Introduction_to_CUDA_C
2024版CUDA编程入门极简教程
行划分,每个线程处理一部分数据;任务并行是将任务划分为多个子任
务,每个线程执行一个子任务。
02
共享内存与全局内存
CUDA提供共享内存和全局内存两种存储空间。共享内存位于处理器内
部,访问速度较快,可用于线程间通信;全局内存位于处理器外部,访
问速度较慢,用于存储大量数据。
03
异步执行与流
CUDA支持异步执行,即CPU和GPU可以同时执行不同的任务。通过创
2023
PART 02
CUDA环境搭建与配置
REPORTING
安装CUDA工具包
下载CUDA工具包
01
访问NVIDIA官网,下载适用于您的操作系统的CUDA工具包。
安装CUDA工具包
02
按照安装向导的指示,完成CUDA工具包的安装。
验证安装
03
安装完成后,可以通过运行CUDA自带的示例程序来验证算,每个线 程处理一个子任务。计算完成后, 将结果从设备内存传输回主机内 存,并进行必要的后处理操作。
2023
PART 05
CUDA优化策略与技巧
REPORTING
优化内存访问模式
合并内存访问
通过确保线程访问连续的内存地址,最大化内 存带宽利用率。
使用共享内存
利用CUDA的共享内存来减少全局内存访问, 提高数据重用。
避免不必要的内存访问
精心设计算法和数据结构,减少不必要的内存读写操作。
减少全局内存访问延迟
使用纹理内存和常量内存
利用CUDA的特殊内存类型,如纹理内存和常量内存,来加速数 据访问。
数据预取和缓存
通过预取数据到缓存或寄存器中,减少全局内存访问次数。
展望未来发展趋势
CUDA与深度学习
CUDA演讲课件
CUDA演讲课件CUDA演讲者:徐洪志学号:09208040演讲日期:2010-10-13演讲内容NVIDIA公司简介GPU发展简介从GPGPU到CUDACUDA编程模型CUDA应用CUDA在中国CUDA校园程序设计大赛演讲内容NVIDIA公司简介GPU发展简介从GPGPU到CUDACUDA 编程模型CUDA应用CUDA在中国CUDA校园程序设计大赛NVIDIA公司简介NVIDIA(NVIDIACorporation,NASDAQ),是全球视觉计算机技术的行业领袖及GPU的发明者。
创立于1993年1月,是一家以设计显示芯片和主板芯片组为主的半导体公司。
NVIDIA亦会设计游戏机内核。
NVIDIA最出名的产品线是为游戏而设的GeForce显示卡系列,为专业工作站而设的Quadro显卡系列,和用于计算机主板的nForce芯片组系列。
NVIDIA的总部设在美国加利福尼亚州。
在《财富》杂志半导体行业创新排行榜上连续两年位居榜首。
现任总裁为黄仁勋。
演讲内容NVIDIA公司简介GPU发展简介从GPGPU到CUDACUDA编程模型CUDA应用CUDA在中国CUDA校园程序设计大赛GPU简介GPU (GraphicProcessingUnit):“图形处理器”。
NVIDIA公司在1999年发布GeForce256图形处理芯片时首先提出GPU的概念。
GPU发展简介第一代GPU(到1998为止)包括NVIDIA的TNT2,ATI的Rage和3dfx的Voodoo3。
第二代GPU(1999-2000)包括NVIDIA的Geforce256和Geforce2,ATI的Radeon7500,S3的Savage3D。
这一代GPU的可配置性得到了加强,但不具备真正的可编程能力。
第三代GPU(2001)包括NVIDIA的Geforce3和Geforce4Ti,微软的Xbox,及ATI的Radeon8500。
这一代GPU首次引入了可编程性。
CUDA编程指南中文版
CUDA编程指南中文版CUDA架构是基于并行计算的理念,通过利用GPU上的众多计算核心,实现并行计算任务的加速。
而CUDA编程模型则是为了方便开发者利用GPU进行并行计算而设计的,它借鉴了传统的C语言结构,提供了一系列的API供开发者使用。
其中,CUDA内存模型是CUDA编程中一个非常重要的概念。
在GPU中,存在全局内存、共享内存和寄存器等不同的内存空间。
全局内存是GPU中最大的一块内存,用于存储全局变量和数组等数据。
共享内存则是一块高速的本地内存,通过在计算核心之间共享数据,可以显著提高访问效率。
而寄存器则是存储在计算核心内部的一种非常快速的内存空间,用于存储局部变量和寄存器变量等。
在进行CUDA编程时,开发者需要特别关注的一个重点是如何优化CUDA程序。
CUDA编程指南对于CUDA程序的优化提供了详细的说明。
其中包括如何合理的利用GPU的并行计算能力、如何减少全局内存的访问、如何利用共享内存提高数据访问效率等。
通过合理的优化CUDA程序,可以显著提高程序的性能。
除了以上内容,CUDA编程指南还介绍了一些其他有关CUDA的相关技术。
比如,CUDA编程中的流(stream)概念,可以用于控制CUDA函数的执行顺序,有效提高程序的并行性能。
还介绍了GPU内存分配和释放的一些技巧,以及CUDA中的调试工具和性能分析工具等。
总之,CUDA编程指南是CUDA开发者进行CUDA编程时的必备参考资料。
它详细的介绍了CUDA的架构、编程模型、内存模型和优化技术等内容。
通过学习和理解CUDA编程指南,开发者可以更好地利用GPU进行高性能计算,提高程序的性能。
CUDA 驱动 API 参考手册说明书
API Reference ManualTable of ContentsChapter 1. Difference between the driver and runtime APIs (1)Chapter 2. API synchronization behavior (3)Chapter 3. Stream synchronization behavior (5)Chapter 4. Graph object thread safety (7)Chapter 5. Rules for version mixing (8)Chapter 6. Modules (9)6.1. Data types used by CUDA driver (10)CUaccessPolicyWindow_v1 (11)CUarrayMapInfo_v1 (11)CUDA_ARRAY3D_DESCRIPTOR_v2 (11)CUDA_ARRAY_DESCRIPTOR_v2 (11)CUDA_ARRAY_MEMORY_REQUIREMENTS_v1 (11)CUDA_ARRAY_SPARSE_PROPERTIES_v1 (11)CUDA_EXT_SEM_SIGNAL_NODE_PARAMS_v1 (11)CUDA_EXT_SEM_WAIT_NODE_PARAMS_v1 (11)CUDA_EXTERNAL_MEMORY_BUFFER_DESC_v1 (11)CUDA_EXTERNAL_MEMORY_HANDLE_DESC_v1 (11)CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC_v1 (11)CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC_v1 (11)CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS_v1 (11)CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS_v1 (12)CUDA_HOST_NODE_PARAMS_v1 (12)CUDA_KERNEL_NODE_PARAMS_v1 (12)CUDA_LAUNCH_PARAMS_v1 (12)CUDA_MEM_ALLOC_NODE_PARAMS (12)CUDA_MEMCPY2D_v2 (12)CUDA_MEMCPY3D_PEER_v1 (12)CUDA_MEMCPY3D_v2 (12)CUDA_MEMSET_NODE_PARAMS_v1 (12)CUDA_POINTER_ATTRIBUTE_P2P_TOKENS_v1 (12)CUDA_RESOURCE_DESC_v1 (12)CUDA_RESOURCE_VIEW_DESC_v1 (12)CUDA_TEXTURE_DESC_v1 (12)CUdevprop_v1 (12)CUexecAffinityParam_v1 (12)CUexecAffinitySmCount_v1 (13)CUipcEventHandle_v1 (13)CUipcMemHandle_v1 (13)CUkernelNodeAttrValue_v1 (13)CUmemAccessDesc_v1 (13)CUmemAllocationProp_v1 (13)CUmemLocation_v1 (13)CUmemPoolProps_v1 (13)CUmemPoolPtrExportData_v1 (13)CUstreamAttrValue_v1 (13)CUstreamBatchMemOpParams_v1 (13)CUaccessProperty (13)CUaddress_mode (13)CUarray_cubemap_face (14)CUarray_format (14)CUarraySparseSubresourceType (16)CUcomputemode (16)CUctx_flags (17)CUDA_POINTER_ATTRIBUTE_ACCESS_FLAGS (17)CUdevice_attribute (17)CUdevice_P2PAttribute (24)CUdriverProcAddress_flags (24)CUeglColorFormat (25)CUeglFrameType (32)CUeglResourceLocationFlags (32)CUevent_flags (32)CUevent_record_flags (33)CUevent_wait_flags (33)CUexecAffinityType (33)CUexternalMemoryHandleType (33)CUexternalSemaphoreHandleType (34)CUfilter_mode (35)CUflushGPUDirectRDMAWritesOptions (35)CUflushGPUDirectRDMAWritesScope (35)CUflushGPUDirectRDMAWritesTarget (35)CUfunc_cache (36)CUGPUDirectRDMAWritesOrdering (37)CUgraphDebugDot_flags (37)CUgraphicsMapResourceFlags (38)CUgraphicsRegisterFlags (38)CUgraphInstantiate_flags (38)CUgraphNodeType (39)CUipcMem_flags (39)CUjit_cacheMode (39)CUjit_fallback (40)CUjit_option (40)CUjit_target (42)CUjitInputType (43)CUkernelNodeAttrID (44)CUlimit (44)CUmem_advise (45)CUmemAccess_flags (45)CUmemAllocationCompType (45)CUmemAllocationGranularity_flags (46)CUmemAllocationHandleType (46)CUmemAllocationType (46)CUmemAttach_flags (46)CUmemHandleType (47)CUmemLocationType (47)CUmemOperationType (47)CUmemorytype (47)CUmemPool_attribute (48)CUoccupancy_flags (48)CUpointer_attribute (49)CUresourcetype (50)CUresourceViewFormat (50)CUresult (52)CUshared_carveout (58)CUsharedconfig (59)CUstream_flags (59)CUstreamAttrID (59)CUstreamBatchMemOpType (60)CUstreamCaptureMode (60)CUstreamUpdateCaptureDependencies_flags (60)CUstreamWaitValue_flags (61)CUstreamWriteValue_flags (61)CUuserObject_flags (62)CUuserObjectRetain_flags (62)CUarray (62)CUcontext (62)CUdevice (62)CUdevice_v1 (62)CUdeviceptr (62)CUdeviceptr_v2 (62)CUeglStreamConnection (63)CUevent (63)CUexternalMemory (63)CUexternalSemaphore (63)CUfunction (63)CUgraph (63)CUgraphExec (63)CUgraphicsResource (63)CUgraphNode (63)CUhostFn (63)CUmemoryPool (64)CUmipmappedArray (64)CUmodule (64)CUoccupancyB2DSize (64)CUstream (64)CUstreamCallback (64)CUsurfObject (64)CUsurfObject_v1 (64)CUsurfref (64)CUtexObject (65)CUtexObject_v1 (65)CUtexref (65)CUuserObject (65)CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL (65)CU_DEVICE_CPU (65)CU_DEVICE_INVALID (65)CU_LAUNCH_PARAM_BUFFER_POINTER (65)CU_LAUNCH_PARAM_BUFFER_SIZE (66)CU_LAUNCH_PARAM_END (66)CU_MEM_CREATE_USAGE_TILE_POOL (66)CU_MEMHOSTALLOC_DEVICEMAP (66)CU_MEMHOSTALLOC_PORTABLE (66)CU_MEMHOSTALLOC_WRITECOMBINED (66)CU_MEMHOSTREGISTER_DEVICEMAP (66)CU_MEMHOSTREGISTER_IOMEMORY (67)CU_MEMHOSTREGISTER_PORTABLE (67)CU_MEMHOSTREGISTER_READ_ONLY (67)CU_PARAM_TR_DEFAULT (67)CU_STREAM_LEGACY (67)CU_STREAM_PER_THREAD (67)CU_TRSA_OVERRIDE_FORMAT (68)CU_TRSF_DISABLE_TRILINEAR_OPTIMIZATION (68)CU_TRSF_NORMALIZED_COORDINATES (68)CU_TRSF_READ_AS_INTEGER (68)CU_TRSF_SEAMLESS_CUBEMAP (68)CU_TRSF_SRGB (68)CUDA_ARRAY3D_2DARRAY (68)CUDA_ARRAY3D_COLOR_ATTACHMENT (68)CUDA_ARRAY3D_CUBEMAP (68)CUDA_ARRAY3D_DEFERRED_MAPPING (69)CUDA_ARRAY3D_DEPTH_TEXTURE (69)CUDA_ARRAY3D_LAYERED (69)CUDA_ARRAY3D_SPARSE (69)CUDA_ARRAY3D_SURFACE_LDST (69)CUDA_ARRAY3D_TEXTURE_GATHER (69)CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_POST_LAUNCH_SYNC (69)CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_PRE_LAUNCH_SYNC (70)CUDA_EGL_INFINITE_TIMEOUT (70)CUDA_EXTERNAL_MEMORY_DEDICATED (70)CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC (70)CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC (70)CUDA_NVSCISYNC_ATTR_SIGNAL (71)CUDA_NVSCISYNC_ATTR_WAIT (71)MAX_PLANES (71)6.2. Error Handling (71)cuGetErrorName (71)cuGetErrorString (72)6.3. Initialization (72)cuInit (72)6.4. Version Management (73)cuDriverGetVersion (73)6.5. Device Management (74)cuDeviceGet (74)cuDeviceGetAttribute (75)cuDeviceGetCount (82)cuDeviceGetDefaultMemPool (82)cuDeviceGetLuid (83)cuDeviceGetMemPool (83)cuDeviceGetName (84)cuDeviceGetNvSciSyncAttributes (85)cuDeviceGetTexture1DLinearMaxWidth (86)cuDeviceGetUuid (87)cuDeviceGetUuid_v2 (87)cuDeviceSetMemPool (88)cuDeviceTotalMem (89)cuFlushGPUDirectRDMAWrites (89)6.6. Device Management [DEPRECATED] (90)cuDeviceComputeCapability (90)cuDeviceGetProperties (91)6.7. Primary Context Management (93)cuDevicePrimaryCtxGetState (93)cuDevicePrimaryCtxRelease (94)cuDevicePrimaryCtxReset (94)cuDevicePrimaryCtxRetain (95)cuDevicePrimaryCtxSetFlags (96)6.8. Context Management (98)cuCtxCreate (98)cuCtxCreate_v3 (100)cuCtxDestroy (102)cuCtxGetApiVersion (103)cuCtxGetCurrent (105)cuCtxGetDevice (105)cuCtxGetExecAffinity (106)cuCtxGetFlags (107)cuCtxGetLimit (107)cuCtxGetSharedMemConfig (108)cuCtxGetStreamPriorityRange (109)cuCtxPopCurrent (110)cuCtxPushCurrent (111)cuCtxResetPersistingL2Cache (111)cuCtxSetCacheConfig (112)cuCtxSetCurrent (113)cuCtxSetLimit (114)cuCtxSetSharedMemConfig (116)cuCtxSynchronize (117)6.9. Context Management [DEPRECATED] (117)cuCtxAttach (117)cuCtxDetach (118)6.10. Module Management (119)cuLinkAddData (119)cuLinkAddFile (120)cuLinkComplete (121)cuLinkCreate (122)cuLinkDestroy (123)cuModuleGetFunction (123)cuModuleGetGlobal (124)cuModuleGetSurfRef (125)cuModuleGetTexRef (125)cuModuleLoad (126)cuModuleLoadData (127)cuModuleLoadDataEx (128)cuModuleLoadFatBinary (129)cuModuleUnload (130)6.11. Memory Management (131)cuArray3DCreate (131)cuArray3DGetDescriptor (134)cuArrayCreate (135)cuArrayGetDescriptor (138)cuArrayGetMemoryRequirements (139)cuArrayGetPlane (140)cuArrayGetSparseProperties (141)cuDeviceGetByPCIBusId (142)cuDeviceGetPCIBusId (142)cuIpcCloseMemHandle (143)cuIpcGetEventHandle (144)cuIpcGetMemHandle (145)cuIpcOpenEventHandle (145)cuIpcOpenMemHandle (146)cuMemAlloc (147)cuMemAllocHost (148)cuMemAllocManaged (149)cuMemAllocPitch (152)cuMemcpy (154)cuMemcpy2D (155)cuMemcpy2DAsync (157)cuMemcpy2DUnaligned (160)cuMemcpy3D (163)cuMemcpy3DAsync (166)cuMemcpy3DPeer (169)cuMemcpy3DPeerAsync (170)cuMemcpyAsync (171)cuMemcpyAtoA (172)cuMemcpyAtoD (173)cuMemcpyAtoH (174)cuMemcpyAtoHAsync (175)cuMemcpyDtoA (177)cuMemcpyDtoD (178)cuMemcpyDtoDAsync (179)cuMemcpyDtoH (180)cuMemcpyDtoHAsync (181)cuMemcpyHtoA (182)cuMemcpyHtoAAsync (183)cuMemcpyHtoD (185)cuMemcpyHtoDAsync (186)cuMemcpyPeerAsync (188)cuMemFree (189)cuMemFreeHost (190)cuMemGetAddressRange (191)cuMemGetInfo (192)cuMemHostAlloc (193)cuMemHostGetDevicePointer (195)cuMemHostGetFlags (196)cuMemHostRegister (197)cuMemHostUnregister (199)cuMemsetD16 (199)cuMemsetD16Async (200)cuMemsetD2D16 (201)cuMemsetD2D16Async (203)cuMemsetD2D32 (204)cuMemsetD2D32Async (205)cuMemsetD2D8 (206)cuMemsetD2D8Async (207)cuMemsetD32 (209)cuMemsetD32Async (210)cuMemsetD8 (211)cuMemsetD8Async (212)cuMipmappedArrayCreate (213)cuMipmappedArrayDestroy (216)cuMipmappedArrayGetLevel (217)cuMipmappedArrayGetMemoryRequirements (218)cuMipmappedArrayGetSparseProperties (219)6.12. Virtual Memory Management (219)cuMemAddressFree (220)cuMemAddressReserve (220)cuMemCreate (221)cuMemExportToShareableHandle (222)cuMemGetAccess (223)cuMemGetAllocationGranularity (224)cuMemGetAllocationPropertiesFromHandle (225)cuMemImportFromShareableHandle (225)cuMemMap (226)cuMemRelease (231)cuMemRetainAllocationHandle (231)cuMemSetAccess (232)cuMemUnmap (233)6.13. Stream Ordered Memory Allocator (234)cuMemAllocAsync (234)cuMemAllocFromPoolAsync (235)cuMemFreeAsync (236)cuMemPoolCreate (237)cuMemPoolDestroy (238)cuMemPoolExportPointer (238)cuMemPoolExportToShareableHandle (239)cuMemPoolGetAccess (240)cuMemPoolGetAttribute (240)cuMemPoolImportFromShareableHandle (242)cuMemPoolImportPointer (243)cuMemPoolSetAccess (244)cuMemPoolSetAttribute (244)cuMemPoolTrimTo (245)6.14. Unified Addressing (246)cuMemAdvise (248)cuMemPrefetchAsync (251)cuMemRangeGetAttribute (253)cuMemRangeGetAttributes (255)cuPointerGetAttribute (256)cuPointerGetAttributes (259)cuPointerSetAttribute (261)6.15. Stream Management (262)cuStreamAddCallback (262)cuStreamAttachMemAsync (264)cuStreamBeginCapture (266)cuStreamCopyAttributes (267)cuStreamCreate (267)cuStreamCreateWithPriority (268)cuStreamDestroy (269)cuStreamEndCapture (270)cuStreamGetAttribute (271)cuStreamGetCaptureInfo_v2 (272)cuStreamGetCtx (274)cuStreamGetFlags (275)cuStreamGetPriority (275)cuStreamIsCapturing (276)cuStreamQuery (277)cuStreamSetAttribute (278)cuStreamSynchronize (278)cuStreamUpdateCaptureDependencies (279)cuStreamWaitEvent (280)cuThreadExchangeStreamCaptureMode (281)6.16. Event Management (282)cuEventCreate (282)cuEventDestroy (283)cuEventElapsedTime (284)cuEventQuery (285)cuEventRecord (286)cuEventRecordWithFlags (287)cuEventSynchronize (288)6.17. External Resource Interoperability (288)cuDestroyExternalMemory (289)cuDestroyExternalSemaphore (289)cuExternalMemoryGetMappedBuffer (290)cuExternalMemoryGetMappedMipmappedArray (291)cuImportExternalMemory (293)cuImportExternalSemaphore (296)cuSignalExternalSemaphoresAsync (299)cuWaitExternalSemaphoresAsync (301)6.18. Stream memory operations (303)cuStreamBatchMemOp (303)cuStreamWaitValue32 (304)cuStreamWaitValue64 (305)cuStreamWriteValue32 (306)cuStreamWriteValue64 (307)6.19. Execution Control (308)cuFuncGetAttribute (308)cuFuncGetModule (310)cuFuncSetCacheConfig (312)cuFuncSetSharedMemConfig (313)cuLaunchCooperativeKernel (314)cuLaunchCooperativeKernelMultiDevice (316)cuLaunchHostFunc (319)cuLaunchKernel (321)6.20. Execution Control [DEPRECATED] (323)cuFuncSetBlockShape (323)cuFuncSetSharedSize (324)cuLaunch (325)cuLaunchGrid (326)cuLaunchGridAsync (327)cuParamSetf (328)cuParamSeti (329)cuParamSetSize (330)cuParamSetTexRef (330)cuParamSetv (331)6.21. Graph Management (332)cuDeviceGetGraphMemAttribute (332)cuDeviceGraphMemTrim (333)cuDeviceSetGraphMemAttribute (333)cuGraphAddChildGraphNode (334)cuGraphAddDependencies (335)cuGraphAddEmptyNode (336)cuGraphAddEventRecordNode (337)cuGraphAddEventWaitNode (338)cuGraphAddExternalSemaphoresSignalNode (339)cuGraphAddExternalSemaphoresWaitNode (341)cuGraphAddHostNode (342)cuGraphAddKernelNode (343)cuGraphAddMemAllocNode (345)cuGraphAddMemcpyNode (347)cuGraphAddMemFreeNode (348)cuGraphAddMemsetNode (350)cuGraphChildGraphNodeGetGraph (351)cuGraphClone (352)cuGraphCreate (352)cuGraphDestroy (354)cuGraphDestroyNode (354)cuGraphEventRecordNodeGetEvent (355)cuGraphEventRecordNodeSetEvent (356)cuGraphEventWaitNodeGetEvent (356)cuGraphEventWaitNodeSetEvent (357)cuGraphExecChildGraphNodeSetParams (358)cuGraphExecDestroy (359)cuGraphExecEventRecordNodeSetEvent (360)cuGraphExecEventWaitNodeSetEvent (361)cuGraphExecExternalSemaphoresSignalNodeSetParams (362)cuGraphExecExternalSemaphoresWaitNodeSetParams (363)cuGraphExecHostNodeSetParams (364)cuGraphExecKernelNodeSetParams (365)cuGraphExecMemcpyNodeSetParams (366)cuGraphExecMemsetNodeSetParams (367)cuGraphExecUpdate (368)cuGraphExternalSemaphoresSignalNodeGetParams (371)cuGraphExternalSemaphoresSignalNodeSetParams (372)cuGraphExternalSemaphoresWaitNodeGetParams (373)cuGraphExternalSemaphoresWaitNodeSetParams (374)cuGraphGetEdges (375)cuGraphGetNodes (376)cuGraphGetRootNodes (376)cuGraphHostNodeGetParams (377)cuGraphHostNodeSetParams (378)cuGraphInstantiate (379)cuGraphInstantiateWithFlags (380)cuGraphKernelNodeCopyAttributes (381)cuGraphKernelNodeGetAttribute (381)cuGraphKernelNodeGetParams (382)cuGraphKernelNodeSetAttribute (383)cuGraphKernelNodeSetParams (384)cuGraphLaunch (384)cuGraphMemAllocNodeGetParams (385)cuGraphMemcpyNodeGetParams (386)cuGraphMemcpyNodeSetParams (387)cuGraphMemsetNodeGetParams (388)cuGraphMemsetNodeSetParams (389)cuGraphNodeFindInClone (390)cuGraphNodeGetDependencies (391)cuGraphNodeGetDependentNodes (392)cuGraphNodeGetEnabled (393)cuGraphNodeGetType (394)cuGraphNodeSetEnabled (394)cuGraphReleaseUserObject (395)cuGraphRemoveDependencies (396)cuGraphRetainUserObject (397)cuGraphUpload (398)cuUserObjectCreate (399)cuUserObjectRelease (400)cuUserObjectRetain (400)6.22. Occupancy (401)cuOccupancyAvailableDynamicSMemPerBlock (401)cuOccupancyMaxActiveBlocksPerMultiprocessor (402)cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags (403)cuOccupancyMaxPotentialBlockSize (404)cuOccupancyMaxPotentialBlockSizeWithFlags (406)6.23. Texture Reference Management [DEPRECATED] (407)cuTexRefCreate (407)cuTexRefDestroy (408)cuTexRefGetAddress (408)cuTexRefGetAddressMode (409)cuTexRefGetArray (410)cuTexRefGetBorderColor (410)cuTexRefGetFilterMode (411)cuTexRefGetFlags (412)cuTexRefGetFormat (412)cuTexRefGetMaxAnisotropy (413)cuTexRefGetMipmapFilterMode (414)cuTexRefGetMipmapLevelBias (414)cuTexRefGetMipmapLevelClamp (415)cuTexRefGetMipmappedArray (416)cuTexRefSetAddress (416)cuTexRefSetAddress2D (417)cuTexRefSetAddressMode (419)cuTexRefSetArray (420)cuTexRefSetBorderColor (420)cuTexRefSetFilterMode (421)cuTexRefSetFlags (422)cuTexRefSetFormat (423)cuTexRefSetMaxAnisotropy (424)cuTexRefSetMipmapFilterMode (424)cuTexRefSetMipmapLevelBias (425)cuTexRefSetMipmapLevelClamp (426)cuTexRefSetMipmappedArray (427)6.24. Surface Reference Management [DEPRECATED] (427)cuSurfRefGetArray (428)cuSurfRefSetArray (428)6.25. Texture Object Management (429)cuTexObjectCreate (429)cuTexObjectDestroy (434)cuTexObjectGetResourceDesc (435)cuTexObjectGetResourceViewDesc (435)cuTexObjectGetTextureDesc (436)6.26. Surface Object Management (436)cuSurfObjectCreate (437)cuSurfObjectDestroy (437)cuSurfObjectGetResourceDesc (438)6.27. Peer Context Memory Access (438)cuCtxDisablePeerAccess (439)cuCtxEnablePeerAccess (439)cuDeviceCanAccessPeer (441)cuDeviceGetP2PAttribute (441)6.28. Graphics Interoperability (442)cuGraphicsMapResources (443)cuGraphicsResourceGetMappedMipmappedArray (444)cuGraphicsResourceGetMappedPointer (445)cuGraphicsResourceSetMapFlags (446)cuGraphicsSubResourceGetMappedArray (447)cuGraphicsUnmapResources (448)cuGraphicsUnregisterResource (449)6.29. Driver Entry Point Access (449)cuGetProcAddress (450)6.30. Profiler Control [DEPRECATED] (451)cuProfilerInitialize (451)6.31. Profiler Control (452)cuProfilerStart (452)cuProfilerStop (453)6.32. OpenGL Interoperability (453)OpenGL Interoperability [DEPRECATED] (453)CUGLDeviceList (453)cuGLGetDevices (454)cuGraphicsGLRegisterBuffer (455)cuGraphicsGLRegisterImage (456)cuWGLGetDevice (458)6.32.1. OpenGL Interoperability [DEPRECATED] (458)CUGLmap_flags (458)cuGLCtxCreate (459)cuGLInit (459)cuGLMapBufferObject (460)cuGLMapBufferObjectAsync (461)cuGLRegisterBufferObject (462)cuGLSetBufferObjectMapFlags (462)cuGLUnmapBufferObject (464)cuGLUnmapBufferObjectAsync (464)cuGLUnregisterBufferObject (465)6.33. VDPAU Interoperability (466)cuGraphicsVDPAURegisterOutputSurface (466)cuGraphicsVDPAURegisterVideoSurface (467)cuVDPAUCtxCreate (468)cuVDPAUGetDevice (469)6.34. EGL Interoperability (470)cuEGLStreamConsumerAcquireFrame (470)cuEGLStreamConsumerConnect (471)cuEGLStreamConsumerConnectWithFlags (472)cuEGLStreamConsumerDisconnect (473)cuEGLStreamConsumerReleaseFrame (473)cuEGLStreamProducerConnect (474)cuEGLStreamProducerDisconnect (475)cuEGLStreamProducerPresentFrame (475)cuEGLStreamProducerReturnFrame (476)cuEventCreateFromEGLSync (477)cuGraphicsEGLRegisterImage (478)cuGraphicsResourceGetMappedEglFrame (479)Chapter 7. Data Structures (481)CUaccessPolicyWindow_v1 (482)base_ptr (482)hitProp (482)hitRatio (482)missProp (482)num_bytes (482)CUarrayMapInfo_v1 (483)deviceBitMask (483)extentDepth (483)extentHeight (483)extentWidth (483)flags (483)layer (483)level (483)memHandleType (483)memOperationType (483)offset (484)offsetX (484)offsetY (484)offsetZ (484)reserved (484)resourceType (484)size (484)subresourceType (484)CUDA_ARRAY3D_DESCRIPTOR_v2 (484)Depth (485)Flags (485)Format (485)Height (485)NumChannels (485)Width (485)CUDA_ARRAY_DESCRIPTOR_v2 (485)Height (486)NumChannels (486)Width (486)CUDA_ARRAY_MEMORY_REQUIREMENTS_v1 (486)alignment (486)size (486)CUDA_ARRAY_SPARSE_PROPERTIES_v1 (486)depth (486)flags (487)height (487)miptailFirstLevel (487)miptailSize (487)width (487)CUDA_EXT_SEM_SIGNAL_NODE_PARAMS_v1 (487)extSemArray (487)numExtSems (488)paramsArray (488)CUDA_EXT_SEM_WAIT_NODE_PARAMS_v1 (488)extSemArray (488)numExtSems (488)paramsArray (488)CUDA_EXTERNAL_MEMORY_BUFFER_DESC_v1 (489)flags (489)offset (489)size (489)CUDA_EXTERNAL_MEMORY_HANDLE_DESC_v1 (489)fd (489)flags (489)handle (490)name (490)nvSciBufObject (490)size (490)type (490)win32 (490)CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC_v1 (491)arrayDesc (491)numLevels (491)CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC_v1 (491)fd (491)flags (492)handle (492)name (492)nvSciSyncObj (492)type (492)win32 (492)CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS_v1 (493)fence (493)fence (493)flags (493)key (493)keyedMutex (494)value (494)CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS_v1 (494)fence (494)flags (494)key (494)keyedMutex (495)nvSciSync (495)timeoutMs (495)value (495)CUDA_HOST_NODE_PARAMS_v1 (495)fn (495)userData (495)CUDA_KERNEL_NODE_PARAMS_v1 (496)blockDimX (496)blockDimY (496)blockDimZ (496)extra (496)func (496)gridDimX (496)gridDimY (496)gridDimZ (497)kernelParams (497)sharedMemBytes (497)CUDA_LAUNCH_PARAMS_v1 (497)blockDimX (497)blockDimY (497)blockDimZ (497)function (497)gridDimX (498)gridDimY (498)gridDimZ (498)hStream (498)kernelParams (498)sharedMemBytes (498)CUDA_MEM_ALLOC_NODE_PARAMS (498)accessDescCount (498)accessDescs (498)bytesize (499)dptr (499)poolProps (499)CUDA_MEMCPY2D_v2 (499)dstArray (499)dstDevice (499)dstHost (499)dstMemoryType (499)dstPitch (499)dstXInBytes (500)dstY (500)Height (500)srcArray (500)srcDevice (500)srcHost (500)srcMemoryType (500)srcPitch (500)srcXInBytes (500)srcY (500)WidthInBytes (501)CUDA_MEMCPY3D_PEER_v1 (501)Depth (501)dstArray (501)dstContext (501)dstHeight (501)dstHost (501)dstLOD (501)dstMemoryType (501)dstPitch (502)dstXInBytes (502)dstY (502)dstZ (502)Height (502)srcArray (502)srcContext (502)srcDevice (502)srcHeight (502)srcHost (502)srcLOD (502)srcMemoryType (503)srcPitch (503)srcXInBytes (503)srcY (503)srcZ (503)WidthInBytes (503)CUDA_MEMCPY3D_v2 (503)Depth (503)dstArray (503)dstDevice (503)dstHeight (504)dstHost (504)dstLOD (504)dstMemoryType (504)dstPitch (504)dstXInBytes (504)dstY (504)dstZ (504)Height (504)reserved0 (504)reserved1 (505)srcArray (505)srcHeight (505)srcHost (505)srcLOD (505)srcMemoryType (505)srcPitch (505)srcXInBytes (505)srcY (505)srcZ (506)WidthInBytes (506)CUDA_MEMSET_NODE_PARAMS_v1 (506)dst (506)elementSize (506)height (506)pitch (506)value (506)width (506)CUDA_POINTER_ATTRIBUTE_P2P_TOKENS_v1 (507)CUDA_RESOURCE_DESC_v1 (507)devPtr (507)flags (507)format (507)hArray (507)height (507)hMipmappedArray (507)numChannels (508)pitchInBytes (508)resType (508)sizeInBytes (508)width (508)CUDA_RESOURCE_VIEW_DESC_v1 (508)depth (508)firstLayer (508)firstMipmapLevel (509)format (509)height (509)lastLayer (509)lastMipmapLevel (509)CUDA_TEXTURE_DESC_v1 (509)addressMode (509)borderColor (510)filterMode (510)flags (510)maxAnisotropy (510)maxMipmapLevelClamp (510)minMipmapLevelClamp (510)mipmapFilterMode (510)mipmapLevelBias (510)CUdevprop_v1 (510)clockRate (511)maxGridSize (511)maxThreadsDim (511)maxThreadsPerBlock (511)memPitch (511)regsPerBlock (511)sharedMemPerBlock (511)SIMDWidth (511)textureAlign (511)totalConstantMemory (511)CUeglFrame_v1 (512)cuFormat (512)depth (512)eglColorFormat (512)frameType (512)height (512)numChannels (512)pArray (512)pitch (512)planeCount (512)pPitch (513)width (513)CUexecAffinityParam_v1 (513)CUexecAffinitySmCount_v1 (513)val (513)CUipcEventHandle_v1 (513)CUkernelNodeAttrValue_v1 (514)accessPolicyWindow (514)cooperative (514)CUmemAccessDesc_v1 (514)flags (514)location (514)CUmemAllocationProp_v1 (514)compressionType (515)location (515)requestedHandleTypes (515)type (515)usage (515)win32HandleMetaData (515)CUmemLocation_v1 (516)id (516)type (516)CUmemPoolProps_v1 (516)allocType (516)handleTypes (516)location (516)reserved (516)win32SecurityAttributes (517)CUmemPoolPtrExportData_v1 (517)CUstreamAttrValue_v1 (517)accessPolicyWindow (517)syncPolicy (517)CUstreamBatchMemOpParams_v1 (517)Chapter 8. Data Fields (518)Chapter 9. Deprecated List (529)Chapter 1.Difference between thedriver and runtime APIsThe driver and runtime APIs are very similar and can for the most part be used interchangeably. However, there are some key differences worth noting between the two. Complexity vs. controlThe runtime API eases device code management by providing implicit initialization, context management, and module management. This leads to simpler code, but it also lacks the level of control that the driver API has.In comparison, the driver API offers more fine-grained control, especially over contexts and module loading. Kernel launches are much more complex to implement, as the execution configuration and kernel parameters must be specified with explicit function calls. However, unlike the runtime, where all the kernels are automatically loaded during initialization and stay loaded for as long as the program runs, with the driver API it is possible to only keep the modules that are currently needed loaded, or even dynamically reload modules. The driver API is also language-independent as it only deals with cubin objects.Context managementContext management can be done through the driver API, but is not exposed in the runtime API. Instead, the runtime API decides itself which context to use for a thread: if a context has been made current to the calling thread through the driver API, the runtime will use that, but if there is no such context, it uses a "primary context." Primary contexts are created as needed, one per device per process, are reference-counted, and are then destroyed when there areno more references to them. Within one process, all users of the runtime API will share the primary context, unless a context has been made current to each thread. The context thatthe runtime uses, i.e, either the current context or primary context, can be synchronized with cudaDeviceSynchronize(), and destroyed with cudaDeviceReset().Using the runtime API with primary contexts has its tradeoffs, however. It can cause trouble for users writing plug-ins for larger software packages, for example, because if all plug-ins run in the same process, they will all share a context but will likely have no way to communicate with each other. So, if one of them calls cudaDeviceReset() after finishing all its CUDA work, the other plug-ins will fail because the context they were using was destroyedDifference between the driver and runtime APIs without their knowledge. To avoid this issue, CUDA clients can use the driver API to create and set the current context, and then use the runtime API to work with it. However, contexts may consume significant resources, such as device memory, extra host threads, and performance costs of context switching on the device. This runtime-driver context sharing is important when using the driver API in conjunction with libraries built on the runtime API, such as cuBLAS or cuFFT.Chapter 2.API synchronizationbehaviorThe API provides memcpy/memset functions in both synchronous and asynchronous forms, the latter having an "Async" suffix. This is a misnomer as each function may exhibit synchronous or asynchronous behavior depending on the arguments passed to the function. MemcpyIn the reference documentation, each memcpy function is categorized as synchronous or asynchronous, corresponding to the definitions below.Synchronous1.All transfers involving Unified Memory regions are fully synchronous with respect to thehost.2.For transfers from pageable host memory to device memory, a stream sync is performedbefore the copy is initiated. The function will return once the pageable buffer has been copied to the staging memory for DMA transfer to device memory, but the DMA to final destination may not have completed.3.For transfers from pinned host memory to device memory, the function is synchronouswith respect to the host.4.For transfers from device to either pageable or pinned host memory, the function returnsonly once the copy has completed.5.For transfers from device memory to device memory, no host-side synchronization isperformed.6.For transfers from any host memory to any host memory, the function is fully synchronouswith respect to the host.Asynchronous1.For transfers from device memory to pageable host memory, the function will return onlyonce the copy has completed.。
cuda中文手册
cuda中文手册摘要:1.CUDA 简介2.CUDA 安装与配置3.CUDA 编程模型4.CUDA 应用实例5.CUDA 性能优化正文:一、CUDA 简介CUDA(Compute Unified Device Architecture)是NVIDIA 推出的一种通用并行计算架构,旨在利用GPU 的强大计算能力进行高性能计算。
CUDA 允许开发人员使用NVIDIA 的GPU 进行数据处理和算法加速,特别是在深度学习、科学计算和图形处理等领域具有广泛应用。
二、CUDA 安装与配置1.硬件要求:CUDA 支持NVIDIA 的GPU,因此需要一台配备NVIDIA GPU 的计算机。
2.软件安装:从NVIDIA 官网下载CUDA Toolkit,根据操作系统和GPU 版本选择合适的版本进行安装。
3.配置环境变量:将CUDA 安装路径添加到环境变量中,以便在编程时能够正确识别CUDA 库。
4.安装CUDA 驱动:确保GPU 驱动安装正确,以便CUDA 能够正常工作。
三、CUDA 编程模型CUDA 提供了一种基于NVIDIA GPU 的并行计算模型,主要包含以下几个方面:1.主从线程模型:CUDA 将GPU 视为一个多线程处理器,每个线程可以执行一个CUDA kernel。
2.内存层次结构:CUDA 具有不同的内存层次结构,包括全局内存、共享内存和常量内存。
3.数据传输:CUDA 提供了多种数据传输方式,如高速缓存、DMA 和PCIe 等。
四、CUDA 应用实例CUDA 在多个领域有广泛应用,例如:1.深度学习:使用CUDA 进行GPU 加速的深度学习训练和推理。
2.科学计算:利用CUDA 进行高效的矩阵运算、线性代数计算等。
3.图形处理:使用CUDA 进行实时光线追踪、阴影生成等高级图形处理。
五、CUDA 性能优化为了提高CUDA 程序的性能,可以采取以下措施:1.使用合适的GPU:根据计算需求选择具有足够计算能力的GPU。
cuda中文手册
cuda中文手册
CUDA中文手册(CUDA中文手册【原创版】)包括以下内容:
1. CUDA 概述:CUDA 是 NVIDIA 推出的一种通用并行计算架构,旨在利用 NVIDIA GPU 进行高性能计算。
2. CUDA 安装与配置:介绍如何安装和配置 CUDA,以便在 NVIDIA GPU 上运行并行计算。
3. CUDA 编程模型:介绍 CUDA 的编程模型,包括线程块、线程和共享内存等概念。
4. CUDA 内存管理:介绍 CUDA 中的内存类型和内存管理机制。
5. CUDA 线程组织:介绍 CUDA 中的线程组织方式和线程同步机制。
6. CUDA 性能优化:介绍如何优化 CUDA 程序的性能,包括减少内存访问延迟、提高并行度等。
7. CUDA 应用实例:介绍一些 CUDA 的应用实例,包括科学计算、图像处理等领域。
总的来说,CUDA 中文手册是全面介绍 CUDA 的中文资料,可以帮助开发者更好地理解和使用 CUDA,提高程序的性能和效率。
cuda中文手册
cuda中文手册摘要:一、CUDA简介1.NVIDIA GPU架构2.CUDA的定义与作用3.支持CUDA的GPU型号二、CUDA编程模型1.并行计算的基本概念2.CUDA线程与网格3.块与网格的层次结构三、CUDA核心功能1.核函数2.设备变量与内存管理3.同步与通信四、CUDA应用案例1.图像处理与计算机视觉2.数值计算与科学模拟3.深度学习与人工智能五、CUDA性能优化1.性能评估与调试2.存储器带宽与容量的影响3.负载均衡与调度策略六、CUDA发展趋势1.平台的扩展与支持2.社区与生态系统的建设3.跨学科研究与创新正文:CUDA(Compute Unified Device Architecture)是NVIDIA推出的一种通用并行计算架构,专为NVIDIA GPU设计。
它允许开发人员利用NVIDIA GPU进行高性能计算,广泛应用于图像处理、计算机视觉、数值计算、科学模拟以及深度学习等领域。
一、CUDA简介VIDIA GPU架构是CUDA的基础,强大的并行计算能力使得GPU不再局限于图形处理。
CUDA是一种用于并行计算的编程模型,通过C、C++和Fortran等编程语言,开发人员可以轻松地利用GPU资源进行高性能计算。
目前,支持CUDA的GPU型号包括Kepler、Maxwell、Pascal、Volta等。
二、CUDA编程模型CUDA编程模型基于并行计算的基本概念,将GPU划分为多个线程和网格。
线程是CUDA的基本执行单元,网格则是由多个线程组成的二维或三维数组。
块与网格的层次结构使得CUDA能够实现灵活的并行控制与负载调度。
三、CUDA核心功能CUDA的核心功能包括核函数、设备变量与内存管理、同步与通信。
核函数是运行在GPU上的函数,用于实现高度并行的计算任务。
设备变量与内存管理提供了GPU内存的分配、访问与释放等功能。
同步与通信则负责协调多线程之间的执行顺序与数据交换。
四、CUDA应用案例CUDA在多个领域都有广泛的应用。
2a==Introduction_to_CUDA_Platform
© NVIDIA 2013
Start Now with OpenACC Directives
Sign up for a free trial of the directives compiler now!
Introduction to the CUDA Platform
CUDA Parallel Computing Platform
/getcuda
Programming Approaches
Libraries
“Drop-in” Acceleration
OpenACC Directives
Compiler Parallelizes code
OpenACC compiler Hint
Works on many-core GPUs & multicore CPUs
Your original Fortran or C code
© NVIDIA 2013
OpenACC
The Standard for GPU Directives
Hardware Capabilities
© NVIDIA 2013
3 Ways to Accelerate Applications
Applications
OpenACC Directives
Easily Accelerate Applications
Libraries
“Drop-in” Acceleration
// generate 32M random numbers on host thrust::host_vector<int> h_vec(32 << 20);// 33554432 i.e.,2^25 thrust::generate(h_vec.begin(), h_vec.end(), rand); // transfer data to device (GPU) thrust::device_vector<int> d_vec = h_vec;
【CUDA】CUDAC入门、简单介绍
【CUDA】CUDAC⼊门、简单介绍CUDA编程注意事项CUDA中不能在主机代码中对cudaMalloc()返回的指针进⾏解引⽤。
1. 可以将cudaMalloc()分配的指针传递给在设备上执⾏的函数。
2. 可以在设备代码中使⽤cudaMalloc()分配的指针进⾏内存读/写操作。
3. 可以将cudaMalloc()分配的指针传递给在主机上执⾏的函数。
4. 不能在主机代码中使⽤cudaMalloc()分配的指针进⾏内存读/写操作。
CUDA运⾏模式1. CPU传给GPU数据2. GPU计算3. GPU传给CPU结果详细⼀点:1. 给GPU设备分配内存cudaMalloc((void**)&dev_input, sizeof(int)));cudaMalloc((void**)&dev_result, sizeof(int)));2. 在CPU上为输⼊变量赋初值 input3. CPU将输⼊变量传递给GPUcudaMemcpy(dev_input, input, sizeof(int), cudaMemcpyHostToDevice);4. GPU对输⼊变量进⾏并⾏计算——核函数kernel_function<<<N,1>>>(dev_input, dev_result);其中,N表⽰设备在执⾏核函数时使⽤的并⾏线程块的数量。
例如,若指定的事kernel<<<2,1>>>(),那么可以认为运⾏时将创建核函数的两个副本并且并⾏⽅式运⾏。
每个并⾏执⾏环境就是⼀个线程块(Block)。
⽽所有的并⾏线程块集合称为⼀个线程格(Grid)。
另外注意,线程块数组每⼀维的最⼤数量都不能超过65535。
问题:如果在代码中知晓正在运⾏的是哪个线程块?答:利⽤内置变量blockIdx(⼆维索引)。
例如:int tid = blockIdx.x; //计算位于这个索引处的数据。
CUDA基本介绍
CUDA基本介绍CUDA的出现源于对传统CPU计算能力的限制。
在传统的串行计算模式下,CPU只能执行一个指令,一个时钟周期只能执行一个操作数。
随着计算需求的增加,CPU的计算性能逐渐达到瓶颈。
而GPU拥有大量的计算核心,可以并行执行大量的计算任务,提供了与CPU不同的计算模式。
CUDA利用GPU的并行计算能力,为开发人员提供了更高的计算性能和自由度。
CUDA的核心编程模型是将计算任务分解成多个线程,并交由GPU进行并行计算。
开发人员可以使用CUDA编程模型中的线程层次结构,将线程组织成线程块(block)和线程网格(grid),并根据应用的需求将任务分配给GPU执行。
每个线程都有自己的ID,可以执行独立的计算任务。
线程块是线程的集合,可以同步和共享数据。
线程网格则由多个线程块组成,可以分配和管理线程块的执行。
CUDA提供了一套丰富的编程接口和库,开发人员可以使用C、C++、Fortran等语言来编写CUDA程序。
CUDA的编程接口负责管理GPU资源、数据传输和计算任务的调度。
开发人员可以通过编写CUDA核函数,将需要大量计算的任务分配给GPU执行。
在CUDA核函数中,开发人员可以使用NVIDIA提供的GPU并行计算指令集(SIMD指令集)来执行计算任务。
此外,CUDA还提供了一些常用的数学和向量运算库,如cuBLAS、cuFFT和cuDNN,方便开发人员进行科学计算、信号处理和深度学习等应用。
CUDA的应用范围十分广泛。
首先,CUDA适用于各种科学计算和数字信号处理应用。
CUDA可以加速矩阵运算、信号滤波、图像处理等任务,提高计算速度和效率。
其次,CUDA也适用于机器学习和深度学习领域。
利用GPU的并行计算能力,CUDA可以加速神经网络的训练和推断过程,加快模型的收敛速度。
此外,CUDA还可以用于虚拟现实(VR)和游戏领域,高性能的图像处理能力可以提供更流畅和真实的视觉效果。
总之,CUDA是一种高效的并行计算平台和应用编程接口,为开发人员提供了利用GPU进行通用目的的并行计算的能力。
CUDAIntroduction.ppt
• 但程式設計師在利用CUDA技術時,須分開三種不同的記憶體,要面對繁複的 執行緒層次,編譯器亦無法自動完成多數任務,以上問題就提高了開發難度。 而將來的G100會採用第二代的CUDA技術,提高效率,降低開發難度。
通用的平行運算架構
• nVIDIA在2006年11月提出了CUDA™的架構,這是一個通用的平行運算架構, 擁有一個全新的平行運算編程模型以及指令集架構,它使得nVIDIA GPU能夠 比CPU更有效率的去解決許多複雜的問題。
• CUDA提供開發者基於像是C這樣一個高階語言的軟件環境來進行開發,也允 許其他的高階語言,例如,CUDA Fortran、OpenCL和DirectCompute等等。示 意圖如下:
概要
• 以GeForce 8800 GTX為例,其核心擁有128個內處理器。利用CUDA技術,就可 以將那些內處理器串通起來,成為執行緒處理器去解決資料密集的計算。而 各個內處理器能夠交換、同步和共享資料。利用NVIDIA的C-編譯器,通過驅 動程式,就能利用這些功能。亦能成為流處理器,讓應用程式利用進行運算。
• 物理加速
– 在NVIDIA收購AGEIA後,NVIDIA取得相關的物理加速技術,即是PhysX物理引擎。配合CUDA技 術,顯示卡可以模擬成一顆PhysX物理加速晶片。目前,全系列的GeForce 8顯示核心都支援 CUDA。而NVIDIA亦不會再推出任何的物理加速卡,顯示卡將會取代相關產品。
• 為了將CUDA推向民用,NVIDIA會舉行一系列的編程比賽,要求參賽者開發程 式,充分利用CUDA的計算潛能。但是,要將GPGPU普及化,還要看微軟能否 在Windows作業系統中,提供相關的編程介面。(註: 在2008年8月,NVIDIA推 出了CUDA 2.0。)
CUDA C++ 编程指南版本12.0 NVIDIA 2023年2月21日说明书
Just-in-Time Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 Binary Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Heterogeneous Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.1 Compilation Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Offline Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.8 Asynchronous Concurrent Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Concurrent Execution between Host and Device . . . . . . . . . . . . . . . . . . . . . 46 Concurrent Kernel Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Overlap of Data Transfer and Kernel Execution . . . . . . . . . . . . . . . . . . . . . . 47 Concurrent Data Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Creation and Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Default Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Explicit Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Implicit Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Overlapping Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Host Functions (Callbacks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Stream Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Programmatic Dependent Launch and Synchronization . . . . . . . . . . . . . . . . . 51 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 API Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 CUDA Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Graph Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Creating a Graph Using Graph APIs . . . . . . . . . . . . . . . . . . . . . . . . . 55 Creating a Graph Using Stream Capture . . . . . . . . . . . . . . . . . . . . . . 56 Updating Instantiated Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Using Graph APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Device Graph Launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Creation and Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Elapsed Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Synchronous Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
CUDA C++编程指南设计指南说明书
Design GuideChanges from Version 11.0‣Added documentation for Compute Capability 8.x.‣Updated section Arithmetic Instructions for compute capability 8.6.‣Updated section Features and Technical Specifications for compute capability 8.6.Table of Contents Chapter 1. Introduction (1)1.1. The Benefits of Using GPUs (1)1.2. CUDA®: A General-Purpose Parallel Computing Platform and Programming Model (2)1.3. A Scalable Programming Model (3)1.4. Document Structure (5)Chapter 2. Programming Model (7)2.1. Kernels (7)2.2. Thread Hierarchy (8)2.3. Memory Hierarchy (10)2.4. Heterogeneous Programming (11)2.5. Compute Capability (14)Chapter 3. Programming Interface (15)3.1. Compilation with NVCC (15)3.1.1. Compilation Workflow (16)3.1.1.1. Offline Compilation (16)3.1.1.2. Just-in-Time Compilation (16)3.1.2. Binary Compatibility (17)3.1.3. PTX Compatibility (17)3.1.4. Application Compatibility (17)3.1.5. C++ Compatibility (18)3.1.6. 64-Bit Compatibility (18)3.2. CUDA Runtime (19)3.2.1. Initialization (19)3.2.2. Device Memory (20)3.2.3. Device Memory L2 Access Management (23)3.2.3.1. L2 cache Set-Aside for Persisting Accesses (23)3.2.3.2. L2 Policy for Persisting Accesses (23)3.2.3.3. L2 Access Properties (25)3.2.3.4. L2 Persistence Example (25)3.2.3.5. Reset L2 Access to Normal (26)3.2.3.6. Manage Utilization of L2 set-aside cache (27)3.2.3.7. Query L2 cache Properties (27)3.2.3.8. Control L2 Cache Set-Aside Size for Persisting Memory Access (27)3.2.4. Shared Memory (27)3.2.5. Page-Locked Host Memory (33)3.2.5.1. Portable Memory (33)3.2.5.2. Write-Combining Memory (33)3.2.5.3. Mapped Memory (34)3.2.6. Asynchronous Concurrent Execution (35)3.2.6.1. Concurrent Execution between Host and Device (35)3.2.6.2. Concurrent Kernel Execution (35)3.2.6.3. Overlap of Data Transfer and Kernel Execution (36)3.2.6.4. Concurrent Data Transfers (36)3.2.6.5. Streams (36)3.2.6.6. CUDA Graphs (40)3.2.6.7. Events (48)3.2.6.8. Synchronous Calls (49)3.2.7. Multi-Device System (49)3.2.7.1. Device Enumeration (49)3.2.7.2. Device Selection (50)3.2.7.3. Stream and Event Behavior (50)3.2.7.4. Peer-to-Peer Memory Access (51)3.2.7.5. Peer-to-Peer Memory Copy (51)3.2.8. Unified Virtual Address Space (52)3.2.9. Interprocess Communication (52)3.2.10. Error Checking (53)3.2.11. Call Stack (54)3.2.12. Texture and Surface Memory (54)3.2.12.1. Texture Memory (54)3.2.12.2. Surface Memory (63)3.2.12.3. CUDA Arrays (66)3.2.12.4. Read/Write Coherency (66)3.2.13. Graphics Interoperability (66)3.2.13.1. OpenGL Interoperability (67)3.2.13.2. Direct3D Interoperability (69)3.2.13.3. SLI Interoperability (74)3.2.14. External Resource Interoperability (75)3.2.14.1. Vulkan Interoperability (75)3.2.14.2. OpenGL Interoperability (83)3.2.14.3. Direct3D 12 Interoperability (83)3.2.14.4. Direct3D 11 Interoperability (89)3.2.14.5. NVIDIA Software Communication Interface Interoperability (NVSCI) (96)3.3. Versioning and Compatibility (100)3.5. Mode Switches (102)3.6. Tesla Compute Cluster Mode for Windows (103)Chapter 4. Hardware Implementation (104)4.1. SIMT Architecture (104)4.2. Hardware Multithreading (106)Chapter 5. Performance Guidelines (107)5.1. Overall Performance Optimization Strategies (107)5.2. Maximize Utilization (107)5.2.1. Application Level (107)5.2.2. Device Level (108)5.2.3. Multiprocessor Level (108)5.2.3.1. Occupancy Calculator (110)5.3. Maximize Memory Throughput (111)5.3.1. Data Transfer between Host and Device (112)5.3.2. Device Memory Accesses (113)5.4. Maximize Instruction Throughput (117)5.4.1. Arithmetic Instructions (117)5.4.2. Control Flow Instructions (122)5.4.3. Synchronization Instruction (123)Appendix A. CUDA-Enabled GPUs (124)Appendix B. C++ Language Extensions (125)B.1. Function Execution Space Specifiers (125)B.1.1. __global__ (125)B.1.2. __device__ (125)B.1.3. __host__ (125)B.1.4. Undefined behavior (126)B.1.5. __noinline__ and __forceinline__ (126)B.2. Variable Memory Space Specifiers (127)B.2.1. __device__ (127)B.2.2. __constant__ (127)B.2.3. __shared__ (127)B.2.4. __managed__ (128)B.2.5. __restrict__ (128)B.3. Built-in Vector Types (130)B.3.1. char, short, int, long, longlong, float, double (130)B.3.2. dim3 (131)B.4.1. gridDim (131)B.4.2. blockIdx (131)B.4.3. blockDim (131)B.4.4. threadIdx (131)B.4.5. warpSize (132)B.5. Memory Fence Functions (132)B.6. Synchronization Functions (134)B.7. Mathematical Functions (135)B.8. Texture Functions (136)B.8.1. Texture Object API (136)B.8.1.1. tex1Dfetch() (136)B.8.1.2. tex1D() (136)B.8.1.3. tex1DLod() (136)B.8.1.4. tex1DGrad() (136)B.8.1.5. tex2D() (136)B.8.1.6. tex2DLod() (137)B.8.1.7. tex2DGrad() (137)B.8.1.8. tex3D() (137)B.8.1.9. tex3DLod() (137)B.8.1.10. tex3DGrad() (137)B.8.1.11. tex1DLayered() (137)B.8.1.12. tex1DLayeredLod() (137)B.8.1.13. tex1DLayeredGrad() (138)B.8.1.14. tex2DLayered() (138)B.8.1.15. tex2DLayeredLod() (138)B.8.1.16. tex2DLayeredGrad() (138)B.8.1.17. texCubemap() (138)B.8.1.18. texCubemapLod() (138)B.8.1.19. texCubemapLayered() (139)B.8.1.20. texCubemapLayeredLod() (139)B.8.1.21. tex2Dgather() (139)B.8.2. Texture Reference API (139)B.8.2.1. tex1Dfetch() (139)B.8.2.2. tex1D() (140)B.8.2.3. tex1DLod() (140)B.8.2.4. tex1DGrad() (140)B.8.2.5. tex2D() (140)B.8.2.7. tex2DGrad() (141)B.8.2.8. tex3D() (141)B.8.2.9. tex3DLod() (141)B.8.2.10. tex3DGrad() (141)B.8.2.11. tex1DLayered() (142)B.8.2.12. tex1DLayeredLod() (142)B.8.2.13. tex1DLayeredGrad() (142)B.8.2.14. tex2DLayered() (142)B.8.2.15. tex2DLayeredLod() (143)B.8.2.16. tex2DLayeredGrad() (143)B.8.2.17. texCubemap() (143)B.8.2.18. texCubemapLod() (143)B.8.2.19. texCubemapLayered() (143)B.8.2.20. texCubemapLayeredLod() (144)B.8.2.21. tex2Dgather() (144)B.9. Surface Functions (144)B.9.1. Surface Object API (145)B.9.1.1. surf1Dread() (145)B.9.1.2. surf1Dwrite (145)B.9.1.3. surf2Dread() (145)B.9.1.4. surf2Dwrite() (145)B.9.1.5. surf3Dread() (145)B.9.1.6. surf3Dwrite() (146)B.9.1.7. surf1DLayeredread() (146)B.9.1.8. surf1DLayeredwrite() (146)B.9.1.9. surf2DLayeredread() (146)B.9.1.10. surf2DLayeredwrite() (146)B.9.1.11. surfCubemapread() (147)B.9.1.12. surfCubemapwrite() (147)B.9.1.13. surfCubemapLayeredread() (147)B.9.1.14. surfCubemapLayeredwrite() (147)B.9.2. Surface Reference API (148)B.9.2.1. surf1Dread() (148)B.9.2.2. surf1Dwrite (148)B.9.2.3. surf2Dread() (148)B.9.2.4. surf2Dwrite() (148)B.9.2.5. surf3Dread() (148)B.9.2.7. surf1DLayeredread() (149)B.9.2.8. surf1DLayeredwrite() (149)B.9.2.9. surf2DLayeredread() (149)B.9.2.10. surf2DLayeredwrite() (150)B.9.2.11. surfCubemapread() (150)B.9.2.12. surfCubemapwrite() (150)B.9.2.13. surfCubemapLayeredread() (150)B.9.2.14. surfCubemapLayeredwrite() (150)B.10. Read-Only Data Cache Load Function (151)B.11. Load Functions Using Cache Hints (151)B.12. Store Functions Using Cache Hints (151)B.13. Time Function (152)B.14. Atomic Functions (152)B.14.1. Arithmetic Functions (153)B.14.1.1. atomicAdd() (153)B.14.1.2. atomicSub() (154)B.14.1.3. atomicExch() (154)B.14.1.4. atomicMin() (154)B.14.1.5. atomicMax() (155)B.14.1.6. atomicInc() (155)B.14.1.7. atomicDec() (155)B.14.1.8. atomicCAS() (155)B.14.2. Bitwise Functions (156)B.14.2.1. atomicAnd() (156)B.14.2.2. atomicOr() (156)B.14.2.3. atomicXor() (156)B.15. Address Space Predicate Functions (157)B.15.1. __isGlobal() (157)B.15.2. __isShared() (157)B.15.3. __isConstant() (157)B.15.4. __isLocal() (157)B.16. Address Space Conversion Functions (157)B.16.1. __cvta_generic_to_global() (157)B.16.2. __cvta_generic_to_shared() (157)B.16.3. __cvta_generic_to_constant() (158)B.16.4. __cvta_generic_to_local() (158)B.16.5. __cvta_global_to_generic() (158)B.16.7. __cvta_constant_to_generic() (158)B.16.8. __cvta_local_to_generic() (158)B.17. Compiler Optimization Hint Functions (158)B.17.1. __builtin_assume_aligned() (158)B.17.2. __builtin_assume() (159)B.17.3. __assume() (159)B.17.4. __builtin_expect() (159)B.17.5. Restrictions (160)B.18. Warp Vote Functions (160)B.19. Warp Match Functions (161)B.19.1. Synopsys (161)B.19.2. Description (161)B.20. Warp Reduce Functions (162)B.20.1. Synopsys (162)B.20.2. Description (162)B.21. Warp Shuffle Functions (162)B.21.1. Synopsis (163)B.21.2. Description (163)B.21.3. Notes (164)B.21.4. Examples (164)B.21.4.1. Broadcast of a single value across a warp (164)B.21.4.2. Inclusive plus-scan across sub-partitions of 8 threads (165)B.21.4.3. Reduction across a warp (165)B.22. Nanosleep Function (166)B.22.1. Synopsis (166)B.22.2. Description (166)B.22.3. Example (166)B.23. Warp matrix functions (166)B.23.1. Description (166)B.23.2. Alternate Floating Point (169)B.23.3. Double Precision (169)B.23.4. Sub-byte Operations (169)B.23.5. Restrictions (170)B.23.6. Element Types & Matrix Sizes (171)B.23.7. Example (172)B.24. Split Arrive/Wait Barrier (173)B.24.1. Simple Synchronization Pattern (173)B.24.2. Temporal Splitting and Five Stages of Synchronization (173)B.24.3. Bootstrap Initialization, Expected Arrive Count, and Participation (174)B.24.4. Countdown, Complete, Reset, and Phase (175)B.24.5. Countdown to a Collective Operation (175)B.24.6. Spatial Partitioning (also known as Warp Specialization) (176)B.24.7. Early Exit (Dropping out of Participation) (178)B.24.8. AWBarrier Interface (179)B.24.8.1. Synopsis of cuda_awbarrier.h (179)B.24.8.2. Initialize (179)B.24.8.3. Invalidate (180)B.24.8.4. Arrive (180)B.24.8.5. Wait (180)B.24.8.6. Automatic Reset (180)B.24.8.7. Arrive and Drop (181)B.24.8.8. Pending Count (181)B.24.9. Memory Barrier Primitives Interface (181)B.24.9.1. Data Types (181)B.24.9.2. Memory Barrier Primitives API (181)B.25. Asynchronously Copy Data from Global to Shared Memory (182)B.25.1. Copy and Compute Pattern (183)B.25.1.1. Without Async-Copy (183)B.25.1.2. With Async-Copy (184)B.25.1.3. Async-Copy Pipeline Pattern (185)B.25.1.4. Async-Copy Pipeline Pattern using Split Arrive/Wait Barrier (187)B.25.2. Performance Guidance for Async-Copy (188)B.25.2.1. Warp Entanglement - Commit (188)B.25.2.2. Warp Entanglement - Wait (189)B.25.2.3. Warp Entanglement - Arrive-On (189)B.25.2.4. Keep Commit and Arrive-On Operations Converged (189)B.25.3. Pipeline Interface (190)B.25.3.1. Async-Copy an Object (190)B.25.3.2. Async-Copy an Array Segment (190)B.25.3.3. Construct Pipeline Object (191)B.25.3.4. Commit and Wait for Batch of Async-Copy (191)B.25.3.5. Commit Batch of Async-Copy (191)B.25.3.6. Wait for Committed Batches of Async-Copy (191)B.25.3.7. Wait for Committed Batches of Async-Copy by Index (192)B.25.3.8. Complete as an Arrive Operation (192)B.25.4. Pipeline Primitives Interface (192)B.25.4.1. Async-Copy Primitive (192)B.25.4.2. Commit Primitive (193)B.25.4.3. Wait Primitive (193)B.25.4.4. Arrive On Barrier Primitive (193)B.26. Profiler Counter Function (194)B.27. Assertion (194)B.28. Trap function (195)B.29. Breakpoint Function (195)B.30. Formatted Output (195)B.30.1. Format Specifiers (196)B.30.2. Limitations (196)B.30.3. Associated Host-Side API (197)B.30.4. Examples (197)B.31. Dynamic Global Memory Allocation and Operations (198)B.31.1. Heap Memory Allocation (199)B.31.2. Interoperability with Host Memory API (200)B.31.3. Examples (200)B.31.3.1. Per Thread Allocation (200)B.31.3.2. Per Thread Block Allocation (200)B.31.3.3. Allocation Persisting Between Kernel Launches (201)B.32. Execution Configuration (202)B.33. Launch Bounds (203)B.34. #pragma unroll (205)B.35. SIMD Video Instructions (206)Appendix C. Cooperative Groups (208)C.1. Introduction (208)C.2. What's New in CUDA 11.0 (208)C.3. Programming Model Concept (209)C.3.1. Composition Example (210)C.4. Group Types (210)C.4.1. Implicit Groups (210)C.4.1.1. Thread Block Group (211)C.4.1.2. Grid Group (212)C.4.1.3. Multi Grid Group (212)C.4.2. Explicit Groups (213)C.4.2.1. Thread Block Tile (213)C.4.2.2. Coalesced Groups (215)C.6. Group Collectives (219)C.6.1. Synchronization (219)C.6.2. Data Transfer (219)C.6.3. Data manipulation (221)C.7. Grid Synchronization (223)C.8. Multi-Device Synchronization (225)Appendix D. CUDA Dynamic Parallelism (227)D.1. Introduction (227)D.1.1. Overview (227)D.1.2. Glossary (227)D.2. Execution Environment and Memory Model (228)D.2.1. Execution Environment (228)D.2.1.1. Parent and Child Grids (228)D.2.1.2. Scope of CUDA Primitives (229)D.2.1.3. Synchronization (229)D.2.1.4. Streams and Events (229)D.2.1.5. Ordering and Concurrency (230)D.2.1.6. Device Management (230)D.2.2. Memory Model (230)D.2.2.1. Coherence and Consistency (231)D.3. Programming Interface (233)D.3.1. CUDA C++ Reference (233)D.3.1.1. Device-Side Kernel Launch (233)D.3.1.2. Streams (234)D.3.1.3. Events (234)D.3.1.4. Synchronization (235)D.3.1.5. Device Management (235)D.3.1.6. Memory Declarations (235)D.3.1.7. API Errors and Launch Failures (237)D.3.1.8. API Reference (238)D.3.2. Device-side Launch from PTX (239)D.3.2.1. Kernel Launch APIs (239)D.3.2.2. Parameter Buffer Layout (240)D.3.3. Toolkit Support for Dynamic Parallelism (241)D.3.3.1. Including Device Runtime API in CUDA Code (241)D.3.3.2. Compiling and Linking (241)D.4. Programming Guidelines (241)D.4.2. Performance (242)D.4.2.1. Synchronization (242)D.4.2.2. Dynamic-parallelism-enabled Kernel Overhead (242)D.4.3. Implementation Restrictions and Limitations (243)D.4.3.1. Runtime (243)Appendix E. Virtual Memory Management (246)E.1. Introduction (246)E.2. Query for support (247)E.3. Allocating Physical Memory (247)E.3.1. Shareable Memory Allocations (248)E.3.2. Memory Type (249)E.3.2.1. Compressible Memory (249)E.4. Reserving a Virtual Address Range (250)E.5. Mapping Memory (250)E.6. Control Access Rights (251)Appendix F. Mathematical Functions (252)F.1. Standard Functions (252)F.2. Intrinsic Functions (259)Appendix G. C++ Language Support (263)G.1. C++11 Language Features (263)G.2. C++14 Language Features (266)G.3. C++17 Language Features (266)G.4. Restrictions (266)G.4.1. Host Compiler Extensions (266)G.4.2. Preprocessor Symbols (267)G.4.2.1. __CUDA_ARCH__ (267)G.4.3. Qualifiers (268)G.4.3.1. Device Memory Space Specifiers (268)G.4.3.2. __managed__ Memory Space Specifier (269)G.4.3.3. Volatile Qualifier (271)G.4.4. Pointers (271)G.4.5. Operators (271)G.4.5.1. Assignment Operator (271)G.4.5.2. Address Operator (271)G.4.6. Run Time Type Information (RTTI) (271)G.4.7. Exception Handling (272)G.4.8. Standard Library (272)G.4.9.1. External Linkage (272)G.4.9.2. Implicitly-declared and explicitly-defaulted functions (272)G.4.9.3. Function Parameters (273)G.4.9.4. Static Variables within Function (273)G.4.9.5. Function Pointers (274)G.4.9.6. Function Recursion (274)G.4.9.7. Friend Functions (274)G.4.9.8. Operator Function (274)G.4.10. Classes (275)G.4.10.1. Data Members (275)G.4.10.2. Function Members (275)G.4.10.3. Virtual Functions (275)G.4.10.4. Virtual Base Classes (275)G.4.10.5. Anonymous Unions (276)G.4.10.6. Windows-Specific (276)G.4.11. Templates (276)G.4.12. Trigraphs and Digraphs (277)G.4.13. Const-qualified variables (277)G.4.14. Long Double (278)G.4.15. Deprecation Annotation (278)G.4.16. C++11 Features (278)G.4.16.1. Lambda Expressions (278)G.4.16.2. std::initializer_list (279)G.4.16.3. Rvalue references (280)G.4.16.4. Constexpr functions and function templates (280)G.4.16.5. Constexpr variables (280)G.4.16.6. Inline namespaces (281)G.4.16.7. thread_local (282)G.4.16.8. __global__ functions and function templates (282)G.4.16.9. __device__/__constant__/__shared__ variables (284)G.4.16.10. Defaulted functions (284)G.4.17. C++14 Features (284)G.4.17.1. Functions with deduced return type (285)G.4.17.2. Variable templates (285)G.4.18. C++17 Features (286)G.4.18.1. Inline Variable (286)G.4.18.2. Structured Binding (287)G.5. Polymorphic Function Wrappers (287)G.6. Extended Lambdas (289)G.6.1. Extended Lambda Type Traits (290)G.6.2. Extended Lambda Restrictions (291)G.6.3. Notes on __host__ __device__ lambdas (298)G.6.4. *this Capture By Value (298)G.6.5. Additional Notes (300)G.7. Code Samples (301)G.7.1. Data Aggregation Class (301)G.7.2. Derived Class (302)G.7.3. Class Template (302)G.7.4. Function Template (303)G.7.5. Functor Class (303)Appendix H. Texture Fetching (304)H.1. Nearest-Point Sampling (304)H.2. Linear Filtering (305)H.3. Table Lookup (306)Appendix I. Compute Capabilities (308)I.1. Features and Technical Specifications (308)I.2. Floating-Point Standard (312)I.3. Compute Capability 3.x (313)I.3.1. Architecture (313)I.3.2. Global Memory (314)I.3.3. Shared Memory (316)I.4. Compute Capability 5.x (317)I.4.1. Architecture (317)I.4.2. Global Memory (318)I.4.3. Shared Memory (318)I.5. Compute Capability 6.x (321)I.5.1. Architecture (321)I.5.2. Global Memory (321)I.5.3. Shared Memory (321)I.6. Compute Capability 7.x (322)I.6.1. Architecture (322)I.6.2. Independent Thread Scheduling (322)I.6.3. Global Memory (324)I.6.4. Shared Memory (325)I.7. Compute Capability 8.x (326)I.7.1. Architecture (326)I.7.2. Global Memory (327)I.7.3. Shared Memory (327)Appendix J. Driver API (328)J.1. Context (330)J.2. Module (331)J.3. Kernel Execution (332)J.4. Interoperability between Runtime and Driver APIs (334)Appendix K. CUDA Environment Variables (335)Appendix L. Unified Memory Programming (338)L.1. Unified Memory Introduction (338)L.1.1. System Requirements (339)L.1.2. Simplifying GPU Programming (339)L.1.3. Data Migration and Coherency (340)L.1.4. GPU Memory Oversubscription (341)L.1.5. Multi-GPU (341)L.1.6. System Allocator (342)L.1.7. Hardware Coherency (342)L.1.8. Access Counters (343)L.2. Programming Model (344)L.2.1. Managed Memory Opt In (344)L.2.1.1. Explicit Allocation Using cudaMallocManaged() (344)L.2.1.2. Global-Scope Managed Variables Using __managed__ (345)L.2.2. Coherency and Concurrency (345)L.2.2.1. GPU Exclusive Access To Managed Memory (346)L.2.2.2. Explicit Synchronization and Logical GPU Activity (347)L.2.2.3. Managing Data Visibility and Concurrent CPU + GPU Access with Streams (348)L.2.2.4. Stream Association Examples (349)L.2.2.5. Stream Attach With Multithreaded Host Programs (349)L.2.2.6. Advanced Topic: Modular Programs and Data Access Constraints (350)L.2.2.7. Memcpy()/Memset() Behavior With Managed Memory (351)L.2.3. Language Integration (352)L.2.3.1. Host Program Errors with __managed__ Variables (352)L.2.4. Querying Unified Memory Support (353)L.2.4.1. Device Properties (353)L.2.4.2. Pointer Attributes (353)L.2.5. Advanced Topics (353)L.2.5.1. Managed Memory with Multi-GPU Programs on pre-6.x Architectures (353)L.2.5.2. Using fork() with Managed Memory (354)L.3. Performance Tuning (354)L.3.1. Data Prefetching (355)L.3.2. Data Usage Hints (356)L.3.3. Querying Usage Attributes (357)Figure 1. The GPU Devotes More Transistors to Data Processing (2)Figure 2. GPU Computing Applications (3)Figure 3. Automatic Scalability (5)Figure 4. Grid of Thread Blocks (9)Figure 5. Memory Hierarchy (11)Figure 6. Heterogeneous Programming (13)Figure 7. Matrix Multiplication without Shared Memory (29)Figure 8. Matrix Multiplication with Shared Memory (32)Figure 9. Child Graph Example (42)Figure 10. Creating a Graph Using Graph APIs Example (43)Figure 11. The Driver API Is Backward but Not Forward Compatible (101)Figure 12. Parent-Child Launch Nesting (229)Figure 13. Nearest-Point Sampling Filtering Mode (305)Figure 14. Linear Filtering Mode (306)Figure 15. One-Dimensional Table Lookup Using Linear Filtering (307)Figure 16. Examples of Global Memory Accesses (316)Figure 17. Strided Shared Memory Accesses (319)Figure 18. Irregular Shared Memory Accesses (320)Figure 19. Library Context Management (331)Table 1. Linear Memory Address Space (20)Table 2. Cubemap Fetch (62)Table 3. Throughput of Native Arithmetic Instructions (117)Table 4. Alignment Requirements (130)Table 5. New Device-only Launch Implementation Functions (237)Table 6. Supported API Functions (238)Table 7. Single-Precision Mathematical Standard Library Functions with Maximum ULP Error (253)Table 8. Double-Precision Mathematical Standard Library Functions with Maximum ULP Error (256)Table 9. Functions Affected by -use_fast_math (260)Table 10. Single-Precision Floating-Point Intrinsic Functions (260)Table 11. Double-Precision Floating-Point Intrinsic Functions (262)Table 12. C++11 Language Features (263)Table 13. C++14 Language Features (266)Table 14. Feature Support per Compute Capability (308)Table 15. Technical Specifications per Compute Capability (309)Table 16. Objects Available in the CUDA Driver API (328)Table 17. CUDA Environment Variables (335)Chapter 1.Introduction1.1. The Benefits of Using GPUsThe Graphics Processing Unit (GPU)1 provides much higher instruction throughput and memory bandwidth than the CPU within a similar price and power envelope. Many applications leverage these higher capabilities to run faster on the GPU than on the CPU (see GPU Applications). Other computing devices, like FPGAs, are also very energy efficient, but offer much less programming flexibility than GPUs.This difference in capabilities between the GPU and the CPU exists because they are designed with different goals in mind. While the CPU is designed to excel at executing a sequence of operations, called a thread, as fast as possible and can execute a few tens of these threads in parallel, the GPU is designed to excel at executing thousands of them in parallel (amortizing the slower single-thread performance to achieve greater throughput).The GPU is specialized for highly parallel computations and therefore designed such that more transistors are devoted to data processing rather than data caching and flow control. The schematic Figure 1 shows an example distribution of chip resources for a CPU versus a GPU.1The graphics qualifier comes from the fact that when the GPU was originally created, two decades ago, it was designed as a specialized processor to accelerate graphics rendering. Driven by the insatiable market demand for real-time, high-definition, 3D graphics, it has evolved into a general processor used for many more workloads than just graphics rendering.Figure 1.The GPU Devotes More Transistors to Data ProcessingCPUGPUDevoting more transistors to data processing, e.g., floating-point computations, isbeneficial for highly parallel computations; the GPU can hide memory access latencies with computation, instead of relying on large data caches and complex flow control to avoid long memory access latencies, both of which are expensive in terms of transistors.In general, an application has a mix of parallel parts and sequential parts, so systems aredesigned with a mix of GPUs and CPUs in order to maximize overall performance. Applications with a high degree of parallelism can exploit this massively parallel nature of the GPU to achieve higher performance than on the CPU.1.2.CUDA ®: A General-PurposeParallel Computing Platform and Programming ModelIn November 2006, NVIDIA ® introduced CUDA ®, a general purpose parallel computingplatform and programming model that leverages the parallel compute engine in NVIDIA GPUs to solve many complex computational problems in a more efficient way than on a CPU.CUDA comes with a software environment that allows developers to use C++ as a high-level programming language. As illustrated by Figure 2, other languages, application programming interfaces, or directives-based approaches are supported, such as FORTRAN, DirectCompute,OpenACC.Figure 2.GPU Computing ApplicationsCUDA is designed to support various languages and application programming interfaces.1.3. A Scalable Programming ModelThe advent of multicore CPUs and manycore GPUs means that mainstream processor chips are now parallel systems. The challenge is to develop application software that transparently scales its parallelism to leverage the increasing number of processor cores, much as 3D graphics applications transparently scale their parallelism to manycore GPUs with widely varying numbers of cores.The CUDA parallel programming model is designed to overcome this challenge while maintaining a low learning curve for programmers familiar with standard programming languages such as C.At its core are three key abstractions - a hierarchy of thread groups, shared memories, and barrier synchronization - that are simply exposed to the programmer as a minimal set of language extensions.These abstractions provide fine-grained data parallelism and thread parallelism, nested within coarse-grained data parallelism and task parallelism. They guide the programmer to partition the problem into coarse sub-problems that can be solved independently in parallel by blocks of threads, and each sub-problem into finer pieces that can be solved cooperatively in parallel by all threads within the block.This decomposition preserves language expressivity by allowing threads to cooperate when solving each sub-problem, and at the same time enables automatic scalability. Indeed, each block of threads can be scheduled on any of the available multiprocessors within a GPU, in any order, concurrently or sequentially, so that a compiled CUDA program can execute on any number of multiprocessors as illustrated by Figure 3, and only the runtime system needs to know the physical multiprocessor count.This scalable programming model allows the GPU architecture to span a wide marketrange by simply scaling the number of multiprocessors and memory partitions: from thehigh-performance enthusiast GeForce GPUs and professional Quadro and Tesla computing products to a variety of inexpensive, mainstream GeForce GPUs (see CUDA-Enabled GPUs for a list of all CUDA-enabled GPUs).Figure 3.Automatic ScalabilityNote: A GPU is built around an array of Streaming Multiprocessors (SMs) (see HardwareImplementation for more details). A multithreaded program is partitioned into blocks ofthreads that execute independently from each other, so that a GPU with more multiprocessors will automatically execute the program in less time than a GPU with fewer multiprocessors.1.4. Document StructureThis document is organized into the following chapters:‣Chapter Introduction is a general introduction to CUDA.‣Chapter Programming Model outlines the CUDA programming model.‣Chapter Programming Interface describes the programming interface.‣Chapter Hardware Implementation describes the hardware implementation.‣Chapter Performance Guidelines gives some guidance on how to achieve maximum performance.‣Appendix CUDA-Enabled GPUs lists all CUDA-enabled devices.。
CUDACC编程介绍培训
CUDACC并行计算实践
CUDACC编程基础
01
讲解CUDACC的编程基础,包括数据类型、内存管理、线程模
型等。
CUDACC并行算法设计
02
介绍如何使用CUDACC设计并行算法,包括矩阵运算、图像处
理、物理模拟等。
CUDACC并行计算案例
03
展示一些使用CUDACC实现的并行计算案例,如N体问题模拟、
图像变换
实现图像缩放、旋转、仿 射变换等操作,利用GPU 并行计算能力加速处理过 程。
图像分割与识别
应用CUDACC于图像分割 算法,如k-means聚类、 区域生长等,实现快速图 像分割与目标识别。
CUDACC在科学计算中的应用
线性代数运算 利用CUDACC加速矩阵运算,如矩 阵乘法、LU分解等,提高计算性能。
更强大的硬件支持
随着GPU硬件的不断发展,CUDA将能够利用更强大的计算能力来加速更广泛的应用领域。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
跨平台性
CUDA支持多种操作系统和硬件平台,具 有良好的跨平台性,方便开发者在不同环 境下进行开发和部署。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
CUDACC编程基础
C/C基础知识
变量和数据类型
了解C/C中的基本数据类型,如int、float、double等,以及变量的 声明和初始化。
分享一些CUDACC并行计算的最佳实践,包括代码优化技巧、调试技巧
等。
REPORT
CATALOG
DATE
cudac权威编程指南例程
cudac权威编程指南例程
《CUDA C编程指南》是NVIDIA提供的权威指南,其中包括了
丰富的例程以及详细的说明。
这本书涵盖了CUDA编程的方方面面,
从基础的概念到高级的技术都有涉及。
在这本书中,你可以找到许
多例程帮助你学习CUDA编程。
在《CUDA C编程指南》中,你会发现许多例程涵盖了各种主题,包括并行编程、内存管理、数据传输等。
这些例程旨在帮助读者理
解CUDA编程的方方面面。
通过这些例程,读者可以学习如何编写并
行程序、优化内存访问以及利用GPU的计算能力。
此外,这本书还提供了丰富的代码示例,这些示例涵盖了从简
单的向量加法到复杂的图形处理等各种应用。
这些例程不仅可以帮
助读者理解CUDA编程的基本原理,还可以作为实际项目开发的参考。
总的来说,《CUDA C编程指南》中的例程是非常丰富和全面的,它们可以帮助读者从多个角度深入学习CUDA编程。
无论是初学者还
是有一定经验的开发者,都可以通过这些例程加深对CUDA编程的理解,并将其运用到实际的项目中。
cuda .c后缀
在CUDA编程中,.c后缀的文件通常表示C语言源代码文件。
CUDA编程主要使用C/C++语言,因此,.c后缀的文件通常包含CUDA C代码。
CUDA C是一种特殊的C语言,用于在NVIDIA的GPU上编写并行程序。
这种语言允许程序员利用GPU的多核处理能力,以加速大规模计算任务。
当你在NVIDIA的CUDA工具包中创建一个新的CUDA项目时,通常会要求你选择项目类型(例如,C或C++项目)。
如果你选择C项目,那么你创建的源文件将默认具有.c后缀。
同样,如果你的项目类型是C++,则源文件将具有.cpp后缀。
需要注意的是,虽然CUDA C可以看作是C语言的扩展,但它与标准的C语言在某些方面有所不同。
例如,CUDA C引入了一些新的关键字 (如__global__和__device__),用于声明GPU 上的函数和变量。
此外,CUDA C还支持一些特定的库函数和数据类型,这些在标准的C语言中并不存在。
cuda相关面试题
cuda相关面试题
以下是一些CUDA相关的面试题:
1. 什么是CUDA,它与GPU有何关系?
2. 在CUDA环境下,一般使用什么语言编写程序?
3. 什么是CUDA程序的编译过程?
4. 在编译CUDA程序时,如果出现错误,应该如何处理?
5. CUDA的Hello World程序通常用于演示什么?
6. 在CUDA程序运行过程中出现的错误通常表示什么?
7. CUDA中的原子操作是指什么?
8. CUDA编程中,Map并行模式主要实现什么功能?
9. CUDA编程中,Reduce并行模式主要实现什么功能?
10. CUDA编程中,Scan并行模式主要实现什么功能?
11. 以下哪个函数是CUDA中的原子操作?
12. CUDA中的原子操作可以防止什么问题?
13. 在CUDA编程中,map并行模式通常用于哪种类型的问题?
14. 在CUDA编程中,reduce并行模式通常用于哪种类型的问题?
15. 在CUDA编程中,scan并行模式通常用于哪种类型的问题?
16. 以下哪个CUDA函数可以确保所有线程都已完成其计算,然后再继续?
17. 原子操作在CUDA中的主要作用是什么?
18. 在Map并行模式中,每个线程会执行多少次操作?
以上问题涵盖了CUDA的基本概念、编程语言、编译过程、错误处理、原子操作、并行模式等方面。
回答这些问题可以帮助你更好地了解应聘者对CUDA的理解和掌握程度。
cuda-lecture2-CUDA-C-introduction
#include <cuda.h> void vecAdd(float* A, float* B, float* C, int n)
Heterogeneous Computing vecAdd Host Code Part 1
{
int size = n* sizeof(float); float* A_d, B_d, C_d; … 1. // Allocate device memory for A, B, and C // copy A and B to device memory
• • • • Pointer to destination Pointer to source Number of bytes copied Type/Direction of transfer
Host
Registers
Registers
Registers
Registers
Thread (0, 0) Thread (1, 0)
Host Memory Device Memory GPU CPU Part 2
2. // Kernel launch code – to have the device // to perform the actual vector addition 3. // copy C from the device memory // Free device vectors
–
Device Grid 1
–
blockIdx: 1D, 2D, or 3D (CUDA 4.0) threadIdx: 1D, 2D, or 3D
Kernel 1
Block (0, 0) Block (0, 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Simple Processing Flow
PCI Bus
1. Copy input data from CPU memory to GPU memory 2. Load GPU program and execute, caching data on chip for performance 3. Copy results from GPU memory to CPU memory
CUDA C/C++ BASICS
NVIDIA Corporation
© NVIDIA 2013
What is CUDA?
• CUDA Architecture
– Expose GPU parallelism for general-purpose computing – Retain performance
© NVIDIA 2013
Hello World! with Device Code
__global__ void mykernel(void) { } int main(void) { mykernel<<<1,1>>>(); printf("Hello World!\n"); return 0; }
– Runs on the device – Is called from host code
•nvcc separates source code into host and device components
– Device functions (e.g. mykernel()) processed by NVIDIA compiler – Host functions (e.g. main()) processed by standard host compiler
• This session introduces CUDA C/C++
© NVIDIA 2013
Introduction to CUDA C/C++
• What will you learn in this session?
– Start from “Hello World!” – Write and launch CUDA C/C++ kernels – Manage GPU memory – Manage communication and synchronization
© NVIDIA 2013
Hello World!
int main(void) { printf("Hello World!\n"); return 0; }
Output: Standard C that runs on the host NVIDIA compiler (nvcc) can be used to compile programs with no device code $ nvcc hello_worl d.cu $ a.out Hello World! $
parallel fn
serial code parallel code serial code
© NVIDIA 2013
Simple Processing Flow
PCI Bus
1. Copy input data from CPU memory to GPU memory
© NVIDIA 2013
© NVIDIA 2013
CONCEPTS
Heterogeneous Computing Blocks Threads Indexing Shared memory __syncthreads() Asynchronous operation
Hello World!
Handling errors
Managing devices
•That’s all that is required to execute a function on the GPU!
© NVIDIA 2013
Hello World! with Device Code
__global__ void mykernel(void){ } int main(void) { mykernel<<<1,1>>>(); printf("Hello World!\n"); return 0; }
© NVIDIA 2013
Heterogeneous Computing Blocks
Threads
CONCEPTS
Indexing Shared memory __syncthreads() Asynchronous operation Handling errors Managing devices
• CUDA C/C++
– Based on industry-standard C/C++ – Small set of extensions to enable heterogeneous programming – Straightforward APIs to manage devices, memory etc.
Heterogeneous Computing
#include <iostream> #include <algorithm> using namespace std; #define N 1024 #define RADIUS 3 #define BLOCK_SIZE 16 __global__ void stencil_1d(int *in, int *out) { __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; int gindex = threadIdx.x + blockIdx.x * blockDim.x; int lindex = threadIdx.x + RADIUS; // Read input elements into shared memory temp[lindex] = in[gindex]; if (threadIdx.x < RADIUS) { temp[lindex - RADIUS] = in[gindex - RADIUS]; temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; } // Synchronize (ensure all the data is available) __syncthreads(); // Apply the stencil int result = 0; for (int offset = -RADIUS ; offset <= RADIUS ; offset++) result += temp[lindex + offset]; // Store the result out[gindex] = result; } void fill_ints(int *x, int n) { fill_n(x, n, 1); } int main(void) { int *in, *out; // host copies of a, b, c int *d_in, *d_out; // device copies of a, b, c int size = (N + 2*RADIUS) * sizeof(int); // Alloc space for host copies and setup values in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS); out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS); // Alloc space for device copies cudaMalloc((void **)&d_in, size); cudaMalloc((void **)&d_out, size); // Copy to device cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice); cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice); // Launch stencil_1d() kernel on GPU stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS); // Copy result back to host cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); // Cleanup free(in); free(out); cudaFree(d_in); cudaFree(d_out); return 0; }
Two new syntactic elements…
© NVIDIA 2013
Hello World! with Device Code
__global__ void mykernel(void) { }
•CUDA C/C++ keyword __global__ indicates a function that:
a
b
c
© NVIDIA 2013
Addition on the Device
•A simple kernel to add two integers
__global__ void add(int *a, int *b, int *c) { *c = *a + *b; }