18-19学年九年级数学下册第1章二次函数1.5二次函数的应用第2课时用二次函数解决销售问题作业课件新版湘教版

合集下载

2.4 二次函数的应用 第2课时(教案)-北师大版数九年级下册

2.4 二次函数的应用 第2课时(教案)-北师大版数九年级下册

第2课时利用二次函数解决利润问题1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.1.经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用.2.发展学生运用数学知识解决实际问题的能力.1.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和人类发展的作用.【重点】1.探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.2.引导学生将简单的实际问题转化为数学问题,并运用二次函数知识求出实际问题的最大(小)值,从而得到解决某些实际生活中最大(小)值问题的思想方法.【难点】能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数知识解决某些实际生活中的最大(小)值问题.【教师准备】多媒体课件.【学生准备】复习关于销售的相关量之间的关系及二次函数最值的求法.导入一:【引入】如果你是某企业老总,你最关心的是什么?是的,当然是利润,因为它是企业生存的根本,并且每个企业都想在限定条件内获得更大利润.本节课我们就来探究形如最大利润的问题.[设计意图]开门见山,直入正题,让学生对本节课所要了解的知识一目了然,使他们的学习更有针对性.导入二:请同学们思考下面的问题:某工厂生产一种产品的总利润L(元)是产量x(件)的二次函数L=-x2+2000x-10000,则产量是多少时总利润最大?最大利润是多少?学生分析数量关系:求总利润最大就是求二次函数L=-x2+2000x-10000的最大值是多少.即L=-x2+2000x-10000=-(x2-2000x+10002-10002)-10000=-(x-1000)2+990000.∴当产量为1000件时,总利润最大,最大利润为99万元.【引入】显然我们可以通过求二次函数最大值来确定最大利润,你能利用这种思路求解下面的问题吗?[设计意图]让学生通过对导入问题的解答,进一步强化将实际问题转化为数学模型的意识,使学生感受到“何时获得最大利润”就是在自变量取值范围内,此二次函数何时取得最大值问题.服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?思路一教师引导学生思考下面的问题:1.此题主要研究哪两个变量之间的关系?哪个是自变量?哪个是因变量?生审题后回答:批发价为自变量,所获利润为因变量.2.此题的等量关系是什么?3.若设批发价为x元,该服装厂获得的利润为y元,请完成下面的填空题:(1)销售量可以表示为;(2)每件T恤衫的销售利润可以表示为;(3)所获利润与批发价之间的关系式可以表示为.4.求可以获得的最大利润实质上就是求什么?【师生活动】教师启发学生依次探究问题,根据引导要求学生独立解答后,小组交流,共同解决所发现的问题.解:设批发价为x元,该服装厂获得的利润为y元.由题意得y=(x-10)=(70000-5000x)(x-10)=-5000(x-12)2+20000.∴当x=12时,y=20000.最大∴厂家批发价是12元时可以获利最多.思路二【思考】此题还有其他的解法吗?可以不直接设批发价吗?【师生活动】学生进行小组讨论,师巡视并参与到学生的讨论之中去.组长发言,师生共同订正.解:设降价x元,该服装厂获得的利润为y元.则y=(13-10-x)=(5000+5000x)(3-x)=-5000(x-1)2+20000,=20000.∴当x=1时,y最大13-1=12.∴厂家批发价是12元时可以获利最多.【教师点评】在利用二次函数解决利润的问题时,可以直接设未知数,也可以间接设未知数.[设计意图]让学生回顾列一元二次方程解决“每件商品的销售利润×销售这种商品的数量=总利润”这种类型的应用题,做好知识的迁移,为下一环节的教学做好准备,以便降低学生接受知识的(教材例2)某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?〔解析〕此题的等量关系是:客房日租金总收入=提价后每间房的日租金×提价后所租出去的房间数.如果设每间房的日租金提高x个10元,那么提价后每间房的日租金为(160+10x)元,提价后所租出去的房间数为(120-6x)间.解:设每间房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x),即y=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.=19440,当x=2时,y最大这时每间客房的日租金为160+10×2=180(元),因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.[设计意图]让学生通过对例题的解答,进一步熟悉和掌握本课所学知识,拓宽知识面,使其解题能力和应用能力得到进一步提升.二、利用二次函数图象解决实际问题课件出示:【议一议】还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.问题(1):利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.请同学们在课本第49页图2-11中画出二次函数y=-5x2+100x+60000的图象.要求:同伴合作,画出图象.师课件出示函数图象,供学生参考.问题(2):增种多少棵橙子树,可以使橙子的总产量在60400个以上?看一看:从图象中你们可以发现什么?增种多少棵橙子树,可以使橙子的总产量在60400个以上?请同学们开始小组讨论交流.学生积极思考,合作交流.请代表展示他们的讨论成果:结论1:当x<10时,橙子的总产量随增种橙子树的增加而增加;当x=10时,橙子的总产量最大;当x>10时,橙子的总产量随增种橙子树的增加而减少.结论2:由图象可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.能力提升:在分析的过程中,用到了什么数学思想方法?学生迅速得出:用到了数形结合的数学思想方法.[设计意图]让学生绘制该二次函数图象,并利用图象进行直观分析,体会数形结合的思想方法,并感受自变量的取值范围.用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.1.某商店经营2014年巴西世界杯吉祥物,已知所获利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956.则获利最多为()A.3144元B.3100元C.144元D.2956元解析:利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956,∴y=-(x-12)2+3100.∵-1<0,∴当x=12时,y有最大值,为3100.故选B.2.某旅社有100张床位,每床每晚收费10元时,床位可全部租出;若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚收费应提高()A.4元或6元B.4元C.6元D.8元解析:设每床每晚收费应提高x个2元,获得利润为y元,根据题意得y=(10+2x)(100-10x)=-20x2+100x+1000=-20+1125.∵x取整数,∴当x=2或3时,y最大,当x=3时,每床收费提高6元,床位最少,即投资少,∴为了投资少而获利大,每床每晚收费应提高6元.故选C.3.某产品进货单价为90元,按100元一件出售时,能售500件,如果这种商品每涨1元,其销售量就减少10件,为了获得最大利润,其单价应定为.解析:设应涨价x元,则所获利润为y=(100+x)(500-10x)-90×(500-10x)=-10x2+400x+5000=-10(x2-40x+400)+9000=-10(x-20)2+9000,可见当涨价20元,即单价为100+20=120元时获利最大.故填120元.4.(2014·沈阳中考)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为元.解析:设最大利润为w元,则w=(x-20)(30-x)=-(x-25)2+25.∵20≤x≤30,x为整数,∴当x=25时,w 有最大值,为25.故填25.5.每年六、七月份,南方某市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?解:(1)设购进荔枝k千克,荔枝售价定为y元/千克时,水果商才不会亏本,由题意,得y·k(1-5%)≥(5+0.7)k.∵k>0,∴95%y≥5.7,∴y≥6.∴水果商要把荔枝售价至少定为6元/千克才不会亏本.(2)由(1)可知,每千克荔枝的平均成本为6元,由题意得w=(x-6)m=(x-6)(-10x+120)=-10(x-9)2+90,∵a=-10<0,∴当x=9时,w有最大值.∴当销售单价定为9元时,每天可获利润w最大.第2课时用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.一、教材作业【必做题】1.教材第49页随堂练习.2.教材第50页习题2.9第1,2题.【选做题】教材第50页习题2.9第3题.二、课后作业【基础巩固】1.学校商店销售一种练习本所获得的总利润y(元)与销售单价x(元)之间的函数关系式为y=-2(x-2)2+48,则下列叙述正确的是()A.当x=2时,利润有最大值48元B.当x=-2时,利润有最大值48元C.当x=2时,利润有最小值48元D.当x=-2时,利润有最小值48元2.一件工艺品进价为100元,按标价135元售出,每天可售出100件.若每降价1元出售,则每天可多售出4件.要使每天获得的利润最大,每件需降价()A.5元B.10元C.12元D.15元3.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是元.4.(2015·营口中考)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.【能力提升】5.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=-x 2+10x ,y 2=2x ,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元6.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低()A.0.2元或0.3元B.0.4元C.0.3元D.0.2元7.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式.若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大?最大利润是多少?8.(2015·汕尾中考)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价/(元/100110120130件)…月销量/200180160140件…已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润;②月销量.(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大?最大利润是多少?【拓展探究】9.(2015·舟山中考)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x 满足下列关系式:y=(1)李明第几天生产的粽子数量为420只?(2)设第x天粽子的成本是p元/只,p与x之间的关系可用如图所示的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【答案与解析】1.A(解析:在y=-2(x-2)2+48中,当x=2时,y有最大值,是48.)2.A(解析:设每件降价x元,利润为y元,每件的利润为(135-100-x)元,每天售出的件数为(100+4x)件,=3600.)由题意,得y=(135-100-x)(100+4x)=-4x2+40x+3500=-4(x-5)2+3600,∵a=-4<0,∴当x=5时,y最大3.160(解析:设每张床位提高x个20元,每天收入为y元.则有y=(100+20x)(100-10x)=-200x2+1000x+10000.当x=-==2.5时,可使y有最大值.又x为整数,则当x=2时,y=11200;当x=3时,y=11200.故为使租出的床位少且租金高,每张床收费100+3×20=160(元).)4.22(解析:设定价为x 元,根据题意得平均每天的销售利润y =(x -15)·[8+2(25-x )]=-2x 2+88x -870,∴y =-2x 2+88x -870=-2(x -22)2+98.∵a =-2<0,∴抛物线开口向下,∴当x =22时,y 最大值=98.故填22.)5.D (解析:设在甲地销售x 辆,则在乙地销售(15-x )辆,根据题意得出:W =y 1+y 2=-x 2+10x +2(15-x )=-x 2+8x +30=-(x -4)2+46,∴最大利润为46万元.)6.C (解析:设应将每千克小型西瓜的售价降低x 元.根据题意,得(3-2-x )-24=200.解这个方程,得x 1=0.2,x 2=0.3.∵要减少库存,且200+>200+,∴应将每千克小型西瓜的售价降低0.3元.)7.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),由所给函数图象可知解得故y 与x 的函数关系式为y =-x +180.(2)∵y =-x +180,∴W =(x -100)y =(x -100)(-x +180)=-x 2+280x -18000=-(x -140)2+1600.∵a =-1<0,∴当x =140时,W 最大=1600,∴售价定为140元/件时,每天获得的利润最大,最大利润为1600元.8.解:(1)①销售该运动服每件的利润是(x -60)元.②设月销量w 与x 的关系式为w =kx +b ,由题意得解得∴w =-2x +400.∴月销量为(-2x +400)件.(2)由题意得y =(x -60)(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.9.解:(1)设李明第n 天生产的粽子数量为420只,由题意可知30n +120=420,解得n =10.答:第10天生产的粽子数量为420只.(2)由图象得当0≤x ≤9时,p =4.1;当9≤x ≤15时,设p =kx +b ,把点(9,4.1),(15,4.7)代入,得解得∴p =0.1x +3.2.①当0≤x ≤5时,w =(6-4.1)×54x =102.6x ,当x =5时,w 最大=513(元);②当5<x ≤9时,w =(6-4.1)×(30x +120)=57x +228,∵x 是整数,∴当x =9时,w 最大=741(元);③当9<x ≤15时,w =(6-0.1x -3.2)×(30x +120)=-3x 2+72x +336,∵a =-3<0,∴当x =-=12时,w 最大=768元.综上所述,第12天的利润最大,最大利润为768元.(3)由(2)可知m =12,m +1=13,设第13天每只粽子提价a元,由题意得w=[6+a-(0.1×13+3.2)](30×13+120)=510(a+1.5),∴510(a+1.5)-768≥48,解得a≥130.1.答:第13天每只粽子至少应提价0.1元.本节课设计了以生活场景引入问题,通过探索思考解决问题的教学思路.由于本节课较为抽象,学生直接解决比较困难,因此,在导入问题中,让学生初步接触“何时获得最大利润”这一问题,引导学生分析问题,初步掌握数学建模的方法,然后再放手给学生自主解决问题,并充分发挥小组的合作作用,以“兵教兵”的方式突破难点.在教学过程中,重点关注了学生能否将实际问题表示为函数模型,是否能运用二次函数知识解决实际问题并对结果进行合理解释,加强了学生在教师引导下的独立思考和积极讨论的训练,并注意整个教学过程中给予学生适当的评价和鼓励,收到了非常好的教学效果.对学情估计不足.原本认为学生的计算能力不错,但实际在解题过程中却出现了很多问题.今后还要在计算方法和技巧方面对学生多加以指导,加强学生建立函数模型的意识.随堂练习(教材第49页)解:设销售单价为x元(30≤x<50),销售利润为y元,则y=(x-20)[400-20(x-30)]=-20x2+1400x-20000=-20(x-35)2+4500.当x=35时,y=4500.所以当销售单价为35元时,半月内可以获得的利润最大,最大最大利润为4500元.习题2.9(教材第50页)1.解:设旅行团的人数是x人,营业额为y元,则y=[800-10(x-30)]x=-10x2+1100x=-10(x-55)2+30250,当x=55时,y=30250.答:当旅行团的人数为55人时,旅行社可以获得最大的营业额,为30250元.最大值2.解:设销售单价为x(x≥10)元,每天所获销售利润为y元,则y=(x-8)[100-10(x-10)]=-10x2+280x-=360.答:将销售单价定为14元,才能使每天所获销售利润1600=-10(x-14)2+360,所以当x=14时,y最大值最大,最大利润为360元.3.解:y=x2-13x+42.25+x2-11.8x+34.81+x2-12x+36+x2-13.4x+44.89+x2-9x+20.25=5x2-59.2x+178.2=5(x2-11.84x+35.64)=5[(x-5.92)2+0.5936]=5(x-5.92)2+2.968,当x=5.92时,y的值最小,所以大麦穗长的最佳近似长度为5.92cm.利润问题之前已经有所接触,所以学生课前要熟练掌握进价、销售价、利润之间的关系.找出实际问题中的等量关系是前提,会把二次函数的一般式转化为顶点式是保障,而能熟练运用转化的数学思想方法把实际问题转化为数学问题是运用二次函数解决实际应用问题的关键,所以在解题的过程中要及时总结归纳出用二次函数知识解决实际问题的基本思路,并总结出销售利润问题的数学模型,提高解决此类问题的综合能力.某班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x/天1≤x<5050≤x≤90售价/(元/x+4090件)每天销量/200-2x件已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.〔解析〕(1)根据(售价-进价)×数量=利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于4800,可得不等式组,然后解不等式组,可得答案.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000.当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=(2)当1≤x<50时,二次函数的图象开口向下,二次函数图象的对称轴为直线x=45,=-2×452+180×45+2000=6050.当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000.当x=50时,y最大综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.(3)当20≤x≤60时,即共41天,每天销售利润不低于4800元.。

北师大版九年级数学下册课件:二次函数的应用

北师大版九年级数学下册课件:二次函数的应用

2=a b c,
1=4a 2b c,
a 1,
解得
b=2,
c=1.
∴二次函数的表达式为y=-x2+2x+1.
知3-讲
知识点 2 用顶点式确定二次函数表达式
例3 已知抛物线的顶点坐标为(4,-1),与y轴交于点(0, 3)求这条抛物线的解析式.
解:依题意设y=a(x-h)2+k ,将顶点(4,-1)及交点(0,3) 代入得3=a(0-4)2-1,解得a= 1 , ∴这条抛物线的解析
导引:(1)利用交点式得出y=a(x-1)(x-3),进而求出a的值, 再利用配方法求出顶点坐标即可;(2)根据“左加右减,上 加下减”得出抛物线对应的函数表达式,进而得出答案.
知4-讲
解:(1)∵抛物线与x轴交于点A(1,0),B(3,0), ∴可设抛物线对应的函数表达式为y=a(x-1)(x-3). 把点(0,-3)的坐标代入得:3a=-3,解得a=-1, 故抛物线对应的函数表达式为y=-(x-1)(x-3), 即y=-x2+4x-3. ∵y=-x2+4x-3=-(x-2)2+1, ∴顶点坐标为(2,1).
B
N
2.y
xb
x
4 3
x
40
3
4 3
x2
40x3 x 202 ຫໍສະໝຸດ 300.4做一做2
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下
半部是矩形,制造窗框的材料总长(图中所有的黑线
的长度和)为15m.当x等于多少时,窗户通过的光线最
多(结果精确到0.01m)?此时,窗户的面积是多少?
y=ax2+c
y=a(x-h)2
y=a(x-h)2+k
y=ax2+bx+c

《二次函数的应用》(第2课时)示范公开课教学设计【北师大版九年级数学下册】

《二次函数的应用》(第2课时)示范公开课教学设计【北师大版九年级数学下册】

第二章二次函数2.4二次函数的应用第2课时一、教学目标1.经历计算最大利润问题的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学是应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,增强解决问题的能力.二、教学重点及难点重点:1.探索销售中的最大利润问题.2.能分析并表示实际问题中变量之间的二次函数关系,运用二次函数的相关知识解决实际问题中的最大(小)值,提高解决实际问题的能力.难点:运用二次函数的知识解决实际问题.三、教学用具多媒体课件、直尺或三角板。

四、相关资源《生产服装》动画,,.五、教学过程【情境导入】【情景演示】生成服装,描写工厂生产服装的场景。

服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?同学们,你们能解决这个问题吗?这就是我们今天要研究的内容——何时获得最大利润.师生活动:教师出示问题,引出本节课所学内容.设计意图:通过问题情境引出本节课要研究的内容,激发学生的学习兴趣.【探究新知】教师引导学生分析问题中的数量关系,设出未知数,将销售量、销售额、获得的利润用含未知数的式子表示出来,然后利用二次函数模型确定获得的最大利润.设厂家批发单价是x元时可以获利最多,获得的最大利润为y元.那么销售量可表示为1350005000.1x-⎛⎫+⨯⎪⎝⎭件.所以销售额为1350005000.1xx-⎛⎫+⨯⎪⎝⎭;所获利润135000500(10)0.1xy x-⎛⎫=+⨯-⎪⎝⎭.整理,得y=-5000(x-14)(x-10)=-5000(x2-24x+140)=-5000(x-12)2+20000.∵a=-5000<0,∴二次函数有最大值.当x=12时,y最大值=20000.答:厂家批发单价是12元时可以获利最多.设计意图:培养学生把文字语言转化为数学符号的能力.议一议在本章开始“种多少棵橙子树”的问题中,我们得到表示增种橙子树的数量x (棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?师生活动:教师出示问题,学生画出函数的图象并回答问题.解:(1)列表:描点、连线,如下图所示,由图象知,当0≤x≤10时,橙子的总产量随橙子树的增种而增加;当x≥10时,橙子的总产量随橙子树的增种而减少.(2)由图象知,当增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵时,都可以使橙子的总产量在60400个以上.设计意图:进一步用图象刻画橙子的总产量与增种橙子树之间的关系,并利用图象解决问题.通过运用函数模型让学生体会数学的实际价值,通过建模学会用函数的观点认识问题,解决问题,体会数形结合思想,激发学生的探索精神,并提高学生解决问题的自信心.【典例精析】例某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?旅馆的客房师生活动:教师出示问题,学生小组讨论,师生共同完成解题过程.解:设每间客房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x)=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.当x=2时,y最大=19440.这时每间客房的日租金为160+10×2=180(元).因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.设计意图:培养学生分析问题和解决问题的能力.【课堂练习】1.某民俗旅游村为接待游客住宿,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位每天可全部租出,若每张床位每天的收费每提高2元,则相应地每天就减少了10张床位的租出.如果每张床位每天以2元为单位提高收费,为使每天租出的床位少且总租金高,那么每张床位每天最合适的收费是().A.14元B.15元C.16元D.18元2.某产品进货单价为90元,按每个100元售出时,每周能售出500个,如果这种商品的销售单价每上涨1元,其每周的销售量就减少10个,那么为了获得最大利润,其销售单价应定为().A.130元B.120元C.110元D.100元3.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.销售单价为多少元时,半月内获得的利润最大?4.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?5.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数:y= -10x+500.(1)设李明每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?师生活动:教师先找几名学生板演,然后讲解出现的问题.参考答案1.C.2.B.3.销售单价为35元时,半月内可以获得最大利润4500元.4.解:(1)因为单价上涨x元后,每件商品的利润是(80+x-60)元,每月售出的件数为(300-10x)件,所以y与x之间的函数关系式为y=(x+20)(300-10x)=-10x2+100x+6 000.(2)将y=-10x2+100x+6 000配方,得y=-10(x-5)2+6250.因为a=-10<0,所以y有最大值.因为300-10x≥0,且x≥0,所以0≤x≤30.所以当x=5时,y有最大值,最大值为6 250.所以当单价定为85元时,每月销售该商品的利润最大,最大利润为6 250元.5.解:(1)由题意,得w=(x-20)·y=(x-20)·(-10x+500)= -10x2+700x-10 000.当x=7003522(10)ba-=-=⨯-时,w有最大值,符合题意,所以当销售单价定为35元时,每月可获得最大利润.(2)由题意,得-10x2+700x-10 000=2 000.解这个方程,得x1=30,x2=40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.设计意图:通过本环节的学习,让学生巩固所学知识.六、课堂小结利用二次函数解决实际问题的一般步骤:(1)根据题意,列出二次函数表达式,注意实际问题中自变量x的取值范围;(2)将二次函数表达式配方为顶点式的形式;(3)根据二次函数的图象及其性质,在自变量的取值范围内求出函数的最值.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计2.4二次函数的应用(2)1.一般步骤。

九年数学下册第二章二次函数4二次函数的应用第2课时利用二次函数解决利润问题教案北师大版

九年数学下册第二章二次函数4二次函数的应用第2课时利用二次函数解决利润问题教案北师大版

第2课时利用二次函数解决利润问题【知识与技能】能为一些较简单的生活实际问题建立二次函数模型,并在此基础上,根据二次函数关系式和图象特点,确定二次函数的最大(小)值,从而解决实际问题.【过程与方法】经历探究二次函数最大(小)值问题的过程,体会函数的思想方法和数形结合的思想方法.【情感态度】积极参加数学活动,发展解决问题的能力,体会数学的应用价值.从而增强数学学习信心,体验成功的乐趣.【教学重点】探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.【教学难点】从实际问题中抽象出二次函数模型,以利用二次函数知识解决某些实际生活中的最大(小)值问题一、情景导入,初步认知问题:某商店经营T恤衫,已知成批购进时单价是20元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是35元时,销售量是600件,而单价每降低1元,就可以多销售200件.若设销售单价为x(20<x<35的整数)元,该商店所获利润为y元.请你帮助分析,销售单价是多少元时,可以获利最多?你能运用二次函数的知识解决这个问题吗?【教学说明】用生活中的事例,更贴近实际生活,帮助学生理解题意,激发学生的学习热情.二、思考探究,获取新知1.教师提问:(1)此题主要研究哪两个变量之间的关系,哪个是自变量?哪个是因变量?(2)销售量可以表示为;销售额(销售总收入)可以表示为;所获利润与销售单价之间的关系式可以表示为 .(3)当销售单价是元时,可以获得最大利润,最大利润是元.2.在解决第(3)问中,先引导学生观察得出此函数为二次函数,再引导学生探索思考“何时获得最大利润”的数学意义.【教学说明】在本章前面的学习中,学生已初步了解求特殊二次函数最大(小)值的方法.鼓励学生大胆猜想、探索求此二次函数最大值的方法.【归纳结论】求二次函数最大(小)值的方法:(1)配方化为顶点式求最大(小)值;(2)直接带入顶点坐标公式求最大(小)值;(3)利用图象找顶点求最大(小)值.三、运用新知,深化理解1.见教材P48例2.2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(为10的正整数倍). (1)设一天订住的房间数为y,直接写出 y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为W元,求W与 x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?分析:当每天的房价增加x 元时,就会有10x 个房间空闲.∴一天订住的房间数为(50-10x ),每间房可获利(180 + 2-20),从而可列出函数关系式.答:一天订住34个房间时,宾馆的利润最大,最大利润是10880元.3.某商店将每件进价8元的某种商品按每件10元出售,一天可售出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0. 1元, 其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?分析:先写出函数关系式,再求出函数的最大值解:设每件商品降价x 元(0<x <2),该商品每天的利润为y 元.商品每天的利润y 与x 的函数关系式是:y=(10-x-8)(100+100x )即y=-100x 2+100x+200配方得21-100+2252y x =-()因为x=1/2时,满足0≤x ≤2.所以当x=1/2时,函数取得最大值,最大值y=225.答:将这种商品的售价降低1/2元时,能使销售利润最大4.某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告. 根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表:(1)求y 与x 的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10?30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?【教学说明】通过练习,前后呼应,巩固已学知识,并让学生体会二次函数是解决实际问题的一类重要数学模型.四、师生互动,课堂小结求二次函数最大(小)值的方法:(1)配方化为顶点式求最大(小)值;(2)直接带入顶点坐标公式求最大(小)值;(3)利用图象找顶点求最大(小)值.1.布置作业:教材“习题2.9”中第1、2题.2.完成练习册中本课时的练习.在本课教学中,应关注学生能否将实际问题表示为函数模型;是否能运用二次函数知识解决实际问题并对结果进行合理解释;课堂中学生是否在教师引导下进行了独立思考和积极讨论.并注意整个教学过程中给予学生适当的评价和鼓励.。

湘教版九年级下册数学 第1章 二次函数的应用

湘教版九年级下册数学 第1章 二次函数的应用
∴当n=620时,w最大=19200.
所以公司将销售单价定为620元时,每月销售B型活
动板房所获利润最大,最大利润是19200元.
方法点拨: 利用二次函数解决利润最大问题的一般策略:
知1-讲
1. 明确利润、单价、销售量之间的关系,根据题意列出
二次函数的表达式.
2. 讨论最大值时可借助顶点式y=a(x-h)2+k,然后利用
(5)检:检验结果,得出符合实际意义的结论.
要点解读:
知1-讲
1. 用二次函数解实际问题时,审题是关键,检验容
易被忽略,求得的结果除了要满足题中的数量关
系,还要符合实际问题的意义.
2. 在实际问题中求最值时,解题思路是列二次函数
表 达 式 , 用 配 方 法 把 函 数 表 达 式 化 为 y=a(x -
第1章二次函数
1.5二次函数的应用
1 课时讲解 用二次函数解实际问题
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 用二次函数解实际问题
知1-讲
1. 常用方法:利用二次函数解决实际问题,首先要建立数 学模型,把实际问题转化为二次函数问题,利用题中存 在的等量关系,求出函数表达式,然后利用函数的图象 和性质去解决问题.
知1-讲
(1)按如图1.5-3①所示的直角坐标系,抛物线可以用 y=kx2+m(k≠0)表示,求该抛物线的表达式;
解题秘方:根据图形及直角坐标系 可得到D,E的坐标, 代入y=kx2+m(k≠0)即可 求解;
解:由题可知D(2,0),E(0,1),
易∴抛得物,01线解==的得4mk表,.+达m式,为y=-xkm2=+=1-.1.14, 1 4

湘教版九年级数学下册1.5二次函数的应用第1课时抛物线形二次函数教学设计

湘教版九年级数学下册1.5二次函数的应用第1课时抛物线形二次函数教学设计

湘教版九年级数学下册1.5二次函数的应用第1课时抛物线形二次函数教学设计一. 教材分析湘教版九年级数学下册1.5二次函数的应用主要介绍了抛物线形二次函数的相关知识。

这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,旨在让学生能够运用二次函数解决实际问题。

教材通过引入抛物线形二次函数,使学生能够更好地理解二次函数在现实生活中的应用,提高学生的数学素养。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、图像和性质有一定的了解。

但是,对于抛物线形二次函数的应用,部分学生可能还存在一定的困难。

因此,在教学过程中,需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。

三. 教学目标1.理解抛物线形二次函数的概念,掌握其图像特征。

2.能够运用抛物线形二次函数解决实际问题,提高学生的数学应用能力。

3.培养学生的团队协作能力和数学思维能力。

四. 教学重难点1.抛物线形二次函数的概念及其图像特征。

2.抛物线形二次函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。

2.案例教学法:通过分析具体案例,使学生掌握抛物线形二次函数的应用方法。

3.小组讨论法:引导学生分组讨论,培养学生的团队协作能力和口头表达能力。

4.实践操作法:让学生通过动手操作,加深对抛物线形二次函数的理解。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.教学案例:准备一些实际问题,用于引导学生应用抛物线形二次函数解决问题。

3.练习题:准备一些针对性的练习题,用于巩固所学知识。

4.板书设计:设计清晰易懂的板书,便于学生记录和复习。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的抛物线现象,如篮球投篮、抛物线飞行等,引导学生关注抛物线形二次函数在现实生活中的应用。

2.呈现(10分钟)介绍抛物线形二次函数的概念,并通过课件展示其图像特征。

2018_2019学年九年级数学下册第1章二次函数1.5二次函数的应用课件新版湘教版

2018_2019学年九年级数学下册第1章二次函数1.5二次函数的应用课件新版湘教版
例 2[高频考题] 如图 1-5-2,把一张长 15 cm 矩形硬纸板的四个角各剪去一个同样大小的小正方形 无盖的长方体盒子(纸板的厚度忽略不计).设剪去的 长为 x cm.
(1)请用含 x 的代数式表示长方体盒子的底面积 (2)当剪去的小正方形的边长为多少时,其底面
1.5 二次函数的应用
(3)试判断折成的长方体盒子的侧面积是否有最大 求出最大值和此时剪去的小正方形的边长;若没有,
1.5 二次函数的应用
目标突 破
目标一 理解建立二次函数模型解决实际问题的方法
例 1 [教材“动脑筋”改编] 有一座抛物线形拱桥 桥下水面宽为 20 m,拱顶距离水面 4 m.
(1)在如图 1-5-1 所示的平面直角坐标系中,求 函数表达式;
(2)在正常水位的基础上,当水位上升 h m 时,桥 d m,求 d 关于 h 的函数表达式;
1.5 二次函数的应用
目标三 能利用二次函数最大(小)值解决实际问题中的最值问题
例 3 [教材例题针对训练] [2017·济宁]某商店 包,已知这种双肩包的成本价为每个 30 元.经市场 种双肩包每天的销售量 y(单位:个)与销售单价 x(单 如下关系:y=-x+60(30≤x≤60).设这种双肩包 润为 w 元.
即 S=54x-8x2,
∴S=-8x-2872+7289(0<x<6).
∵-8<0,
∴当
x=287时,S
729 = 最大值 8 ,即当剪去的小正方形的边长
长方体盒子的侧面积有最大值7289 cm2.
1.5 二次函数的应用
【归纳总结】应用二次函数解决面积最大(小)值问 (1)分析题中的变量与常量; (2)根据几何图形的面积公式建立函数模型; (3)结合函数图象及性质,考虑实际问题中自变量 求出面积的最大(小)值.

九年级数学下册第1章二次函数1.5二次函数的应用教学课件新版湘教版

九年级数学下册第1章二次函数1.5二次函数的应用教学课件新版湘教版
60300
60200 60100 60000
0 1 2 3 4 5 6 7 8 9 10 1112 13 14 x/棵
何时橙子总产量最大 1.利用函数表达式描述橙子的总产量与增种橙子树的
棵数之间的关系.
y 100 x600 5x 5x2 100x 60000 5x 102 60500.
点重合时,等腰△PQR以1 cm/s的速度沿直线l向左方向开
始匀速运动,t s后正方形与等腰三角形重合部分面积为
S cm2,解答下列问题: A
B
(1)当t=3s时,求S的值;
(2)当t=3s时,求S的值;
MP
(3)当5s≤t≤8s时,求S与t的函
数关系式,并求S的最大值。 l D Q
C
R
通过前面活动,这节课你学到了什么?
30m bm
的长度如何表示?
D
C
(2)设矩形的面积为ym2,当x取何值

时,y的值最大?最大值是多少?
A xm B
N
解: 1设AD bm,易得b 3 x 30.
40m
4
2y xb x 3 x 30 3 x2 30x 3 x 202 300.
4
4
4
或用公式 :当x
b 2a
X/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Y/个 60095 60180 60255 60320 60375 60420 60455 60480 60495 60500 60495 60480 60455 60420
你能根据表格中的数据作出猜想吗?
y/个 60600 60500 60400
或用公式 :当x
25
b 2a

2019-2020年九年级数学下册第1章二次函数1.5二次函数的应用第1课时利用二次函数解决实物抛物线问题面积问题

2019-2020年九年级数学下册第1章二次函数1.5二次函数的应用第1课时利用二次函数解决实物抛物线问题面积问题
优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2019/7/28
最新中小019/7/28
最新中小学教学课件
25
二、听思路。
思路就是我们思考问题的步骤。例如老师在讲解一道数学题时,首先思考应该从什么地方下手,然后在思考用什么方法,通过什么样的过程来进行解 答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。
一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物理 课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”的 研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进行 叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元法; 因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。

九年级数学下册 第1章 二次函数 1.5 二次函数的应用(第2课时)课件下册数学课件

九年级数学下册 第1章 二次函数 1.5 二次函数的应用(第2课时)课件下册数学课件

_____________×数量. 单件利润
第三页,共三十一页。
2.抛物线y=ax2+bx+c的最值
(1)配方法:用配方法将y=ax2+bx+c化成y=a(x-h)2+k
的形式(xíngshì),当自变量x=h______时,函数y有最大(小)值为
___k___.
(2)公式法:二次函数y=ax2+bx+c,当自变量x=______时, b
该采用哪种支付方案,才能使该商店每天销售该纪念品的利润
最大?最大利润是多少?
第二十五页,共三十一页。
解:(1)y=(x-15)[50-2(x-20)]=-2(x-30)2+450,当x=30时,y的最大 值为450. 答:每件售价为30元时,每天获得(huòdé)的利润最大,最大利润是 450元.
第七页,共三十一页。
(1)求该商品每天的销售量y与销售单价x之间的函数表达式. (2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定 为多少,才能使销售该商品每天获得(huòdé)的利润w(元)最大?最大 利润是多少? (3)若商店要使销售该商品每天获得的利润不低于800元,则每天的 销售量最少应为多少件?
第二十九页,共三十一页。
(1)用含x的代数式分别(fēnbié)表示W1,W2. (2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利 润W最大,最大总利润是多少?

第三十页,共三十一页。
内容(nèiróng)总结
1.5 二次函数的应用。的形式,当自变量x=______时,函数y有最大(小)值为。100件.根据销售统计,
(1)求每件售价为多少元时,每天获得的利润最大?最大利润是 多少? (2)若该商店雇用(ɡù yònɡ)人员销售,在营销之前,对支付给销售 人员的工资有如下两种方案: 方案一:每天支付销售工资100元,无提成.

2019_2020学年九年级数学下册第1章二次函数1.5二次函数的应用教案(新版)湘教版

2019_2020学年九年级数学下册第1章二次函数1.5二次函数的应用教案(新版)湘教版

1.5 二次函数的应用① 道的截面是抛物线,且抛物线的表达式为y= -18x 2+2,一辆车高3 m ,宽4 m ,该车不能 (填“能”或“不能”)通过该隧道.②有一抛物线形拱桥,其最大高度为16米,跨度为40米,把它的示意图放在如图所示的坐标系中,则抛物线的函数关系式为218255y x x =-+.少?活动2 跟踪训练(独立完成后展示学习成果)1.有一座抛物线拱桥,正常水位时桥下水面宽度为20 m,拱顶距离水面4 m.①如图所示的直角坐标系中,求出该抛物线的表达式;②在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h的函数表达式;③设正常水位时桥下的水深为2 m,为保证过往船只顺利航行,桥下水面的宽度不得小于18 m,求水深超过多少m时就会影响过往船只在桥下顺利航行.2.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4 m加设不锈钢管如图所示的立柱,为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.①求该抛物线的表达式;②计算所需不锈钢管的总长度.1.(铜仁中考)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-125x2,当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为( )A.-20 m B.10 mC.20 m D.-10 m2.某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高为4.4米.(1)以AB所在直线为x轴,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数表达式;(2)现有一辆载满货物的汽车欲通过大门,货物顶点距地面 2.8米,装货宽度为2.4米,请通过计算,判断这辆汽车能否顺利通过大门.①如图,点C 是线段AB 上的一点,AB=1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( A )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大 C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大②用长8 m 的铝合金制成如图所示的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是28m 3.第②题图 第③题图③如图所示,某村修一条水渠,横断面是等腰梯形,底角为120°,两腰与下底的和为4 cm ,当水渠深x 为233时,横断面面积最大,最大面积是433. ④ 某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一活动1 小组讨论例1某建筑的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料长为15 m(图中所有线条长度之和),当x等于多少时,窗户通过的光线最多(结果精确到0.01 m)?此时,窗户的面积是多少?例2 某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨,综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).①当每吨售价是240元时,计算此时的月销售量;②求出y与x的函数关系式(不要求写出x的取值范围);③该经销店要获得最大月利润,售价应定为每吨多少元?④小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.活动2 跟踪训练(独立完成后展示学习成果)1.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数表达式6)1(52+--=t h ,则小球距离地面的最大高度是 ( C ) A .1米 B .5米C .6米D .7米2.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是 ( A )A .4米B .3米C .2米D .1米 3.将一条长为80cm 的铁丝做成一个正方形,则这个正方形面积的最大值是 400 cm 2.4.小敏在校运动会跳远比赛中跳出了满意一跳,函数(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是145s . 5.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y (元)与单价上涨x (元)间的函数表达式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?6.某中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数表达式及其自变量x 的取值范围;x 23.5 4.9h t t =-(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.活动3 课堂小结学生试述:这节课你学到了些什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档