极差方差标准差
《极差方差与标准差》课件
在统计分析中,标准差是描述数据 分布的重要参数之一,可以帮助我 们了解数据的离散程度和波动情况 。
05
极差、方差与标准差的关 系
三者之间的关系
01
02
03
极差
表示数据分布的离散程度 ,计算公式为最大值减去 最小值。
方差
表示数据偏离平均值的程 度,计算公式为每个数据 点与平均值的差的平方和 的平均值。
案例三:标准差在人力资源管理中的应用
总结词
评估员工绩效稳定性
详细描述
标准差用于评估员工绩效的稳定性,通过计算员工绩效数据的离散程度,可以了解员工工作表现是否 稳定可靠,为人力资源管理和员工培训提供参考依据。
THANKS
感谢观看
标准差的值越大,表示数据点越离散 ;标准差的值越小,表示数据点越集 中。
计算公式:标准差 = sqrt[(1/N) * Σ(xi-μ)^2],其中xi是数据点,μ是平 均值,N是数据点的数量。
标准差的计算方法
手动计算
适用于数据量较小的情况,可以通过 逐一计算每个数据点与平均值的差的 平方,然后求和,最后除以数据点的 数量得到标准差。
标准差
是方差的平方根,表示数 据点与平均值的偏离程度 。
三者在数据分析中的作用
极差
用于初步了解数据的分布 范围,判断数据的离散程 度。
方差
用于量化数据点与平均值 的偏离程度,帮助了解数 据的稳定性。
标准差
用于量化数据点与平均值 的偏离程度,常用于金融 、统计学等领域。
06
案例分析
案例一:极差在金融领域的应用
课程目标
知识目标
掌握极差、方差与标准差的计算方法 ,理解其数学意义。
能力目标
标准差方差极差平均差
标准差方差极差平均差标准差、方差、极差、平均差,这些听起来是不是有点让人头疼?别急,让我来给你慢慢唠唠。
咱先说说标准差,它就像是一个班级里同学们成绩的波动情况。
如果标准差小,那说明大家的成绩都比较接近,很稳定;要是标准差大呢,那就是有的同学成绩特别好,有的又特别差,差距挺大的。
你想想,要是一个团队里,大家的表现都很稳定,那多让人放心呀,这标准差就起到了这样一个衡量稳定程度的作用。
再来讲讲方差,它其实和标准差是一伙的,方差就是标准差的平方。
你可以把方差想象成是对波动程度的一种更强烈的表达。
就好像你对一件事情的不满意程度,方差大就像是非常不满意,小呢就表示还挺满意的。
然后是极差,这就简单多啦!极差就是最大值和最小值之间的差距。
就好比你去买衣服,最贵的和最便宜的价格差距,那就是极差呀!极差大,说明价格波动大;极差小,那价格就比较平稳咯。
最后说说平均差,它是每个数据与平均值差值的绝对值的平均值。
这就像是大家一起出去玩,每个人和平均花费的差距。
平均差小,说明大家的花费都差不多;平均差大,那可就有人花得多,有人花得少啦。
嘿,你说这些统计指标是不是还挺有意思的?它们就像是我们生活中的各种衡量标准一样。
比如说,我们评价一个人的性格,是不是也有稳定不稳定之分?就像标准差一样。
我们看一个地区的经济发展,是不是也有差距大小之别?这不就和极差差不多嘛。
在很多时候,我们都需要用这些指标来了解事情的本质。
比如在工作中,看看团队的业绩波动,就能知道是不是需要调整策略;在学习中,通过分析成绩的标准差,就能知道自己的学习状态是否稳定。
这些看似复杂的概念,其实就在我们的生活中无处不在。
它们就像是一个个小工具,帮助我们更好地理解和处理各种信息。
所以啊,别再觉得标准差方差极差平均差这些东西遥不可及啦,它们就在我们身边,而且还挺有用的呢!好好去发现它们的妙处吧,你会发现原来统计学也可以这么有趣,这么贴近生活!。
极差.方差与标准差(知识点讲解)
极差.方差与标准差(知识点讲解)极差、方差与标准差一、本节知识导学本节以自主探索为主,并初步体验:对图的观察和分析是科学研究的重要方法。
通过例题发现极差(最大值-最小值)的作用:用来表示数据高低起伏的变化大小;同时也希望同学们通过深入思考发现极差的不足之处:极差只能反应一组数据中两个极端值之间的差异情况,对其他数据的波动情况不敏感。
因此有必要重新找一个对整组数据的波动情况更敏感的指标, 构造方差前请同学们注意以下几个方面: 1.为什么要用“每次成绩”和“平均成绩”相减。
2.为什么要“平方”。
3.为什么“求平均数”比“求和”更好。
同时请同学们意识到:比较两组数据的方差有一个前提条件是,两组数据要一样多。
对于方差的学习,重点在于方差公式的导出和对于方差概念的理解,而不是数字的计算,应充分利用计算器和计算机去完成繁杂的计算。
对于方差与标准差之间除了计算公式不一样,数量单位也不一样但通过求算术平方根运算又可以将他们联系在一起。
二、例题1.不通过计算,比较图中(1)(2)两组数据的平均值和标准差分析:平均值是反映一组数据的平均水平,标准差是反映一组数据与其平均值的离散程度。
本例不通过计算,从折线图来估算标准差,应先估算平均值的大小。
解:从图(1)(2)中可以看出,两组数据的平均值相等。
(图(1)中数据与图(2)中前10个数据相等, 且图(2)中后几个数据不影响平均值)。
图(1)的标准差比图(2)的标准差大。
(因为图(1)中各数据与其平均值离散程度大,图(2)中前10个数据与其平均值的离散程度与图(1)相同,而后几个数据与其平均值的离散程度小。
因此整体上说图(2)所有数据与其平均值的离散程度小于图(1)。
)2.求下列数据的方差(小数点后保留两位):5,7,9,9,10,11,13,14。
分析:要求方差,必须先求平均数。
解:= (5+7+9+9+10+11+13+14)=9.75方差s 2= =7.69[(5-9.75)2+(7-9.75)2+……+(14-9.75) 2]3.求下列一组数据的极差、方差和标准差(小数点后保留两位):50,55,96,98,65,100,70,90,85,100分析:由于标准差是方差的变形所以一般情况下先求方差解:极差为100-50=50平均数为=(50+55+96+98+65+100+70+90+85+100)=80.9方差为:s 2= =334.69 标准差为:s=[(50-80.9)2+(55-80.9)2+……+(100-80.9) 2]=18.294.在某次数学竞赛中,甲、乙两班的成绩如下已经算出两班的平均数都是80分,请你根据已有的统计知识分析两个班的成绩。
八年级数学极差-方差-标准差
谁的成绩较为稳定?为什么? 能通过计算回答吗?
通常,如果一组数 据与其平均值的离 散程度较小,我们 就说它比较稳定.
请同学们进一步思 考,什么样的数能 反映一组数据与其 平均值的离散程度?
从表和图中可以看到,小兵的测试成绩 与平均值的偏差较大,而小明的较小.那 么如何加以说明呢?
那么,你能提出一个可行的方案吗?
方差是用“先平均,再求差,然后平方,最 后再平均”的方法得到的结果,主要反映整组 数据的波动情况,是反映一组数据与其平均值 离散程度的一个重要指标,每个数年据的变化 都将影响方差的结果,是一个对整组数据波动 情况更敏感的指标。在实际使用时,往往计算 一组数据的方差,来衡量一组数据的波动大小。 标准差实际是方差的一个变形,只是方差的单 位是原数据单位的平方,而标准差的单位与原 数据单位相同。
请在下表的红色格子中写上新的计算方案, 并将计算结果填入表中.
考虑实际情况,如果一共进行了7次测试, 小明因故缺席两次,怎样比较谁的成绩 更稳定?
我们可以用“先平均,再求差,然后 平方,最后再平均”得到的结果表示一 组数据偏离平均值的情况.这个结果通 常称为方差(variance).
方差越大,说明这组数据偏离平均值的 情况越严重,即离散程度较大,数据也越不稳定. 方差反映的是一组数据与平均值 的离散程度或一组数据的稳定程度.
2 可以看出S
的数量单位与原数据的 不一致,因此在实际应用时常常将 求出的方差再开平方,这就是 标准差(standard deviation), 用符号表示为
1.分别求出小明和小兵的方差和标准差
2.比较下列两组数据的方差: A组:0, 10, 5, 5, 5, 5, 5, 5, 5, 5; B组:4, 6, 3, 7, 2, 8, 1, 9, 5, 5
极差--方差--标准差1
小明和小兵两人参加体育项目训练, 近期的五次测试成绩如下表所示.
谁的成绩较为稳定?为什么? 能通过计算回答吗?
链接1
通常,如果一组数 据与其平均值的离 散程度较小,我们 就说它比较稳定.
请同学们进一步思 考,什么样的数能 反映一组数据与其 平均值的离散程度?
从表和图中可以看到,小兵的测试成绩 与平均值的偏差较大,而小明的较小.那 么如何加以说明呢?
那么,你能提出一个可行的方案吗?
请在下表的红色格子中写上新的计算方案, 并将计算结果填入表中.
考虑实际情况,如果一共进行了7次测试, 小明因故缺席两次,怎样比较谁的成绩 更稳定?
我们可以用“先平均,再求差,然后 平方,最后再平均”得到的结果表示一 组数据偏离平均值的情况.这个结果通 常称为方差(variance).
1.分别求出小明和小兵的方差和标准差
2.比较下列两组数据的方差: A组:0, 10, 5, 5, 5, 5, 5, 5, 5, 5; B组:4, 6, 3, 7, 2, 8, 1, 9, 5, 5
3.观察下面的图,指出其中谁的标准差较大, 并说说为什么.
反映数据离散程度的指标是什么?
在一次数学测试中,甲、乙两班的 平均成绩相同,甲班成绩的方差为 42,乙班成绩的方差为35,这样的 结果说明两个班的数学学习状况各 有什么特点?
方差越大,说明这组数据偏离平均值的 情况越严重,即离散程度较大,数据也越不稳定. 方差反映的是一组数据与平均值 的离散程度或一组数据的稳定程度.
2 可以看出S
的数量单位与原数据的 不一致,因此在实际应用时常常将 求出的方差再开平方,这就是 标准差(standard deviation), 用符号表示为
复习回忆:
1.何谓一组数据的极差? 极差反映了这组数据哪方面的特征? 答 一组数据中的最大值减去最小 值所得的差叫做这组数据的极差,极 差反映的是这组数据的变化范围或变 化幅度.
极差 方差 标准差
极差方差标准差极差是指一组测量值内最大值与最小值之差,又称范围误差或全距,以R表示。
它是标志值变动的最大范围,它是测定标志变动的最简单的指标。
极差没有充分利用数据的信息,但计算十分简单,仅适用样本容量较小(n<10)情况。
方差是各个数据与平均数之差的平方和的平均数。
在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。
方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(mean squared error,是各数据偏离平均数的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
简单来说,标准差是一组数据平均值分散程度的一种度量。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0,5,9,14} 和{5,6,8,9} 其平均值都是7 ,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。
当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。
这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。
标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。
初三数学极差、方差、标准差
【知识点】
(1)极差是用来反映一组数据变化范围的大小.一组数据中的最大数据与最小数据所得的
差来称为极差;
(2)方差记作 S 2
1 n
[(
x1
x)2
(x2
x)2
(xn
x)2 ]
;在实际应用时常常将求出
的方差 算术平方根,这就是标准差.
【例题】
1、(2016 广西百色)一组数据 2,4,a,7,7 的平均数 x =5,则方差 S2=
C.甲和乙一样稳定
D.甲、乙稳定性没法对比
3、下面是甲、乙两人 10 次射击成绩(环数)的条形统计图,则下列说法正确的是( )
A.甲比乙的成绩稳定 C.甲、乙两人的成绩一样稳定
B.乙比甲的成绩稳定 D.无法确定谁的成绩更稳定
4.已知 A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是 A 样
A.平均数 3
B.众数是﹣2
C.中位数是 1
D.极差为 8
2.在一次射击训练中,甲、乙两人各射击 10 次,两人 10 次射击成绩的平均数均是 9.1 环, 方差分别是 S 甲 2=1.2,S 乙 2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确 的是( )
A.甲比乙稳定
B.乙比甲稳定
本数据每个都加 2,则 A,B 两个样本的下列统计量对应相同的是( )
A.平均数
B.标准差
C.中位数
D.众数
【练习解析】
1、【答案】D.
2、【答案】A 【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小, 表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
平均数、众数、中位数、极差、方差、标准差
平均数、众数、中位数、极差、方差、标准差说明6个基本统计量(平均数、众数、中位数、极差、方差、标准差)的内涵,学生学习过程中可能产生的困难及主要原因、应对策略.首先,结合简单实例认真把握这6个基本统计量的内涵。
一、平均数、众数、中位数是刻画一组数据的“平均水平”的数据代表。
(八上《第八章数据的代表》)平均数分算术平均数和加权平均数,算术平均数是指n个数据的和的平均值,学生理解与计算都不成问题,只要注意细心运算就是其中的取标准值后的简便算法也都是在小学早已熟练的(公式:x=1/n(x1+x2+x3+……+xn);而加权平均数是一组数据里的各个数据乘各自的“权”之后的平均数。
此处理解“权”的概念可能产生很大困难,因为“权”的理解的确不易,若是照搬教材直接给出其定义,学生会迷惑成团,再进行应用更是不可思议。
所以应对措施:讲好、用好加权平均数就要先举例、后分析、再给出定义,比如:某同学的一次考试各科成绩如下:语文110、数学105、英语106、物理95、化学90、政治86、历史98、地理66、生物89,你可以先让学生算算各科的平均数,再按中考计分法将语、数、英各取120%,物、化、政各取100%,史、地、生各取40%后的平均值算出,两个结果一比较,学生就会很容易发现不同的原因是加入了所谓的“权”,这样,不仅通俗易懂,而且对“权”内涵的理解和应用就不再困难。
众数是一组数据中出现次数最多的数。
其内涵很好理解和掌握,就是结合实际应用也顺理成章,如商店老板进货号多大的男鞋好?那当然是“众数”(调查数据最多的号)所代表的。
中位数顾名思义是一组数据中间位置的数,但考虑一组数可能有偶数个或奇数个,所以要注意强调取中位数的方法。
教材上给出的内涵很好:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
如一组数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8的中位数是1/2(1.65+1.7),即1.675。
数学《极差方差和标准差》知识点
八年级数学《极差、方差和标准差》知识点极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.一、定义理解1极差极差是用来反映一组数据变化范围的大小. 我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.极差=最大值-最小值极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.2、方差方差是反映一组数据的整体波动大小的指标,它是指一组数据中各数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.求一组数据的方差可以简记为:“先平均,再求差,然后平方,最后再平均•"通常用S表示一组数据的方差,用X表示一组数据的平均数,x“ x2、… X n表示各数据.方差计算公式是:s2=1[(x 1- x) 2+(x2- x) 2+—+(X n- x) 2];3、标准差在计算方差的过程中,可以看出S2的数量单位与原数据的不一致,因而在实际应用时常常将求出的方差再幵平方,这就是标准差.标准差=..方差,方差=标准差2.一组数据的标准差计算公式是S j1~xi~x X2—"X ~ xn~x ,其中X为n个数据X i, X2,…,X n的平均数.方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小,方差的单位是原数据的单位平方,标准差的单位与原数据的单位相同.在解决实际问题时,常用样本的方差来估计总体方差方法去考察总体的波动情况.二、例题讲析例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102(1)求甲、乙两队的平均分和极差?(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?解:(1) x= (100 97 99 96 102 103 104 101 101 100)= 100.3?10甲队的极差=104-96= 8; 甲队的极差=104-95= 9(2) S 甲2丄[(100 100.3)2(99 100.3)2(100 100.3)2 ]=5.6110甲队的标准差:-.5.61 2.37 ; 乙队的标准差:.9.21 3.03 所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发挥更为稳定一些.例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期:甲组:25, 23, 28, 22, 27乙组:27, 24, 24, 27, 23(1)10盆花的花期最多相差几天?(2)施用何种花肥,花的平均花期较长?(3)施用哪种保花肥效果更好?分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得甲、乙两组数据的平均数,而看哪种保花肥效果好,关键是比较方差,方差越小,波动越小,效果越好!解:(1) 28- 22= 6 (天) 所以,10盆花的花期最多相差6天._ 1(2)由平均数公式得:x= -(25 23 28 22 27)= 25?5得站=心,所以,无论用哪种花肥,花的平均花期相等.(3)由方差公式得:得S B2 s乙故施用乙种花肥,效果比较可靠三、反馈练习1. 一组数据5, 8, x, 10, 4的平均数是2x,则这组数据的方差是____________ .2. 五名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm): 2,-2, —1, 1, 0,则这组数据的极差为______ cm.方差是_________ ,标准差是______3. 若样本1, 2, 3, x的平均数为5,又样本1, 2, 3, x, y的平均数为6,则样本1, 2, 3, x, y的极差是 _________ ,方差是_______ ,标准差是______ .4. 已知一组数据0, 1, 2, 3, 4的方差为2,则数据20, 21, 22, 23, 24的方差为 ____ ,标准差为________ .5. 一组数据—8,- 4, 5, 6, 7, 7, 8, 9的极差是 ________ ,方差是______ ,标准6. 若样本X1,X2,……,X n的平均数为 =5,方差S2= 0.025,贝肪羊本4X I,4X2,4X n的平均数X /= _______ ,方差S7 2= _______ .。
八年级数学极差-方差-标准差
谁的成绩较为稳定?为什么? 能通过计算回答吗?
通常,如果一组数 据与其平均值的离 散程度较小,我们 就说它比较稳定.
请同学们进一步思 考,什么样的数能 反映一组数据与其 平均值的离散程度?
从表和图中可以看到,小兵的测试成绩 与平均值的偏差较大,而小明的较小.那 么
请在下表的红色格子中写上新的计算方案, 并将计算结果填入表中.
考虑实际情况,如果一共进行了7次测试, 小明因故缺席两次,怎样比较谁的成绩 更稳定?
我们可以用“先平均,再求差,然后 平方,最后再平均”得到的结果表示一 组数据偏离平均值的情况.这个结果通 常称为方差(variance).
方差越大,说明这组数据偏离平均值的 情况越严重,即离散程度较大,数据也越不稳定. 方差反映的是一组数据与平均值 的离散程度或一组数据的稳定程度.
2 可以看出S
的数量单位与原数据的 不一致,因此在实际应用时常常将 求出的方差再开平方,这就是 标准差(standard deviation), 用符号表示为
1.分别求出小明和小兵的方差和标准差
2.比较下列两组数据的方差: A组:0, 10, 5, 5, 5, 5, 5, 5, 5, 5; B组:4, 6, 3, 7, 2, 8, 1, 9, 5, 5
; 数据经验网:/
;
天资都不错,但是玩xing太重.如果继续玩下去の话,估计此生最终の成就不会太大. 所以她才抛出落神山の事情,来激励他们一下.看着几人の表情,她知道自己の话起了一定の作用,沉默片刻,决定继续加上一把火,说道: "不过,你们也别开心,别想の那么好,我告诉你们,没有突破帝王境 可是没有机会进去寻宝の,所以你们想要五年之后进去寻宝の话,就得努力了,否则就必须还要等十年后再一次天路开启了…这次我在府战,感悟良多,也摸到了一丝天地法则の门槛,估计要不了多久,就能迈入帝王境.五年之后,我必能进入落神山,至于你们是否有幸在五年之后也一同进去, 则要看你们是否努力修炼了,我倒是真の很希望,到时候我们几人一同去闯闯这个三大绝地之一の落神山…" "额…" 龙赛男の话语将众人心里齐齐一震,集体惊愕の看着龙赛男.龙赛男居然要突破帝王境了?要不了多久,那么估计最多也就一两年,而龙赛男现在二十八岁,那么就是说,她很有 希望在三十岁前突破帝王境.这可是非常惊人の消息啊,毕竟这百年来,除了白重炙の父亲夜刀外,还没有一人能在三十岁前突破帝王境.他们在听到这个消息之后,第一反应时震惊,而第二反应则是莫大の压力,和微微の羞愧. 微微一愣之后,几人同时明白了她得苦心.这么久の相处,他们都 知道龙赛男不是一个炫耀の人.她这么说,将这么隐私の消息告诉大家,就是想提醒在坐の各位,要想五年之后进入落神山,要想进去碰运气拿宝器,拿圣器,甚至拿神器,那就必须在五年之内突破帝王境.她是在变相の激励大家,奉劝大家,提醒大家修炼の重要性. "呵呵…多谢龙女主提醒,让 我犹如当头喝棒啊!回头我一定好好修炼,争取五年之后,和大家一同进去落神山,我们几人再次一同历险去!"风紫沉默片刻,首先开口了,他本来就是个直xing子の人,这样直接地说出来,众人丝毫没有觉得他在出牛,反而感觉到他の决心. 花草也跟着说道:"我也是!五年后我一定追上你 们の脚步!我依然是绝佳の斥候,和刺客!" "多谢表姐,提醒,水流知错了,会龙城我直接闭关,不修炼个样子绝不出关!五年之后希望我能和你们一起闯荡."龙水流脸色一阵火热,和龙赛男认真说道. "嘻嘻,既然大家都那么认真了,我也得努力连连了,否则可要被你们追上了!"夜轻舞轻笑 一声,伸了个懒腰,挺了挺傲人の山峰,说道. "恩努力,五年后一同上落神山."月倾城,淡淡点了点头,对于修炼她有着无比の信心,因为她拥有能进入灵魂静寂状态の白重炙,只要她嫁给白重炙,到时候一同双修,实力肯定会爆涨. "额…小寒子?你怎么不说话?你没有把握?"夜轻舞见白重炙只 是微笑の看着他们,却没有说话,有些好奇の问道. "嘿嘿…五年突破帝王境?这个小意思,不就几个境界吗?这一年多时间,小爷可是突破了三个境界…"白重炙嘿嘿一笑,不以为意の说道.当然,白重炙也没炫耀の习惯,他也是把疯子和花草当兄弟了,成心刺激他们一下. "额…"白重炙の话,明 显把几人刺激の够呛,就连龙赛男也是微微有些别扭起来.别说花草和风紫龙水流他们の实力,就连她二十八岁,诸侯境巅峰の实力,在白重炙恐怖の修炼速度和强悍の实力下,也是羞于见人,拿不出手啊… 当前 第壹柒伍章 壹66章 恐怖の重力空间 休息一夜,第二天天一亮,众人再次启程, 车队行走在并不平坦の山道上,发出吱吱の响声,惊喜了丛林里の鸟群一阵乱飞. 行走了大约三四个小时,车队缓缓穿过树林,来到了一个平原. "那…那就是落神山吗?" 透过马车の车帘子,夜轻舞和白重炙看到远方平坦の平地上,一座异常高耸白雾环绕の山峰突兀の竖立着,宛如一座平地 而起の高楼般,在一片青草の平原中非常の凸显和迥异. "恩,那就是落神山,等会路过那里了,停一下给你们下去好好看看吧!"夜青牛点了点头,并不意外两人惊奇の表情,当年他第一次看到落神山也是如此表情. "这山也太高了吧,而且就这样笔直挺立,整座山还被白雾环绕,而对顶却反而 没有一丝白雾?额,天哪…那上面好像是,悬浮着一个阁楼?那是小神阁吗?"夜轻舞站起身子,趴在马车窗户上,仔细观察期落神山来,第一次看到如此奇景,让她很是惊讶.而当她仰头往山峰顶端看去の时候,却惊讶の大叫起来. "额…还真好像是一个阁楼般?难道传说是真の?落神山竟然真の 可以到达小神阁?"白重炙也看到了这一奇异の情况,张大了嘴巴,睁着眼睛不敢相信般,整个落神山都被白雾环绕,微微山顶有半截,可以清晰の看到山顶の景色,而封顶竟然悬浮着一个阁楼摸样の建筑物. "嘿嘿,之所以我们那么肯定,只要能过去第三关就能达到小神阁,现在你们相信了吧, 千万年来,这个传说从来没有人怀疑过,就是因为封顶の小神阁,の确是实实在在存在の,而且落神山の许多奇妙之处,也证明了这一点!"夜青牛点了点头,叹道. "太神奇了,の确太神奇了!小神阁竟然可以看到?那为什么没人直接飞上去?闯入小神阁,直接拿取宝物哪?"夜轻舞抽动了一下她 の小鼻子,疑惑不解の问道. "傻丫头,要是有那么容易,小神阁早就不存在了!"白重炙看着夜轻舞抖动鼻子可爱の摸样,眼中闪过一丝温柔,调笑道. "呵呵,小舞,你最近脑袋有点转不过弯来哦,小寒子说の对,要是那么容易,落神山早就毁了,传说中,只要得到小神阁の至宝,那么落神山将会 自动毁灭.至于为什么没人直接飞上去,这点就是刚才我说过の落神山の奇妙之处,只要靠近落神山,没人都会受到一种无形の禁制之力,没有人能飞,只能用脚一步步の走,而且里面の重力非常强大,等会你们亲自去体验一下就知道了…"夜青牛宠爱の摸了摸夜轻舞の头,耐性の为她解释道. "额,平叔,开快点,我要去落神山哪里好好玩玩!"夜轻舞朝白重炙飞了个白眼,转头朝坐在马车前の夜平说道. …… 望山跑死马,虽然远远就可以看到高高地落神山,但是车队在疾驰一个多小时之后才在众公子女主の终于赶到山脚之下. "原地休整,给他们玩半个小时吧!" 夜青牛淡淡の 声音从马车内传出,各马车内长老齐齐淡淡一笑,都下令停止了前行,而马车内の公子女主们,早就在马车停止の那一刻,跳下了马车,准备下去好好观察一下这闻名已久の落神山. 白重炙也微微一笑,跟着夜轻舞の脚步,跳下马车,准备朝落神山那边走去.好好观察一下这让父亲夜刀陨落の绝 地. 只是…当他刚跳下马车の时候,竟然感觉身体竟然比平常中了许多倍般,一股巨力猛然朝他身子压下,脚落地の时候,他の腿不由自主の一弯,险些坐在了地上,而且身体血液也感觉流动の缓慢了几分,胸口一阵气闷,浑身不舒服. "什么情况?敌袭?" 白重炙第一时间,战气高速运转,战智 直接合体,全身四顾开始探查起四周の情况起来. 只是…四周并没有出现陌生人,而他发现同时下地の夜轻舞和风紫花草,也是脸惊容,正紧张の四处观望着,显然他们也遇到了同时の情况. "哎呀!" 这时龙水流,刚刚跳下马车,估计是下得太仓促,竟然没站稳,直接一屁股坐在了地上.而他 也在第一时间从手中掏出了剑,开始紧张の四处观望起来. "都别紧张…"龙赛男慢条斯文の从另外一辆马车上走了下来,看着剑拔弩张の众人,微微一笑道:"这是落神山奇妙の环境之一,这里の重力是平常の地方の十倍,你们适应一下就没事了!" "额…"白重炙也利马反应过来,好像夜青 牛早上和他说过,这里重力比平常地方强,他当时还没怎么在意,只是没想到,这里の重力竟然达到这么恐怖の地步.在马车上没注意到,此刻下来竟然让人感觉行走都困难,而且刚才一跳,血液都感觉逆流一般,浑身不舒服. 此刻龙赛男一提醒,白重炙连忙解除战智合体,战气运转几个周天,开 始调整身体状态起来.夜青牛和这么多帝王境在一旁,如果有人来刺杀の话,他们早就发现了.而此刻他们依旧安静の坐在马车上,就
极差方差标准差(整理)
北京四中撰稿:张扬责编:姚一民数据的波动一.基本知识点讲解:1.极差:是指一组数据中最大数据与最小数据的差。
极差=数据中的最大数-数据中的最小数2. 方差与标准差:S^2=[(x1-x的平均数)^2+(x2-x的平均数)^2+...+(xn-x的平均数)^2]设在一组数据x1 x2 x3……x n中各数据与它们的平均数的差的平方分别是(x1-)2, (x2-)2……(x n-)2,则他们的平均数:方差可以用来衡量这组数据的波动的大小,一组数据的方差越大,就说明这组数据的波动也越大,这波动的大小是指偏离平均数的大小。
3. 标准差:一组数据的方差的算术平方根叫做这组数据的标准差,用S来表示,即:标准差也只是来衡量一组数据波动大小的量,它虽然比计算方差多开一次平方,但它的度量单位与原数据的度量单位是一致的,所以有时用标准差比较方便。
4. 计算方差的三个公式公式①是方差的定义,一组数据的每个数都减去它们的平均数的平方,再求这些平方的和,比较麻烦,因此可用公式②以使计算过程较为简单,当不是整数时尤为简单。
接近这组数据的平均数的一个常数。
二.例题解析:(1)应用公式①例1. 计算数据9.9、9.7、10.3、9.8、9.8、10、10.1、10.4的方差与标准差。
解:例2. 甲乙两组进行投篮比赛,每组选派10名队员参加,每人投10次,每次投中的人数如下:甲组:7、6、8、8、5、9、7、7、6、7乙组:6、7、8、4、10、9、7、6、6、7求:甲、乙两组哪一组的投篮情况比较稳定解:∴甲乙两组的平均命中率相同,但甲组的投篮比较稳定,所以甲组的投篮情况较好。
(2)应用公式②例3. 甲、乙两人在相同条件下各射靶10次,各次命中环数如下:甲:4、7、10、9、5、6、8、6、8、8乙:7、8、6、6、7、8、7、8、5、9求甲、乙两人谁的射击成绩比较稳定解:(3)应用公式③例4. 求以下数据的方差(精确到0.1)10、13、9、11、8、10、11、12、8、14、10、9解:设a=10,每个数都减去10,有三:小结:1. 方差是以平均数为基数,揭示数据波动的大、小,所以首先要把平均数算准确。
极差、方差、标准差2
极差和方差都是表示一组数据离散程 度的指标. 度的指标 极差大只能说明这组数据中的最大值 与最小值的离散程度大,但不表示其他数 与最小值的离散程度大 但不表示其他数 据的波动大小.极差不能准确的衡量数据 据的波动大小 极差不能准确的衡量数据 中的波动程度 方差反映一组数据的整体波动大小的指 标数,反映的是一组数据偏离平均值的大小 反映的是一组数据偏离平均值的大小. 标数 反映的是一组数据偏离平均值的大小 因此极差大的一组数据的方差并不一 定大. 定大
动脑筋 某旅游区上山有甲、 某旅游区上山有甲、乙两条石级 图中数字表示每一级的高度) 路(图中数字表示每一级的高度)
14
(1)整修前走这两条石 ) 级路中的哪一条更舒服? 级路中的哪一条更舒服? 15 为什么? 为什么? 14 (2)为方便游客,旅游区打算 甲 )为方便游客, 重新整改修石级路, 重新整改修石级路,实际个数不 时走起 变,应把石级定为 来舒服。 来舒服。
13 13 15
14 15 11 13 14
17
乙
结束寄语
可以用一次的想法是一个决 窍,如果它可以用两次以 那就成为一种方法了. 上,那就成为一种方法了.
祝同学们学习进步! 祝同学们学习进步!
(3 解: ) x甲 = x乙 说明甲乙两名战士的平 均水平相当。
又因为 s 〉 s ,说明甲战士射击情况 波动大,
2 甲 2 乙
−
−
乙战士比甲战士射击情 况稳定。
老师的烦恼
王虎和李明谁的数学成绩更好
次数
1
2 79 84
3 81 89
4 84 79
5 85 81
6 82 91
7 83 79
8 86 76
哪种灯管的使用寿命长?哪种质量比较稳定 哪种灯管的使用寿命长 哪种质量比较稳定? 哪种质量比较稳定
八年级数学极差-方差-标准差(2019年新版)
数学基本概念(平均数、众数、中位数、极差、方差、标准差、加权平均值)
一.平均数、众数、中位数、极差、方差、标准差的数学内涵:平均数:是指一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。
中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数众数:在一组数据中出现次数最多的数叫做这组数据的众数。
极差:一组数据中最大值与最小值的差叫做这组数据的极差。
方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差标准差:方差的算术平方根叫做标准差算术平均值Arithmetic mean:等差中项:n个数字的总和除n. [(a1+a2+……+an)/n是算术平均值]几何平均值Geometric mean:n个数字的乘积的n次根.[(a1*a2*……*an)^(1/n)是几何平均值]n个数的平方根,就是n个数的平方和除n,再开根号。
例如a b c 的均方根即[(a*a+b*b+c*c)/3]^(1/2)均方根值(RMS)、均方根误差(RMSE)、各种平均值论文写作中经常需要比较几个算法的优略,下面列举的是一些常用的评估方法。
均方根值也称作为效值,它的计算方法是先平方、再平均、然后开方。
比如幅度为100V而占空比为0.5的方波信号,如果按平均值计算,它的电压只有50V,而按均方根值计算则有70.71V。
这是为什么呢?举一个例子,有一组100伏的电池组,每次供电10分钟之后停10分钟,也就是说占空比为一半。
如果这组电池带动的是10Ω电阻,供电的10分钟产生10A的电流和1000W的功率,停电时电流和功率为零。
那么在20分钟的一个周期内其平均功率为500W,这相当于70.71V 的直流电向10Ω电阻供电所产生的功率。
而50V直流电压向10Ω电阻供电只能产生的250W的功率。
对于电机与变压器而言,只要均方根电流不超过额定电流,即使在一定时间内过载,也不会烧坏。
PMTS1.0抽油机电能图测试仪对电流、电压与功率的测试计算都是按有效值进行的,不会因为电流电压波形畸变而测不准。
数学基本概念(平均数、众数、中位数、极差、方差、标准差、加权平均值)
一.平均数、众数、中位数、极差、方差、标准差的数学内涵:平均数:是指一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。
中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数众数:在一组数据中出现次数最多的数叫做这组数据的众数。
极差:一组数据中最大值与最小值的差叫做这组数据的极差。
方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差标准差:方差的算术平方根叫做标准差算术平均值Arithmetic mean:等差中项:n个数字的总和除n. [(a1+a2+……+an)/n是算术平均值]几何平均值Geometric mean:n个数字的乘积的n次根.[(a1*a2*……*an)^(1/n)是几何平均值]n个数的平方根,就是n个数的平方和除n,再开根号。
例如a b c 的均方根即[(a*a+b*b+c*c)/3]^(1/2)均方根值(RMS)、均方根误差(RMSE)、各种平均值论文写作中经常需要比较几个算法的优略,下面列举的是一些常用的评估方法。
均方根值也称作为效值,它的计算方法是先平方、再平均、然后开方。
比如幅度为100V而占空比为0.5的方波信号,如果按平均值计算,它的电压只有50V,而按均方根值计算则有70.71V。
这是为什么呢?举一个例子,有一组100伏的电池组,每次供电10分钟之后停10分钟,也就是说占空比为一半。
如果这组电池带动的是10Ω电阻,供电的10分钟产生10A的电流和1000W的功率,停电时电流和功率为零。
那么在20分钟的一个周期内其平均功率为500W,这相当于70.71V 的直流电向10Ω电阻供电所产生的功率。
而50V直流电压向10Ω电阻供电只能产生的250W的功率。
对于电机与变压器而言,只要均方根电流不超过额定电流,即使在一定时间内过载,也不会烧坏。
PMTS1.0抽油机电能图测试仪对电流、电压与功率的测试计算都是按有效值进行的,不会因为电流电压波形畸变而测不准。
极差、方差与标准差2
若1,x,2,3的平均数 是5,且1,x,2,y,3 的平均数是6, 求、x,y的值与样本1,x, 2,3的方差。
X=14,y=10, S2=27.5
已知样本99,100, 101,x,y (x>y)的 平均数为100,方差 为2,求x,y。
x-100=100-y x=102, y=98
本课总结: 1.通过这节课的学习, 你有哪些收获?
2.调查结果反思
甲 585 596 610 598 612 597 604 600 613 601
乙 613 618 580 574 618 593 585 590 598 624
(1)他们的平均成绩分别是多少? (2)甲、乙这10次比赛成绩的方差分别是 多少? (3)这两名运动员的运动成绩分别是多少?
某校要从甲、乙两名跳远运动员中挑选一人参加一项校 际比赛.在最近的10次选拔赛中,他们的成绩(单位:cm )如下:
气温的变化
2005年5月31日,A,B两地的气温变化
如下图所示:
30 气温/℃
25
20
15
10
5
0
1
30
气温3 /℃ 5
7
9 11 13 110
5
0
1 3 5 7 9 11 13 15 17 19 21 23 时刻
(1)这一天,A、B两地的平均气温分别 是多少?
(2)A地这一天气温的极差、方差分别是 多少?B地呢?
(3)A、B两地的气候各有什么不同?
利用计算器和计算 机求一组数据的方 差和标准差.
例1 计算下面数据的 方差(结果保留到小 数点后第1位): 3 -1 2 1 -3 3
例2
某校要从甲、乙两名跳远运动员中挑选一人 参加一项校际比赛.在最近的10次选拔赛中, 他们的成绩(单位:cm)如下:
平均数、众数、中位数、极差、方差、标准差
平均数、众数、中位数、极差、方差、标准差说明6个基本统计量(平均数、众数、中位数、极差、方差、标准差)的内涵,学生学习过程中可能产生的困难及主要原因、应对策略.首先,结合简单实例认真把握这6个基本统计量的内涵。
一、平均数、众数、中位数是刻画一组数据的“平均水平”的数据代表。
(八上《第八章数据的代表》)平均数分算术平均数和加权平均数,算术平均数是指n个数据的和的平均值,学生理解与计算都不成问题,只要注意细心运算就是其中的取标准值后的简便算法也都是在小学早已熟练的(公式:x=1/n(x1+x2+x3+……+xn);而加权平均数是一组数据里的各个数据乘各自的“权”之后的平均数。
此处理解“权”的概念可能产生很大困难,因为“权”的理解的确不易,若是照搬教材直接给出其定义,学生会迷惑成团,再进行应用更是不可思议。
所以应对措施:讲好、用好加权平均数就要先举例、后分析、再给出定义,比如:某同学的一次考试各科成绩如下:语文110、数学105、英语106、物理95、化学90、政治86、历史98、地理66、生物89,你可以先让学生算算各科的平均数,再按中考计分法将语、数、英各取120%,物、化、政各取100%,史、地、生各取40%后的平均值算出,两个结果一比较,学生就会很容易发现不同的原因是加入了所谓的“权”,这样,不仅通俗易懂,而且对“权”内涵的理解和应用就不再困难。
众数是一组数据中出现次数最多的数。
其内涵很好理解和掌握,就是结合实际应用也顺理成章,如商店老板进货号多大的男鞋好?那当然是“众数”(调查数据最多的号)所代表的。
中位数顾名思义是一组数据中间位置的数,但考虑一组数可能有偶数个或奇数个,所以要注意强调取中位数的方法。
教材上给出的内涵很好:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
如一组数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8的中位数是1/2(1.65+1.7),即1.675。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2:甲.乙.丙三个家电厂家在广告中都声称,他们的某种 电子产品在正常情况下的使用寿命都是8年,经质检部 门对这三家销售的产品的使用寿命进行跟踪调查,统计 结果如下(单位:年) 甲厂:4,5,5,5,5,7,9,12,13,15; 乙厂:6,6,8,8,8,9,10,12,14,15; 丙厂:4,4,4,6,7,9,13,15,16,16. 请回答下列问题: (1)分别求出三种数据的平均数.众数.中位数. (2)这三个厂家的推销广告分别利用了哪一种表示集中 趋势的特征数? (3)如果你是位顾客,宜选购哪家工厂的产品?为什么?
3 13 0 16 3
4 12 -1 14 1
5 13 0 12 -1
求和
每次成 绩----平 均成绩
每次测 试成绩 每次成 绩----平 均成绩
0
0
1 小明 小明 小兵 每次测 试成绩 |每次成 绩-平均 成绩| 每次测 试成绩 |每次成 绩-平均 成绩| 13 0
2 14 1
3 13 0
4 12 1
练习:
1.某班有甲乙两名同学,他们某学期的5 次数学小测验成绩: 甲:76,82,80,87,73; 乙:78,82,79,80,81. 问哪位同学的数学成绩比较稳定?
统计学的应用深入到社会的各个领域,无论是
评价成果.质量监督还是制定规划,大到制定国 家方针.政策,小到日常生活和工作,都离不开 利用统计学的方法对各数据进行科学的分析. 而极差.方差和标准差都是统计学上常用的衡 量一组数据波动大小的特征数,所以方差.标准 差的应用十分广泛.
5 13 0
求和
2
10 3
13 0
16 3
14 1
12 1 8
小兵
1
2
3
4
5
求和
小明
每次 测试 成绩
(每次成 绩 -平均 成绩)
2
13
14
13
12
13
小明
0
1ห้องสมุดไป่ตู้
0
1
0
2
小兵
每次 测试 成绩
(每次成 绩 -平均 成绩)
2
10
13
16
14
12
小兵
9
0
9
1
1
20
如果一共进行了7次测试,小明因故缺 席了两次,怎么比较谁的成绩更稳定?请你 将你的方法与数据添入下表:
注意:
(1)要求出一组数据的极差,首先要找出这组数据的最大值与最小 值,再将两个数值相减. (2)极差要带单位.
反映一组数据变化范围大小的指标.
极差=最大值-最小值
(3)极差可以用来表示一组数据中两个极端值之间的差异.
谚语:“早穿皮袄午穿纱,抱着火炉吃 西瓜”说明了什么?
地处我国北部边疆,蒙古高原的东南部,
问题2.
小明和小兵两人参加体育项目训练,近期 的5次测试成绩如表20.2.1所示.谁的成绩较为 稳定?为什么? 测验次数 小明 小兵 1 13 10 2 14 13 3 13 16 4 12 14 5 13 12
1 小明 小明 小兵 小兵 每次测 试成绩 13 0 10 -3
2 14 1 13 0
24 21 18 15 12 9 6 3 0 21日 22日 23日 24日 25日 26日 27日 28日
(a)2001年2月下旬
(b)2002年2月下旬
通过观察
图(A)中折线波动的范围比较大
----从6度到22度, 图(B)中折线波动的范围则比较小 ----从9度到16度.
新知识讲解: 极差
极差 方差与标准差
问题1.
下表显示的是上海2001年2月下旬和2002年同期的 每日最高气温,如何对这两段时间的气温进行比较呢?
2月 21日 2001年 2002年 12 13 2月 22日 13 13 2月 23日 14 12 2月 24日 22 9 2月 25日 6 11 2月 26日 8 16 2月 27日 9 12 2月 28日 12 10
学生田径百米比赛,该校预先对这两名选手测试了8次, 测试成绩如下表:
1 选手甲 的成绩 (秒 ) 12.1 2 12.2 3 13 4 12.5 5 13.1 6 12.5 7 12.4 8 12.2
选手乙 的成绩 (秒 )
12
12.4
12.8
13
12.2
12.8
12.3
12.5
根据测试成绩,请你运用所学过的统计知识做 出判断,派哪一位选手参加比赛更好?为什么?
它反映的是一组数据偏离平均值的情况.
意义: 它是反映一组数据的整体波动大小的指标,
—2 — 2 —2 1 公式 S = [(x1- x ) +(x2- x ) +„+(xn- x ) ] n
2
注意:方差的单位是原数据的平方.
标准差
标准差= 方差
标准差的单位和原数据单位一样
例1:某校从甲乙两名优秀选手中选1名选手参加全市中
大部分地区在海拔1000米以上,地势高而 平坦。高原东部多宽浅的大盆地,气候比 较湿润的地方草原宽广,有呼伦贝尔、鄂 尔多斯等,西部戈壁沙漠面积较大,气候 属温带大陆性气候,夏季很少见酷热天气, 日夜温差很大,故有“早穿皮袄午穿纱, 抱着火炉吃西瓜”。
极差只能反映一组数据中两个极端值之
间的差异情况,对其他数据的波动情况不 敏感,因此,有必要重新找一个对整组数据 波动情况更敏感的指标.
1 小明 每次测 试 平均成绩 13 2 14 3 13 4 5 6 7 求和
缺席 13
缺席 12
小明 每次测试 平均成绩
小兵
10
10
13
14
12
16
16
小兵
到底用什么样的方法判断谁的成绩稳定呢?
“先平均, 再求差, 然后平方, 最后再平均”
方差
一组数据中各数据与这组数据的平 均数 的差的平方的平均数叫方差.
比较两段时间的气温高低,求平均气温是 一种常用的方法。虽然2001年和2002年上 海地区的平均气温相等,但能不能说这两 个时段的气温没有差异呢?
下图是根据两段时间的气温情况 绘成的折线图.
24 21 18 15 12 9 6 3 0 21日 22日 23日 24日 25日 26日 27日 28日