七年级数学上册合并同类项基础练习题107

合集下载

七年级数学(合并同类项、去括号与添括号(提高))练习题试题

七年级数学(合并同类项、去括号与添括号(提高))练习题试题

欠风丹州匀乌凤市新城学校河口区实验七年级数学<合并同类项、去括号与添括号〔提高〕>练习题1.()-=+--y x y x xy xy y x222223223,括号里所填的各项应是〔 〕A 、y x xy xy22222+-B 、y x xy xy 22222-- C 、y x xy xy 22222-+-D 、y x xy xy22222-+2.()()()[]()[]-+=+--+a a c b a c b a 括号里所填的各项分别是〔 〕A 、c b c b +-,B 、c b c b -+-,C 、c b c b --,D 、c b c b ++-,3.以下去括号、添括号的结果中,正确的选项是〔 〕 A、()d c b a d c b a +---=+-+ B 、()3555535522+--+=-+-m m m m m mC、()()nn n n n na a a a a a7373++-=---- D 、()b a b a b a b a +--=⎪⎭⎫⎝⎛---23212234.将()c b a 32--括号前的符号变成相反的符号,而代数式的值不变的是〔 〕 A 、()c b a 32+-+B 、()c b a 32--+C 、()c b a 32+-+D 、()[]c b a 32+-+5.在以下各式的括号内填上适当的项: 〔1〕()()--=+=+--b a d c b a〔2〕()()()[]()[]+-=-+++-b b c b a c b a〔3〕()()()()[]()()[]--+-=-+---+d a d a d c b a d c b a6.把3223452b ab b a a--+的前末两项放在前面带有“+〞号的括号里,把中间两项放在前面带有“-〞号的括号里得 . 7.当x 为何值时,代数式()123-x 与x -7的值互为相反数.8.证明:代数式()()101321622++-+a a的值与a 无关.9.一根铁丝长〔b a 37+〕米,用剩下的铁丝默围成一个矩形,其长为()b a +米,宽为a 2米,求剪去的铁丝的长度. 10.去括号再合并同类项 (1)()3232371a a a a -+-+- (2)()()2223251x x x x -+--+ (3)()()=----257322x x〔4〕()[]12413854222-++---+-x x x x x〔5〕()[]{}b a a b a --+--3432〔6〕()[]()[]222b b a -++----2.假设b a ,互为相反数,求b b b b b a a a a a 865429753+++++++++的值. 3.假设2112a m n --和3132n m b -是同类项,求b a 的值.。

苏科版七年级数学上《合并同类项》同步练习含答案

苏科版七年级数学上《合并同类项》同步练习含答案

3.4 合并同类项一.选择题1.已知与5x m+1y是同类项,那么m,n的值分别是()A.m=2,n=﹣1B.m=﹣2,n=﹣1C.m=﹣2,n=1D.m=2,n=2 2.若代数式2x2+7kxy﹣y2中不含xy项,则k的值为()A.0B.﹣C.D.13.下列说法正确的是()A.单项式的系数是3B.多项式2x2﹣3y2+5xy2是三次三项式C.单项式﹣22m4n的次数是7D.单项式2a2b与ab2是同类项4.若单项式与的差仍然是单项式,则m+n等于()A.6B.5C.4D.35.下列说法正确的是()A.0是单项式B.﹣a的系数是1C.a3+是三次二项式D.3a2b与﹣ab2是同类项6.已知2a m b+4a2b n=6a2b,则﹣2m+n的值为()A.﹣1B.2C.﹣3D.47.如果关于x多项式3x3+k2x2﹣4x2+x﹣5中不含x2项,则k的值为()A.0B.2C.﹣2D.2或﹣28.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1二.填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.当k=时,代数式x2﹣kxy﹣8y2﹣xy+5中不含xy项.11.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.12.把(a﹣b)看作一个整体,合并同类项:3(a﹣b)+4(a﹣b)﹣2(a﹣b)=.13.化简xy2﹣3x2y﹣1+2xy2+5x2y=.14.计算:﹣5m2n+4mn2﹣2mn+6m2n+3mn=.15.若代数式2ax2y+3xy﹣4﹣5x2y﹣7x﹣7ax2y+m中,化简后不含x2y项,则a2019﹣4=.16.已知多项式4x2﹣3mx+2+m的值与m的大小无关,则x的值为.17.如果多项式x4﹣(a﹣1)x3+5x2+(b+3)x﹣1不含x3和x项,则a+b=.三.解答题18.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)19.合并同类项:(1)5x+2y﹣3x﹣7y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7.20.化简下列各题:(1)2a﹣5b﹣3a+b(2)3(a﹣b)﹣4(a﹣b)﹣5(a﹣b)(3)4(x2+xy﹣1)﹣2(2x2﹣xy)(4)a2﹣3[a2﹣2(a2﹣a)+1]21.计算(1)8(a﹣b)﹣5(a﹣b)﹣7(a﹣b)(2)3a2b﹣2[ab2﹣2(a2b﹣2ab2)]22.化简:写出必要的计算步骤和解答过程.(1)3a2﹣2a+4a2﹣7a(2)2x2﹣3xy+y2﹣2xy﹣2x2+5xy﹣2y+123.已知代数式4x2+ax﹣y+5﹣2bx2+7x﹣6y﹣3的值与x的取值无关,求代数式a3﹣2b2+3b3的值.24.若关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求m,n的值.25.学习指导:同学们,我们即将在“整式的加减”一章中学习同类项和合并同类项法则.同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项,例如a,3a和7a是同类项.合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变.例如﹣8ab+6ab﹣3ab=(﹣8+6﹣3)ab.请你解决下面问题,一定要化简哦.为了绿化校园,学校决定修建一块长方形草坪,长30米,宽20米,并在草坪上修建如图所示的等宽的十字路,小路宽为x米.(1)用代数式表示小路和草坪的面积是多少平方米?(2)当x=3米时,求草坪的面积.参考答案一.选择题1.解:由题意可知:m+1=3,n﹣1=1,∴m=2,n=2,故选:D.2.解:∵代数式2x2+7kxy﹣y2中不含xy项,∴7k=0.解得:k=0.故选:A.3.解:A、单项式的系数是,故原题说法错误;B、多项式2x2﹣3y2+5xy2是三次三项式,故原题说法正确;C、单项式﹣22m4n的次数是5,故原题说法错误;D、单项式2a2b与ab2不是同类项,故原题说法错误;故选:B.4.解:∵单项式与的差仍然是单项式,∴与是同类项,∴m=2,n+1=4.解得m=2,n=3,∴m+n=5.故选:B.5.解:A、0是单项式,故本选项正确,B、﹣a的系数是﹣1,故本选项错误,C、式子a3+是分式,不是多项式,故本选项错误,D、3a2b与﹣ab2不是同类项(相同字母的指数不同),故本选项错误.故选:A.6.解:因为2a m b+4a2b n=6a2b,所以2a m b与4a2b n是同类项.所以m=2,n=1,所以﹣2m+n=﹣2×2+1=﹣3,故选:C.7.解:3x3+k2x2﹣4x2+x﹣5=3x3+(k2﹣4)x2+x﹣5,由多项式不含x2,得k2﹣4=0,解得k=2或﹣2.故选:D.8.解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.二.填空题9.解:∵单项式﹣3x3y n与5x m+4y3是同类项,∴m+4=3,n=3,解得m=﹣1,n=3,∴m﹣n=﹣1﹣3=﹣4.故答案为:﹣4.10.解:x2﹣kxy﹣8y2﹣xy+5=x2﹣(k+1)xy﹣8y2+5.∵代数式不含xy项,∴﹣(k+1)=0.解得k=﹣1.故答案为:﹣1.11.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.12.解:3(a﹣b)+4(a﹣b)﹣2(a﹣b)=(3+4﹣2)(a﹣b)=5(a﹣b),故答案为:5(a﹣b).13.解:xy2﹣3x2y﹣1+2xy2+5x2y=(1+2)xy2+(5﹣3)x2y﹣1=3xy2+2x2y﹣1.故答案为:3xy2+2x2y﹣1.14.解:﹣5m2n+4mn2﹣2mn+6m2n+3mn=m2n+4mn2+mn.故答案为:m2n+4mn2+mn.15.解:∵代数式2ax2y+3xy﹣4﹣5x2y﹣7x﹣7ax2y+m中,化简后不含x2y项,∴2ax2y﹣5x2y﹣7ax2y=0,∴2a﹣5﹣7a=0,解得:a=﹣1,故a2019﹣4=﹣5.故答案为:﹣5.16.解:∵多项式4x2﹣3mx+2+m的值与m的大小无关,∴4x2﹣3mx+2+m=4x2+2+(﹣3x+1)m,则﹣3x+1=0,解得:x=.故答案为:.17.解:由题意得:a﹣1=0,b+3=0,解得a=1,b=﹣3,∴a+b=1﹣3=﹣2.故答案为:﹣2.三.解答题18.解:(1)原式=3x2﹣x2﹣2x+3x﹣1﹣5=2x2+x﹣6(2)原式=2a2﹣1+2a﹣3a+3﹣3a2=﹣a2﹣a+219.解:(1)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7=(3a2﹣2a2)+(3ab﹣3ab)+(7﹣5)=a2+2.20.解:(1)原式=2a﹣3a﹣5b+b=﹣a﹣4b;(2)原式=(3﹣4﹣5)(a﹣b)=﹣6(a﹣b)=﹣6a+6b;(3)原式=4x2+4xy﹣4﹣4x2+2xy=6xy﹣4;(4)原式=a2﹣3(a2﹣2a2+2a+1)=a2﹣3(﹣a2+2a+1)=a2+3a2﹣6a﹣3=4a2﹣6a﹣3.21.解:(1)原式=(8﹣5﹣7)(a﹣b)=﹣4(a﹣b)=﹣4a+4b;(2)原式=3a2b﹣2(ab2﹣2a2b+4ab2)=3a2b﹣2ab2+4a2b﹣8ab2=7a2b﹣10ab2.22.解:(1)原式=(3+4)a2+(﹣2﹣7)a=7a2﹣9a;(2)原式=(2﹣2)x2+y2+(5﹣2﹣3)xy﹣2y+1=y2﹣2y+1.23.解:原式=4x2﹣2bx2+ax+7x﹣y﹣6y﹣3+5=(4﹣2b)x2+(a+7)x﹣7y+2由题意可知:4﹣2b=0,a+7=0,∴a=﹣7,b=2,∴原式=×(﹣7)3﹣2×4+3×8=﹣49﹣8+24=﹣33.24.解:∵关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4=(6m﹣1)x2+(4n+2)xy+2x+y+4不含二次项,∴6m﹣1=0,4n+2=0,∴m=,n=﹣.25.解:(1)小路的面积=30x+20x﹣x2.草坪的面积=20×30﹣(30x+20x﹣x2)=x2﹣50x+600.(2)把x=3代入,得到:草坪的面积=x2﹣50x+600=32﹣50×3+600=459(平方米).答:当x=3米时,求草坪的面积是459平方米.。

七年级数学上册综合算式专项练习题解方程中的去括号与合并同类项

七年级数学上册综合算式专项练习题解方程中的去括号与合并同类项

七年级数学上册综合算式专项练习题解方程中的去括号与合并同类项一、去括号与合并同类项在解方程的过程中,经常会涉及到去括号和合并同类项的操作。

本文将针对七年级数学上册综合算式专项练习题中的去括号与合并同类项进行讲解,并提供详细的步骤和示例。

一、去括号去括号是将括号内的项与括号外的项进行相应的运算。

根据运算的不同,可以分为以下三种情况。

1. 去括号时,括号前面有正号或没有正号。

- 若括号前面有正号,则去括号后,括号内的项不变。

例如:3(x + 2) = 3x + 6- 若括号前面没有正号,则去括号后,括号内的项变号。

例如:-2(x - 3) = -2x + 62. 去括号时,括号前面有负号或没有负号。

- 若括号前面有负号,则去括号后,括号内的项变号。

例如:-4(x + 5) = -4x - 20- 若括号前面没有负号,则去括号后,括号内的项不变。

例如:5(2x - 3) = 10x - 153. 去括号时,括号前面有系数。

- 若括号前面有系数,则去括号后,括号内的项与系数相乘。

例如:2(3x + 4) = 6x + 8以上是去括号的三种情况,根据题目的具体要求和括号前面的情况来执行相应的操作。

二、合并同类项合并同类项是将具有相同字母和指数的项进行合并,简化表达式。

具体步骤如下:1. 根据字母和指数相同的原则,将表达式中的项分组。

例如:3x + 2x - 5x + 4y - 2y + 6z - 2z = (3x + 2x - 5x) + (4y - 2y) + (6z - 2z)2. 合并同类项,即将同一组内的项相加或相减。

例如:(3x + 2x - 5x) = 0x = 0(4y - 2y) = 2y(6z - 2z) = 4z3. 将合并后的结果再次组合,得到最终的表达式。

例如:3x + 2x - 5x + 4y - 2y + 6z - 2z = 0 + 2y + 4z = 2y + 4z通过上述步骤,我们可以将数学上册综合算式专项练习题中的去括号与合并同类项简化为最简形式。

七年级数学合并同类项同步练习及答案

七年级数学合并同类项同步练习及答案

七年级数学合并同类项同步练习及答案篇一:七年级数学合并同类项同步练习1、下列代数式中,哪些是整式?-3x ,5xy +11121x , x-7, , x+. 2x332、写出下列单项式的系数和次数①-xy ② ab-0.5xy④-3.写出下列多项式是几次几项式?a)知识平台1.同类项的意义. 2.合并同类项的意义. 3.合并同类项的方法.思维点击1.判断同类项的标准有两条:①所含字母相同;②相同字母的指数也分别相等,?两条标准缺一不可.例如:3xy与3xy虽然所含字母相同,但在这两个单项式中,x的指数不相等,y的值数也不相等,所以不是同类项.-2xy与3yx两个项所含字母相同,字母x,y?的指数也相等,所以是同类项. 2.合并同类项的要点是:①字母和字母的指数不变;②同类项的系数相加(合并).例如:合并同类项3xy和5xy,字母x、y及x、y的指数都不变,?只要将它们的系数3和5相加,即3xy+5xy=(3+5)xy=8xy.考点浏览☆考点了解同类项的意义,会合并同类项.22222233222a211122222ab-5a-7b②-xy+3x+2xy- 2231k121k12xy与-xy是同类项,则k=______,xy+(-xy)=________. 33331k12 【解析】 xy与-xy是同类项,这两项中x的指数必须相等,所以k=2;?合并同类项,只需将它33111k12们的系数相加,因为与-互为相反数,它们的和为零,所以xy+(-xy)=0.是:2 0.3333例1 如果例2 合并下列多项式中的同类项.(1)4xy-8xy+7-4xy+10xy-4;(2)a-2ab+b+a+2ab+b.【解析】(1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:(1)原式=(4xy-4xy)+(-8xy+10xy)+(7-4)mengchengxianxinjiaoyuzhongxin22222222222=(4-4)xy+(-8+10)xy+3=2xy+3;(2)原式=(a+a)+(-2ab+2ab)+(b+b)=2a+2b.在线检测1.将如图两个框中的同类项用线段连起来: 2.当m=________时,-xb与 k232m22222222213xb是同类项. 43.如果5ab与-4ab是同类项,那么5ab+(-4ab)=_______. 4.直接写出下列各式的结果:k21122xy+xy=_______;(2)7ab+2ab=________;(3)-x-3x+2x=_______;22 1212222(4)xy-xy-xy=_______;(5)3xy-7xy=________.(1)-5.选择题:(1)下列各组中两数相互为同类项的是() A.22122222xy与-xy; B.0.5ab与0.5ac; C.3b与3abc;D.-0.1mn与mn 32 (2)下列说法正确的是()A.字母相同的项是同类项 B.只有系数不同的项,才是同类项 C.-1与0.1是同类项D.-xy与xy是同类项 6.合并下列各式中的同类项: (1)-4xy-8xy+2xy-3xy;(2)3x-1-2x-5+3x-x;(3)-0.8ab-6ab-1.2ab+5ab+ab;(4)5yx-3xy-7xy+6xy-12xy+7xy+8xy. 7.求下列多项式的值: (1)(2)3xy+2xy-7xy-mengchengxianxinjiaoyuzhongxin2222222222222222222212211a-8a-+6a-a+,其中a=; 323423122xy+2+4xy,其中x=2,y=.243.4 合并同类项(答案) 1.略 2.略 3.ab4.(1)0 (2)9ab (3)-2x (4)5.(1)D (2)C6.(1)-2xy-11xy (2)2x+x-6 (3)-ab-ab (4)-xy+5xy7.(1)- mengchengxianxinjiaoyuzhongxin222222122xy (5)-4xy659 (2) 44篇二:数学《合并同类项》练习3.4合并同类项一、选择题1 .下列式子中正确的是()A.3a+2b=5abB.3x?5x?8xC.4x2y?5xy2??x2yD.5xy-5yx=0 2 .下列各组中,不是同类项的是A、3和0B、2?R与?RC、xy与2pxyD、?xn?1yn?1与3yn?1xn?1 3 .下列各对单项式中,不是同类项的是( )A.0与22257122B.?3xn?2ym与2ymxn?2 C.13x2y与25yx2 D.0.4ab与0.3ab 314 .如果xa?2y3与?3x3y2b?1是同类项,那么a、b的值分别是( )3?a?1?a?0?a?2?a?1A.? B.? C.? D.??b?1?b?2?b?2?b?15 .下列各组中的两项不属于同类项的是()A.3mn和?mnB.2323xy123和5xy C.-1和D.a和x456 .下列合并同类项正确的是 ( )235(A)8a?2a?6; (B)5x?2x?7x ;(C) 3ab?2ab?ab;(D)?5x2y?3x2y??8x2y 7 .已知代数式x?2y的值是3,则代数式2x?4y?1的值是A.1B.4C. 7D.不能确定2228 .x是一个两位数,y是一个一位数,如果把y放在x的左边,那么所成的三位数表示为A.yxB.y?xD.100y?xC.10y?x9 .某班共有x名学生,其中男生占51%,则女生人数为 ( )A、49%xB、51%xC、xx D、51%49%10.一个两位数是a,还有一个三位数是b,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是( )10a?b B.100a?bC.1000a?bD.a?b二、填空题11.写出?2xy的一个同类项_______________________.3212.单项式-x13a?bya?1与5x4y3是同类项,则a?b的值为_________?13.若?4xay?x2yb??3x2y,则a?b?__________. 14.合并同类项:3a2b?3ab?2a2b?2ab?_______________.115.已知2x6y2和?x3myn是同类项,则9m2?5mn?17的值是_____________.316.某公司员工,月工资由m元增长了10%后达到_______元? 三、解答题17.先化简,再求值:18.化简:7a2b?(?4a2b?5ab2)?(2a2b?3ab2).参考答案一、选择题1 .D2 .C3 .D4 .A5 .D6 .D7 .C8 .D9 .A10.C 二、填空题 11.2xy(答案不唯一)12.4; 13.314.5a2b?ab;15.?1 16.11.m 三、解答题 17.解:3235m?(m?1)?3(4?m),其中m??3. 223535m?(m?1)?3(4?m)=m?m?1?12?3m( )=?4m?132222当m??3时,?4m?13??4?(?3)?13?252222218.7ab?(?4ab?5ab)?(2ab?3ab)=7ab?4ab?5ab?2ab?3ab22=(7?4?2)ab?(5?3)ab( )=ab?8ab22222223.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打? ⑴12xy与-3yx2 ( ) 322⑵ab与ab ( ) ⑶2abc与-2abc( ) (4)4xy与25yx ( ) (5)24 与-24 ( )(6) x与2 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打? (1)2x+5y=7y ( ) ( 2.)6ab-ab=6( ) (3)8xy?9xy?xy( )(4)3332222531m?2m3? ( ) 22325(5)5ab+4c=9abc ( ) (6)3x?2x?5x ( ) (7) 4x?x?5x ( ) (8) 3ab?7ab??4ab () 3. 与2222212xy不仅所含字母相同,而且相同字母的指数也相同的是() 212122A.xzB. xyC.?yxD. xy2222224.下列各组式子中,两个单项式是同类项的是()22A.2a与aB.5ab 与abC. xy与xyD. 0.3mn与0.3xy5.下列计算正确的是()A.2a+b=2abB.3x?x?2C. 7mn-7nm=0D.a+a=a6.代数式-4ab与3ab都含字母,并且因此-4ab 与3ab是7.所含相同,并且也相同的项叫同类项。

七年级数学代数式合并同类项整式加减求值综合练习题(附答案)

七年级数学代数式合并同类项整式加减求值综合练习题(附答案)

七年级数学代数式合并同类项整式加减求值综合练习题一、单选题1.王大爷承包一长方形鱼塘,原来长为2x 米,宽为x 米,现在要把长和宽都增加y 米,那么这个鱼塘的面积增加( ).A.22(32)x xy y ++平方米B.22(23)x xy y ++平方米C.2(3)xy y +平方米D.2(64)xy y +平方米2.下列判断中,错误的是( )A .1a ab --是二次三项式B .22a b c -是单项式C .2a b +是多项式D .23π4R 中,系数是34 3.下面是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148B.152C.174D.2024.下列各式中,不能由32a b c -+通过变形得到的是( )A.3(2)a b c -+B.(23)c b a --C.(32)a b c -+D.3(2)a b c --5.已知单项式312xy 与43a xy +-是同类项,那么a 的值是( ) A. 1- B.0 C.1 D.26.如果多项式2285x xy y kxy +--+不含xy 项,则k 的值为( )A.0B.7C.1D.87.若单项式12m a b -与212n a b 的和仍是单项式,则2m n -的值是( ) A.3 B.4 C.6 D.88.下列各式12mn -,m ,8,1a ,226x x ++,25x y -,24πx y +,1y 中,整式有( ) A.3个 B.4个 C.6个 D.7个9.当12a <<时,代数式||||21a a --+的值是( )A.-1B.1C.3D.-310.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是11,112=---的差倒数是111(1)2=--.如果122,a a =-是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……依此类推,那么12100a a a ++⋯+的值是( )A.﹣7.5B.7.5C.5.5D.﹣5.5二、解答题11.先化简,再求值: (1)22(1241222)m m m m ++---,其中1m =-; (2)2222[(2)]523xy x y x y xy ---,其中2()|10|2x y -++=.12.已知:225A x ax y b =+-+,235322B bx x y =---. (1)求32()4A A B --的值;(2)当x 取任意数值,2A B -的值是一个定值时,求332147a A b B ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭的值. 三、填空题13.若,m n 互为倒数,则()21mn n --的值为__________.14.若3x y =+,则22132.30.75()()(7(0)41)x y x y x y x y --+-+-+﹣等于_____. 15.当1x =时,代数式221ax bx ++的值为0,则243a b +-= .16.已知3435b A a b =-,22332B a b b =-+,则A B -= 。

七年级数学上册解一元一次方程合并同类项与移项练习题

七年级数学上册解一元一次方程合并同类项与移项练习题

七年级数学上册解一元一次方程合并同类项与移项练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 2.已知21x y =⎧⎨=-⎩是方程7mx y +=的解,则m =______. 3.若3x =是关于x 的方程3250x m --=的解,则m 的值为_________.4.求代数式的值的步骤:_______和计算.5.已知x =1是关于x 的方程6-(m -x )=5x 的解,则代数式m 2-6m +2=___________.6.有一个两位数,其数字之和是8,个位上的数字与十位上的数字互换后所得新数比原数小36,求原数.分析:设个位上和十位上的数字分别为x 、y ,则原数表示为________,新数表示为________;题目中的相等关系是:①________;①_______,故列方程组为_______.二、单选题7.方程185x =-的解为( )A .13-B .13C .23D .23-8.如果方程24=x 与方程310x k +=的解相同,则k 的值为( )A .2B .-2C .4D .-49.在物理学中,导体中的电流①跟导体两端的电压U ,导体的电阻R 之间有以下关系:U I R =去分母得IR U =,那么其变形的依据是( )A .等式的性质1B .等式的性质2C .分式的基本性质D .不等式的性质210.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6;①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.下列说法中,正确的是( )A .2与2-互为倒数B .2与12互为相反数C .0的相反数是0D .2的绝对值是2-12.已知点P 的坐标为(2,36)a a +-,且P 到两坐标轴的距离相等,则点P 的坐标为( )A .(3,3)B .(3,3)-C .(6,6)D .(6,6)或(3,3)-三、解答题13.已知关于x 的方程372x x a -=+的解与方程427x x +=-的解相同,试求a 的值.14.已知:a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()||cd a b m m m++-的结果是多少? 15.如图是某小区的一块长为b 米、宽为2a 米的长方形草地,现在在该长方形的四个顶点处分别修建一个半径为a 米的扇形花台.(1)求修建后剩余草坪(阴影部分)的面积:(用含a ,b 的式子表示)(2)当a =10,b =40时,草坪的面积是多少平方米?(π取3.14)参考答案:1.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.2.4【分析】把21x y =⎧⎨=-⎩代入方程7mx y +=,求解即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程7mx y +=,得 2m -1=7,解得:m =4,故答案为:4.【点睛】本题考查方程的解,解一元一次方程,熟练掌握方程的解的定义:能使方程左右两边相等的未知数值叫方程的解是解题的关键.3.2【分析】将x =3代入方程计算即可求出m 的值.【详解】解:将x =3代入方程得:9-2m -5=0,解得m =2.故答案为:2.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.代数【解析】略5.-6【分析】根据一元一次方程的解的定义可知m 的值,然后代入求值即可.【详解】解:把x =1代入6-(m -x )=5x ,得6-(m -1)=5×1.解得m =2.所以m 2-6m +2=22-6×2+2=-6.故答案为:-6.【点睛】本题主要考查了方程的解、代数式求值.解答关键是理解方程的解的定义:就是能够使方程左右两边相等的未知数的值.6. 10y x + 10x y + 8x y += ()()101036x y x y +-+= 8(10)(10)36x y x y x y +=⎧⎨+-+=⎩【分析】设个位上和十位上的数字分别为x ,y ,则可分别表示原数和新数,再找出两个等量关系,列方程组;【详解】依题意,原数表示为10y x +,新数表示为10x y +,两个等量关系为:①个位上的数字+十位上的数字=8;①新数+36=原数;列方程组为8103610x y x y y x ⎧+=⎨++=+⎩; 故答案为:10y x +;10x y +;8x y +=;()()101036x y x y +-+=;8(10)(10)36x y x y x y +=⎧⎨+-+=⎩. 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,准确计算是解题的关键.7.A【分析】先移项,再合并同类项,即可求解.【详解】解:185x =-,移项得:518x =-,解得:13x =-.故选:A【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键. 8.C【分析】首先求出方程24=x 的解,然后代入方程310x k +=即可求出k 的值.【详解】解:①2x =4,①x =2,①方程2x =4与方程3x +k =-2的解相同,①将x =2代入方程310x k +=得:3×2+k =10,解得,k =4,故选:C .【点睛】此题考查了一元一次方程的解的含义,已知方程的解求参数问题,解题的关键是熟练掌握解得含义并根据题意求出方程24=x 的解.9.B【分析】根据等式的性质2可得答案. 【详解】解:U I R =去分母得IR U =,其变形的依据是等式的性质2, 故选:B .【点睛】本题考查了等式的性质2:等式的两边同时乘以或除以同一个不为零的数,等式仍然成立. 10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.C【分析】根据相反数定义,倒数定义,绝对值定义对各选项进行一一判断即可.【详解】解:A. 2与2-互为相反数,故选项A 不正确B. 2与12互为倒数,故选项B 不正确;C. 0的相反数是0,故选项C 正确;D. 2的绝对值是2,故选项D 不正确.故选C .【点睛】本题考查相反数定义,倒数定义,绝对值定义,掌握相关定义是解题关键.12.D【分析】由点P 到两坐标轴的距离相等,建立绝对值方程236a a +=-,再解方程即可得到答案. 【详解】解: 点P 到两坐标轴的距离相等,236a a ∴+=-,236a a ∴+=-或2360a a ++-=,当236a a +=-时,解得:4a =,()6,6P ∴;当2360a a ++-=时,解得:1a =,()3,3P ∴-;综上分析可知,P 的坐标为:()6,6P 或()3,3P -,故D 正确.故选:D .【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.13.-6【分析】先解方程4x +2=7-x ,然后将解代入方程3x -7=2x +a 中,求出a 的值.【详解】解:解方程427x x +=-,得:1x =,方程372x x a -=+的解与方程427x x +=-的解相同,把1x =代入372x x a -=+,得:372a -=+,解得6a =-.a ∴的值为6-.【点睛】本题考查了方程的解,需要抓住“方程的解就是使方程成立的未知数的值”这个定义进行“求解——代入——求解”的过程,从而得到a 的值.14.0或-2【分析】由互为相反数两数之和为0得到a +b =0,由互为倒数两数之积为1得到cd =1,再根据倒数等于本身的数为-1和1得到m =1或m =-1,代入所求式子中计算即可求出值.【详解】解:由题意得a +b =0,cd =1,m =1或m =-1.当m =1时,原式101|1|01=+⨯-=; 当m =-1时,原式10(1)|1|21=+⨯---=--; 综上:()||cd a b m m m++-的结果是0或-2. 【点睛】此题考查了代数式求值,有理数的混合运算,相反数,以及倒数,熟练掌握相反数及倒数的定义是解本题的关键.15.(1)2ab ﹣πa 2平方米(2)486平方米【分析】(1)由图可知,四个扇形的面积等于一个圆的面积,用矩形的面积减去一个圆的面积即可, (2)将a 和b 的值代入(1)中的式子进行计算即可.(1)修建后剩余草坪的面积为22ab a π-(平方米).(2)当a =10,b =40时,22ab a π-≈221040 3.1410⨯⨯-⨯=800﹣314=486(平方米).【点睛】本题主要考查了用字母表示数,熟练掌握各个图形的面积公式是解题的关键.。

七年级上册数学合并同类项

七年级上册数学合并同类项

合并同类项一、典型例题与练习: 例1、已知:23x 3my 3 与 -1 x 6y n+1 是同类项,求 m 、n 的值 .练习:填空:1.如果2a 2b n+1与-4a m b 3是同类项,求 m 、n 的值 .2.若单项式22m x y 与313n x y -是同类项,求m n +的值。

3.已知x m y 2与-3x 3y n 是同类项,则m= ,n= .二、合并同类项:1、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的_____,且字母部分________。

2、注意问题:(1)若两个同类项的系数互为相反数,则两项的和等于_______ ;(2)多项式中只有_______项才能合并,不是________不能合并。

(3)通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或写5+5x-4x2。

例2:合并同类项 4x 2+2x+7+3x-8x 2-2练习、1.若5xy 2+axy 2=-2xy 2,则a=___;2.在6xy-3x 2-4 x 2y-5y x 2+ x 2中没有同类项的项是____;3、合并下列各式的同类项:(1)3x 3+ x 3; (2)xy 2 -xy 2。

(3) 6xy-10x 2-5yx+7x 2 +5x(4) 3x-8x-9x (5) 5a 2+2ab-4a 2-4ab (6) 2x-7y-5x+11y-1例3:(1)求多项式2x 2-5x+ x 2+4x-3 x 2-2的值,其中x= 5.(2)求多项式3a+abc- c 2-3a+ c 2的值,其中a=-1 ,b=2,c=-3.练习:2、求多项式2x 2-5x +x 2+4x -3x 2-2的值,其中x=21;三、巩固练习, 一、填空题1.“x 的平方与2的差”用代数式表示为 .2.单项式853ab -的系数是 ___,次数是 ___;当5,2a b ==-时,这个代数式的是 . 3.多项式34232-+x x 是 次 项式,常数项是 .4.单项式25x y 、223x y 、24xy -的和为 . 5.若32115k x y +与3873x y -是同类项,则k = . 6.已知单项式32b a m 与-3214-n b a 的和是单项式,那么m = ,n = . 8.已知轮船在逆水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在静水中航行的速度是 千米/时.9.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是 .10.若53<<a ,则_________35=-+-a a .四、选择 1、下列说法正确的是 ( )A . x 的指数是0 B. x 的系数是0 C . -3 是一次单项式 D. -23ab 的系数是- 232、代数式a 2、-xyz 、24ab 、-x 、b a 、0、a 2+b 2、-0.2中单项式的个数是( ) A. 4 B.5 C.6 D. 73、下列结论正确的是( )A.整式是多项式B. 不是多项式就不是整式 C .多项式是整式 D. 整式是等式4、如果一个多项式的次数是4次,那么这个多项式的任何一项的次数( )A .都小于4B .都等于4 C. 都不大于4 D. 都不小于45、下列各组式子是同类项的是( )A. 3x 2y 与-3xy 2B. 3xy 与-2yxC. 2x 与2x 2D. 5xy 与5yz6、与代数式1-y +y 2-y 3相等的式子是( )A . 1-(y +y 2-y 3)B . 1-(y -y 2-y 3)C . 1-(y -y 2+y 3) D. 1-(-y +y 2-y 3)7、下列各对不是同类项的是( )A -3x2y 与2x2yB -2xy2与 3x2yC -5x2y 与3yx2D 3mn2与2mn28、合并同类项正确的是( )A 4a+b=5abB 6xy2-6y2x=0C 6x2-4x2=2D 3x2+2x3=5x5五、学习去括号法则1、判断下列算式是否成立:(1)10+(5-3)=10+5-3 ( ) (2)10-(5-3)=10-5+3( )(3)6+(t-x )=6+t-x ( ) (4) 6-(t-x )=6-t+x ( )2、总结去括号时符号变化的规律:(1) 如果括号外的因数是正数,去括号后原来括号内各项的符号______,(2)如果括号外的因数是负数,去括号后原来括号内各项的符号____________,六、例题与练习例1:化简下列各式(1)8a+2b+(5a -b ); (2)(5a -3b )-3(a 2-2b ).练习 化简 : (1) 2(x+y) (2) -3(2x -3y) (3) -0.5(3x -2y +1)(4) (2x ―3y)+(5x+4y); (5) (8a ―7b)―(4a ―5b)(6) 3(5x+4)―(3x ―5) (7) (8x ―3y)―(4x+3y ―z)+2z例2、求整式x 2―7x ―2与―2x 2+4x ―1的差与和。

七年级数学合并同类项同步练习及答案

七年级数学合并同类项同步练习及答案

七年级数学合并同类项同步练习及答案篇一:七年级数学合并同类项同步练习1、下列代数式中,哪些是整式?-3x ,5xy +11121x , x-7, , x+. 2x332、写出下列单项式的系数和次数① -xy ② ab-0.5xy④ -3.写出下列多项式是几次几项式?a)知识平台1.同类项的意义. 2.合并同类项的意义. 3.合并同类项的方法.思维点击1.判断同类项的标准有两条:①所含字母相同;②相同字母的指数也分别相等,?两条标准缺一不可.例如:3xy与3xy虽然所含字母相同,但在这两个单项式中,x的指数不相等,y的值数也不相等,所以不是同类项.-2xy与3yx两个项所含字母相同,字母x,y?的指数也相等,所以是同类项. 2.合并同类项的要点是:①字母和字母的指数不变;②同类项的系数相加(合并).例如:合并同类项3xy和5xy,字母x、y及x、y的指数都不变,?只要将它们的系数3和5相加,即3xy+5xy=(3+5)xy=8xy.考点浏览☆考点了解同类项的意义,会合并同类项.222222332222a211122222ab-5a-7b② -xy+3x+2xy- 2231k121k12xy与-xy是同类项,则k=______,xy+(-xy)=________. 33331k12【解析】 xy与-xy是同类项,这两项中x的指数必须相等,所以k=2;?合并同类项,只需将它33111k12们的系数相加,因为与-互为相反数,它们的和为零,所以xy+(-xy)=0.答案是:2 0.3333例1 如果例2 合并下列多项式中的同类项.(1)4xy-8xy+7-4xy+10xy-4;(2)a-2ab+b+a+2ab+b.【解析】(1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:(1)原式=(4xy-4xy)+(-8xy+10xy)+(7-4)mengchengxianxinjiaoyuzhongxin222222222222=(4-4)xy+(-8+10)xy+3=2xy+3;(2)原式=(a+a)+(-2ab+2ab)+(b+b)=2a+2b.在线检测1.将如图两个框中的同类项用线段连起来: 2.当m=________时,-xb与 k232m22222222213xb是同类项. 43.如果5ab与-4ab是同类项,那么5ab+(-4ab)=_______. 4.直接写出下列各式的结果:k21122xy+xy=_______;(2)7ab+2ab=________;(3)-x-3x+2x=_______;221212222(4)xy-xy-xy=_______;(5)3xy-7xy=________.23(1)-5.选择题:(1)下列各组中两数相互为同类项的是() A.22122222xy与-xy; B.0.5ab与0.5ac; C.3b与3abc;D.-0.1mn与mn 32(2)下列说法正确的是()A.字母相同的项是同类项 B.只有系数不同的项,才是同类项 C.-1与0.1是同类项D.-xy与xy是同类项 6.合并下列各式中的同类项:(1)-4xy-8xy+2xy-3xy;(2)3x-1-2x-5+3x-x;(3)-0.8ab-6ab-1.2ab+5ab+ab;(4)5yx-3xy-7xy+6xy-12xy+7xy+8xy. 7.求下列多项式的值: (1)(2)3xy+2xy-7xy-mengchengxianxinjiaoyuzhongxin22222222222222222222212211a-8a-+6a-a+,其中a=; 323423122xy+2+4xy,其中x=2,y=.243.4 合并同类项(答案) 1.略 2.略 3.ab4.(1)0 (2)9ab (3)-2x (4)5.(1)D (2)C6.(1)-2xy-11xy (2)2x+x-6 (3)-ab-ab (4)-xy+5xy7.(1)- mengchengxianxinjiaoyuzhongxin222222122xy (5)-4xy659 (2) 44篇二:初一数学《合并同类项》练习3.4合并同类项一、选择题1 .下列式子中正确的是()A.3a+2b=5abB.3x?5x?8xC.4x2y?5xy2??x2yD.5xy-5yx=0 2 .下列各组中,不是同类项的是A、3和0B、2?R与?RC、xy与2pxyD、?xn?1yn?1与3yn?1xn?1 3 .下列各对单项式中,不是同类项的是( )A.0与222257122B.?3xn?2ym与2ymxn?2 C.13x2y与25yx2 D.0.4ab与0.3ab 314 .如果xa?2y3与?3x3y2b?1是同类项,那么a、b的值分别是( )3?a?1?a?0?a?2?a?1A.? B.? C.? D.??b?1?b?2?b?2?b?15 .下列各组中的两项不属于同类项的是()A.3mn和?mnB.2323xy123和5xy C.-1和D.a和x456 .下列合并同类项正确的是 ( )235(A)8a?2a?6; (B)5x?2x?7x ;(C) 3ab?2ab?ab;(D)?5x2y?3x2y??8x2y 7 .已知代数式x?2y的值是3,则代数式2x?4y?1的值是A.1B.4C. 7D.不能确定2228 .x是一个两位数,y是一个一位数,如果把y放在x的左边,那么所成的三位数表示为A.yxB.y?xD.100y?xC.10y?x9 .某班共有x名学生,其中男生占51%,则女生人数为 ( )A、49%xB、51%xC、xx D、51%49%10.一个两位数是a,还有一个三位数是b,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是( )10a?b B.100a?bC.1000a?bD.a?b二、填空题11.写出?2xy的一个同类项_______________________.3212.单项式-x13a?bya?1与5x4y3是同类项,则a?b的值为_________?13.若?4xay?x2yb??3x2y,则a?b?__________. 14.合并同类项:3a2b?3ab?2a2b?2ab?_______________.115.已知2x6y2和?x3myn是同类项,则9m2?5mn?17的值是_____________.316.某公司员工,月工资由m元增长了10%后达到_______元? 三、解答题 17.先化简,再求值:18.化简:7a2b?(?4a2b?5ab2)?(2a2b?3ab2).参考答案一、选择题1 .D2 .C3 .D4 .A5 .D6 .D7 .C8 .D9 .A10.C 二、填空题 11.2xy(答案不唯一)12.4; 13.314.5a2b?ab;15.?1 16.11.m 三、解答题17.解:335m?(m?1)?3(4?m),其中m??3. 223535m?(m?1)?3(4?m)=m?m?1?12?3m( )=?4m?132222当m??3时,?4m?13??4?(?3)?13?252222218.7ab?(?4ab?5ab)?(2ab?3ab)=7ab?4ab?5ab?2ab?3ab22=(7?4?2)ab?(5?3)ab( )=ab?8ab22222223.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打? ⑴12xy与-3yx2 ( ) 322⑵ab与ab ( ) ⑶2abc与-2abc( ) (4)4xy与25yx ( ) (5)24 与-24 ( ) (6) x与2 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打? (1)2x+5y=7y ( ) ( 2.)6ab-ab=6( ) (3)8xy?9xy?xy( )(4)332222531m?2m3? ( ) 22325(5)5ab+4c=9abc ( ) (6)3x?2x?5x ( ) (7) 4x?x?5x ( ) (8) 3ab?7ab??4ab () 3. 与2222212xy不仅所含字母相同,而且相同字母的指数也相同的是() 212122A.xzB. xyC.?yxD. xy2222224.下列各组式子中,两个单项式是同类项的是()22A.2a与aB.5ab 与abC. xy与xyD. 0.3mn与0.3xy5.下列计算正确的是()A.2a+b=2abB.3x?x?2C. 7mn-7nm=0D.a+a=a6.代数式-4ab与3ab都含字母,并且因此-4ab 与3ab是7.所含相同,并且也相同的项叫同类项。

七年级数学合并同类项同步练习及答案

七年级数学合并同类项同步练习及答案

七年级数学合并同类项同步练习及答案篇一:七年级数学合并同类项同步练习1.下列哪个代数表达式是整数3x,5xy+11121x、 x-7,x+.2x332、写出下列单项式的系数和次数①-xy②ab-0.5xy④-3.写出下列多项式的次数和项?a)知识平台1.同类项的意义.2.合并同类项的意义.3.合并同类项的方法.思维点击1.判断类似项目有两个标准:① 包含的字母是相同的;② 相同字母的索引也是相等的,?这两个标准都是不可或缺的。

例如,3xy和3xy包含相同的字母,但在这两个单项式中,X的指数不相等,Y的值的数量不相等,因此它们不是相似的项。

-2XY和3YX包含相同的字母,字母x,y?2.合并类似项目的要点是:① 字母索引和字母索引保持不变;② 将相似项的系数相加(合并)例如:合并同类项3xy和5xy,字母x、y及x、y的指数都不变,?只要将它们的系数3和5相加,即3xy+5xy=(3+5)xy=8xy.考点浏览☆考点理解相似项目的含义,并能够合并相似项目2二2222三3二二2A.2一千一百一十二万二千二百二十二ab-5a-7b②-xy+3x+2xy-2231k121k12xy与-xy是同类项,则k=______,xy+(-xy)=________.33331k12【分析】xy和-xy是类似的术语。

在这两项中,X的指数必须相等,所以k=2;?要合并同质项,只需33111k12们的系数相加,因为与-互为相反数,它们的和为零,所以xy+(-xy)=0.答案是:20.三千三百三十三例1如果例2结合了下列多项式中的同类项。

(1) 4xy-8xy+7-4xy+10xy-4;(2) a-2ab+b+a+2ab+b。

【解析】(1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:(1)原式=(4xy-4xy)+(-8xy+10xy)+(7-4)蒙城县新交友中心2二22二2二2二2二=(4-4)xy+(-8+10)xy+3=2xy+3;(2)原始公式=(a+a)+(-2Ab+2Ab)+(B+B)=2A+2B。

七年级数学上册合并同类项和去、添括号基础50题(原卷+解析)

七年级数学上册合并同类项和去、添括号基础50题(原卷+解析)

C. 8y − 6y = 2
D. 3a + 2b = 5ab
17.(2019 秋•和县期末)下列计算正确的是 ( )
A. 3a + b = 3ab
B. 3a − a = 2
C. 2a2 + 3a3 = 5a5
D. −a2b + 2a2b = a2b
18.(2019 秋•焦作期末)下列计算正确的是 ( )

2
12.(2019 秋•东湖区期末)已知 5xa+2c y4 与 −3x3 yb 是同类项,则 2a + 3b + 4c 的值是 .
13.(2018 秋•芙蓉区校级期中)当 n =
时,单项式 7x2 y2n+1 与 − 1 x2 y5 是同类项. 3
14.(2014 秋•嘉禾县校级期末)若单项式 1 a3bn+1 和 2a b 2m−1 3 是同类项,求 3m + n 的值. 3
3
A.2
B.3
C.4
D.5
3.(2020 春•张家港市期末)如果 1 a2b2 与 − 1 a b x+1 4x− y 是同类项,则 x 、y 的值分别是 (
)
5
4
A.
x
y
= =
1 2
B.
x
y
= =
2 2
C.
x
y
=1 =1
D.
x y
= =
2 3
4.(2019 秋•邗江区校级期末)下列各组代数式中,是同类项的是 ( )
15.(2017 秋•芷江县校级期中)如果单项式 2mxa y 与 −5nx2a−3 y(7a − 22)2015 的值.

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)

归并同类项之羊若含玉创作一、选择题1 .盘算223a a +的成果是( )A.23aB.24aC.43aD.44a 2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列盘算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列归并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列盘算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2 (D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________.10.盘算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。 13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.盘算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a+--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y+;请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x x xy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=1 25.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。 27.有这样一道题:“盘算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他盘算的成果也是正确的,请你通过盘算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。 一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b=-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+-=-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2 当x=1,y=3时 4xy-x 2=4×1×3-1=11。17.(1) ()()y x xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++-- =)5253()33()38331(22222y y xy xy x x x ++-++-=2y当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=-(212x x +)+(2113x +)=255166x x ++=(212x x +)-(2113x +)=2111166x x +-=-(2132x y +)+(2113x +)=25473166x y ++=(2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy=-+-()()2254128xy xy x x =-+-24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26.-827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-∴此题的成果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y =∴原式=21(2)12-⨯+=3。

【精品】七年级上册数学 合并同类项、去括号练习题

【精品】七年级上册数学  合并同类项、去括号练习题

合并同类项、去括号试题1.合并下列各式中的同类项(1)3x 2-1-2x-5+3x-x 2 (2)4xy-3y 2-3x 2+xy-3xy-2x 2-4y 2(3)-0.8a 2b-6ab-1.2a 2b+5ab+a 2b (4)222b ab a 43ab 21a 32-++- (5)5(a-b)2-7(a-b)+3(a-b)2-9(a-b) (6)3x n+1-4x n-1+12x n+1+32x n-1+5x n -2x n(7)3a -(4b -2a +1) (8)x -[(3x +1)-(4-x )](13)5(43)(3)a b a a b +---+ (14)222(25)(32)2(41)a a a -+-----(15)(531)(21)x x y x y +-+--+ (16)()232a a b a ---⎡⎤⎣⎦(17)8(2)4(3)2x y x y z z --+-+ (18)[]{}23(2)2a b a b a a -----(19)8x +2y +2(5x -2y ) (20)(x 2-y 2)-4(2x 2-3y 2)(21)-3(2x 3y -3x 2y 2+3xy 3) (22)(-4y +3)-(-5y -2) +3y(23)(6x 2-x +3)-2(4x 2+6x -2 (24){}222234(3)x x x x x ⎡⎤--+--⎣⎦ (25)11(46)3(22)32a abc c b ---+-+ (26)[](43)(3)()5x y y x x y x ----+-- (27)22121232a a b a b ⎛⎫⎛⎫--++-+ ⎪ ⎪⎝⎭⎝⎭(28) 2-[2(x+3y)-3(x-2y)] (29)(2m-3)+m-(3m-2) (30)3(4x-2y )-3(-y+8x ).(31)(2x-3y)+(5x+4y) (32)(8a-7b)-(4a-5b)(33)a-(2a+b)+2(a-2b) (34)3(5x+4)-(3x-5)(35)(8x-3y)-(4x+3y-z)+2z (36)-5x 2+(5x-8x 2)-(-12x 2+4x)+2(37)2-(1+x)+(1+x+x 2-x 2) (38)3a 2+a 2-(2a 2-2a)+(3a-a 2)(39)2a-3b+[4a-(3a-b)] (40)3b-2c-[-4a+(c+3b)]+c(41)x-(3x-2)+(2x-3) (42)(3a 2+a-5)-(4-a+7a 2)(43)x 2+(-3x-2y+1) (44)x-(x 2-x 3+1)(45)3a+4b-(2b+4a) (46)(2x-3y)-3(4x-2y)(47)(2x-3y)+(5x+4y) (48)(8a-7b)-(4a-5b)(49)a-(2a+b)+2(a-2b) (50)3(5x+4)-(3x-5)(51)(8x-3y)-(4x+3y-z)+2z (52)-5x 2+(5x-8x 2)-(-12x 2+4x)+2(53)2-(1+x)+(1+x+x 2-x 2) (54)3a 2+a 2-(2a 2-2a)+(3a-a 2)(55)5a +(3x -3y -4a) (56)3x -(4y -2x +1)(57)7a +3(a +3b ) (58)(x 2-y 2)-4(2x 2-3y )(59)2a -3b +[4a -(3a -b)] (60)3b -2c -[-4a +(c +3b)]+c(61)x+[x+(-2x-4y)] (62) (a+4b)- (3a-6b)(63)3x 2-1-2x-5+3x-x 2 (64) -0.8a 2b-6ab-1.2a 2b+5ab+a 2b (65) 222b ab a 43ab 21a 32-++- (66) 6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y (67) 8x +2y +2(5x -2y) (68) 3a -(4b -2a +1)(69) 7m +3(m +2n) (70) (x 2-y 2)-4(2x 2-3y 2)(71) -4x +3(31x -2) (72) 5(2x-7y)-3(4x-10y) (73))153()52(+---y x y x (74) )56(3)72(2+--x x(75))3(2)2(322b ab ab a +--- (76) )3123()322(2122y x y x x +-+-- (77) )]12(45[3---x x x (78) 2xy-{5x-3[xy-31x(y+1)]-4xy} 2.求下列代数式的值:3m 2n-mn 2-1.2mn+mn 2-0.8mn-3m 2n,其中m=6, n=2。

最新人教版初中七年级上册数学《合并同类项》练习题

最新人教版初中七年级上册数学《合并同类项》练习题

第一章 整式的加减2.2 整式的加减第1课时 合并同类项1、若y x y x y x b a 2234-=+-,则b a +=2、三角形三边长分别为x x x 13,12,5,则这个三角形的周长为 ;当cm x 2=时,周长为 cm 。

3、若单项式m y x 22与-331y x n 是同类项,则n m +的值是 。

4、下列各组中的两式是同类项的是( )A .()32-与()3n -B .b a 254-与c a 254-C .2-x 与2-D .n m 31.0与321nm -5、下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项; ③x 2-与2x-是同类项; ④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个6、下列各式中,与y x 2是同类项的是( )A .2xyB .xy 2C .y x 2-D .223y x7、下列式子中正确的是( )A .ab b a 33=+B .143-=-mn mnC .4221257a a a =+D .2229495xy x y xy -=-8、若323y x m -与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19、一个单项式减去22y x -等于22y x +,则这个单项式是( )A .22xB .22yC .22x -D .22y -10、求单式327y x 、322y x -、323y x -、322y x 的和。

11、合并下列各式中的同类项。

(1)b a ab b a ab b a 2228.44.162.0++---(2)222614121x x x --(3)222234422xy y x xy xy xy y x -++--(4)2238347669a ab a ab +-+-+-(5)22222222215912bc a bc a abc bc a abc bc a -+--+12、先化简,再求值。

七年级数学 上 合并同类项91题(含答案)

七年级数学 上 合并同类项91题(含答案)
合并同类项专项练习 91 题(有答案)
1.4a2+3b2﹣2ab﹣4a2﹣4b2+2ba
9.4x2y﹣8xy2+7﹣4x2y+10xy2﹣4.
2.﹣4x2y+8xy2﹣9x2y﹣21xy2.
10. 15x+4x﹣10x
3.5xy2+2x2y﹣3xy2﹣x2y
11. ﹣p2﹣p2﹣p2
4.a2+3ab+6﹣8a2+ab
13.
=
a2b=
a2b
14. 原式=2x2﹣3x2﹣3x+5x+1+7=﹣x2+2x+8; 15. 原式=﹣x2+2x2﹣3x2+7xy﹣5xy=﹣2x2+2xy. 16. 15x+4x﹣10x=19x﹣10x=9x; 17. ﹣p2﹣p2﹣p2=﹣3p2; 18. x2y﹣3xy2+2yx2﹣y2x=3x2y﹣4xy2. 19. 2x+(x﹣4)﹣(5x﹣4)=2x+x﹣4﹣5x+4=﹣2x; 20. 原式=3a2﹣6a﹣9+25a2+10=28a2﹣6a+1. 21. ﹣3y+0.75y﹣0.25y=(﹣3+0.75﹣0.25)y=﹣2.5y. 22. 5a﹣1.5a+2.4a=(5﹣1.5+2.4)a=5.9a
33. 3a+2a﹣7a 34. ﹣4x2y+8xy2﹣9x2y﹣21xy2. 35.3a2﹣2a﹣4a2﹣7a. 36.12x2y﹣xy﹣3﹣10x2y+6xy+3. 37. 3ab+2mn﹣3ab+4mn 38. ﹣5yx2+4xy2﹣2xy+6x2y+2xy+5. 39.3x﹣2y+1+3y﹣2x﹣5. 40.ax2+2a2x+a3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档