第九章《不等式与不等式组》综合水平测试
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
人教版七年级下册数学 第九章 不等式与不等式组 综合检测题
人教版七年级下册数学第九章 不等式与不等式组 综合检测题一、填空题(每题3分,共24分)1. 当x 时,代数式x 35-的值小于1-.2. 用“>”或“<”填空:若b a <,则12+-a 12+-b .3. x 的21不大于2与x 的和,用不等式表示为 . 4.下列不等式组中:①⎩⎨⎧24>>x x ;②⎩⎨⎧24><x x ;③⎩⎨⎧24<>x x ;④⎩⎨⎧24<<x x ,解集在数轴上表示成如图所示,则这个不等式组为 .(填序号)5.不等式()321615+<--x x 的正整数解是 . 6. 商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为 元/千克.7. 若关于x 的不等式()21>-x a 可化为a x -<12,则a 的取值范围是 .8. 已知关于x 、y 的二元一次方程组⎩⎨⎧-=++=+m y x m y x 22212的解满足不等式组⎩⎨⎧+-1x 8><y y x ,则m 的取值范围是 .二、选择题(每小题3分,共27分) 9. 已知m 、n 均为非零有理数,下列结论正确的是( )A .若n m ≠,则22n m ≠B .若22n m =,则n m =C .若0>>n m ,则22n m >D .若0>>n m ,则nm 11> 10. 学校准备用200本笔记本奖给期末考试成绩获年级一、二等奖的80名同学,如果奖给一等奖的每5本,二等奖的每人2本,则一等奖最多设置人数为( )A .15B .14 C.13 D .1211.若关于x 、y 的二元一次方程组⎩⎨⎧=++=-3312y x m y x 的解满足0>y x +,则m 的取值范围是( ).A .2>mB .1>mC .2->mD .2<m12. 不等式组⎩⎨⎧≤-31<x x 的解集在数轴上可以表示为( ) A . B . C . D .13. 关于x 的不等式组()⎩⎨⎧->-<-12130x x m x 无解,那么m 的取值范围为( )A .1-≤mB .1-<mC .01≤-m <D .01<m ≤-14. 不等式组⎩⎨⎧-++11692<>k x x x 的解集为2<x ,则k 的取值范围为( )A .1>k B. 1<k C. 1≥k D.1≤k15. 不等式02≤-m x 的正整数解为1,2,则a 的取值范围是( )A .64<<mB .64≤≤mC .64<m ≤D .64≤m <16.不等式组x ⎩⎨⎧->-≥-1230x a x 有5个整数解,则a 的取值范围为( ).A .34-≤-<aB .34-≤≤-aC .34-≤-a <D .34--<<a17.如果关于x 的不等式组⎩⎨⎧≤-≥-0302b x a x 的整数解仅有2=x 、3=x ,那么适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有( )A .3个B .4个C .5个D .6个三、简答题(共49分)18. 解下列不等式,并把解集在数轴上表示出来.(每题4分,共8分)(1)1643312+-≤-x x (2)()()x x 2333243-≥--19. 解下列不等式组,并把解集在数轴上表示出来.(每题5分,共10分) (1)()⎪⎩⎪⎨⎧-<-++>+-2221351135x x x x x (2)⎩⎨⎧-++14232x x x x <>20. (6分)阅读下列材料:“已知2=-y x ,且1>x ,0<y ,试确定y x +的取值范围”有如下解法:解:∵2=-y x ,∴2+=y x又∵1>x ,∴2+=y x ,∴1->y又∵0<y ,∴01<<y -…① 同理21<<x …②由①+②得2011+++-<<y x , ∴y x +的取值范围是20<<y x +请按照上述方法,完成下列问题:(1)已知3=-y x ,且2>x ,1<y ,则y x +的取值范围是 ;(2)已知1-<x ,1>y ,若a y x =-成立,求y x +的取值范围(结果用含有a 的式子表示).21. (11分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少?22.(14分)某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元,(1)求A ,B 两种型号的服装每件分别多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定,购进A 型服装的数量要比购进B 型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案,如何进货?。
新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)
七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。
2021-2022学年人教版初中数学七年级下册第九章不等式与不等式组综合测评试题(含答案及详细解析)
初中数学七年级下册第九章不等式与不等式组综合测评(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、不等式组31x x <⎧⎨≥⎩的解集在数轴上表示正确的是( ) A . B .C .D .2、已知a >b ,则下列选项不正确是( ) A .a +c >b +cB .a ﹣b >0C .33ab ->-D .a •c 2≥b •c 23、下列不等式一定成立的是( ) A .65y y >B .611x x +<+C .7x x >-D .79m m ->-4、对于不等式4x +7(x -2)>8不是它的解的是( ) A . 5B .4C .3D .25、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( ) A .5B .2C .4D .66、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( ) A .n >1-B .n <1-C .n >2D .n <27、某种商品进价为20元,标价为30元出售,商场规定可以打折销售,但其利润率不能少于5%,这种商品最多可以按几折销售?设这种商品打x 折销售,则下列符合题意的不等式是( ) A .30x ﹣20≥20×5% B .30x ﹣20≤20×5% C .30×10x﹣20≥20×5% D .30×10x﹣20≤20×5% 8、下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB =CD ;④如果a >b ,b >c ,那么a >c ;⑤直角都相等. A .①④⑤B .①②④C .①③④D .②③④⑤9、在数轴上表示不等式1x >-的解集正确的是( ) A .B .C .D .10、不等式34x x ≥+的解集在数轴上表示正确的是( ) A .B .C .D .二、填空题(5小题,每小题4分,共计20分)1、 “x 的2倍减去y 的差是非正数”用不等式表示为_______.2、不等式4x ﹣3≤2x +1的非负整数解的和是 _____.3、以下说法正确的是:_______.①由ab bc >,得a c >;②由22ab cb >,得a c > ③由b a b c -<-,得a c >;④由20212021a c >,得a c > ⑤n a -和()n a -互为相反数;⑥3x >是不等式21x +>的解4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、若方程组31323x y kx y k -=+⎧⎨+=-⎩的解满足2x ﹣3y >1,则k 的的取值范围为 ___.三、解答题(5小题,每小题10分,共计50分)1、根据“a 的2倍与1的差是负数”列出不等式:_________.2、解不等式,并把解集在数轴上表示出来. (1)7x ﹣2≤9x +2; (2)7132184x x --->. 3、解不等式组3(1)1922x x x x +≥-⎧⎪⎨+>⎪⎩,并把解集表示在数轴上.4、解不等式:(1)4(x﹣1)+3>3x(2)3136 x x-->-5、解不等式组:27163(1)5x xx x+≥-⎧⎨-->⎩,并求出所有整数解的和.---------参考答案-----------一、单选题1、C【分析】根据不等式组的解集的表示方法即可求解.【详解】解:∵不等式组的解集为31 xx<⎧⎨≥⎩故表示如下:故选:C.【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、C【分析】由题意直接根据不等式的性质对各个选项进行分析判断即可. 【详解】 解:A .∵a >b ,∴a +c >b +c ,故本选项不符合题意;B .∵a >b ,∴a ﹣b >b ﹣b ,∴a ﹣b >0,故本选项不符合题意;C .∵a >b ,∴33a b -<-,故本选项符合题意;D .∵a >b ,c 2≥0,∴a •c 2≥b •c 2,故本选项不符合题意; 故选:C . 【点睛】本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向. 3、B 【分析】根据不等式的性质依次判断即可. 【详解】解:A.当y ≤0时不成立,故该选项不符合题意; B.成立,该选项符合题意;C. 当x≤0时不成立,故该选项不符合题意;D. 当m≤0时不成立,故该选项不符合题意;故选:B.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.4、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.5、C【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.6、A【分析】先根据新运算的定义和3✬4=2将m用n表示出来,再代入5✬8>2可得一个关于n的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243nm -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-, 故选:A . 【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键. 7、C 【分析】根据题意易得这种商品的利润为30×10x﹣20,然后根据“其利润率不能少于5%”可列出不等式. 【详解】解:设这种商品打x 折销售,由题意得:30×10x﹣20≥20×5%; 故选C . 【点睛】本题主要考查一元一次不等式的应用,解题的关键是熟练掌握销售中的利润问题. 8、A 【分析】根据命题的定义分别进行判断即可. 【详解】解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;②同位角相等吗?是疑问句,不是命题,不符合题意;③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;④如果a>b,b>c,那么a>c,是命题,符合题意;⑤直角都相等,是命题,符合题意,命题有①④⑤.故选:A.【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.10、A【分析】先解不等式,再利用数轴的性质解答.【详解】解:34≥+x x解得2x≥,∴不等式34≥+的解集在数轴上表示为:x x故选:A.【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.二、填空题1、2x−y≤0【分析】直接利用“x的2倍”即2x,再减y,结果是非正数,即小于等于零,即可得出不等式.【详解】解:由题意可得:2x−y≤0.故答案为:2x−y≤0.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.2、3【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.【详解】解:4x ﹣3≤2x +1移项,得:4x ﹣2x ≤1+3,合并同类项,得:2x ≤4,系数化为1,得:x ≤2,∴不等式的非负整数解为0、1、2,∴不等式的非负整数解的和为0+1+2=3,故答案为:3.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.3、②③④【分析】根据不等式的基本性质得出结论即可.【详解】解:①由ab bc >,当0b <时,得a c <,故结论①错误;②由22ab cb >,得a c >,故结论②正确;③由b a b c -<-,得a c >;故结论③正确;④由20212021a c >,得a c >;故结论④正确;⑤n a -和()n a -互为相反数,当n 为奇数时,()n n a a -=-,故结论⑤错误;⑥1x >-是不等式21x +>的解,故结论⑥错误;故正确的结论为:②③④.【点睛】本题考查了不等式的基本性质,熟知不等式的基本性质是解本题的关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即()()965x y c +-,代入数值求解即可.【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包,11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+ 1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩ 洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠∴ 29x y =⎧⎨=⎩ 4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键.5、34k >##【分析】将①-②即可得2342x y k -=-,结合题意即可求得k 的范围.【详解】31323x y k x y k -=+⎧⎨+=-⎩①② ①-②得,2342x y k -=-2x ﹣3y >1421k∴->解得34 k>故答案为:34 k>【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键.三、解答题1、2a﹣1<0【解析】【分析】根据题意列出不等式即可.【详解】解:由题意得:2a﹣1<0,故答案为:2a﹣1<0.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.2、(1)x≥-2,在数轴上表示见解析;(2)x<1,在数轴上表示见解析【解析】【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)7x-2≤9x+2,移项,得:7x-9x≤2+2,合并同类项,得:-2x≤4,系数化为1,得:x≥-2.将不等式的解集表示在数轴上如下:;(2)7132184x x--->,去分母,得:8-(7x-1)>2(3x-2),去括号,得:8-7x+1>6x-4,移项,得:-7x-6x>-4-8-1,合并同类项,得:-13x>-13,系数化为1,得:x<1.将不等式的解集表示在数轴上如下:.【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3、23x-≤<,图见解析【解析】【分析】分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题.【详解】解:3(1)1922x xxx+≥-⎧⎪⎨+>⎪⎩①②由①得2x≥-由②得3x<把不等式组的解集表示在数轴上,如图,∴原不等式组的解为23x-≤<【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键.4、(1)1x>;(2)9x<-【解析】【分析】(1)先去括号,再移项,合并同类项即可得到答案;(2)先去分母,去括号,再移项,合并同类项,再把未知数的系数化“1”,从而可得答案.【详解】解:(1)4(x﹣1)+3>3x去括号得:4433x x移项,合并同类项得:1x>(2)3136xx -->- 去分母得:263x x移项,合并同类项得:9x ->解得:9x <-【点睛】本题考查的是一元一次不等式的解法,掌握解一元一次不等式的基本步骤是解本题的关键. 5、322x -≤<;2-【解析】【分析】首先解每个不等式,得出不等式组的解集,然后确定解集中的整数解求和即可.【详解】解:27163(1)5x x x x +≥-⎧⎨-->⎩①②, 解不等式①得:2x ≥-, 解不等式②得:32x <, 则不等式组的解集为:322x -≤<,∴不等式组的整数解为:2,1,0,1--,∴21012--++=-,故所有整数解的和为2-.【点睛】本题考查了求一元一次不等式组的整数解,能够准确求出不等式组的解集是解本题的关键.。
精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)
人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
2022年人教版初中数学七年级下册第九章不等式与不等式组综合测评练习题(含详解)
初中数学七年级下册第九章不等式与不等式组综合测评(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分) 1、下列说法中,正确的是( ) A .x =3是不等式2x >1的解 B .x =3是不等式2x >1的唯一解 C .x =3不是不等式2x >1的解 D .x =3是不等式2x >1的解集2、若x +2022>y +2022,则( ) A .x +2<y +2 B .x -2<y -2C .-2x <-2yD .2x <2y3、若a <b ,则下列式子正确的是( ) A .3a >3bB .﹣3a <﹣3bC .3a >3bD .a ﹣3<b ﹣34、若m >n ,则下列不等式成立的是( ) A .m ﹣5<n ﹣5B .55m n < C .﹣5m >﹣5n D .55m n -<- 5、如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >06、在数轴上表示不等式组﹣1<x ≤3,正确的是( )A .B .C .D .7、不等式054ax ≤+≤的整数解是1,2,3,4.则实数a 的取值范围是( ) A .514a -≤<-B .1a ≤-C .54a ≤-D .54a ≥-8、能说明“若x >y ,则ax >ay ”是假命题的a 的值是( ) A .3B .2C .1D .1-9、若不等式(a +1)x >2的解集为x <21a +,则a 的取值范围是( ) A .a <1B .a <-1C .a >1D .a >-110、关于x 的不等式组125261x x x a b++⎧⎪⎨⎪+>+⎩有解且不超过3个整数解,若3a =,那么b 的取值范围是( ) A .13b -< B .2b > C .30b -< D .2b -二、填空题(5小题,每小题4分,共计20分)1、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.2、不等式组210113x x -≥⎧⎪⎨<⎪⎩的解为_________.3、如果|x |>3,那么x 的范围是___________4、某种药品的说明书上贴有如图所示的标签,则一次服用这种药品的最大剂量是______mg .5、去年绵阳市空气质量良好(二级以上)的天数与全年天数(365)之比达到80%,如果明年(365天)这样的比值要超过90%,那么明年空气质量良好的天数比去年至少要增加_____天. 三、解答题(5小题,每小题10分,共计50分)1、某商场同时购进甲、乙、丙三种商品共100件,总进价为6800元,其每件的进价和售价如下表:设甲种商品购进x 件,乙种商品购进y 件.(1)商场要求购进的乙种商品数量不超过甲种商品数量,求甲种商品至少购进多少件? (2)若销售完这些商品获得的最大利润是3100元,求甲种商品最多购进多少件?2、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元; (1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?3、解不等式组2151232312(1)x x x x --⎧-≤⎪⎨⎪-<+⎩,并写出所有整数解.4、对于任意一个自然数N ,将其各个数位上的数字相加得到一个数,我们把这一过程称为一次操作,把这个得到的数进行同样的操作,不断进行下去,最终会得到一个一位数K,我们把N称作“K的友谊数”.例如:346→3+4+6=13→1+3=4,所以346是“4的友谊数”.(1)请分别判断1357和859是否是“4的友谊数”,并说明理由;(2)若一个三位自然数M=100a+10b+8(1≤a≤9,1≤b≤9,a,b均为整数)是“4的友谊数”,且满足a﹣b+3能被7整除,请求出所有符合条件的三位自然数M.5、“中秋节”是中华民族古老的传统节日.甲、乙两家超市在“中秋节”当天对一种原来售价相同的月饼分别推出了不同的优惠方案.甲超市方案:购买该种月饼超过200元后,超出200元的部分按95%收费;乙超市方案:购买该种月饼超过300元后,超出300元的部分按90%收费.设某位顾客购买了x元的该种月饼.(1)补充表格,填写在“横线”上;(2)分类讨论,如果顾客在“中秋节”当天购买该种月饼超过200元,那么到哪家超市花费更少?---------参考答案-----------一、单选题1、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A、当x=3时,2×3>1,成立,故A符合题意;B、当x=3时,2×3>1成立,但不是唯一解,例如x=4也是不等式的解,故B不符合题意;C、当x=3时,2×3>1成立,是不等式的解,故C不符合题意;,故D不符合D、当x=3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x>12题意;故选:A.【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.2、C【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.3、D【分析】根据不等式的基本性质判断即可. 【详解】解:A 选项,∵a <b ,∴33a b ,故该选项不符合题意;B 选项,∵a <b ,∴﹣3a >﹣3b ,故该选项不符合题意;C 选项,∵a <b ,∴3a <3b ,故该选项不符合题意;D 选项,∵a <b ,∴a ﹣3<b ﹣3,故该选项符合题意; 故选:D 【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键. 4、D 【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】解:A 、在不等式m >n 的两边同时减去5,不等式仍然成立,即m ﹣5>n ﹣5,原变形错误,故此选项不符合题意;B 、在不等式m >n 的两边同时除以5,不等式仍然成立,即55m n >,原变形错误,故此选项不符合题意;C 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即﹣5m <﹣5n ,原变形错误,故此选项不符合题意;D 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即55m n-<-,原变形正确,故此选项符合题意. 故选:D . 【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变. 5、B 【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断. 【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大, 即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意; C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意; D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意; 故选:B .【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101a b c <-<<<<. 6、C 【分析】把不等式组的解集在数轴上表示出来即可. 【详解】 解:13x -<,∴在数轴上表示为:故选:C . 【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则. 7、A 【分析】先确定0,a ≠ 再分析0a >不符合题意,确定0,a < 再解不等式,结合不等式的整数解可得:101545a a ⎧-≤⎪⎪⎨⎪≤-⎪⎩<<,从而可得答案.【详解】解: 054ax ≤+≤51ax ∴-≤≤-显然:0,a ≠当0a >时,不等式的解集为:51x a a-≤≤-, 不等式没有正整数解,不符合题意, 当0a <时,不等式的解集为:15,x a a-≤≤- 不等式054ax ≤+≤的整数解是1,2,3,4,101545a a ⎧-≤⎪⎪∴⎨⎪≤-⎪⎩<①<②由①得:1,a ≤- 由②得:51,4a -≤<-所以不等式组的解集为:5 1.4a -≤<- 故选A 【点睛】本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键. 8、D 【分析】根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可. 【详解】解:“若x >y ,则ax >ay ”是假命题, 则0a <, 故选:D . 【点睛】本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键. 9、B 【分析】根据不等式的性质可得10a +<,由此求出a 的取值范围. 【详解】解:不等式(1)2a x +>的解集为21x a <+, ∴不等式两边同时除以(1)a +时不等号的方向改变, 10a ∴+<,1a ∴<-,故选:B . 【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变. 10、C 【分析】先解不等式组,在根据不超过3个整数解,确定a b +的取值范围,即可得出结论. 【详解】解:125261x x x a b++⎧⎪⎨⎪+>+⎩, 解不等式12526x x ++得,2x ≤ 解不等式1x a b +>+得,1x a b >+-,因为不等式组有解,故解集为:12a b x +-<≤,因为不等式组有不超过3个整数解,所以,112a b -≤+-<,把3a =代入,1312b -≤+-<,解得,30b -<故选:C .【点睛】本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组.二、填空题1、1<m <2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.2、132x ≤<【分析】解不等式组即可.【详解】解:210113xx-≥⎧⎪⎨<⎪⎩,解不等式210x-≥得,12x≥;解不等式113x<得,3x<;不等式组的解集为132x≤<.【点睛】本题考查了解不等式组,解题关键是准确解每个不等式,正确确定不等式组的解集.3、3x>或3x<-【分析】首先算出|x|=3的解,然后根据“大于取两边”的口诀得解.【详解】解:由绝对值的意义可得:x=3或x=-3时,|x|=3,∴根据“大于取两边”即可得到|x|>3的解集为:x>3或x<−3(如图),故答案为:x>3或x<−3.【点睛】本题考查绝对值的意义及不等式的求解,熟练掌握有关不等式的求解方法是解题关键.4、30【分析】根据30≤2次服用的剂量≤60,30≤3次服用的剂量≤60,列出两个不等式组,求出解集,再求出解集的公共部分即可.【详解】设一次服用的剂量为xmg,根据题意得:30≤2x≤60或30≤3x≤60,解得:15≤x≤30或10≤x≤20.则一次服用这种药品的剂量范围是:10~30mg.故答案为30.【点睛】本题考查了一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.5、37【分析】设明年空气质量良好的天数比去年要增加x天,根据题意表示出明年空气质量良好的天数比去年要增加的天数进而得出不等式求出答案.【详解】解:设明年空气质量良好的天数比去年要增加x天,根据题意可得:x>365×(90%﹣80%),解得:x>36.5,∵x为整数,∴x≥37,∴明年空气质量良好的天数比去年至少要增加37天.故答案为:37【点睛】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.三、解答题1、(1)甲种商品至少购进32件;(2)甲种商品最多购进40件.【解析】【分析】(1)先根据题意用含x 的式子表示出y ,再列不等式可得答案;(2)根据甲、乙、丙的进价和售价列出不等式,再解不等式可得答案.【详解】解:(1)根据题意,得40x +70y +90(100-x -y )=6800,解得y =110−52x ,∵乙种商品数量不超过甲种商品数量,∴y ≤x ,∴110−52x ≤x ,解得x ≥3137.答:甲种商品至少购进32件;(2)根据题意,得20x +30y +40(100-x -y )≤3100,由(1),得y =110−52x ,代入不等式,解得x ≤40,答:甲种商品最多购进40件.【点睛】本题考查一元一次不等式的实际应用,能够根据题意用含x 的式子表示出y 是解题关键.2、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【解析】【分析】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m 件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.【详解】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据题意的329002500x y x y +=⎧⎨+=⎩解得100300x y =⎧⎨=⎩ 故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m 件,根据题意得:(150-100)m +(400-300)(80-m )≥6500解得m ≤30∵m 为整数∴m 的最大整数值为30.即该超市最多购进甲种商品30件.【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.3、不等式组的解集为:13x -≤<;整数解为:-1,0,1,2.【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,从而而可得不等式组得整数解.【详解】 解:()21512323121x x x x --⎧-≤⎪⎨⎪-<+⎩①②, 解不等式①得:1x ≥-,解不等式②得:3x <,∴不等式组的解集为:13x -≤<,∴不等式组的整数解为:-1,0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、(1)1357不是4的“友谊数”,859是4的“友谊数”,理由见解析;(2)148或958【解析】【分析】(1)根据“友谊数”的定义即可判断;(2)先由M 是“4的友谊数”得出a 和b 的关系式,再由a ﹣b +3能被7整除得出a 和b 所有可能的结果,即可得出答案.【详解】解:(1)∵1+3+5+7=16,1+6=7,∴1357不是4的“友谊数”,∵8+5+9=22,2+2=4,∴859是4的“友谊数”;(2)∵M=100a+10b+8是“4的友谊数”,又∵1≤a≤9,1≤b≤9,∴10≤a+b+8≤26,在10到26之间是“4的友谊数”的有13,22,∴a+b+8=13或22,①若a+b+8=13,则a=5﹣b,∴a﹣b+3=5﹣b﹣b+3=8﹣2b,∵1≤b≤9,∴﹣10≤8﹣2b≤6,在﹣10到6之间能被7整除的有﹣7,0,∴8﹣2b=﹣7或0,∴b=7.5(舍)或b=4,∴a=5﹣4=1,∴M=148,②若a+b+8=22,则a=14﹣b,∴a﹣b+3=14﹣b﹣b+3=17﹣2b,∵1≤b≤9,∴﹣1≤17﹣2b≤15,在﹣1到15之间能被7整除的有0,7,14,∴17﹣2b =0或7或14,∴b =8.5(舍)或b =5或b =1.5(舍),∴a =14﹣5=9,∴M =958,综上M 的值为148或958.【点睛】本题考查的是新定义运算,同时考查二元一次方程的正整数解,不等式的基本性质,解本题的关键是由M 是“4的友谊数”得出a 和b 的关系式.5、(95%10)x +;(95%10)x +;(90%30)x +;(2)当顾客在“中秋节”当天购买该种月饼超过200元不超过400元时,选择甲超市花费更少;当购买该种月饼400元时,选择两家超市花费相同;当购买该种月饼超过400元时,选择乙超市花费更少【解析】【分析】(1)当200x <时,利用实际在甲超市的花费20095%=+⨯超过200元的费用可求出实际在甲超市的花费;当300x >时,利用实际在乙超市的花费30090%=+⨯超过300元的费用可求出实际在乙超市的花费;(2)当200300x <时,显然选择甲超市花费更少;当300x >时,分95%1090%30x x +<+,95%1090%30x x +=+及95%1090%30x x +>+三种情况求出x 的取值范围(或x 的值),进而可得出结论.【详解】解:(1)当200300x <时,实际在甲超市的花费为200(200)95%(95%10)x x +-⨯=+元;当300x >时,实际在甲超市的花费为200(200)95%(95%10)x x +-⨯=+元,实际在乙超市的花费为300(300)90%(90%30)x x +-⨯=+元.故答案为:(95%10)x +;(95%10)x +;(90%30)x +.(2)当200300x <时,显然选择甲超市花费更少;当300x>时,若95%1090%30+<+,x xx<;解得:400若95%1090%30+=+,x xx=;解得:400若95%1090%30x x+>+,x>.解得:400答:当顾客在“中秋节”当天购买该种月饼超过200元不超过400元时,选择甲超市花费更少;当购买该种月饼400元时,选择两家超市花费相同;当购买该种月饼超过400元时,选择乙超市花费更少.【点睛】本题考查了一元一次不等式的应用、列代数式以及一元一次方程的应用,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出各数量;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)
人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。
七年级数学(下)第9章《不等式与不等式组》综合测试题含答案
A CDB 七年级数学(下)第9章《不等式与不等式组》综合测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( ) A. “x 的3倍与1的和是正数”,表示为3x+1>0.B. “m 的15与n 的13的差是非负数”,表示为15m-13n ≥0. C. “x 与y 的和不大于a 的12”,表示为x+y ≤12a.D. “a 、b 两数的和的3倍不小于这两数的积”,表示为3a+b ≥ab. 2.给出下列命题:①若a>b,则ac 2>bc 2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④ 3.解不等式3x-32<2x-2中,出现错误的一步是( ) A.6x-3<4x-4 B.6x-4x<-4+3 C.2x<-1 D.x>-124.不等式12,39x x -<⎧⎨-≤⎩ 的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a 中,正确的是( ) A.①② B.①③ C.②③ D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( ) A.2场 B.3场 C.4场 D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2)273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)一、选择题(本大题共6个小题,每小题3分,共18分.)1.已知实数a ,b ,若a >b ,则下列结论正确的是( ).A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a >3b2.不等式3(x -1)≤5-x 的非负整数解有( ).A .1个B .2个C .3个D .4个 3.关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( ). A .14 B .7 C .-2 D .2 4.不等式组⎩⎪⎨⎪⎧2x +13-3x +22>1,3-x ≥2的解集在数轴上表示正确的是( ).5.如果关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x <m 的解集为x <3,那么m 的取值范围为( ).A .m =3B .m >3C .m <3D .m ≥36.某种毛巾原零售价为每条6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”.若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾( ). A .4条 B .5条 C .6条 D .7条二、填空题(本大题共6小题,每小题3分,共18分)7.不等式组⎩⎪⎨⎪⎧x ≤3x +2,3x -2(x -1)<4的解集为________.8.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.9.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x <13的解集为________.10.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围是________.11.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为________.12.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.三、解答题 (本大题共5小题,每小题6分,共30分)13.解不等式(组):(1)2x -1>3x -12; (2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x +72②.14.解不等式4x -13-x >1,并把它的解集在数轴上表示出来.15.解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -15<x +12,并将它的解集在数轴上表示出来.16.x 取哪些整数值时,不等式4(x +1)≥2x -1与12x ≤2-32x 都成立?17.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m -11的值.四、(本大题共3小题,每小题8分,共24分).18.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3a +9,x -y =5a +1的解都为正数,求a 的取值范围.19.旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时3千米,摩托艇在静水中的速度是每小时18千米.为了使参观时间不超过4小时,旅游者最远可走多少千米?20.已知关于x 的不等式组⎩⎪⎨⎪⎧-x -1≥-2x +1,12(x -2a )+12x <0,其中实数a 是不等于2的常数,请依据a 的取值情况求出不等式组的解集.五、(本大题共2小题,每小题9分,共18分).21.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有三个整数解,求实数a 的取值范围.22.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).六、(本大题共12分)23. 为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A 、B 两类学校进行扩建,根据预算,扩建2所A 类学校和3所B 类学校共需资金7800万元,扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划扩建A 、B 两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的扩建资金分别为每所300万元和500万元.请问共有哪几种扩建方案?参考答案一、选择题(本大题共6个小题,每小题3分,共18分.)1. D ; 2. C ; 3. D ; 4. B ; 5. D.; 6.D.二、填空题(本大题共6小题,每小题3分,共18分)7.-1≤x <2; 8. 0; 9. x >-1; 10. a >-1;11. x >32;12.131或26或5或45三、解答题 (本大题共5小题,每小题6分,共30分.)13.解:(1)去分母得2(2x -1)>3x -1,解得x >1.(2)解不等式①得x <8, 解不等式②得x >1.所以不等式组的解集为1<x <8.14.解:去分母,得4x -1-3x >3.移项、合并同类项,得x >4.在数轴上表示不等式的解集如图所示:15.解:⎩⎪⎨⎪⎧x -3(x -2)≥4,①2x -15<x +12.②由①得-2x ≥-2,即x ≤1. 由②得4x -2<5x +5,即x >-7. 所以原不等式组的解集为-7<x ≤1. 在数轴上表示不等式组的解集为:16.解:依题意有⎩⎪⎨⎪⎧4(x +1)≥2x -1,12x ≤2-32x , 解得-52≤x ≤1∵x 取整数值,∴当x 为-2,-1,0和1时,不等式4(x +1)≥2x -1与12x ≤2-32x 成立.17.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.它的最小整数解是x =4.把x =4代入方程12x -mx =6,得m =-1,∴m 2-2m -11=-8.四、(本大题共3小题,每小题8分,共24分).18.解:解方程组,得⎩⎪⎨⎪⎧x =4a +5,y =-a +4.∵解都为正数,∴⎩⎪⎨⎪⎧4a +5>0,-a +4>0. 解得-54<a <4.19.解:设旅游者可走x 千米.根据题意,得x 18+3+x 18-3≤4,解得x ≤35. 答:旅游者最远可走35千米. 20.解:⎩⎪⎨⎪⎧-x -1≥-2x +1,①12(x -2a )+12x <0.② 解不等式①,得x ≥2. 解不等式②,得x <a .故当a >2时,不等式组的解集为2≤x <a ;当a <2时,不等式组无解.五、(本大题共2小题,每小题9分,共18分).21.解:⎩⎪⎨⎪⎧5x +2>3(x -1)①,12x ≤8-32x +2a ②.解不等式①,得x >-52,解不等式②,得x ≤4+a ,∴原不等式组的解集为-52<x ≤4+a .∵原不等式组有三个整数解, ∴0≤4+a <1, ∴-4≤a <-3.22.解:(1)设这个月有x 天晴天,由题意得:30x +5(30-x )=550, 解得x =16.(4分) 答:这个月有16天晴天.(2)设需要y 年可以收回成本,由题意得: (550-150)·(0.52+0.45)·12y ≥40000, 解得y ≥8172291.∵y 是整数,∴至少需要9年才能收回成本.六、(本大题共12分)23.解:(1)设扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意得:⎩⎪⎨⎪⎧2x +3y =7800,3x +y =5400, 解得⎩⎪⎨⎪⎧x =1200,y =1800.答:扩建一所A 类学校所需资金为1200万元,扩建一所B 类学校所需资金为1800万元. (2)设今年扩建A 类学校a 所,则扩建B 类学校(10-a )所,由题意得:⎩⎪⎨⎪⎧(1200-300)a +(1800-500)(10-a )≤11800,300a +500(10-a )≥4000, 解得3≤a ≤5 ∵a 取整数, ∴a =3,4,5.即共有3种方案:方案一:扩建A 类学校3所,B 类学校7所;方案二:扩建A类学校4所,B类学校6所;方案三:扩建A类学校5所,B类学校5所.。
最新人教版七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)(1)
人教版七年级下册第九章《不等式与不等式组》测试题一、单选题(每小题只有一个正确答案)1.下列各式中:①:②:③:④;⑤ :⑥,不等式有()A.2个B.3个C.4个D.5个2.若,则下列各式中一定成立的是( )A.B.C.D.3.下列各数中,能使不等式x–3>0成立的是()A.–3 B.5 C.3 D.24.下列说法中,错误的是( )A.不等式x<5的整数解有无数多个 B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4 D.-40是不等式2x<-8的一个解5.四个小朋友在公园玩跷跷板,他们的体重分别为P,Q,R,S,由图可知,这四个小朋友体重的大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q6.下列式子①7>4;②3x≥2π+1;③x+y>1;④x2+3>2x;⑤>4中,是一元一次不等式的有()A.4个B.3个C.2个D.1个7.“x的3倍与2的差不大于7”列出不等式是( )A.3x-2>7 B.3x-2<7 C.3x-2≥7 D.3x-2≤78.不等式组的解集在数轴上表示为( )A.B.C.D.9.若关于x的不等式(a–1)x>a–1的解集是x>1,则a的取值范围是()A.a<0 B.a>0 C.a<1 D.a>110.某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x道题,根据题意列式得()A.5x﹣3(30﹣x)>70 B.5x+3(30﹣x)≤70C.5x﹣3(30+x)≥70 D.5x+3(30﹣x)>7011.已知点在第四象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.12.若关于x的不等式组有6个整数解,则m的取值范围是()A.-4<m≤-3 B.-3≤m<-2 C.-4≤m<-3 D.-3<m≤-2二、填空题13.请你写出一个满足不等式2x-1<6的正整数x的值:________.14.不等式12-4x≥0的非负整数解是_______15.x的与12的差是负数,用不等式表示为________.16.某种商品的进价为每件100元,商场按进价提高60%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.17.已知关于X的不等式组2的解集为-1<x<2,则(m+n)2019的值是_______.三、解答题18.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;(3)a的9倍与b的的和是正数.19.解下列不等式(或组),并把解集表示在数轴上.①②③(④20.解不等式组:并写出它的所有整数解.21.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式已知小诚家距离学校2200米,他步行的平均速度为80米分,跑步的平均速度为200米分若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?22.某单位需要将一批商品封装入库,因此打算购进A、B两种型号的包装盒共100个,若购买3个A型包装盒和2个B型包装盒共需550元,且A型包装盒的单价是3型包装盒单价的3倍,每个A型包装盒可容纳500件该商品,每个B型包装盒可容纳200件该商品。
第九章《不等式与不等式组》综合测试题
_ D_ C _ B _ A第九章 不等式与不等式组61.满足不等式45)31(22≤--x 的整数是( ) A .-1,0,1,2,3 B. 0,1,2,3 C .0,1 D. -3,-2,-1,0,12.同时使不等式x x 52)1(3-+- 与x x 237121-≤-成立的所有整数积是( ) A .12 B. 3 C. 7 D. 24 3. 已知x 和y 满足1,243 y x y x -=+,则 ( )A .76=x B. 71-=y C. 76 x D.71- y4. 已知a<b<0,下列不等式中一定成立的是 ( )A.a 1<b 1 B. ab >1. C. 3a>2b. D. 2a >ab.5、不等式组的整数解的和是 ( )A.1 B.2 C.0 D.-26. 若为非负数,则x 的取值范围是( )A.x ≥1 B.x ≥-1/2 C.x >1 D.x >-1/27.下列各式中是一元一次不等式的是( )A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x ≥0 8.若│a │>-a,则a 的取值范围是( ) A.a>0 B.a ≥0 C.a<0 D.自然数9. 不等式组53x x ≤⎧⎨>⎩的解集在数轴上表示,正确的是( ) xAB CxD10.设.表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为( )11.用恰当的不等号表示下列关系: ①a 的5倍与8的和比b 的3倍小:______________; ②x 比y 大4:______________. 12.不等式3(x+1)≥5x-3的正整数解是_________; 13.若a<1,则不等式(a-1)x>1的解集为___. 14.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______.15.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.16.2001年某省体育事业成绩显著,据统计,•在有关大赛中获是奖牌数如下表所示(单位:枚),如果只获得1枚奖牌的选手有57•人,•那么荣获3•枚奖牌的选手最多有______人. 17.解下列不等式(组)(每小题3分,共6分)(1)5(x+2)≥1-2(x-1) (2) 2731205y y y +>-⎧⎪-⎨≥⎪⎩(3) 1)1(22<---x x ,. (4) ⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325,并求其整数解.18. 关于x 的不等式a-2x<-1的解集如图所示.求a.19. (1)若x<-3,,求|3+x|的值; (2)若2<x<4,求|x-1|+|x-5|.20. x 取哪些正整数时,不等式x+3>6与2x-1<10都成立?21.已知多项式a2-5a-7减去多项式a2-11a+9的差等于不等式5-4x<0的最小正整数解,求a 的值。
部编数学七年级下册【单元测试】第九章不等式与不等式组(综合能力拔高卷)(解析版)含答案
人教版七年级数学下册【单元测试】第九章 不等式与不等式组(综合能力拔高卷)(考试时间:90分钟 试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时90分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.(2021·全国·七年级期末)已知(m ﹣4)x |m ﹣3|+2>6是关于x 的一元一次不等式,则m 的值为( )A .4B .2C .4或2D .不确定【答案】B【分析】根据一元一次不等式的定义,|m-3|=1,m-4≠0,分别进行求解即可.【详解】解:根据题意|m-3|=1,m-4≠0,所以m-3=±1,m ≠4,解得m=2.故选:B .【点睛】本题考查一元一次不等式的定义和绝对值.解题的关键是明确一元一次不等式的定义中的未知数的最高次数为1次,还要注意未知数的系数不能是0.2.(2021·四川·七年级期中)不等式32x a -<恰有两个负整数解,则a 的取值范围是( )A .79a <£B .79a £<C .9a 7-<£-D .9a 7-£<-【答案】A 【分析】先解不等式得到32a x ->,再根据恰有2个负整数解得到3322a --£<-即可.【详解】解:解不等式32x a -<,得到不等式的解集为:32a x ->,∵不等式恰有两个负整数解,∴3322a --£<-,整理得到:97a -£-<-∴a 的取值范围是:79a <£,故选:A .【点睛】本题考查不等式的整数解问题,解题的关键是利用数轴分析,其次解题时必须理解题意,属于基础题,中考常考题型.3.(2021·河南·七年级期末)若关于x 的不等式组22432x x x x a ->-ìí<+î的解集是2x <,则a 的取值范围是( )A .2a ³B .2a <-C .2a >D .2a £【答案】A【分析】分别求出每个不等式的解集,根据不等式组的解集为x <2可得关于a 的不等式,解之可得.【详解】解:解不等式组22432x x x x a ->-ìí<+î①②,由①可得:x <2,由②可得:x <a ,因为关于x 的不等式组22432x x x x a ->-ìí<+î①②的解集是x <2,所以,a ≥2,故选:A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2021·上海市嘉定区金鹤学校期中)如果a >b ,那么下列不等式中正确的是( )A .a-b >0B .ac ²>bc²C .c-a >c-bD .a+3<b-3【答案】A【分析】在不等式的两边都加上或减去同一个数或整式,不等号的方向不变,在不等式的两边都乘以或除以同一个正数,不等号的方向不变,在不等式的两边都乘以或除以同一个负数,不等号的方向改变,根据不等式的基本性质逐一分析即可.【详解】解:Q a >b ,0,a b \-> 故A 符合题意;Q a >b ,当0c ¹时,22,ac bc > 故B 不符合题意;Q a >b ,,,a b c a c b \-<--<- 故C 不符合题意;Q a >b ,+333,a b b \>+>- 故D 不符合题意;故选A【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.5.(2021·上海市建平中学西校期末)如图,数轴上点A 、B 、C 分别表示数a 、b 、c ,则下列不等式中错误的是( ).A .b a c a -<-B .a b a c +<+C .b c a a <D .ac bc<【答案】C【分析】先根据数轴上点的位置得到0a b <<,0c >,则a b >,c b >,c a >,由此逐一判断即可.【详解】解:由数轴可知0a b <<,0c >,∴a b >,c b >,c a >,A 选项:∵b c <,∴b a c a -<-,故A 不符合题意;B 选项:∵b c <,∴a b a c +<+,故B 不符合题意;C 选项:∵b c <,0a <,∴b c a a>,故C 符合题意;D 选项:∵a b <,0c >,∴ac bc <,故D 不符合题意.故选C .【点睛】本题主要考查了根据数轴上点的位置判断式子正负,不等式的性质,熟知数轴和不等式的性质是解题的关键.6.(2021·全国·七年级单元测试)“垃圾分类做得好,明天生活会更好”,学校需要购买分类垃圾桶10个,放在校园的公共区域,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶350元/个,B 型分类垃圾桶400元/个,总费用不超过3650元,则不同的购买方式有( )A .2种B .3种C .4种D .5种【答案】C【分析】设购买A 型分类垃圾桶x 个,则购买B 型垃圾桶(10-x ),然后根据题意列出不等式组,确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x 个,则购买B 型垃圾桶(10-x )个,由题意得:()35040010365010x x x ì+-£í£î,解得710x ££,则x 可取7、8、9、10,即有四种不同的购买方式.故选:C .【点睛】本题考查了一元一次不等式组的应用,弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.7.(2022·河南·郑州中学七年级期末)把不等式组112325x x -ì>-ïíï+£î的解集表示在数轴上,下列符合题意的是( )A .B .C .D .【答案】C【分析】根据一元一次不等式组的解法求解,再由在数轴上表示解集的方法进行判断即可.【详解】解:112325x x -ì>-ïíï+£î①②解不等式①得x -1>解不等式②1x £解不等式组得:11x -<£,在数轴上表示如下.故选:C .【点睛】本题考查了解不等式组及解集在数轴上的表示,熟练掌握不等式组的解法是解题的关键.8.(2021·重庆长寿·七年级期末)从-2,-1,0,1,2,3,5这七个数中,随机抽取一个数记为m ,若数m 使关于x 的不等式组22141x m x m >+ìí--³+î无解,且使关于x 的一元一次方程(m -2)x =3有整数解,那么这六个数所有满足条件的m 的个数有()A .1B .2C .3D .4【答案】D 【分析】不等式组整理后,根据无解确定出m 的范围,进而得到m 的值,将m 的值代入检验,使一元一次方程的解为整数即可.【详解】解:解:不等式组整理得:221x m x m >+ìí--î…,由不等式组无解,得到221m m +--…,解得:1m -…,即1m =-,0,1,2,3,5;当m=-1时,一元一次方程(m -2)x =3解为x=-1,符合题意;当m=0时,一元一次方程(m -2)x =3解为x=-1.5,不合题意;当m=1时,一元一次方程(m -2)x =3解为x=-3,符合题意;当m=2时,一元一次方程(m -2)x =3无解,不合题意;当m=3时,一元一次方程(m -2)x =3解为x=3,符合题意;当m=5时,一元一次方程(m -2)x =3解为x=1,符合题意.故选:D【点睛】本题考查根据不等式组的解集确定字母取值及一元一次方程解法,理解好求不等式组的解集的口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题关键.9.(2022·福建省福州屏东中学七年级期末)若a ,b 为实数,下面四个命题中,正确的是( )A .若0a b ->,则220a b ->B 2>,则220a b ->C .若0a b -¹,则220a b -¹D .若a ¹220a b -¹【答案】B【分析】可根据不等式的性质、算式平方根的定义或取特殊值法判断即可.【详解】解:A 、若a=1,b=-2,满足a -b >0,但a 2<b 2,故选项A 错误;B 、若2>,则22a b >,即220a b ->,故选项B 正确;C 、若a=1,b=-1,满足a -b ≠0,但a 2=b 2,即a 2-b 2=0,故选项C 错误;D 、若a=-1,b=1,满足a ¹a 2=b 2,即a 2-b 2=0,故选项D 错误,故选:B .【点睛】本题考查不等式的性质、算式平方根的定义,会利用特殊值法判断命题的正误是解答的关键.10.(2021·重庆沙坪坝·七年级期中)某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x 道题,根据题意可列不等式( )A .10x ﹣5(20﹣x )≥125B .10x+5(20﹣x )≤125C .10x+5(20﹣x )>125D .10x ﹣5(20﹣x )>125【答案】D【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.【详解】解:由题意可得,10x-5(20-x )>125,故选:D .【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.二、填空题:本题共8个小题,每题3分,共24分。
2020年人教版七年级数学下册 第九章 不等式与不等式组 单元综合评价试卷含解析
2020年人教版七年级数学下册第9章不等式与不等式组单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题)1.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是()A.a>c B.a<c C.a<b D.b<c2.不等式的解集在数轴上表示为()A.B.C.D.3.下列不等式变形中,错误的是()A.若a≥b,则a+c≥b+c B.若a+c≥b+c,则a≥bC.若a≥b,则ac2≥bc2D.若ac2≥bc2,则a≥b4.已知不等式组的解集是x<﹣3,则m的取值范围是()A.m>﹣3B.m≥﹣3C.m<﹣3D.m≤﹣35.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±36.三个连续正整数的和小于14,这样的正整数有()A.2组B.3组C.4组D.5组7.不等式3≥2x﹣1的解集在数轴上表示正确的为()A.B.C.D.8.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥279.不等式组的解集是()A.﹣4<x≤6B.x≤﹣4或x>2C.﹣4<x≤2D.2≤x<410.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了2次停止,则x的取值范围是()A.11<x≤19B.11<x<19C.11<x<19D.11≤x≤19二.填空题(共8小题)11.根据“x的3倍与8的和比x的5倍大”,列出的不等式是.12.不等式﹣x+1<0的解集是.13.当k时,不等式(k+2)x|k|﹣1+5<0是一元一次不等式.14.不等式组的解为.15.不等式组有4个整数解,则m的取值范围是.16.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元,演出票虽未售完,但售票收入达22080元.设成人票售出x张,则x的取值范围是.17.一个关于x的不等式组的解集在数轴上表示为,则这个不等式组的解集是.18.若a<b,则1﹣a1﹣b.(填“>”,“<”或“=”)三.解答题(共8小题)19.已知不等式组的解集为﹣6<x<3,求m,n的值.20.解不等式,并把解集表示在数轴上.21.解不等式.并写出它的所有正整数解.22.身体质量指数(BMI)的计算公式是:BMI=.这里W为身体的体重(单位:kg),h为身高(单位:m).男性的BMI指数正常范围是24≤BMI≤27.如果一位男生体重为60kg,且他的BMI正常,那么请估计他的身高大约在哪个范围?(精确到0.01m)23.某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.24.将一箱苹果分给若干位小朋友,若每位小朋友分4个苹果,则还剩20个苹果,若每位小朋友分8个苹果,则有一位小朋友分到了苹果但不足8个,则有小朋友多少个,苹果多少个?25.今年湖南石门的桔子又是大丰收,为了争取利润最大化,老张决定从石门运桔子到山东,再从山东运苹果到石门,已知甲车一次可以运12吨,每箱苹果的重量是桔子重量的两倍.(1)若该车每次运输都刚好装满12吨,每次所运的桔子比苹果多400箱,每箱桔子多少千克?(2)老张要从石门运102吨桔子到山东,现和用甲、乙两种汽车共6辆,且乙车一次可以运20吨.①至少需要用几辆乙车?②若甲车每辆的运输费为3500元,乙车每辆的运输费为5000元,运这些桔子到山东至少需要多少运费?26.医院用甲、乙两种原料为手术后的病人配制营养品,每克甲种原料含0.5单位的蛋白质和1单位铁质,每克乙种原料含0.7单位的蛋白质和0.4单位铁质,已知病人每餐需要35单位的蛋白质和40单位铁质.(1)每餐甲、乙两种原料各多少克恰能满足病人的需要?设每餐需要甲、乙两种原料分别为x、y克,填写下表并列出方程组并完成解答:甲种原料x克乙种原料y克所配置的营养品所含蛋白质(单位)0.5x所含铁质(单位)0.4y(2)若要求营养品中甲、乙两种原料共含有60克,且两种原料的含量都为整数克,则共有几种配置方案?(不需要写出具体方案)(3)在(2)的基础上,若甲种原料0.5元/克,乙种原料0.45元/克,则如何配置营养品才能使得每餐的费用最低?每餐最低费用是多少?参考答案与试题解析一.选择题(共10小题)1.解:由图一可知:2a=3b,a>b;由图二可知:2b=3c,b>c.故a>b>c.故选:A.2.解:不等式两边同乘12得:8x﹣3(x﹣5)>10,去括号,移项,合并同类项得:5x>﹣5,x系数化为1,得:x>﹣1故选:C.3.解:A.a≥b,不等式两边同时加上c,不等号的方向不变,即a+c≥b+c,变形正确,B.a+c≥b+c,不等式两边同时减去c,不等号的方向不变,即a≥b,变形正确,C.a≥b,c2≥0,不等式两边同时乘以一个非负数c2,ac2≥bc2成立,变形正确,D.ac2≥bc2,若c2=0,则不等式两边同时除以c2无意义,变形错误,故选:D.4.解:∵不等式组的解集是x<﹣3,∴m≥﹣3,故选:B.5.解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4.故选:A.6.解:设最小的正整数为x,则另外两个数分别为x+1,x+2,依题意,得:x+x+1+x+2<14,解得:x<3.∵x为正整数,∴x=1,2,3,∴这样的正整数有3组.故选:B.7.解:﹣2x≥﹣1﹣3,﹣2x≥﹣4,x≤2,故选:B.8.解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.9.解:解不等式12﹣2x<20,得:x>﹣4,解不等式3x﹣6≤0,得:x≤2,则不等式组的解集为﹣4<x≤2.故选:C.10.解:由题意得,解得:11<x≤19,故选:A.二.填空题(共8小题)11.解:由题意,得3x+8﹣5x>0故答案是:3x+8﹣5x>0.12.解:不等式两边同时乘以﹣3得:x﹣3>0,移项得:x>3,即不等式的解集为:x>3.故答案为:x>3.13.解:∵不等式(k+2)x|k|﹣1+5<0是一元一次不等式,∴,解得:k=2,故答案为:=2.14.解:不等式组的解为﹣2≤x<1.故答案是:﹣2≤x<1.15.解:,解不等式①得:x>﹣1,∴不等式组的解为﹣1<x<m.∵不等式组有4个整数解,∴3<m≤4.故答案为:3<m≤4.16.解:设成人票售出x张,则学生票售出=(1104﹣3x)张,依题意,得:,解得:252<x≤368(x为整数).故答案为:252<x≤368(x为整数).17.解:根据数轴得:不等式组的解集为2<x<5,故答案为:2<x<518.解:∵a<b,∴﹣a>﹣b,∴1﹣a>1﹣b.故答案为:>.三.解答题(共8小题)19.解:不等式组整理得:,即3m﹣3<x<2n+1,由不等式组的解集为﹣6<x<3,可得3m﹣3=﹣6,2n+1=3,解得:m=﹣1,n=1.20.解:2(x+2)﹣5(x﹣2)≥20,2x+4﹣5x+10≥20,2x﹣5x≥20﹣4﹣10,﹣3x≥6,x≤﹣2,将不等式的解集表示在数轴上如下:21.解:,2x+3(x﹣2)<24,2x+3x﹣6<24,2x+3x<24+6,5x<30,x<6,∴不等式的正整数解为1、2、3、4、5.22.解:根据题意得:,解得:≤h2≤2.5,∴≤h≤,∴1.49≤h≤1.58.答:他的身高大约在1.49m≤h≤1.58m.23.解:(1)100××30+100××90=7800(元).答:所需的购买费用为7800元.(2)设购买温馨提示牌x个,则购买垃圾箱(100﹣x)个,依题意,得:,解得:45≤x≤48.∵x为整数,∴x=45,46,47,48,∴共4个购买方案,方案1:购买温馨提示牌45个、垃圾箱55个;方案2:购买温馨提示牌46个、垃圾箱54个;方案3:购买温馨提示牌47个、垃圾箱53个;方案1:购买温馨提示牌48个、垃圾箱52个.24.解:设有小朋友x个,则苹果(4x+20)个,依题意,得:,解得:5<x<7.∵x为正整数,∴x=6,4x+20=44.答:有小朋友6个,苹果44个.25.解:(1)12吨=12000千克设每箱桔子x千克,则每箱苹果2x千克,由题意得:=+400∴=+400解得x=15经检验,x=15时,分式方程的分母不为0,且符合问题的实际意义,故x=15是原方程的解∴每箱桔子15千克.(2)①设至少需要y辆乙车,则甲车的数量为(6﹣y),由题意得:12(6﹣y)+20y≥102∴72﹣12y+20y≥102∴y≥至少需要4辆乙车.②由①知至少需要4辆乙车,而5辆乙车可以运输20×5=100(吨)<102吨,故运这些桔子到山东至少需要的运费为:3500×(6﹣4)+5000×4=7000+20000=27000(元).答:运这些桔子到山东至少需要27000元运费.26.解:(1)填表如下:甲种原料x克乙种原料y克所配置的营养品所含蛋白质(单位)0.5x0.7y0.5x+0.7y所含铁质(单位)x0.4y x+0.4y依题意得,解得.故每餐甲种原料28克、乙种原料30克恰能满足病人的需要.(2)设营养品中甲种原料含有z克、乙种原料含有(60﹣z)克,依题意得,,解得≤z≤35,∵甲、乙两种原料的含量都为整数克,∴z=27、28、29、31、32、33、34、35.60﹣z=33、32、31、30、29、28、27、26、25.(3)∵每餐的费用=0.5z+0.45(60﹣z)=0.05z+27,∴当甲种原料含有27克,乙种原料33克时每餐的费用最低,每餐最低费用=0.5×27+0.45×33=28.35元.。
2020年人教版七年级数学下册第9章不等式与不等式组单元综合评价试卷含解析
2020年人教版七年级数学下册第9章不等式与不等式组单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题,满分30分)1.下列为一元一次不等式的是()A.x+y>5B.+3<2C.﹣x=3D.+≥12.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.2℃~3℃B.2℃~8℃C.3℃~6℃D.6℃~8℃3.若x﹣3<0,则()A.x﹣2>0B.2x>﹣1C.2x<3D.18﹣3x>0 4.如果不等式组的解集是x>5,则a的取值范围是()A.a≥5B.a≤5C.a=5D.a<55.在数轴上表示不等式﹣2≤x<4,正确的是()A.B.C.D.6.已知点P(1+m,3)在第二象限,则m的取值范围是()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣17.若关于x的不等式3x﹣2m≥0的负整数解为﹣1,﹣2,则m的取值范围是()A.﹣6≤m<﹣B.﹣6<m≤﹣C.﹣≤m<﹣3D.﹣<m≤﹣3 8.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折9.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1 10.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为()A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90C.10x﹣5(20﹣x)>90D.10x﹣5(20﹣x)<90二.填空题(共8小题,满分24分)11.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为克.12.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).13.不等式3x﹣6>0的解集为.14.用不等式表示“x的5倍不大于3”为:.15.如图,数轴上所表示的关于x的不等式是.16.不等式组的解集是x>4,那么m的取值范围是.17.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为.18.不等式1﹣4x≥x﹣8的非负整数解为.三.解答题(共7小题,满分46分)19.(5分)解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)20.(6分)设a为不超过1的正整数,b为与2之间的整数,求的值.21.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.22.(7分)如果关于x的方程x+2+m=0的解也是不等式组的一个解,求m 的取值范围.23.(7分)解不等式组:并将解集在数轴上表示.24.(7分)若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.25.(8分)某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?参考答案与试题解析一.选择题(共10小题)1.下列为一元一次不等式的是()A.x+y>5B.+3<2C.﹣x=3D.+≥1【分析】含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.依此即可求解.【解答】解:A、含有2个未知数,故A不符合题意;B、未知数在分母位置,故B不符合题意;C、是一元一次方程,故C不符合题意;D、是一元一次不等式,故D符合题意.故选:D.2.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.2℃~3℃B.2℃~8℃C.3℃~6℃D.6℃~8℃【分析】找出甲乙两种蔬菜温度的公共部分即可.【解答】解:∵甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,∴将这两种蔬菜放在一起同时保鲜,适宜的温度是3℃~6℃,故选:C.3.若x﹣3<0,则()A.x﹣2>0B.2x>﹣1C.2x<3D.18﹣3x>0【分析】利用不等式的基本性质分别判断得出即可.【解答】解:A、若x﹣3<0,则x﹣2<1,故此选项错误;B、若x﹣3<0,则2x<6,故此选项错误;C、若x﹣3<0,则2x<6,故此选项错误;D、若x﹣3<0,则9﹣3x>0,所以18﹣3x>0,此选项正确.故选:D.4.如果不等式组的解集是x>5,则a的取值范围是()A.a≥5B.a≤5C.a=5D.a<5【分析】根据求解规律是:大大取大,小小取小,大小小大中间找,大大小小无解可得a ≥5.【解答】解:∵不等式组的解集是x>5,∴a≤5,故选:B.5.在数轴上表示不等式﹣2≤x<4,正确的是()A.B.C.D.【分析】根据不等式的解集在数轴上表示出来即可.【解答】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.6.已知点P(1+m,3)在第二象限,则m的取值范围是()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣1【分析】根据第二象限点的坐标的特点,得到关于m的不等式,解可得答案.【解答】解:点P(1+m,3)在第二象限,则1+m<0,解可得m<﹣1.故选:A.7.若关于x的不等式3x﹣2m≥0的负整数解为﹣1,﹣2,则m的取值范围是()A.﹣6≤m<﹣B.﹣6<m≤﹣C.﹣≤m<﹣3D.﹣<m≤﹣3【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出m的范围即可.【解答】解:不等式3x﹣2m≥0,解得:x≥m,∵不等式的负整数解只有﹣1,﹣2,∴﹣3<m≤﹣2,∴﹣<m≤﹣3.故选:D.8.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折【分析】设打x折,利用销售价减进价等于利润得到120•﹣80≥80×5%,然后解不等式求出x的范围,从而得到x的最小值即可.【解答】解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.9.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+5≥1得x≥﹣4,解不等式>,得:x<﹣1,则不等式组的解集为﹣4≤x<﹣1,故选:B.10.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为()A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90C.10x﹣5(20﹣x)>90D.10x﹣5(20﹣x)<90【分析】据答对题的得分:10x;答错题的得分:﹣5(20﹣x),得出不等关系:得分要超过90分.【解答】解:由题意可列出的不等式为10x﹣5(20﹣x)>90,故选:C.二.填空题(共8小题)11.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为不少于1.5克.【分析】根据题意求出蛋白质含量的最小值即可.【解答】解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∴蛋白质含量的最小值=300×0.5%=1.5克,∴白质的含量不少于1.5克.故答案是:不少于1.512.若a<b,则﹣5a>﹣5b(填“>”“<”或“=”).【分析】根据不等式的性质,在不等式的两边同时乘以一个负数,不等号的方向改变,即可得出答案.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.13.不等式3x﹣6>0的解集为x>2.【分析】不等式移项,将x系数化为1,即可求出解集.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.14.用不等式表示“x的5倍不大于3”为:5x≤3.【分析】首先表示x的5倍,再表示不大于3可得不等式.【解答】解:x的5倍表示为5x,不大于3表示为5x≤3,故答案为:5x≤3.15.如图,数轴上所表示的关于x的不等式是x≤2.【分析】根据一元一次不等式解集在数轴上的表示方法可知,不等式的解集是2左边的部分.【解答】解:一元一次不等式的解集是2左边的部分(包含2),因而解集是x≤2.故答案为:x≤2.16.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】首先解不等式﹣x+2<x﹣6得x>4,而x>m,并且不等式组解集为x>4,由此即可确定m的取值范围.【解答】解:∵﹣x+2<x﹣6,解之得x>4,而x>m,并且不等式组解集为x>4,∴m≤4.17.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为4.【分析】利用一元一次不等式的定义判断即可.【解答】解:∵(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,∴|m|﹣3=1,m+4≠0,解得:m=4,故答案为:418.不等式1﹣4x≥x﹣8的非负整数解为1、0.【分析】先解不等式求出其解集,再找到此范围内的非负整数即可得.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.三.解答题(共7小题)19.解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:5x﹣2>3x+3,2x>5,∴.20.设a为不超过1的正整数,b为与2之间的整数,求的值.【分析】根据不等式的性质可得a和b的值,代入可得结论.【解答】解:∵a为不超过1的正整数,b为与2之间的整数,∴a=1,b=1或2,∴=1或.21.解不等式+1≥,并把它的解集在数轴上表示出来.【分析】利用不等式的基本性质,先去分母、去括号,再移项、合并同类项即可求得原不等式的解集.【解答】解:去分母,得2(1+2x)+6≥3(1+x)去括号得,2+4x+6≥3+3x,再移项、合并同类项得,x≥﹣5.在数轴上表示为:.22.如果关于x的方程x+2+m=0的解也是不等式组的一个解,求m的取值范围.【分析】求出不等式组的解集,确定出x是范围,由方程变形后表示出x,代入计算即可求出m的范围.【解答】解:不等式组整理得:,解得:x≤﹣2,由x+2+m=0,得到x=﹣2﹣m,可得﹣2﹣m≤﹣2,解得:m≥0.23.解不等式组:并将解集在数轴上表示.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.24.若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.【分析】首先解不等式求得不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可.【解答】解:解不等式3(x﹣2)+5<4(x﹣1)+6,去括号,得:3x﹣6+5<4x﹣4+6,移项,得3x﹣4x<﹣4+6+6﹣5,合并同类项,得﹣x<3,系数化成1得:x>﹣3.则最小的整数解是﹣2.把x=﹣2代入2x﹣ax=3得:﹣4+2a=3,解得:a=.25.某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?【分析】(1)设每个篮球、足球的价格分别是x元,y元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设购买了篮球m个,根据题意列出不等式,求出解集即可确定出m的最大值.【解答】解:(1)设每个篮球、足球的价格分别是x元,y元,根据题意得:,解得:,答:每个篮球、足球的价格分别是70元,80元;(2)设购买了篮球m个,根据题意得:70m≤80(60﹣m),解得:m≤32,∴m最多取32,答:最多可购买篮球32个.。
人教版数学七年级下册第九章 不等式与不等式组自我评估
第九章不等式与不等式组自我评估一、选择题(本大题共10小题,每小题3分,共30分)1. 有下列式子:-3<0,4x+3y>0,x=3,x2+2xy+y2,x≠5,x+2>y+3,其中一元一次不等式有()A. 1个B. 2个C. 3个D. 4个2. 已知a>b,下列各式一定成立的是()A. ac>bcB. 2a>a+bC. ac2>bc2D. -a+c>-b+c3. 若一个不等式的正整数解为1,2,则该不等式的解集在数轴上的表示可能是()A B C D4. 下列选项中正确的是()A. a不是负数,表示为a>0B. a不大于3,表示为a<3C. x与4的差是负数,表示为x-4<0D. x不等于12,表示为x>125. 解不等式11132x xx+--≥-,下列去分母正确的是()A. 2x+1-3x-1≥x-1B. 2(x+1)-3(x-1)≥x-1C. 2x+1-3x-1≥6x-1D. 2(x+1)-3(x-1)≥6(x-1)6. 已知点P(1+m,2)在第二象限,则m的取值范围是()A. m>-1B. m<-1C. m≤-1D. m≥-17. 商店为了对某种商品进行促销,将定价为30元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打8折.现有280元,最多可以购买该商品的件数是()A. 9件B. 10件C. 11件D. 12件8. 如图1,两位同学在讨论一个一元一次不等式.图1根据上面对话提供的信息,他们讨论的不等式是()A. -2x≥10B. 2x≤10C. -2x≥-10D. -2x≤-109. 目前,我国已获批上市4款自主研发的新冠疫苗.某生物制药公司计划生产制造A,B两种疫苗共40万支,已知生产每支A疫苗需甲种原料8mg,乙种原料5mg;生产每支B疫苗需甲种原料4mg,乙种原料9mg.公司现有甲种原料4kg,乙种原料3kg,设计划生产A疫苗x支,下列符合题意的不等式组是()A.()()854000004000000494000003000000x xx x⎧+-≤⎪⎨+-≤⎪⎩,B.()()594000004000000844000003000000x xx x⎧+-≤⎪⎨+-≤⎪⎩,C. ()()844000004000000594000003000000x x x x ⎧+-≤⎪⎨+-≤⎪⎩,D. ()()894000004000000544000003000000x x x x ⎧+-≤⎪⎨+-≤⎪⎩, 10. 若m 使关于x 的一元一次不等式组121242x x x m -⎧-≤⎪⎨⎪+≤⎩,有且仅有3个整数解,则所有满足条件的整数m 的值之和是( )A. -13B. -14C. -15D. -16二、填空题(本大题共6小题,每小题3分,共18分)11. 关于x 的一元一次不等式组的解集在数轴上的表示如图2所示,则此不等式组的解集是___________.图212. 写出一个不等式,使它的正整数解为1,2,3: .13. 在某种药品的说明书上的部分内容是“用法用量:每天30~60 mg ,分2~3次服用”,则一次服用这种药品的剂量x 的范围是 mg . 14. 关于x 的不等式ax -2x >b 的解集为x <2b a -,写出一个满足条件的a 的值 . 15. 若关于x 的一元一次不等式组23(2)x x x m >-⎧⎨<⎩,的解集是x <6,则m 的取值范围是 . 16. 如图3所示,运行程序规定:从“输入一个值x ”到“结果是否>79”为一次程序操作,如果程序操作进行了3次才停止,那么x 的取值范围是 .图3三、解答题(本大题共6小题,共52分)17.(每小题4分,共8分)解不等式:(1)3x +5<8(x -1)+3; (2)1103x -->.18.(6分)解不等式组105212x x x -<⎧⎪⎨+≥-⎪⎩,①,②并写出满足不等式组的所有整数解.19.(8分)下面是小明解不等式2+1+2-236x x<的过程,按下列要求完成解答:解:去分母,得2(2x+1)-x+2<12. ……①去括号,得4x+2-x+2<12. ……②移项、合并同类项,得3x<8. ……③系数化为1,得x<83. ……④(1)以上的解法中从第(写出序号)步开始出现了错误;(2)写出正确解答过程,并将不等式的解集在数轴上表示.20.(8分)疫情期间为了满足测温的需求,某单位决定购进一批额温枪.经了解,A品牌额温枪每支300元,B 品牌额温枪每支350元.经与商家协商,A品牌额温枪降价15%,B品牌额温枪按标价的8折销售. 若购买两种品牌的额温枪共50支且总费用不超过13 000元,则至少要购买A品牌的额温枪多少支?21.(10分)已知关于x,y的二元一次方程组23-22x yx y k⎧⎨-=⎩-=,①②的解满足x-y<0.(1)求k的取值范围;(2)在(1)的条件下,若不等式(2k+1)x-2k<1的解集为x>1,请写出符合条件的k的整数值.22.(12分)某工厂准备用图4-①所示的A型正方形板材和B型长方形板材,制作成图4-②所示的竖式和横式两种无盖箱子.①②图4(1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用不超过24 000元资金去购买A,B两种型号板材,制作竖式、横式箱子共100个,已知A 型板材每张20元,B型板材每张60元,则最多可以制作竖式箱子多少个?(3)若该工厂新购得65张规格为3 m×3 m的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个?附加题(共20分,不计入总分)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x-6=0的解为x=3,不等式组104xx-⎧⎨⎩>,<的解集为1<x<4.因为1<3<4,所以方程2x-6=0是不等式组104xx-⎧⎨⎩>,<的关联方程.(1)有下列方程:①3x-3=0;②23x+1=0;③x-(3x+1)=-9.其中不等式组290-+8+1xx x-⎧⎨⎩<,<的关联方程是.(填序号)(2)①解两个方程:312x+=和2+7+123x x+=.②是否存在整数m,使得方程312x+=和2+7+123x x+=都是关于x的不等式组+22+32x mx m⎧⎨⎩>,≤的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.第九章不等式与不等式组自我评估答案速览一、1. A 2. B 3. C 4. C 5. D 6. B 7. B 8. C 9. C 10. B二、11. -3<x≤2 12. x<4(答案不唯一)13. 10≤x≤3014. 1(答案不唯一)15. m≥6 16. 9<x≤19答案详解10. B 解析:解不等式组,得214mx--≤≤.因为不等式组有且仅有3个整数解,所以2124m-≤<.解得-6<m≤-2.又m是整数,所以m的值为-5,-4,-3或-2.所以所有满足条件的整数m的值之和为:-5+(-4)+(-3)+(-2)=-14.16. 9<x≤19 解析:根据题意,得()()22+1+179222+1+1179.xx⎧⎪⎨⎡⎤+⎪⎣⎦⎩≤,>解得9<x≤19.三、17.(1)x>2;(2)x>4.18. 解:解不等式①,得x<1;解不等式②,得x≥4 3 -.所以原不等式组的解集为41 3x-≤<.所以该不等式组的所有整数解为-1,0. 19. 解:(1)①(2)去分母,得2(2x+1)-(x+2)<12.去括号,得4x+2-x-2<12.移项、合并同类项,得3x<12.系数化为1,得x<4.在数轴上表示解集如图所示.20. 解:设购买A品牌额温枪x支,则购买B品牌额温枪(50-x)支.根据题意,得300×(1-15%)x+350×80%×(50-x)≤13 000.解得x≥40.答:至少购买A品牌额温枪40支.21.解:①-②,得x-y=-2-k.因为x-y<0,所以-2-k<0.解得k>-2.(2)将不等式(2k+1)x-2k<1移项,得(2k+1)x<2k+1.因为该不等式的解集为x>1,所以2k+1<0,解得k<1 -2.又k>-2,所以k的取值范围为-2<k<1 -2.所以整数k的值为-1.22. 解:(1)设可制作竖式无盖箱子m个,横式无盖箱子n个.根据题意,可得215043300.m nm n+=⎧⎨+=⎩,解得3060.mn=⎧⎨=⎩,答:可制作竖式无盖箱子30个,横式无盖箱子60个.(2)由题意,可得1个竖式箱子需要1个A型板材和4个B型板材,1个横式箱子需要2个A型板材和3个B型板材.设制作竖式箱子x个,则制作横式箱子(100-x)个.根据题意,得(20+4×60)x+(2×20+3×60)×(100-x)≤24 000.解得x≤50.答:最多可以制作竖式箱子50个.(3)C型可以看成三列,每一列可以做成3个A型或1个B型,65个C型共有:65×3=195(列).因为材料恰好用完,所以最后A型的数量一定是3的倍数.设竖式a个,横式b个.因为1个竖式箱子需要1个A型和4个B型,1个横式箱子需要2个A型和3个B型,1个B型相当于3个A 型,所以(1+4×3)a+(2+3×3)b=195×3,即13a+11b=585.因为a,b均为整数,a≥10,所以45ab=⎧⎨=⎩,,3413ab=⎧⎨=⎩,,2326ab=⎧⎨=⎩,,或1239.ab=⎧⎨=⎩,所以最多可以制作竖式箱子45个. 附加题解:(1)③解析:解方程3x-3=0,得x=1;解方程23x+1=0,得x=3-2;解方程x-(3x+1)=-9,得x=4.解不等式组290-+8+1xx x-⎧⎨⎩<,<,得3.5<x<4.5.因为3.5<4<4.5,所以不等式组290-+8+1xx x-⎧⎨⎩<,<的关联方程是③.(2)①解方程312x+=,得x=-1;解方程2+7+123x x+=,得x=2.②不存在整数m,使得方程312x+=和2+7+123x x+=都是关于x的不等式组+22+32x mx m⎧⎨⎩>,≤的关联方程.理由如下:解关于x的不等式组+22+32x mx m⎧⎨⎩>,≤,得2-m<x<2-32m.假如方程312x+=和2+7+123x x+=都是关于x的不等式组+22+32x mx m⎧⎨⎩>,≤的关联方程,则2-m<-1且2-32m>2.解不等式组2--1 2-322mm⎧⎪⎨⎪⎩<,>.解第一个不等式,得m>3;解第二个不等式,得m<2-3.所以该不等式组无解.所以不存在整数m,使得方程312x+=和2+7+123x x+=都是关于x的不等式组+22+32x mx m⎧⎨⎩>,≤的关联方程.。
第九章 不等式与不等式组 综合素质评价卷(含答案)
第九章综合素质评价一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5 D.1x -3x ≥0 2.【2022·宿迁】如果x <y ,那么下列不等式正确的是( )A .2x <2yB .-2x <-2yC .x -1>y -1D .x +1>y +13.不等式组⎩⎨⎧x +1>0,x -1≤1的解集是( ) A .x ≤2 B .x >-1C .-1<x ≤2D .无解4.【2022·张家界】把不等式组⎩⎨⎧x +1>0,x +3≤4的解集表示在数轴上,下列选项正确的是( )5.下列某个不等式组的解集在数轴上表示如图所示,则该不等式组是( )A.⎩⎨⎧x -1<3x +1<3B.⎩⎨⎧x -1<3x +1>3C.⎩⎨⎧x -1>3x +1>3D.⎩⎨⎧x -1>3x +1<3 6.【教材P 129练习T 2改编】不等式组⎩⎪⎨⎪⎧1-2x <3,x +12≤2的正整数解的个数是( ) A .5 B .4 C .3 D .27.已知点P (2a -1,1-a )在第二象限,则a 的取值范围是( )A .a <12B .a >1 C.12<a <1 D .a <18.不等式13(x -m )>3-m 的解集为x >1,则m 的值为( )A .1B .-1C .4D .-49.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了几支?( )A .6B .7C .8D .910.【数学建模】甲从商贩A 处购买了若干千克西瓜,又从商贩B 处购买了若干千克西瓜.从商贩A 、商贩B 处购买的西瓜质量之比为3:2,然后将买回的西瓜以从商贩A 、商贩B 处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了.这是因为( )A .商贩A 的单价大于商贩B 的单价B .商贩A 的单价等于商贩B 的单价C .商贩A 的单价小于商贩B 的单价D .赔钱与商贩A 、商贩B 的单价无关二、填空题(每题3分,共24分)11.【教材P 115练习T 1改编】x 的35与12的差小于6,用不等式表示为______________.12.若(m +1)x |m |<2 024是关于x 的一元一次不等式,则m =________.13.【2022·十堰】关于x 的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为__________.14.已知关于x 的不等式(3+a )x <4的解集是x >43+a,则a 的取值范围是____________.15.【2022·铜仁】不等式组⎩⎨⎧-2x ≤6,x +1<0的解集是__________. 16.式子1-x -22 的值不大于 1+3x 3 的值,那么x 的取值范围是____________.17.【2022·山西】某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降低出售,则该护眼灯最多可降价________元.18.关于x 的不等式组⎩⎨⎧3x -1>4(x -1),x <m 的解集为x <3,那么m 的取值范围是____________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.【教材P 133复习题T 1改编】解不等式(组),并把解集在数轴上表示出来: (1)x +23-5x +24<2;(2)【2022·威海】⎩⎪⎨⎪⎧4x -2≤3(x +1),1-x -12<x 4.20.已知不等式2(x -1)+4<3(x +1)+2的最小整数解是关于x 的方程2x -mx =4的解,求m 的值.21.【2022·成都七中模拟】若关于x ,y 的二元一次方程组⎩⎨⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求满足条件的m 的所有正整数值.22.【教材P 133复习题T 7变式】若婷去桂林漓江风景区游览,乘坐摩托艇顺水而下,然后返回登艇处.已知水流速度是2 km/h ,摩托艇在静水中的速度是18 km/h ,为了使游览时间不超过3 h ,若婷最多可以游览多少千米?23.【2022·岳阳】为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,B两种跳绳若干.若购买3根A种跳绳和1根B种跳绳共需140元;若购买5根A种跳绳和3根B种跳绳共需300元.(1)求A,B两种跳绳的单价各是多少元;(2)若该班准备购买A,B两种跳绳共46根,总费用不超过1 780元,那么至多可以购买B种跳绳多少根?24.【2022·遂宁】某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球,已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5 500元,那么有哪几种购买方案?答案一、1.C 2.A 3.C 4.D 5.B 6.C 7.A8.C 9.C10.A点思路:设商贩A 的单价为a 元,商贩B 的单价为b 元,从商贩A 、商贩B 处购买的西瓜质量分别为3m 千克、2m 千克.由题意可列不等式(3m +2m )·a +b 2<3ma +2mb ,化简得a > b .二、11.35x -12<6 12.1 13.0≤x <114.a <-3 15.-3≤x <-116.x ≥109 17.32 18.m ≥3三、19.解:(1)去分母,得4x +8-15x -6<24.移项、合并同类项,得-11x <22.系数化为1,得x >-2.故原不等式的解集为x >-2.在数轴上表示这个解集如图所示.(2)⎩⎪⎨⎪⎧4x -2≤3(x +1),①1-x -12<x 4.② 解不等式①,得x ≤5;解不等式②,得x >2.故不等式组的解集为2<x ≤5.不等式组的解集在数轴上表示如图所示.20.解:解2(x -1)+4<3(x +1)+2,得x >-3,所以最小整数解为x =-2.将x =-2代入2x -mx =4,得-4+2m =4,解得m =4.21.解:方程组中的两个方程相加,得3x +3y =-3m +6,即x +y =-m +2.由题意得-m +2>-32,解得m <72.故m 的所有正整数值为1,2,3.22.解:设若婷可以游览x km .由题意得x 18+2+x 18-2≤3,解得x ≤803. 答:若婷最多可以游览803 km . 23.解:(1)设A 种跳绳的单价是x 元,B 种跳绳的单价是y 元.根据题意,得⎩⎨⎧3x +y =140,5x +3y =300,解得⎩⎨⎧x =30,y =50.答:A 种跳绳的单价是30元,B 种跳绳的单价是50元.(2)设购买B 种跳绳a 根,则购买A 种跳绳(46-a )根. 由题意得30(46-a )+50a ≤1 780,解得a ≤20.答:至多可以购买B 种跳绳20根.24.解:(1)设篮球的单价是a 元,足球的单价是b 元.根据题意,得⎩⎨⎧2a +3b =510,3a +5b =810, 解得⎩⎨⎧a =120,b =90.答:篮球的单价是120元,足球的单价是90元.(2)设采购篮球x 个,则采购足球(50-x )个.∵要求篮球不少于30个,且总费用不超过5 500元, ∴⎩⎨⎧x ≥30,120x +90(50-x )≤5 500,解得30≤x ≤3313.∵x 为整数,∴x 的值可为30,31,32,33.∴共有四种购买方案.方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章《不等式与不等式组》综合水平测试
一、耐心填一填,一锤定音!(每小题4分,共32分)
1.不等式组2030x x ->⎧⎨
+>⎩,的解集为______. 2.不等式1(3)62
x +≤的最大正整数解是______,最小正整数解是______. 3.不等式3539x -<≤的整数解是______.
4.如果三角形的三边长度分别为3a ,4a ,14,则a 的取值范围是______.
5.已知点()P a b ,在第二象限,向下平移4个单位得到点Q ,点Q 在第三象限,那么b 的取值范围是______.
6.如果不等式组212
x m x m >+⎧⎨>+⎩,的解集是1x >-,那么m 的值是______.
7.关于x 的不等式组23(3)1324
x x x x a <-+⎧⎪⎨+>+⎪⎩,有四个整数解,则a 的取值范围是______. 8.若4x <,则不等式51mx x >+的解集为______.
二、精心选一选,慧眼识金!(每小题4分,共32分)
1.如果0x y +<,0xy <,那么正确的结论是( )
A.x y ,同号
B.x y ,异号,且负数的绝对值较大 C.x y ,异号,且正数的绝对值较大 D.不确定
2.已知关于x 的不等式组2x x m <⎧⎨>⎩
,无解,则m 的取值范围是( ) A.2m <
B.2m > C.2m ≥ D.不能确定 3.不等式组23182x x x >-⎧⎨--⎩
,≥的最小整数解是( ) A.1- B.0 C.2 D.3
4.如果a ,1a +,a -,1a -四个数在数轴上所对应的点是按从左到右的顺序排列的,那么a 满足下列各式中的( ) A.12a < B.0a < C.0a > D.12
a <- 5.把不等式组523421113
2x x x x --⎧⎪+-⎨->⎪⎩,≥的解集在数轴上表示出来,应为( )
A. B. C. D.
6.棉花每公斤的价格在第二季度上升了10%,在第三季度下降了(5)%(5)a a ->后,并不低于原价,则a 的取值范围是( )
A.535a <≤ B.155511a <≤ C.525a <≤ D.25a ≥
7.不等式3x >的解集是( )
A.3x > B.3x <- C.3x >或3x <- D.33x -<<
8.某人将1,2, ,n 这n 个数输入电脑,求平均数.当他认为输入完毕时,电脑显示只输入了1n -个数,平均数为535
7.假设这1n -个数输入无误,则漏输的一个数是( ) A.10 B.53
C.56 D.67 三、用心做一做,马到成功!(本大题共56分)
1.(本题8分)k 取什么值时,解方程组24
x y k x y +=⎧⎨-=⎩,得到的x y ,的值:
(1)都小于1;(2)都不小于1.
2.(本题8分)某种彩电出厂价为每台1800 元,各种管理费约为出厂价的12%,商家零售价为每台多少元时,才能保证毛利不低于15%?(精确到10元)
3.(本题8分)在平面直角坐标系中,如果横坐标与纵坐标都是整数,我们把这样的点称为
整点,已知()a b ,是整点,且在第二象限,已知点(2536)P a b --,
先向右平移10个单位,再向下平移2个单位,得到点Q ,点Q 在第四象限.则这样的整点有几个?
4.(本题10分)先阅读理解下面的例题,再完成(1)、(2)两题.
例 解不等式(32)(21)0x x -+>.
解:由有理数的乘法法则:两数相乘,同号得正,可得①320210x x ->⎧⎨+>⎩,;或②320210x x -<⎧⎨+<⎩,.
解不等式组①,得23x >,解不等式组②,得12
x <-. 所以原不等式的解集为23x >,或12x <-.
(1)求不等式
1
23
x
x
+
<
-
的解集;
(2)通过阅读例题和做(1),你学会了什么知识和方法.
5.(本题10分)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的三角形的各边所用火柴杆的根数.
6.(本题12分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)请写出此车间每天所获利润y(元)与x(人)之间的关系式.
(2)若要使车间每天获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?。