿第二定律 教学设计、教案
3.牛顿第二定律一、知识结构二、教学目标1.理解牛顿第二定律,知道牛顿第二定律表达式的确切含义.2.知道在国际单位制中力的单位“牛顿”是怎样定义的.3.会用牛顿第二定律的公式进行计算和处理有关问题三、新知全解知识点一牛顿第二定律1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:(1)比例式:F=kma,式中k是比例系数,F是物体所受的合外力.(2)国际单位制中:F=ma.思考由牛顿第二定律可知无论怎样小的力都可以产生加速度,可是如图所示,小强和小红一起拉车子,无论怎么用力也没拉动,这跟牛顿第二定律矛盾吗?应该怎样解释这个现象?提示:这跟牛顿第二定律不矛盾.物体受多个力作用时,牛顿第二定律中的力F指的是物体所受的合力.牛顿第二定律表达式中F应是物体所受到的合力.如:竖直方向上,小车受到的重力与地面对小车的支持力合力为0,水平方向上小车受到的合力F合=20 N,则小车的加速度由合力20 N来决定,方向沿力F1的方向.知识点二力的单位1.国际单位:牛顿,简称牛,符号为N.一切物体都有惯性B 牛顿第二定律指出物体的加速度与物体所受外力成正比,加速度的方向与合外力的方向一致√C 牛顿第二定律表明外力的作用是物体速度变化的原因,即是产生加速度的原因√D牛顿运动定律只能适用于宏观、低速运动的物体,不能适用于微观高速运动的粒子×【答案】BC训练1(多选)下列对牛顿第二定律的表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m=Fa可知,物体的质量与其所受合力成正比,与其运动的加速度成反比C.由a=Fm可知,物体的加速度与其所受合力成正比,与其质量成反比D.由m=Fa可知,物体的质量可以通过测量它的加速度和它所受到的合力求出解析:牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关;故排除A、B两项,选C、D两项.答案:CD核心二合外力、加速度和速度的关系1.合外力与加速度的关系2.力和运动的关系加速度的方向(或合外力的方向)与运动方向(或速度方向)无关.例2(多选)关于速度、加速度、合力的关系,下列说法正确的是()A.原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同C.在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的D.合力变小,物体的速度一定变小【解析】由牛顿第二定律可知选项A、B正确;初速度为0的匀加速直线运动中,v、a、F三者的方向相同,选项C正确;合力变小,加速度变小,但速度是变大还是变小取决于加速度与速度的方向关系,选项D错误.【答案】ABC训练2原来做匀加速直线运动的物体,当它的合外力逐渐减小时() A.它的加速度将减小,它的速度也减小B.它的加速度将减小,它的速度在增加C.它的加速度和速度都保持不变D.情况复杂,加速度和速度的变化均无法确定解析:物体原来做匀加速直线运动,所以合外力逐渐减小时,加速度也逐渐减小,而速度仍在增加.答案:B核心三牛顿第二定律的应用1.应用牛顿第二定律解题的一般步骤2.合外力的处理方法(1)矢量合成法当物体只受两个力作用时,应用平行四边形定则求出两个力的合力.(2)正交分解法当物体受到三个或三个以上力的作用时,常用正交分解法求物体所受的合力.例3 如图所示,手拉着小车静止在倾角为30°的光滑斜坡上,已知小车的质量为2.6 kg ,求:(1)绳子对小车的拉力; (2)斜面对小车的支持力;(3)如果绳子突然断开,求小车的加速度大小. 【解析】 (1)小车沿斜面方向受力平衡, F 拉=mg sin 30°=2.6×9.8×12 N =12.74 N. (2)小车垂直斜面方向受力平衡, F N =mg cos 30°=2.6×9.8×32 N≈22.07 N.(3)绳子突然断开,沿斜面方向小车受到的合力为mg sin 30°. 由mg sin 30°=ma 得小车的加速度大小 a =g sin 30°=9.8×12m/s 2=4.9 m/s 2.[拓展] 在[例3]中,如果让小车以加速度2 m/s 2 沿斜面向上运动,则需要的拉力为多大?【解析】 以小车为研究对象受力分析如图所示 . 利用正交分解法,由牛顿第二定律得: F -mg sin 30°=ma 所以,需要的拉力为:F =ma +mg sin 30°=2.6×2 N +2.6×9.8×12 N =17.94 N【答案】 17.94 N 斜面模型中加速度的求解 (1)物体A 加速斜向下滑动a =g(sin α-μcos α) ,方向沿斜面向下(2)物体A减速斜向上滑动a=g(sinα+μcosα) ,方向沿斜面向下(3)物体A减速斜向下滑动a=g(μcosα-sinα),方向沿斜面向上训练3如图所示,质量m=10 kg的物体在水平面上向右运动,物体与水平面间的动摩擦因数为0.2,与此同时物体受到一个水平向左的推力F=20 N的作用,g取10 m/s2,则物体的加速度是()A.0B.4 m/s2,水平向右C.4 m/s2,水平向左D.2 m/s2,水平向右解析:取向右为正方向,物体受到的摩擦力F f=-μmg=-0.2×10×10 N=-20 N,由牛顿第二定律得F+F f=ma,解得a=-4 m/s2.答案:C方法技巧(1)物体受三个或三个以上的力的作用做匀变速直线运动时往往利用正交分解法解决问题.(2)正交分解的方法是常用的矢量运算方法,其实质是将复杂的矢量运算转化为简单的代数运算.常见的是沿加速度方向和垂直加速度方向建立坐标系.核心四应用牛顿第二定律求解瞬时加速度1.细线(接触面):形变量极小,可以认为不需要形变恢复时间,在瞬时问题中,弹力能瞬时变化.2.弹簧(橡皮绳):形变量大,形变恢复需要较长时间,在瞬时问题中,认为弹力不变.解题思路:(1)分析悬挂A球的细线剪断前A球和B球的受力情况;(2)分析剪断细线瞬间有哪些力发生了变化;(3)分析剪断细线后A球和B球的受力情况;(4)根据牛顿第二定律列方程求解.例4如图所示,天花板上用细绳吊起两个用轻弹簧相连的质量相同的小球,两小球均保持静止.当突然剪断细绳的瞬间,上面小球A与下面小球B的加速度分别为(以向上为正方向)()A.a1=g a2=g B.a1=2g a2=0C.a1=-2g a2=0 D.a1=0a2=g【解析】分别以A、B为研究对象,分析剪断前和剪断时的受力.剪断前A、B静止,A球受三个力:绳子的拉力F T、重力mg和弹簧力F,B球受两个力:重力mg 和弹簧弹力F′.A球:F T-mg-F=0B球:F′-mg=0F=F′解得F T=2mg,F=mg.剪断瞬间,A球受两个力,因为绳无弹性,剪断瞬间拉力不存在,而弹簧瞬间形状不可改变,弹力不变.如图,A球受重力mg、弹簧的弹力F,同理B球受重力mg和弹力F′.A球:-mg-F=ma1,B球:F′-mg=ma2,解得a1=-2g,a2=0,故C 正确.【答案】 C训练4[2019·厦门高一检测]如图所示,质量为m的光滑小球A被一轻质弹的单位是国际单位时,比例系数k 才为1,故D 正确,A 、B 、C 错误.答案:D2.如图所示,底板光滑的小车上用两个量程为20 N ,完全相同的弹簧测力计甲和乙系住一个质量为1 kg 的物块.在水平地面上,当小车做匀速直线运动时,两弹簧测力计的示数均为10 N ,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8 N ,这时小车运动的加速度大小是( )A .2 m/s 2B .4 m/s 2C .6 m/s 2D .8 m/s 2解析:当弹簧测力计甲的示数变为8 N 时,弹簧测力计乙的示数变为12 N ,这时物块所受的合力为4 N .由牛顿第二定律F =ma 得物块的加速度a =Fm =4 m/s 2,故选项B 正确.答案:B3.(多选)质量为1 kg 的物体受3 N 和4 N 两个共点力的作用,物体的加速度可能是( )A .5 m/s 2B .7 m/s 2C .8 m/s 2D .9 m/s 2解析:当F 1=3 N 和F 2=4 N 的两个力同向时,产生的加速度最大,a max =F 1+F 2m =3+41 m/s 2=7 m/s 2;当F 1与F 2反向时,产生的加速度最小,a min =4-31 m/s 2=1 m/s 2.则a min ≤a ≤a max ,即1 m/s 2≤a ≤7 m/s 2.答案:AB4.一轻弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4 cm ,再将重物向下拉1 cm ,然后放手,则在释放瞬间重物的加速度是(g 取10 m/s 2)( )A .2.5 m/s 2B .7.5 m/s 2C .10 m/s 2D .12.5 m/s 2解析:弹簧伸长量为4 cm 时,重物处于平衡状态,故mg =k Δx 1;再将重物向下拉1 cm ,则弹簧的伸长量变为Δx 2=5 cm ,在重物被释放瞬间,由牛顿第二定律可得k Δx 2-mg =ma ;由以上两式解得a =2.5 m/s 2,故选项A 正确.答案:A5.如图所示,静止在水平地面上的小黄鸭质量m =20 kg ,受到与水平面夹角为53°的斜向上的拉力,小黄鸭开始沿水平地面运动.若拉力F=100 N,小黄鸭与地面的动摩擦因数为0.2,g=10 m/s2,求:(sin53°=0.8,cos53 °=0.6,g =10 m/s2)(1)把小黄鸭看做质点,作出其受力示意图;(2)地面对小黄鸭的支持力;(3)小黄鸭运动的加速度的大小.解析:(1)如图,小黄鸭受到重力、支持力、拉力和摩擦力作用.(2)竖直方向有:F sin53°+F N=mg,解得F N=mg-F sin53°=120 N,方向竖直向上.(3)受到的摩擦力为滑动摩擦力,所以F f=μF N=24 N根据牛顿第二定律得:F cos53°-F f=ma,解得a=1.8 m/s2.答案:(1)见解析图(2)120 N,方向竖直向上(3)1.8 m/s26、(2019·成都高一检测)如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,则小球受到细线的拉力F T和斜面的支持力F N分别为(重力加速度为g)()A.F T=m(g sin θ+a cos θ)F N=m(g cos θ-a sin θ)B.F T=m(g cos θ+a sin θ)F N=m(g sin θ-a cos θ)C.F T=m(a cos θ-g sin θ)F N=m(g cos θ+a sin θ)D.F T=m(a sin θ-g cos θ)F N=m(g sin θ+a cos θ)解析:选A.以平行斜面方向为x 轴、垂直斜面方向为y 轴建立坐标系,分解a ,则a x =a cos θ,a y =a sin θ,则x 方向上有F T -mg sin θ=ma x ,解得F T =m (g sin θ+a cos θ),y 方向上有mg cos θ-F N =ma y ,解得F N =m (g cos θ-a sin θ),故A 正确.7、(2019·河南焦作高一测试)如图所示,在倾角θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m ,物块A静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起但A ,B 之间无弹力,已知重力加速度为g ,某时刻将细线剪断,则在细线剪断瞬间,下列说法正确的是( )A .物块B 的加速度为g 2 B .物块A 、B 间的弹力为mg 2C .弹簧的弹力为mg 3D .物块A 的加速度为g 3解析:选D.剪断细绳前,弹簧的弹力:F 弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,F 弹=12mg ,故C 错误; 剪断细线瞬间,对A 、B 系统,加速度a =3mg sin 30°-F 弹3m=13g ,故A 错误,D 正确;对B ,由牛顿第二定律得:2mg sin 30°-N =2ma ,解得:N =13mg ,故B 错误.8、(多选)半圆形光滑圆槽内放一质量为m 的小球,今用外力拉着圆槽在水平面上匀加速运动,稳定后小球位置如图所示,则小球受圆槽的支持力F N 和加速度a 为( )A .F N =32mgB .F N =233mgC .a =12gD .a =33g解析:选BD.小球受力如图,由牛顿第二定律得:F 合=mg ·tan 30°=ma ,a =g tan 30°=33g ,F N=mgcos 30°=233mg.故B、D正确.9、如图所示,质量为4 kg的物体静止于水平面上.现用大小为40 N、与水平方向夹角为37°的斜向上的力拉物体,使物体沿水平面做匀加速运动(g取10 m/s2,sin 37°=0.6,cos 37°=0.8).(1)若水平面光滑,物体的加速度是多大?(2)若物体与水平面间的动摩擦因数为0.5,物体的加速度是多大?解析:(1)水平面光滑时物体的受力情况如图甲所示,由牛顿第二定律有F cos 37°=ma1,解得a1=8 m/s2.甲乙(2)水平面不光滑时,物体的受力情况如图乙所示,F cos 37°-F f=ma2,F′N+F sin 37°=mg,F f=μF′N,解得a2=6 m/s2.答案:(1)8 m/s2(2)6 m/s2。
高中物理必修一第四章牛顿运动定律(思维导图)
高中物理必修一第四章牛顿运动定律牛顿第一定律内容一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止说明了一切物体都有惯性,惯性是物体的固有性质,质量是物体惯性大小的量度(惯性与物体的速度大小、受力大小、运动状态无关)独立性任何物体都具有惯性力是物体对物体的作用,力使物体的运动状态发生变化揭示了力与运动的关系力是改变物体运动状态(产生加速度)的原因,而不是维持运动的原因它是通过理想实验得出的,它不能由实际的实验来验证适用范围只适用于惯性参考系在质点不受外力作用时,能够判断出质点静止或作匀速直线运动的参考系一定是惯性参考系牛顿第二定律内容物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同公式F=ma 特点瞬时性加速度和力同时产生、同时变化、同时消失矢量性加速度和合力的方向始终保持一致同体性合外力、质量和加速度是针对同一物体独立性在一个外力作用下产生的加速度只与此外力有关,与其他力无关合加速度和合外力有关因果性力是产生加速度的原因,加速度是力的作用效果力是改变物体运动状态的原因等值不等质性F=ma,但ma不是力,而是反映物体状态变化情况的m=F/a,但F/a度量物体质量大小的方法,m与F和无关适用范围只适用于质点只适用于惯性参考系只适用于宏观问题只适用于低速问题力学单位制物理公式功能物理学的关系式在确定了物理量之间的数量关系的同时,也确定了物理量单位间的关系基本量被选定的能够利用物理量之间的关系推导出其他物理量的一些量基本单位基本量的单位导出单位由基本量根据物理关系推导出来的其他物理量的单位国际单位制一种国际通用的、包括一切计量领域的单位制长度l,单位米m质量m,单位千克kg时间t,单位秒s电流I,单位安培A力学中三个基本物理量及单位三个基本物理量长度、质量和时间三个基本单位米、千克和秒单位制的意义单位是物理量的组成部分,对于物理量,如果有单位一定要在数字后带上单位,同一个物理量,选用不同单位时其数值不同统一单位,便于人们的相互交流,统一人们的认识组成单位制牛顿第三定律内容两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上特点成对存在研究的对象至少是两个物体,多于两个以上的物体之间的相互作用,总可以区分成若干两两相互作用的物体对相对且彼此依存作用力和反作用力是相互的,互相依赖相为依存力具有物质性,不能脱离开物体(物质)而存在同时性作用力和反作用力的同时性,它们是同时产生、同时消失、同时变化同性质作用力和反作用力必须是同一性质的力不可叠加性作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消适用范围只适用于惯性系中实物物体之间的相互作用用牛顿运动定律解决问题(一)运用牛顿第二定律解题的基本思路1.确定研究对象2.采用隔离体法,正确受力分析3.建立坐标系,正确分解力4.根据牛顿第二定律列出方程5.统一单位连接体问题选取最佳的研究对象可采取“先整体,后隔离”或“分别隔离”等方法一般当各部分加速度大小、方向相同时,可当作整体研究当各部分的加速度大小、方向不相同时,要分别隔离研究选取的研究对象进行受力分析,依据牛顿第二定律列出方程式临界问题详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件用牛顿运动定律解决问题(二)动力学的两类基本问题已知物体的受力情况,确定物体的运动情况根据受力情况,利用牛顿第二定律求出物体的加速度选择恰当的运动学公式求解相关的速度、位移等已知物体的运动情况,推断或求出物体所受的未知力根据运动情况,利用运动学公式求出物体的加速度根据牛顿第二定律确定物体所受的合外力,从而求出未知力超重和失重在平衡状态时,物体对水平支持物的压力大小等于物体的重力当物体在竖直方向上有加速度时加速度方向向上物体对支持物的压力大于物体的重力,这种现象叫超重现象加速度方向向下物体对支持物的压力小于物体的重力,这种现象叫失重现象注意点当物体处于超重和失重状态时,物体的重力并没有变化物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失。
人教版高中物理必修1 4.3牛顿第二定律
分析
FN
FN
F阻
F阻
F
G
汽车减速时受力情况
G
汽车重新加速时的受力情况
解:
物体在减速过程的初速度为100km/h=27.8 m/s, 末速度为零,滑行时间 t =70s 根据a=(v-vo)/t得物体的加速度为a1= -0.397 m/s2, 方向向后.物体受到的阻力F阻=ma1=-437N. 负号表示阻力的方向与速度的方向相反
(4)F与a的同体性。加速度与合外力 是针对同一物体而言
1、理解:
a = mF
(1)同体性:F、m、a对应于同一物体
(2)矢量性:a与F 的方向总是相同 (3)同时性:a与F总是同生同灭同变化
(4)独立性:每个力各自独立地使物体 产产生 生一 一个 个加 加速 速度 度
(5)因果性:m是内因、 F是外因; a由F、m共同决定
1牛=1千克 ·米/秒2
可见,如果都用国际单位制的单位,在上式中就可以使k=1,
上式简化成:
F合=ma
这就是牛顿第二定律的公式。
三、对牛顿第二定律的理解
牛顿第二定律内容中前半句 话的“物体”是指同一个物 体吗?
B μ2
A μ1
F
A、B发生相对滑动
例:求A的加速度
分析得方程:
F- f1- f2 =mAaA
(6)相对性:惯性参照系 (地面系)
(7)统一性:统一用国际制的单位
2、F可以突变,a可以突变,但v不能突变
3、牛二只适用于惯性参考系 。
4、牛二适用于宏观低速运动的物体 。 5、a v 是定义式、度量式;
t a F 是决定式。
m 6、不能认为牛一是牛二在合外力为0时的 特例 。
高中物理必修一:4.3牛顿第二定律
A.a 甲=0 a 乙=g B.a 甲=g2 a 乙=g
C.a 甲=0 a 乙=0
D.a 甲=g a 乙=g
轻绳:绳的弹力可发生突变。当其他条件发生 变化的瞬间,绳的弹力可以瞬时产生、瞬时改 变或瞬时消失。(当绳被剪断时,绳的弹力瞬 间消失)
轻弹簧:弹簧的弹力不能发生突变。当其他条 件发生变化的瞬间,可以认为弹簧的弹力不变。 (当弹簧被剪断时,弹簧的弹力瞬间消失)
a=gsin θ-μgcos θ=(10×0.6-0.5×10×0.8) m/s2=2 m/s2
如图所示,质量为m的人站在自动扶梯上,人鞋与梯的
动摩擦因数为μ.扶梯倾角为θ,若人随扶梯一起以加速
度a向上运动.梯对人的支持力N和摩擦力f分别为(BD )
A.FN=masinθ B.FN=m(g+asinθ)
f
f NFN
Ff≠μmg!
解得:a F cos mg F sin
m
FN F x
G
如图所示,一木块沿倾角θ=37°的光滑斜面自由下滑.g
取10 m/s2,sin 37°=0.6,cos 37°=0.8.
(1)求木块的加速度大小.
(2)若木块与斜面间的动摩擦因数μ=0.5,求木块加速度的
相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这
A 段时间内弹簧的(
)
水平方向有Tsin θ=m2a, 竖直方向受力平衡,Tcos θ=m2g, 所以a=gtan θ; F弹=m1a,设弹簧的伸长量为x, 则有kx=m1gtan θ,
运用牛顿第二定律结合力的正交分解法解题.
(1)正交分解法是把一个矢量分解在两个互相垂直的坐标轴上的 方法,其实质是将复杂的矢量运算转化为简单的代数运算.
2019_2020学年高中物理第四章牛顿运动定律第3节牛顿第二定律课件新人教版必修1
课堂达标
1.如图,鸟沿虚线斜向上加速飞行,空气对其作用力可能是( B )
A.F1 D.F4
B.F2
C.F3
解析:鸟沿虚线斜向上加速飞行,表明其合力方向沿虚线斜向上,小鸟
受到空气对其作用力和重力,故空气对其作用力方向只可能是图中F2 的方向,B正确。
2.升降机以加速度a竖直向上做匀加速运动,升降机内的天花板上有一只
教材提炼
一、牛顿第二定律 [知识梳理] 1.内容:物体加速度的大小跟它受到的作用力成 正比 ,跟它的质量 成 反比 ,加速度的方向跟作用力的方向 相同 。 2.表达式:F= kma ,k是比例系数,F是物体所受的 合力 。
[练一练] 1.下列对牛顿第二定律及其表达式F=ma的理解正确的是( D ) A.物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.当物体有加速度时,物体才受到外力的作用 C.加速度的方向跟合外力的方向可能相同,可能相反 D.当外力停止作用时,加速度随之消失
2.1 N的物理意义:使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N, 即1 N= 1 kg·m/s2 。
3.比例系数k的意义:k的数值由F,m,a三物理量的单位共同决定,若三量都 取国际单位,则k=1,所以牛顿第二定律的表达式可写成F= ma 。
[练一练] 在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法正确的是 (D) A.在任何情况下k都等于1 B.因为k=1,所以k可有可无 C.k的数值由质量、加速度和力的大小决定 D.k的数值由质量、加速度和力的单位决定
思路探究:(1)剪断悬挂A球的细绳的瞬间,A,B间细绳的拉力突变吗? 答案:细绳属于刚体,认为无形变,剪断悬挂A球细绳瞬间,A,B间的拉力 突变为零。
牛顿运动定律
可以把物体的加速度看成是各个力单独作用时
所产生的分加速度的合成。
3
在直角坐标系中
Fx
ma x
m
d x
dt
Fy
ma y
m
d y
dtFzmazmd zdt
在自然坐标系中
F
m
d dt
2
Fn m
4
三、牛顿第三定律
当物体A以力 F1作用在物体B上时,物体B也必 定同时以力 F2作用在物体A上。F1和 F2大小相等, 方向相反,且力的作用线在同一直线上。
6
例:一细绳跨过一轴承光滑的定滑轮,绳的两端分别
悬有质量为m1和m2的物体(m1<m2),如图所示。设滑 轮和绳的质量可忽略不计,绳不能伸长,试求物体m1 和m2的加速度大小和绳子张力的大小。 解:选取对象
m1和m2 分析运动
a
m1
m1,以加速度a1向上运动 m2,以加速度a2向下运动 分析受力
m2
2
要深刻地理解和掌握牛顿第二定律,需认识它 的几个特性。
(1)因果性:合外力是使物体产生加速度的原 因,而加速度则是合外力作用产生的效果。
(2)瞬时性:牛顿第二定律是力的瞬时作用规
律。力和加速度同时产生、同时变化、同时消
逝。
F、a 之间一一对应
(3)矢量性:F
ma
是矢量式。
(4)独立性:当物体受到几个力的作用时,
1
二、牛顿第二定律
物体受到外力作用时,它所获得的加速度的大 小与合外力的大小成正比,与物体的质量成反比; 加速度的方向与合外力的方向相同。
F ma
意义:
(1)正确地揭示了物体的加速度与它所受的合外力 及自身质量之间的定量关系。
高中物理牛顿第二定律教案 新课标 人教版 必修1
高中物理牛顿第二定律教案 新课标 人教版 必修1学习目标:1.知道国际单位制中力的单位是怎样定义的。
2.理解牛顿第二定律的内容,知道牛顿第二定律表达式的确切含义。
3.能初步应用牛顿第二定律解决一些简单问题。
学习重点: 牛顿第二定律学习难点: 牛顿第二定律主要内容:一、牛顿第二定律1. 公式推导:2. 语言表述:3.公式表达:①数学表达式:②常用计算式:F 合=ma4.牛顿第二定律是牛顿运动定律的核心,是本章的重点和中心内容,在力学中占有很重要的地位,一定要深入理解牛顿第二定律的确切含义和重要意义。
理解:(1) 因果关系:只要物体所受合力不为零(无论合力多么的小),物体就获得加速度,即力是产生加速度的原因,力决定加速度,力与速度、速度的变化没有直接关系。
如果物体只受重力G=mg 的作用,则由牛顿第二定律知物体的加速度为a=g mm g m G m F ===合。
即重力是使物体产生重力加速度g 的原因,各地的g 值略有差异,通常取g=9.8m/s 2。
在第一章学习《重力》一节时,给出了重量和质量的关系式G=mg ,g 是以比例常数引人的,g=9.8N /kg 。
现在可以证明,这个比例常数就是重力加速度,9.8N /kg 与9.8m /s 2等价。
(2)矢量关系:F 合=ma 是一个矢量式,加速度a 与合外力F 合都是矢量,物体加速度的方向由它所受的合外力的方向决定且总与合外力的方向相同(同向性),而物体的速度方向与合外力方向之间并无这种关系。
这样知道了合外力(或加速度)的方向,就知道了加速度(或合外力)的方向。
(3)瞬时对应关系:牛顿第二定律表示的是力的瞬时作用规律,物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F 合=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生(虽有因果关系但却不分先后)、同时变化、同时消失。
牛顿第二定律—[新]高中物理必修第一册
则当电梯以加速度 a 匀加速上升时,求:① 人受到的摩擦力是多大? ② 人受电梯的支持力是多大?
(2)若斜面粗糙,物体受力如图
根 1、据质牛量顿m第一二定定,律加:速m度gsain与θ=力mFa的,关得系:a=gsinθ
v为0了=1使00Fkm= /khm=2a7.简单一些,取 k =1 ,
4.3牛顿第二定律
学习目标
1.理解牛顿第二定律的内容、表达式的确切含义.(重点+难点) 2.知道国际单位制中力的单位“牛顿”是怎样定义的. 3.会应用牛顿第二定律解决简单的动力学问题.(重点+难点)
复习回固
物体的运动状态改变怎么描述? 物体运动状态的改变就是指速度发生了变 化,即物体产生加速度。
3m/s2 C.
三.对牛顿第二定律的理解
(1)同体性:a 、F、m对应于同一物体
(2)矢量性:a与F 的方向总是相同
牛顿第二定律内容中后半句话: 加速度的方向跟作用力的方向相同。
A F
光滑水平面
F和a都是矢量, 牛顿第二定律F=ma是一个矢量式, 它反 映了加速度方向始终跟合力方向相同.
(3)瞬时性: a与F是瞬时对应关系,a与F总是同生同灭同变化
F
F合=F-F阻 =2 000N-437N=1 563N
G
由牛顿第二定律得: a2
F合 m
1563 m/s2 1100
1.42m/s2
四.用牛顿第二定律解题的一般步骤
①确定研究对象
②分析物体的受力情况和运动情况, 画出研究对象的受力分析图
③求出合力
④选取正方向,根据牛顿运动定 律和运动学规律建立方程并求解
质量为M = 4kg,现用水平拉力F = 10N拉A,试求A未滑出B之前,A、
牛顿运动定律知识点总结
牛 顿 运 动 定 律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
(4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma.(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y , 若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。
牛顿运动定律
牛顿运动定律牛顿第一定律牛顿第三定律基础知识归纳1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)牛顿第一定律的意义①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律.②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.(3)惯性①定义:物体具有保持原来匀速直线运动状态或静止状态的性质.②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.③普遍性:惯性是物体的固有属性,一切物体都有惯性.2.牛顿第三定律(1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力.(2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.(3)物理意义:建立了相互作用的物体之间的联系及作用力与反作用力的相互依赖关系.4.作用力与反作用力的“四同”和“三不同”四同:(1)大小相同(2)方向在同一直线上(3)性质相同(4)出现、存在、消失的时间相同三不同:(1)方向不同(2)作用对象不同(3)作用效果不同典例精析1.牛顿第一定律的应用、【例1】如图所示,在一辆表面光滑的小车上,有质量分别为mm2的两个小球(m1>m2)随车一起匀速运动,当车停止时,如不考虑其他阻力,设车足够长,则两个小球()A.一定相碰B.一定不相碰C.不一定相碰D.难以确定是否相碰,因为不知小车的运动方向2.对惯性概念的理解【例2】做匀速直线运动的小车上,水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动?(1)若在瓶内放一小软木块,当小车突然停止时,软木块相对于瓶子怎样运动?(2)若在瓶内放一小铁块,又如何?3.作用力与反作用力和平衡力的区别【例3】如图所示,在台秤上放半杯水,台秤示数为G′=50 N,另用挂在支架上的弹簧测力计悬挂一边长a=10 cm的金属块,金属块的密度ρ=3×103kg/m3,当把弹簧测力计下的金属块平稳地浸入水中深b=4 cm时,弹簧秤和台秤示数分别为多少?(水的密度是ρ水=103 kg/m3,取g=10 m/s2)【例4】关于马拉车时马与车的相互作用,下列说法正确的是()A.马拉车而车未动,马向前拉车的力小于车向后拉马的力B.马拉车只有匀速前进时,马向前拉车的力才等于车向后拉马的力C.马拉车加速前进时,马向前拉车的力大于车向后拉马的力D.无论车是否运动、如何运动,马向前拉车的力都等于车向后拉马的力牛顿第二定律力学单位制基础知识归纳1.牛顿第二定律(1)内容:物体的加速度与所受合外力成正比,跟物体的质量成反比.(2)表达式:F=ma.(3)力的单位:当质量m的单位是kg、加速度a的单位是m/s2时,力F的单位就是N,即1 kg•m/s2=1 N.(4)物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.(5)适用范围:①牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.2.单位制单位制:由基本单位和导出单位一起组成了单位制.①基本单位:基本物理量的单位.力学中的基本物理量有三个,它们是长度、质量、时间;它们的国际单位分别是米、千克、秒.②导出单位:由基本量根据物理关系推导出来的其他物理量的单位.3.力和运动关系的分析分析力和运动关系问题时要注意以下几点:1.物体所受合力的方向决定了其加速度的方向,合力与加速度的大小关系是F合=ma,只要有合力,不管速度是大还是小,或是零,都有加速度,只有合力为零时,加速度才能为零,一般情况下,合力与速度无必然的联系,只有速度变化才与合力有必然的联系.2.合力与速度同向时,物体加速,反之则减速.3.物体的运动情况取决于物体受的力和物体的初始条件(即初速度),尤其是初始条件是很多同学最容易忽视的,从而导致不能正确地分析物体的运动过程.典例精析1.瞬时性问题分析【例1】如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.(1)现将L2线剪断,求剪断瞬间物体的加速度;(2)若将图甲中的细线L1改为质量不计的轻弹簧而其余情况不变,如图乙所示,求剪断L2线瞬间物体的加速度.【拓展1】如图所示,弹簧S1的上端固定在天花板上,下端连一小球A,球A与球B之间用线相连.球B与球C之间用弹簧S2相连.A、B、C的质量分别为m A、m B、m C,弹簧与线的质量均不计.开始时它们都处于静止状态.现将A、B间的线突然剪断,求线刚剪断时A、B、C的加速度.2.应用牛顿第二定律解题的基本方法【例2】一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图所示,在物体始终相对于斜面静止的条件下,下列说法正确的是()A.当θ一定时,a越大,斜面对物体的正压力越小B.当θ一定时,a越大,斜面对物体的摩擦力越大C.当a一定时,θ越大,斜面对物体的正压力越小D.当a一定时,θ越大,斜面对物体的摩擦力越小【拓展2】风洞实验中可产生水平方向的、大小可以调节的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略大于细杆直径,如图所示.(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动,这时所受风力为小球所受重力的0.5倍,求小球与杆的动摩擦因数;(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离x的时间为多少.(sin 37°=0.6,cos 37°=0.8)易错门诊3.力和运动的关系【例3】如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则()A.物体从A到O加速,从O到B减速B.物体从A到O速度越来越小,从O到B加速度不变C.物体从A到O间先加速后减速,从O到B一直减速运动D.物体运动到O点时所受合力为零牛顿运动定律的应用重点难点突破一、动力学两类基本问题的求解思路两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下:二、用牛顿定律处理临界问题的方法1.临界问题的分析思路解决临界问题的关键是:认真分析题中的物理情景,将各个过程划分阶段,找出各阶段中物理量发生突变或转折的“临界点”,然后分析出这些“临界点”应符合的临界条件,并将其转化为物理条件.2.临界、极值问题的求解方法(1)极限法:在题目中如出现“最大”、“最小”、“刚好”等词语时,一般隐含着临界问题,处理此类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.(2)假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答此类题目,一般采用假设法.此外,我们还可以应用图象法等进行求解.典例精析1.动力学基本问题分析【例1】在光滑的水平面上,一个质量为200 g的物体,在1 N的水平力F作用下由静止开始做匀加速直线运动,2 s后将此力换为相反方向的1 N的力,再过2 s将力的方向再反过来……这样物体受到的力大小不变,而力的方向每过2 s改变一次,求经过30 s物体的位移.【拓展1】质量为40 kg的雪橇在倾角θ=37°的斜面上向下滑动(如图甲所示),所受的空气阻力与速度成正比.今测得雪橇运动的v-t图象如图乙所示,且AB是曲线的切线,B点坐标为(4,15),CD是曲线的渐近线.试求空气的阻力系数k和雪橇与斜坡间的动摩擦因数μ.2.临界、极值问题【例2】如图所示,一个质量为m=0.2 kg的小球用细绳吊在倾角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当斜面以10 m/s2的加速度向右做加速运动时,求绳子的拉力及斜面对小球的弹力.【拓展2】如图所示,长L=1.6 m,质量M=3 kg的木板静放在光滑水平面上,质量m=1 kg的小物块放在木板的右端,木板和物块间的动摩擦因数μ=0.1.现对木板施加一水平向右的拉力F,取g=10 m/s2,求:(1)使物块不掉下去的最大拉力F;(2)如果拉力F=10 N恒定不变,小物块的所能获得的最大速度.易错门诊3.多过程问题分析【例3】如图,有一水平传送带以2 m/s的速度匀速运动,现将一物体轻轻放在传送带上,若物体与传送带间的动摩擦因数为0.5,则传送带将该物体传送10 m的距离所需时间为多少?(取重力加速度g=10 m/s2)超重与失重整体法和隔离法基础知识归纳1.超重与失重和完全失重(1)实重和视重①实重:物体实际所受的重力,它与物体的运动状态无关.②视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.(2)超重、失重和完全失重的比较现象实质超重物体对支持物的压力或对悬挂物的拉力大于自身重力的现象系统具有竖直向上的加速度或加速度有竖直向上的分量失重物体对支持物的压力或对悬挂物的拉力小于自身重力的现象系统具有竖直向下的加速度或加速度有竖直向下的分量完全失重物体对支持物的压力或对悬挂物的拉力等于零的现象系统具有竖直向下的加速度,且a=g2.连接体问题(1)连接体两个或两个以上存在相互作用或有一定关联的物体系统称为连接体,在我们运用牛顿运动定律解答力学问题中常会遇到.(2)解连接体问题的基本方法整体法:把两个或两个以上相互连接的物体看成一个整体,此时不必考虑物体之间的内力.隔离法:当求物体之间的作用力时,就需要将各个物体隔离出来单独分析.解决实际问题时,将隔离法和整体法交叉使用,有分有合,灵活处理.典例精析1.超重和失重现象【例1】升降机由静止开始上升,开始2 s 内匀加速上升8 m ,以后3 s 内做匀速运动,最后2 s 内做匀减速运动,速度减小到零.升降机内有一质量为250 kg 的重物,求整个上升过程中重物对升降机的底板的压力,并作出升降机运动的v-t 图象和重物对升降机底板压力的F-t 图象.(g 取10 m/s 2)【拓展1】如图所示,小球的密度小于杯中水的密度,弹簧两端分别固定在杯底和小球上.静止时弹簧伸长Δx .若全套装置自由下落,则在下落过程中弹簧的伸长量将( D )A.仍为ΔxB.大于ΔxC.小于Δx ,大于零D.等于零2.整体法和隔离法的应用【例2】如图所示,质量为m =1 kg 的物块放在倾角为θ的斜面上,斜面体质量为M =2 kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=37°.现对斜面体施一水平推力F ,要使物块m 相对斜面静止,力F 应为多大?(设物块与斜面间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2)3.整体运用牛顿第二定律【例3】如图所示,倾角α=30°、质量M =34 kg 的斜面体始终停在粗糙的水平地面上,质量m A =14 kg 、m B =2 kg 的物体A 和B ,由细线通过定滑轮连接.若A 以a =2.5 m/s 2的加速度沿斜面下滑,求此过程中地面对斜面体的摩擦力和支持力各是多少?易错门诊【例4】如图所示,一个质量为M 、倾角为30°的光滑斜面体放在粗糙水平桌面上,质量为m 的小木块从斜面顶端无初速度滑下的过程中,斜面体静止不动.则下列关于此斜面体对水平桌面压力F N的大小和桌面对斜面体摩擦力F f 的说法正确的( )A.F N =Mg +mgB.F N =Mg +43mg C.F f 方向向左,大小为23mg D.F f 方向向左,大小为43mg。
新高一物理学必修1知识点
新高一物理学必修1知识点一、力与运动力的概念:力是物体之间相互作用的表现,是使物体发生形状、速度或者方向上的改变的原因。
力的大小和方向:力的大小用牛顿(N)作为单位,力的方向由箭头表示,箭头的长度表示力的大小,箭头的方向表示力的方向。
力的合成与分解:多个力作用于一个物体上时,可以得到合力,合力的大小和方向由各个力相互叠加得到。
而一个力可以分解为若干个力,分解后的力合成起来等于原来的力。
二、匀速直线运动速度的概念:速度是位移与时间的比值,表示物体在单位时间内前进的距离。
速度与位移的关系:当速度不变时,位移与速度成正比。
即位移越大,时间越长;位移越小,时间越短。
速度的合成与分解:当物体在同一方向上有两个速度同时作用时,可以得到合速度。
合速度的大小和方向由各个速度相互叠加得到。
而一个速度可以分解为若干个速度,分解后的速度合成起来等于原来的速度。
三、加速直线运动加速度的概念:加速度是速度的变化率,表示单位时间内速度的变化量。
加速度与物体运动的关系:当加速度不变时,速度与时间成正比。
即时间越长,速度越大;时间越短,速度越小。
等加速度运动的位移与速度的关系:在等加速度运动中,位移与速度的平方成正比关系,位移与时间的平方成正比关系,速度与时间成正比关系。
四、运动图像的绘制和分析匀速直线运动的图像:匀速直线运动的图像为一条与时间轴平行的直线。
加速直线运动的图像:加速直线运动的图像为一条与时间轴有一定夹角的曲线。
根据物体的位移-时间图像,可以判断物体的运动情况,并计算出加速度、初速度和终速度等物理量。
五、牛顿运动定律牛顿第一定律:物体在不受力的作用下将保持静止或匀速直线运动的状态。
牛顿第二定律:物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
加速度的方向与力的方向相同。
牛顿第三定律:作用在物体A上的力与物体B作用在物体A 上的力大小相等,方向相反。
六、力的性质和力的分类力的性质:力有大小和方向,遵循力的平行四边形定则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2、一个质量为2kg的物体,受到互成1200 角的两个力F1和F2的作用。这两个力的大小都是 10N,这个物体产生的加速度是多大?
解法一:由力的合成法则得:
F1
600 600
F合= F1=F2=10N
F合
由牛顿第二定律F合=ma得:
F2
F合 10 a m / s 2 5m / s 2 m 2
分析
F阻
FN
FN
F阻
G G
F
汽车减速时受力情况
汽车重新加速时的受力情况
解:
物体在减速过程的初速度为100km/h=27.8 m/s, 末速度为零,滑行时间 t =70s 根据a=(v-vo)/t得物体的加速度为a1= -0.397 m/s2, 方向向后.物体受到的阻力F阻=ma1=-437N. 负号表示阻力的方向与速度的方向相反 当物体重新启动时牵引力为F=2 000N,根据牛顿 第二定律得汽车的加速度为a2=(F-F阻)/m=1.42 m/s2 加速的的方向与速度的方向相同
一、牛顿第二定律
1、内容:物体加速度的大小跟作用力成正比, 跟物体的质量成反比,加速度的的方向跟作用 力的方向相同。 2、比例式: a∝F/m 写成等式: 或 F∝ma F=kma
其中k为比例系数,F为合力
国际单位中规定: 使质量为1kg的物体产生 1m/s2的加速度的力叫做“一个 单位的力”。
了力,而牛顿第二定律是在力的定义的基础上 3、定义了惯性系的概念 4、定性力和运动的关系 建立的,如果我们不知道物体在不受力情况下 牛顿第二定律 是怎样的运动状态,要研究物体在力的作用下 是怎么运动的,显然是不可能的,所以牛顿第 是在力的定义的基础上建立的。 一定律是研究力学的出发点,是不能用牛顿第 牛顿第一定律是研究力学的出发点,是不能用牛顿 二定律代替的,也即不是牛顿第二定律的特例。 第二定律代替的,也即不是牛顿第二定律的特例。
600
x
F2 正交分解法
1、 静止在光滑的水平面上的物体, 受到一个水平拉力,则在力刚开始作用 的瞬间,下列说法正确的是( ) A.物体立即获得加速度和速度
B
B.物体立即获得加速度,但速度仍为零
C.物体立即获得速度,但加速度仍为零
D.物体的速度和加速度均为零
D 2、下列说法中正确的是( )
A.物体所受合力为零,物体的速度必 为零. B.物体所受合力越大,物体的加速度 越大,速度也越大. C.物体的速度方向一定与物体受到的 合力的方向一致. D.物体的加速度方向一定与物体所受 到的合力方向相同.
1、理解:
a= m
F
(1)同体性:F、m、a对应于同一物体 (2)矢量性:a与F 的方向总是相同 (3)同时性:a与F总是同生同灭同变化 (4)独立性:每个力各自独立地使物体 产生一个加速度 产生一个加速度 (5)因果性:m是内因、 F是外因; a由F、m共同决定 (6)相对性:惯性参照系 (地面系) (7)统一性:统一用国际制的单位
一个物体,质量是2㎏,受到互成120 角的两 个力F1和F2的作用,此外没有其他的力.这两个 力的大小都是10N,这个物体产生的加速度 是多大? F y 1 F F1 1 分析:
o
求 0 60 a 合 0 600 0 F 力 a2 的 有没有 F2 其他方 方 F2 法? 法 平行四边形法
a1
0
600
四、用牛顿第二定律解题的方法和步骤
1、明确研究对象(隔离或整体)
2、进行受力分析和运动状态分析,画出示意图
3、规定正方向或建立直角坐标系,求合力F合 4、列方程求解 ①物体受两个力: 合成法 F合 ma ②物体受多个力: 正交分解法Fx ma(沿加速度方向)Fy 0
(垂直于加速度方向)
1、根据牛顿第二定律,即使再小的力也 可以产生加速度,那么我们用一个较小的 力来水平推桌子,为什么没有推动呢?这 和牛顿第二定律是不是矛盾?
不矛盾,因为牛顿第二定律中的力是合力.
2、牛顿第一定律是牛顿第二定律的特例吗?
牛顿第一定律 牛顿第一定律说明维持物体的速度不需要力,
改变物体的速度才需要力。牛顿第一定律定义 1 、定性定义了力的概念 2、定义了惯性的概念
附 : 瞬 时 加 速 度 的 分 析
轻绳:绳的弹力可发生突变。当其他条件 发生变化的瞬间,绳的弹力可以瞬时产生、 瞬时改变或瞬时消失。(当绳被剪断时, 绳的弹力瞬间消失)
轻弹簧:弹簧的弹力不能发生突变。当其 他条件发生变化的瞬间,可以认为弹簧的 弹力不变。(当弹簧被剪断时,弹簧的弹 力瞬间消失)
2、同向性
再分析右图:
物体受到拉力F之前静止、
物体受到拉力F之后做什么运动?
A F
撤去拉力F后,物体做什么运动?
光滑水平面
以上分析知道物体的加速度随合力的变化而变 化,存在瞬时对应的关系。 力与加速度同时产生,同时消失
3、瞬时性
继续分析右图:
物体还受哪几个力? G与FN分别产生加速度吗?
FN
A
光滑水平面
3、静止在光滑水平面上的木块,在 水平方向上受到一个方向不变、大小 从零逐渐增加到某一固定值的力作用 时,这一过程木块将做 ( )
A、匀减速运动
B、匀加速运动
D
C、速度逐渐减小的变加速运动
D、速度逐渐增大的变加速运动
小结:
1、牛顿第二定律的内容、表达式a=F/m ; 1牛=1千克· 米 /秒 2 2、对牛顿第二定律的理解:同体性、同向 性、同时性、因果性、独立性、相对性、统 一性。 3、解题思路:确定对象分析力; 建立坐标分解力; 联立方程求出解。 4、应用
F
G
作用在物体上的每一个力都将独立产生各自 的加速度,与物体是否受其他力无关。合力 的加速度即是这些加速度的矢量和。
4、独立性
【牢记】 : (1)F与a的同向性。加速度的方向总 与合外力方向相同
(2)F与a的瞬时性 。同时产生,同时 变化,同时消失 (3)力的独立性原理 。物体受到几个力 的作用时,每个力各自独立地使物体产生 一个加速度,就像其他力不存在一样 (4)F与a的同体性。加速度与合外力 是针对同一物体而言
1牛=1千克 ·米/秒2
可见,如果都用国际单位制的单位,在上式中就可以使k=1, 上式简化成:
F合=ma
这就是牛顿第二定律的公式。
三、对牛顿第二定律的理解
B
μ2
牛顿第二定律内容中前半句 话的“物体”是指同一个物 体吗?
A
μ1
F
A、B发生相对滑动
例:求A的加速度
分析得方程:
f1 F- f1- f2 =mAaA f2
A
FN1
FN2 mAg
F
1、同体性
牛顿第二定律内容中后半句 话:加速度的的方向跟作用 力的方向相同。
A F
分析右图力F与a的方向关系
光滑水平面
作用力F和加速度a都是矢量,所以牛顿第二定律 的表达式F=ma是一个矢量表达式,它反映了加速 度的方向始终跟合外力的方向相同,而速度的方 向与合外力的方向无必然联系
解法二:建立直角坐标系对不在坐标上的力进行分解
y
F1
600 600
将F1和F2分解后得 : =F1cos600
=F2cos600 F合=
x
+
=F1cos600+ F2cos600
F2
=5N+5N =10N 由牛顿第二定律F合=ma得:
F合 10 a m / s 2 5m / s 2 m 2
后人为了纪念牛顿,把力 牛顿(公元1642-1727年) 的单位kg•m/s2称做“牛顿”, 英国物理学家、数学家. 2 在1687年出版的《自然 即1N= 1kg•m/s 。
哲学的数学原理》一书 中发表了“牛顿运动定 律”的内容,确立了经 典力学的基础.
二、力的单位
我们知道,在国际单位制中,力的单位是牛顿 ( N )。牛顿这个 单位是根据牛顿第二定律来这样定义的: 使质量是1千克的物体产生1米/秒2加速度的力,叫做1牛顿。即:
人教课标版高中物理必修①
第四章 牛顿运动定律
3
牛 顿 第 二 定 律
知识回顾:
m一定:a F
1 F 一定:a m F a m
一、牛顿第二定律:
【内容】: 物体加速度的大小跟合外力成正 比,跟物体的质量成反比,加速 度的方向与合外力的方向相同。 F 【比例式】:a 或 F ma m 【等式】: F kma 其中k是比例系数, F是合外力,而ma是作用效果, 不要看成力,它们只是大小相等
2、F可以突变,a可以突变,但v不能突变 3、牛二只适用于惯性参考系 。 4、牛二适用于宏观低速运动的物体 。 v 5、a 是定义式、度量式; t F a 是决定式。 m 6、不能认为牛一是牛二在合外力为0时的 特例 。
例1、某质量为1100kg的汽车在平直路面上试 车,当达到100km/h的速度时关闭发动机, 经过70s停下来,汽车受到的阻力是多大?重新 起步加速时牵引力为2000 N,产生的加速度应 为多大?(假定试车过程中汽车受到的阻力不变)