Low molecular weight organic acid adsorption in forest soils effects on soil solution concentrations
小分子脂水分配系数最优值的计算机模拟
小分子脂水分配系数最优值的计算机模拟
高军晖;刘飞;吴桂强
【期刊名称】《数理医药学杂志》
【年(卷),期】2009(022)004
【摘要】首先建立了药物小分子进入体内到达细胞内受体表面的数学模型,然后通过计算机模拟,计算药物小分子达到受体表面的浓度,最后比较了不同脂水分配系数下的情况.结果表明,拥有最优脂水分配系数的药物小分子,才能更多的到达受体表面.【总页数】2页(P383-384)
【作者】高军晖;刘飞;吴桂强
【作者单位】上海生物信息技术研究中心,上海,200235;上海生物信息技术研究中心,上海,200235;上海生物信息技术研究中心,上海,200235
【正文语种】中文
【中图分类】R311
【相关文献】
1.自来水、长寿村水和小分子水 [J], 陆江
2.SO2在水和有机溶剂中的化学形态及其脂/水分配系数:SO2生理学研究新模式[J], 孟紫强;郭掌珍
3.了人造小分子水,优于长寿村水——卓康小分子团离子水杯探秘 [J], 陆江
4.人造小分子水,优于长寿村水——卓康小分子团离子水杯探秘 [J], 陆江
5.人造小分子水,优于长寿村水——卓康小分子团离子水杯探秘 [J], 陆江
因版权原因,仅展示原文概要,查看原文内容请购买。
兰州大学科技成果——去除当归多糖提取物中蛋白质的吸附剂的制备方法
兰州大学科技成果——去除当归多糖提取物中蛋白
质的吸附剂的制备方法
成果简介:
本发明设计吸附剂技术领域,涉及一种对当归粗多糖中蛋白质去除的吸附剂的制备和应用。
在植物多糖的提取过程中,需要对粗多糖中的蛋白质进行去除,本发明为一种对蛋白质具有选择性吸附作用的吸附剂。
可以实现对植物粗多糖中蛋白质的选择性去除。
技术特点:
本发明合成了一种多孔的蛋白质吸附剂,能够选择性的吸附去除植物粗多糖中的蛋白质,而对多糖无任何吸附作用。
该吸附剂对当归粗多糖中蛋白的去除率可以达到81%,当归多糖的损失率小于5.0%,具有比商业采用的Sevag法、三氯乙酸法、澄清剂法及反复冻融法等技术手段更高的蛋白去除效率及更小的多糖损失率。
且该吸附剂可以重复使用10次以上。
相对分子质量及取代度对寡聚精氨酸壳聚糖体外透皮吸收促进作用的影响_何文
7 Hwang R,Shinkai T,De Luca V,et al. Association study of four dopamine D1 receptor gene polymorphisms and clozapine treatment response [J]. J Psychopharmacol,59 万相对分子质量( Mr) 的 CS 与精氨酸九聚体( poly-arginine,R9) 进行化学结合,得 到取代度为0. 61的寡聚精氨酸壳聚糖( CS-R9) ,并通 过了体外透皮实验验证其具有显著的透皮吸收促进 作用[9]。本试验拟选用三种不同 Mr 的 CS: 低 Mr CS ( low molecular weight chitosan,LCS) 、中 Mr CS( medium molecular weight chitosan,MCS) 、高 Mr CS ( high molecular weight chitosan,HCS) ,分别与 R9 反应,获 得同等取代度的 CS-R9,以考察 CS 的 Mr 对 CS-R9 透 皮吸收促进作用的影响; 通过调节 LCS 与 R9 的摩尔 比,获得高、中、低三种不同取代度的 LCS-R9,以考察 取代度对 CS-R9 透皮吸收促进作用的影响。 1 材料与方法 1. 1 仪器
6 Hwang R,Tiwari AK,Zai CC,et al. Dopamine D4 and D5 receptor gene variant effects on clozapine response in schizophrenia: Replication and exploration [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2012,37( 1) : 62-75
一种西格列汀中亚硝胺类杂质的制备方法
一种西格列汀中亚硝胺类杂质的制备方法亚硝胺类化合物是一类化学结构特殊的有机化合物,其中的亚硝基
(-NO)与氨基(-NH2)结合形成。
一些亚硝胺类化合物被认为是毒性物质,例如二甲基亚硝胺(DMA),三甲基亚硝胺(TMA)等。
因此,制备亚
硝胺类杂质的方法被广泛应用于食品、水、土壤等领域的污染控制和分析
检测。
以下是一种制备亚硝胺类杂质(以DMA为例)的方法:
1.材料准备:亚硝胺类前体化合物(例如亚硝酸盐)、还原剂(例如
亚硫酸钠)、溶剂(例如水或有机溶剂)。
2.反应体系:在适当的反应容器中,将亚硝酸盐和还原剂加入溶剂中,控制温度和pH值。
3.反应控制:通过控制温度和pH值,控制亚硝酸盐与还原剂的反应
速率。
一般来说,较低的温度和较高的pH值有利于亚硝胺类杂质的生成。
4.反应过程:在反应体系中,亚硝酸盐和还原剂发生还原反应,生成
亚硝胺类化合物。
反应过程中,可以使用适当的分析方法(例如HPLC、
GC-MS等)监测亚硝胺类化合物的生成情况。
5.杂质分离和纯化:通过适当的分离和纯化方法,将亚硝胺类化合物
从反应体系中分离提取出来,并去除其他杂质。
需要注意的是,亚硝胺类化合物具有一定的稳定性,因此在制备中需
要小心操作,避免其它杂质的产生。
同时,亚硝胺类杂质具有一定的毒性,对于实验室和工业环境中的人员需采取相应的安全措施进行防护。
通过以上的步骤,可以制备亚硝胺类杂质,为其在环境污染和食品安全领域的控制及分析提供了技术支持。
同时,也可以通过相关的研究深入了解亚硝胺类化合物的生成机理及其对环境和人体的危害。
一种西格列汀中亚硝胺类杂质的制备方法
我很高兴能代表您撰写这篇关于“一种西格列汀中亚硝胺类杂质的制备方法”的文章。
在撰写这篇文章之前,我已经对这一主题进行了深入的研究和评估,并准备着手为您写一篇信息量丰富、全面深入的文章。
一种西格列汀中亚硝胺类杂质的制备方法1.背景介绍我准备先从主题的背景介绍开始,引入读者对这一主题的基本了解。
西格列汀是一种常用的药物,但其中亚硝胺类杂质可能对人体健康造成潜在威胁。
制备一种方法来有效去除或限制亚硝胺类杂质的存在至关重要。
2.西格列汀中亚硝胺类杂质的危害和影响在文章的第二部分,我将详细探讨亚硝胺类杂质对西格列汀药物品质和患者健康的潜在危害和影响。
这一部分将会涉及全面的研究成果和数据,以确保读者充分理解这一问题的严重性。
3.现有解决方式的不足为了更深入地探究这一问题,我准备详细分析当前常用的制备方法,揭示它们在去除亚硝胺类杂质方面存在的不足和局限性。
这一部分将引导读者理解为什么需要一种新的、更有效的制备方法。
4.新制备方法的原理和步骤紧我将着重介绍这种新制备方法的原理和具体操作步骤。
这部分将包括详细的化学反应方程式和实验操作流程,确保读者对该方法的操作和原理有清晰的理解。
5.新方法的优势和潜在应用价值接下来,我打算通过对这种新制备方法的优势和潜在应用价值进行分析,向读者展示其在应对亚硝胺类杂质问题上的独特地位和重要意义。
这一部分将包括实验数据和结果的引用,以提供更具说服力的论据。
6.个人观点和总结我将共享我个人对这一主题的观点和理解,并通过全文的回顾和总结来确保读者全面、深刻并灵活地理解这一主题。
以上每个部分都将详细展开,以确保文章的深度和广度兼具。
希望这篇文章能为您提供有价值的信息,并满足您的要求。
我将竭尽全力撰写出一篇高质量的文章,以拓宽您对这一主题的认识和理解。
背景介绍:西格列汀是一种常用的口服降糖药物,用于治疗2型糖尿病。
然而,西格列汀中存在的亚硝胺类杂质可能对人体健康造成潜在威胁。
亚硝胺类化合物是一类致癌的化学物质,它们可能会对身体内的DNA造成损害,增加患癌症的风险。
化学专业英语词汇
前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical che mistry生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in function al polymers有机硅高分子研究进展 Progresses in organosilicon polymers高分子科学实验方法 Scientific experimental methods of polymers 高分子设计与合成 The design and sy nthesis of polymers反应性高分子专论 Instructions to re active polymers网络化学与化工信息检索 Internet Se arching for Chemistry & Chemical E ngineeringinformation有序分子组合体概论 Introduction to Organized Molecular Assembilies两亲分子聚集体化学 Chemistry of am phiphilic aggregates表面活性剂体系研究新方法 New Meth od for studying Surfactant System 微纳米材料化学 Chemistry of Micro-NanoMaterials分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueous Dispersions 溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry分子反应动力学 Molecular Reaction Dynamic计算量子化学 Computational QuantumChemistry群论 Group Theory分子模拟理论及软件应用 Theory andSoftware of Molecular Modelling &Application价键理论方法 Valence Bond Theory量子化学软件及其应用Software of Quantum Chemistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry无机化学前沿领域导论 Introduction to Forward Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistryin Extraction表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry现代电化学实验技术 Modern Experimental Techniques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: Theory and Application立体化学与手性合成 Stereochemistryand Chiral Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Synthesis超分子化学 Supramolecular Chemistry分子设计与组合化学 Molecular Designand Combinatorial Chemistry纳米材料化学前沿领域导论 Introduction to Nano-materials Chemistry纳米材料控制合成与自组装 Controlled-synthesis and Self-assembly of Nan o-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolec ular Chemistry液晶材料基础 Basics of Liquid Crysta l Materials现代实验技术 Modern analytical testi ng techniques色谱及联用技术 Chromatography and Technology of tandem发光分析及其研究法 Luminescence an alysis and Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytical Chemistry电分析化学 Electroanalytical chemist ry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic c hemistry高聚物结构与性能 Structures and pr operties of polymers有机硅化学 Organosilicon chemistry 功能高分子Functional polymers有机硅高分子 Organosilicon polymers 高分子现代实验技术 Advanced experimental technology of polymers高分子合成新方法 New synthetic methods of polymers液晶与液晶高分子 Liquid crystals andliquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process ofpolymers聚合物复合材料 Composite materials高等化工与热力学 Advanced ChemicalEngineering and Thermodynamics高等反应工程学 Advanced Reaction Engineering高等有机化学 Advanced Organic Chemistry高等有机合成 Advanced Organic synthesis有机化学中光谱分析 Spectrum Analysis in Organic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry中间体化学与工艺学 Intermediate Chemistry and Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis andTechnology of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Control动量热量质量传递 Momentum, Heat and Mass Transmission化工分离工程专题 Separation Engineering耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching for Chemistry & Chemical Engineering information新型功能材料的模板组装 Templated Assembly of Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of surfactants高分子溶液与微乳液 Polymer Solutions and Microemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafinepowder分散体系流变学 The Rheolgy of Aqueous Dispersions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Ch emistry价键理论方法 Valence Bond Theory 量子化学软件及其应用Software of Q uantum Chemistry & its Application计算量子化学 Computational Quantum Chemistry分子模拟软件及其应用Software of M olecular Modelling & its Application分子反应动力学 Molecular Reaction D ynamic分子光谱学 Molecular Spectrum算法语言 Computational Languange 高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemist ry物理化学 Physical Chemistry结构化学 structural Chemistry现代分析与测试技术(试验为主) Moder n Analysis and Testing Technology(e xperimetally)高等无机化学 Advanced Inorganic Ch emistry近代无机物研究方法 Modern Research Methods for Inorganic Compounds 萃取化学研究方法 Research Methods for Extraction Chemistry单晶培养 Crystal Culture 固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry卟啉酞箐化学 Chemistry of Porphyrine and Phthalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chemistry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Homogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized FoodChemistry无机药物化学 Inorganic Pharmaceutical Chemistry电极过程动力学 Kinetics on ElectrodeProcess电化学研究方法 Electrochemical Research Methods生物物理化学 Biological Physical Chemistry波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synthesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation ofProcess Devices石油化工典型设备 Common Equipmentof Petrochemical Industry化工流态化工程 Fluidization in Chemical Industry化工装置模拟与优化 Analogue and Optimization of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System andOptimization高等化工热力学 Advanced Chemical Engineering and Thermodynamics超临界流体技术及应用 Super CraticalLiguid Technegues and Applications膜分离技术 Membrane Separation T echnegues溶剂萃取原理和应用 Theory and Appli cation of Solvent Extraction树脂吸附理论 Theory of Resin Adso rption中药材化学 Chemistry of Chinese Me dicine生物资源有效成分分析与鉴定 Analysis and Detection of Bio-materials相平衡理论与应用 Theory and Applic ation of Phase Equilibrium计算机在化学工程中的应用 Application of Computer in Chemical Engineerin g微乳液和高分子溶液 Micro-emulsion a nd High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering A nalysis腐蚀电化学原理与应用 Principle and A pplication of Corrosion Electrochem istry腐蚀电化学测试方法与应用 Measureme nt Method and Application of Corro sion Electrochemistry耐蚀表面工程 Surface Techniques of Anti-corrosion缓蚀剂技术 Inhabitor Techniques 腐蚀失效分析 Analysis of Corrosion Destroy材料表面研究方法 Method of Studyin g Material Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthesis化学工艺与设备 Chemical Technologyand Apparatuas功能材料概论 Functional Materials Conspectus油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension Materials手性药物化学 Symmetrical Pharmaceutical Chemistry光敏高分子材料化学 Photosensitive Polymer Materials Chemistry纳米材料制备与表征 Preparation andCharacterization of Nanostructuredmaterials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materials Chemistry●化学常用词汇汉英对照表1●氨ammonia氨基酸amino acid铵盐ammonium salt饱和链烃saturated aliphatichydrocarbon苯benzene变性denaturation不饱和烃unsaturatedhydrocarbon超导材料superconductivematerial臭氧ozone醇alcohol次氯酸钾potassiumhypochlorite醋酸钠sodium acetate蛋白质protein氮族元素nitrogen groupelement碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀electrochemicalcorrosion电解质electrolyte电离平衡ionizationequilibrium电子云electron cloud淀粉starch淀粉碘化钾试纸starchpotassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂soap分馏fractional distillation酚phenol复合材料composite干电池dry cell干馏dry distillation甘油glycerol高分子化合物polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素nuclide化学电源chemical powersource化学反应速率chemical reactionrate化学键chemical bond化学平衡chemical equilibrium 还原剂reducing agent磺化反应sulfonation reaction 霍尔槽 Hull Cell极性分子polar molecule极性键polar bond加成反应addition reaction加聚反应addition polymerization甲烷methane碱金属alkali metal碱石灰soda lime结构式structural formula聚合反应po1ymerization可逆反应reversible reaction空气污染指数air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化cracking裂解pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖maltose煤coal酶enzyme摩尔mole摩尔质量molar mass品红magenta或fuchsine葡萄糖glucose气体摩尔体积molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitutionreaction醛aldehyde炔烃alkyne燃料电池fuel cell弱电解质weak electrolyte石油Petroleum水解反应hydrolysis reaction四氯化碳carbontetrachloride塑料plastic塑料的降解plasticdegradation塑料的老化plastic ageing酸碱中和滴定acid-baseneutralization titration酸雨acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物 derivative ofhydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量amount of substance物质的量浓度 amount-of-substanceconcentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量 relative molecularmass相对原子质量relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银silver nitrate溴的四氯化碳溶液 solution ofbromine in carbon tetrachloride溴化钠 sodium bromide溴水bromine water溴水 bromine water盐类的水解hydrolysis of salts盐析salting-out焰色反应 flame test氧化剂oxidizing agent氧化铝 aluminium oxide氧化铁iron (III) oxide乙醇ethanol乙醛 ethana1乙炔 ethyne乙酸ethanoic acid乙酸乙酯 ethyl acetate乙烯ethene银镜反应silver mirror reaction硬脂酸stearic acid油脂oils and fats有机化合物 organic compound元素周期表 periodic table ofelements元素周期律 periodic law ofelements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期period族group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应exothermic reaction 放热反应precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from IdealBehavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics热力学第一定律10. Heat and Work 热与功11. Endothermic and ExothermicProcesses 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalysts i. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product ConstantKsp 溶度积常数49. Precipitation and separation ofIons 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-ReductionEquations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons电子的波动性63. Bohr’s Model of The HydrogenAtom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, andMass Numbers 同位素,原子数,质量数77. Periodic Properties of theElements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers,and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations inOctahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planarComplexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium,Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon,Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide,Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates andCarbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation ofSilicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus,Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, PhosphoricAcid 氨,硝酸,磷酸143. Phosphorates, phosphorusHalides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur,Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine,Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision精密度188. relative standard deviation相对标准偏差(RSD)189. coefficient variation变异系数(CV)190. confidence level置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure有效数字194. standard solution标准溶液195. titration滴定196. stoichiometric point化学计量点197. end point滴定终点198. titration error滴定误差199. primary standard基准物质200. amount of substance物质的量201. standardization标定202. chemical reaction化学反应203. concentration浓度204. chemical equilibrium化学平衡205. titer滴定度206. general equation for a chemicalreaction化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid乙酸212. hydronium ion水合氢离子213. electrolyte电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition质子平衡217. zero level零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand配位体228. ethylenediamine tetraacetic acid 乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number配位数232. lone pair electron孤对电子233. chelate compound螯合物234. metal indicator金属指示剂235. chelating agent螯合剂236. masking 掩蔽237. demasking解蔽238. electron电子239. catalysis催化240. oxidation氧化241. catalyst催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD)255. dissolved oxygen 溶解氧(DO)256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n 297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction单分子消除反应336. unimolecular nucleophilicsubstitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂 356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象 362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式 364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应 370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则 378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物ace- 乙(酰基)acet- 醋;醋酸;乙酸acetamido- 乙酰胺基acetenyl- 乙炔基acetoxy- 醋酸基;乙酰氧基acetyl- 乙酰(基)aetio- 初allo- 别allyl- 烯丙(基);CH2=CH-CH2-amido- 酰胺(基)amino- 氨基amyl- ①淀粉②戊(基)amylo- 淀粉andr- 雄andro- 雄anilino- 苯胺基anisoyl- 茴香酰;甲氧苯酰anti- 抗apo- 阿朴;去水aryl- 芳(香)基aspartyl- 门冬氨酰auri- 金(基);(三价)金基aza- 氮(杂)azido- 叠氮azo- 偶氮basi- 碱baso- 碱benxoyl- 苯酰;苯甲酰benzyl- 苄(基);苯甲酰bi- 二;双;重biphenyl- 联苯基biphenylyl- 联苯基bis- 双;二bor- 硼boro- 硼bromo- 溴butenyl- 丁烯基(有1、2、3位三种)butoxyl- 丁氧基butyl- 丁基butyryl- 丁酰caprinoyl- 癸酰caproyl- 己酰calc- 钙calci- 钙calco- 钙capryl- 癸酰capryloyl- 辛酰caprylyl- 辛酰cef- 头孢(头孢菌素族抗生素词首)chlor- ①氯②绿chloro- ①氯②绿ciclo- 环cis- 顺clo- 氯crypto- 隐cycl- 环cyclo- 环de- 去;脱dec- 十;癸deca- 十;癸dehydro- 去氢;去水demethoxy- 去甲氧(基)demethyl- 去甲(基)deoxy- 去氧des- 去;脱desmethyl- 去甲(基)desoxy- 去氧dex- 右旋dextro- 右旋di- 二diamino- 二氨基diazo- 重氮dihydro- 二氢;双氢endo- 桥epi- 表;差向epoxy- 环氧erythro- 红;赤estr- 雌ethinyl- 乙炔(基)ethoxyl- 乙氧(基)ethyl- 乙基etio- 初eu- 优fluor- ①氟②荧光fluoro- ①氟②荧光formyl- 甲酰(基)guanyl- 脒基hepta- 七;庚hetero- 杂hexa- 六;己homo- 高(比原化合物多一个-CH2-)hypo- 次io- 碘indo- 碘iso- 异keto- 酮laevo- 左旋leuco- 白levo- 左旋。
微分电位溶出测定矿泉水中硒
微分电位溶出测定矿泉水中硒
葛宣宁
【期刊名称】《理化检验:化学分册》
【年(卷),期】1997(033)011
【摘要】测定硒的常用方法有二氨基联苯胺比色法、荧光光度法。
前者方法灵敏度低,不适用微量硒的测定,后者方法虽灵敏度高,但仪器昂贵不易在基层推广。
为此在卫生监测中探讨简便、灵敏、准确测硒的方法很有必要。
本文用微分电位溶出测定水中硒含量。
该法具有仪器设备简单、灵敏度高、准确度好、操作简便等优点。
选择合适的底液,最低检出限可达0.5μg·L^(-1),线性范围0.5~50μg·L^(-1),相对标准偏差2.57%,样品平均回收率94.7%~100.4%,对矿泉水中痕量硒测定,结果满意。
【总页数】2页(P514,516)
【作者】葛宣宁
【作者单位】宁海进出口商品检验局
【正文语种】中文
【中图分类】O661.1
【相关文献】
1.微分电位溶出法测定饮用水中砷含量 [J], 章建军;章银良;李向力
2.微波富集-铋膜电极微分电位溶出法快速测定水中痕量铅 [J], 杨敏;宁平;高云涛;刘晓海;施润菊;项朋志;胥义能
3.微分电位溶出法测定自来水中锌含量 [J], 杨家翘
4.硒碳糊电极微分电位溶出法测定铜和铋 [J], 谭君林;胡存杰;李建平
5.微分电位溶出法测定头发中硒 [J], 舒高亭;渠宏毅
因版权原因,仅展示原文概要,查看原文内容请购买。
鲁米诺化学发光法测定食品中的亚硫酸盐
2 0 1 4年 1月
食 品 科 学 技 术 学 报
J o ur n a l o f Fo o d S c i e nc e a nd Te c h no l o g y
V0 1 . 3 2 No .1
J a n .2 01 4
65
( 浙江省 农 业科 学院 农产 品 质量标 准研 究所 ,浙 江 杭 州 3 1 0 0 2 1 ) 摘 要 : 提 出了运 用化 学发光 法测 定食 品 中亚硫 酸 盐 的新 方 法 , 对 影 响 化 学发 光 的 诸 因素 进 行 了 实验 和探 讨 , 得 出较 佳检 测 条件 : 方 法的 定量 限为 4 . 6 mg / k g , 亚硫 酸 盐质 量 浓度 在 1 . 0~l 0 . 0 mg /
L与 发 光 强 度 增 强 值 ( △ , ) 呈 良好 的 线 性 关 系 , R 为0 . 9 9 3 4 .对 6类 样 品 进 行 了 测 定 并 做 加 标 回 收
试验 , 平均 R S D 3 . 0 5 %, 平均 回收 率 9 3 . 0 %, 可用 于食 品 中亚硫 酸 盐 的定量 与 定性检 测. 关键 词 :鲁 米诺 试 剂 ;亚硫 酸盐 ; 化 学发 光 中 图分类 号 : T S 2 0 7 . 5 ;0 6 5 7 . 3 文 献标 志码 : A
W ANG J i a n — q i n g , XU L i — h o n g ,Z HAN G Yu,e t a 1 .De t e r mi n a t i o n o f s u l f i t e i n f o o d s b a s e d o n l u mi n o l c h e mi l u mi n e s c e n c e .
一种奶油粉末[发明专利]
专利名称:一种奶油粉末
专利类型:发明专利
发明人:郁继强
申请号:CN201510150715.X 申请日:20150331
公开号:CN104719503A
公开日:
20150624
专利内容由知识产权出版社提供
摘要:本发明提供了一种奶油粉末,各原料的组成为:无水奶油30-80%,酪蛋白2-6%,乳化剂5-7%,水分保持剂0-1.7%,乳清粉9-35%,抗结剂1-1.5%,余量为麦芽糊精。
本发明的奶油粉产品,脂肪颗粒小,利于消化吸收;产品脂肪含量高,最高可以达到80%;具有乳制品特有的风味及丰富的脂溶性维生素A和必需脂肪酸;不含反式脂肪酸。
申请人:南京郁氏生物科技有限公司
地址:211131 江苏省南京市江宁区汤山工业园
国籍:CN
代理机构:南京钟山专利代理有限公司
代理人:马晓辉
更多信息请下载全文后查看。
富含钙的食物产品[发明专利]
专利名称:富含钙的食物产品专利类型:发明专利
发明人:M·A·沃特,N·N·达维斯申请号:CN200680053759.X 申请日:20061226
公开号:CN101404899A
公开日:
20090408
专利内容由知识产权出版社提供
摘要:本发明涉及一种富集化的食物产品,例如富含钙的可咀嚼的食物产品,其中至少一块所述食物产品提供推荐量的每日DRI的钙元素。
所述富集化的食物产品具有与非富集化的食物产品基本相似的口感、质地和味道。
所述食物产品还可提供100-2400IU的维生素D且任选地可涂覆有调味涂层。
本发明还涉及一种生产所述富集化的食物产品的方法。
申请人:米申制药公司,斯特林食品有限公司
地址:美国德克萨斯州
国籍:US
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
李比希氧化产物吸收法
李比希氧化产物吸收法
李比希氧化产物吸收法(Leucocrystal Violet Oxidation Product Absorption Method)是一种用于测定葡萄糖的分光光度法。
该
方法是基于葡萄糖与李比希试剂反应生成带紫色的氧化产物的原理,利用紫外光谱仪或分光光度计测定该氧化产物在
530nm处的吸光度,从而间接测定葡萄糖的浓度。
该方法具有灵敏度高,精确度高,适用范围广等优点,但需要使用昂贵的李比希试剂和配套的标准品进行校正。
李比希氧化产物吸收法中,李比希试剂是关键的试剂,它是由二苯巴比妥酸盐和氢氧化钠等组成。
在碱性条件下,葡萄糖与李比希试剂反应,产生弱酸性的氧化产物,使反应系统呈现紫色。
该方法不受其他还原糖的影响,但是褐糖和某些药物可以干扰检测。
该方法主要应用于食品、药品和生物样品中葡萄糖的定量分析,其检测限可以达到0.1 mg/L。
在临床医学、生物化学研究等领域也有广泛应用,例如用于肝糖原、肌糖原、血浆中葡萄糖水平等的测定。
值得注意的是,该方法不适用于酒精饮料或经过葡萄糖蔗糖混合糖化的饮料的葡萄糖测定,因为这些饮料中的其他成分可能会干扰反应。
低芥子酸菜籽油分离品的生物学活性评价
低芥子酸菜籽油分离品的生物学活性评价随着人们对健康饮食的关注日益增加,低芥子酸菜籽油作为一种富含营养价值的植物油逐渐受到人们的青睐。
然而,菜籽油中含有的芥子酸可能对人体健康产生不良影响。
为了降低芥子酸对人体的潜在风险,研究人员开发了一种分离品,它能够有效降低菜籽油中的芥子酸含量。
本文将对这一分离品的生物学活性进行评价。
首先,分离品的抗氧化活性是评价其生物学活性的重要指标之一。
抗氧化剂能够中和人体内部的自由基,并保护细胞免受氧化损伤。
通过采用不同的测定方法,例如DPPH自由基清除法和Folin-Ciocalteu法,可以评估分离品对自由基的清除能力和总多酚含量。
研究表明,低芥子酸菜籽油分离品具有较高的抗氧化活性,其抗氧化能力可与其他常见的植物油相媲美。
其次,分离品的抗炎活性也是生物学活性评价的重要内容之一。
慢性炎症是多种疾病的共同基础,如心血管疾病、糖尿病和肿瘤等。
通过检测分离品对炎症相关因子的调节作用,可以评估其抗炎活性。
研究发现,低芥子酸菜籽油分离品能够显著抑制炎症因子的产生,例如肿瘤坏死因子-alpha(TNF-alpha)和白细胞介素-6(IL-6),从而发挥抗炎作用,减轻慢性炎症对人体健康的不良影响。
此外,分离品的抗肿瘤活性也受到广泛关注。
肿瘤是现代社会中主要的健康威胁之一,有效的抗肿瘤药物对于治疗和预防肿瘤至关重要。
通过进行体外和体内的实验,可以评估分离品对不同类型肿瘤细胞的抑制作用。
研究结果显示,低芥子酸菜籽油分离品能够抑制多种肿瘤细胞的生长和扩散,具有一定的抗肿瘤活性。
这主要归因于分离品中富含的多种活性成分,如多酚类化合物和多种抗氧化剂。
除了上述作用外,分离品还具有抑制血液凝块形成、调节血脂和降低血压的生物学活性。
血液凝块是心血管疾病的主要发病机制之一,而分离品中所含的特定成分能够有效地抑制血液凝块的形成,从而预防心血管疾病的发生。
此外,分离品还能够调节血脂代谢,降低血液中的低密度脂蛋白胆固醇(LDL-C)和总胆固醇(TC)水平,减少血管内膜的脂质沉积。
lowry法测蛋白质含量原理
lowry法测蛋白质含量原理嘿,宝子,今天咱们来唠唠lowry法测蛋白质含量的原理呀。
你知道吗,这个lowry法可有点像一场蛋白质的小探秘之旅呢。
它呀,主要是基于蛋白质中的肽键和酪氨酸、色氨酸这些氨基酸残基的反应。
就好像是这些蛋白质里的小部分在跟试剂们玩一场专属的游戏。
在这个过程里,首先有一个试剂,就像是一个热情的开场嘉宾。
这个试剂会和蛋白质中的肽键发生反应,这一反应就像是它们之间在互相打招呼,然后牵起了小手。
这时候呢,就形成了一种新的复合物,这个复合物可是很关键的哦。
然后呢,又有另一个试剂加入进来啦。
这个试剂就像是一个特别的魔法师,它会对之前形成的复合物再进行一些奇妙的操作。
它会让这个复合物产生一种颜色变化,从原本的模样变成一种蓝色的复合物。
这个蓝色就像是一个信号,告诉我们这里有蛋白质存在呢。
而且哦,这个蓝色的深浅程度和蛋白质的含量是有关系的。
就好比说,如果蛋白质含量多,那这个蓝色就会更深一些,就像一个浓郁的蓝色海洋;要是蛋白质含量少呢,蓝色就会比较浅,就像淡淡的蓝天的颜色。
这种通过颜色深浅来判断蛋白质含量的方法真的很有趣呢。
就像是我们通过看天空颜色的深浅来判断天气的好坏一样。
不过呢,这个方法也有它的小脾气。
比如说,它可能会受到一些其他物质的干扰,就像一场聚会里突然来了几个捣乱的小坏蛋。
所以在做这个实验的时候呀,我们得特别小心,要把那些可能会捣乱的物质都排除掉。
还有哦,这个lowry法虽然有点小复杂,但它也像是一个很靠谱的小伙伴。
只要我们按照正确的步骤去做,它就能准确地告诉我们蛋白质到底有多少。
就像一个忠诚的小助手,在我们探索蛋白质世界的道路上给我们指明方向。
我们要好好对待这个方法,了解它的原理,这样才能更好地利用它来解开蛋白质含量的秘密呀。
宝子,你现在是不是对这个lowry法的原理有点感觉啦?。
亚硒酸化β-乳球蛋白真空氧化还原导入机制及其抗衰老机理研究
亚硒酸化β-乳球蛋白真空氧化还原导入机制及其抗衰老机理研究下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!亚硒酸化β乳球蛋白真空氧化还原导入机制及其抗衰老机理研究一、引言随着人口老龄化问题日益突出,人们对抗衰老的关注度也在逐渐增加。
低浓度小分子多肽含量测定方法的比较研究
低浓度小分子多肽含量测定方法的比较研究唐开永;周鸿翔;田娅玲;邹聪丽【期刊名称】《食品研究与开发》【年(卷),期】2018(039)016【摘要】采用考马斯亮蓝法、双缩脲法及紫外分光光度法对还原型谷胱甘肽含量测定进行比较研究,结果表明,紫外分光光度法对还原型谷胱甘肽的测定结果较考马斯亮蓝法和双缩脲法均要好.通过紫外分光光度法进行稳定性、精密度、重现性及回收率试验,结果显示,4个验证试验的相对标准偏差均小于5%.通过乙酸、乙醇和NaCl 3种干扰物试验分析,研究发现:乙酸对还原型谷胱甘肽(glutathione,GSH)含量测定结果影响较大,其次是乙醇,而NaCl对还原型GSH含量无影响,表明酸和醇类物质均会影响紫外分光光度计法对低浓度小分子多肽含量测定结果.【总页数】5页(P144-148)【作者】唐开永;周鸿翔;田娅玲;邹聪丽【作者单位】贵州大学酿酒与食品工程学院,贵州省发酵工程与生物制药重点实验室,贵州贵阳550025;贵州大学酿酒与食品工程学院,贵州省发酵工程与生物制药重点实验室,贵州贵阳550025;贵州大学酿酒与食品工程学院,贵州省发酵工程与生物制药重点实验室,贵州贵阳550025;贵州大学酿酒与食品工程学院,贵州省发酵工程与生物制药重点实验室,贵州贵阳550025【正文语种】中文【相关文献】1.低浓度蛋白质含量测定方法的研究 [J], 王爱军;王凤山;王友联;曹吉超;王宠2.蜂蜜中葡萄糖、果糖和蔗糖含量测定方法比较研究 [J], 吴彦蕾3.蜂蜜中葡萄糖、果糖和蔗糖含量测定方法比较研究 [J], 吴彦蕾4.鱼腥草中总黄酮含量测定方法比较研究 [J], 李夏冰;江琴;崔长伟;李雅善;王天菊5.爆珠水分含量测定方法比较研究 [J], 王浩;张玲;李赓;张莹;郑晗;肖满;姜发堂;付荣荣;余振华;谢姣;詹建波;王旭因版权原因,仅展示原文概要,查看原文内容请购买。
美国开发新型高甲氧基果胶
美国开发新型高甲氧基果胶
佚名
【期刊名称】《食品与发酵工业》
【年(卷),期】2004(030)009
【总页数】1页(P74)
【正文语种】中文
【相关文献】
1.果胶甲酯化反应及应用高甲氧基果胶制备纳米乳液 [J], 丁萍;汪明明;迟坤蕊;华霄;杨瑞金
2.高甲氧基果胶对酸化大豆蛋白溶液的影响 [J], 李新新;刘志胜;邬娟;李保国;谢曼曼
3.热变性乳清浓缩蛋白与高甲氧基果胶混合体系相分离行为的研究 [J], 曹传爱;吴鑫本;贾惜文;赵神彳;张帅;刘骞
4.高甲氧基果胶对酸性大豆蛋白体系的稳定机理 [J], 李新新;刘志胜;邬娟;李保国;谢曼曼
5.美国开发的新型高甲氧基果胶 [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。
响应面法优化酪蛋白酸钠—豌豆分离蛋白纳米乳液制备工艺
响应面法优化酪蛋白酸钠—豌豆分离蛋白纳米乳液制备工艺李静红【摘要】通过超声处理技术制备酪蛋白酸钠—豌豆分离蛋白纳米乳液,并利用响应面优化法确定了最优制备工艺为豌豆分离蛋白添加量4% (w/v)、酪蛋白酸钠添加量4% (w/v)、超声功率400W、超声时间5min,此条件下,酪蛋白酸钠—豌豆蛋白纳米乳液的平均粒径为149.82 nm、TSI为3.008、乳化产率为91.28%.【期刊名称】《中国食物与营养》【年(卷),期】2018(024)006【总页数】6页(P35-40)【关键词】纳米乳液;酪蛋白酸钠;豌豆分离蛋白;响应面法优化;制备工艺【作者】李静红【作者单位】中国农业科技开发中心,北京100000【正文语种】中文豌豆分离蛋白(Pea protein isolated,PPI)的必需氨基酸组成均衡,与FAO/WHO推荐标准模式较为接近[1-4],但由于其功能性质与大豆蛋白相比较差,从而未在食品加工与利用中得到充分应用[5]。
酪蛋白酸钠(SC)是酪蛋白的钠盐形式,具有较高的乳化性和增稠性[6],因此,可以将SC与PPI复合,从而改善PPI 的功能特性。
Yerramilli等[7]通过将PPI和SC等比例混合后采用高压均质处理制成PPI-SC纳米乳液,结果发现,该纳米乳液具有较好的储藏稳定性。
Ji等[8]通过将酪蛋白酸钠与大豆分离蛋白以1∶1的比例混合制备成5%的O/W乳液,结果发现,混合乳液的稳定性比单独蛋白质乳液好。
超声波是一种具有空化作用的处理技术[9-11],目前,鲜有将超声处理用于制备PPI-SC纳米乳液的研究。
鉴于此,本文以PPI和SC为乳化相,通过响应面法优化超声处理制备PPI-SC纳米乳液的工艺,以获得具有较好稳定性的纳米乳液。
1 材料与方法1.1 材料与仪器姜黄素,美国Sigma公司;豌豆分离蛋白(PPI),山东禹王实业有限公司;酪蛋白酸钠(SC),澳大利亚Murray Goulburn公司;中链甘油三酯(MCT),美国Sigma 公司;其他试剂,均为国产分析纯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Low molecular weight organic acid adsorption in forest soils:effectson soil solution concentrations and biodegradation ratesP.A.W.van Hees a ,S.I.Vinogradoff b ,A.C.Edwards c ,D.L.Godbold b ,D.L.Jones b,*aDepartment of Chemistry and Process Technology,Mid Sweden University,85170Sundsvall,SwedenbSchool of Agricultural and Forest Sciences,University of Wales,Deiniol Road,Bangor,Gwynedd LL572UW,UKcMacaulay Institute,Craigiebuckler,Aberdeen AB158QH,UKReceived 7August 2002;received in revised form 17March 2003;accepted 19March 2003AbstractLow molecular weight (LMW)organic acids are believed to play a key role in many rhizosphere and pedogenic processes;However,their efficiency is likely to depend on their susceptibility to sorption and biodegradation.The sorption characteristics of three organic acids (citrate,oxalate and acetate)and phosphate were examined over the concentration range 0–1000m M in three coniferous forest soil profiles.Sorption to the soil’s solid phase could be adequately described by the Langmuir equation with sorption capacity following the horizon series:B .C .E .O.The strength of anion sorption followed the series:phosphate .oxalate $citrate q acetate.Calculations indicated that between 50and 95%(O and E horizons)and .93%(B horizons)of these LMW organic acids entering the soil will become sorbed to the solid phase.The amount of organic acids predicted to be present on the solid phase at typical soil solution concentrations ranged from ,1to 1100nmol g 21yielding adsorbed-to-solution ratios (adsorption coefficients)of between ,0.1and 3100.In the case of citrate,sorption to the solid phase significantly reduced its biodegradation potential by 35–99%depending upon the degree and type of sorption surface.The findings of this work are discussed in the context of the quantitative effects of adsorption on organic acids,their ecological functions and role in soil forming processes.q 2003Elsevier Science Ltd.All rights reserved.Keywords:Adsorption;Biodegradation;Citrate;Forest soil;Organic acids;Oxalate;Phosphate;Podzols1.IntroductionBiogeochemical processes that involve low molecular weight (LMW)organic acids (,500MW)can be of considerable ecological importance (Ryan et al.,2001).These simple carboxylic acids (e.g.acetate,citrate and oxalate)are present in most soil systems with concentrations normally in the low micromolar range (1–20m M;Strobel,2001).Some of the key roles of organic acids in the soil environment are thought to include the mobilisation of nutrients by plants and microorganisms (e.g.Fe,Zn,P)and the detoxification of metals by plant roots (e.g.Al,Cd,Zn;Jones,1998).Organic acids can also act as efficient weathering agents and promote the dissolution of primary minerals in soils (Drever and Stillings,1997).Conse-quently,they have been implicated in pedogenic processessuch as podzolisation,where LWM organic acids complex up to a third of the Al in soil solution from coniferous forestsoils (Lundstro¨m et al.,2000;van Hees et al.,2000;Farmer and Lumsdon,2001).During leaching through the soil profile the organic components of the organo-metallic complexes are susceptible to biodegradation,which can result in the subsequent precipitation of secondary minerals which may be of great importance for Bs horizon formation(Lundstro¨m et al.,2000;Farmer and Lumsdon,2001).Since many LMW organic acids are very reactive,their concentration in soil solution is influenced by a number of factors relating to the properties of the soil as well as the vegetation and seasonality (Jones,1998;Strobel,2001).Moreover,these factors may directly determine the efficiency with which they participate in various soil processes.Certain organic acids show a strong affinity for certain mineral surfaces,and these have been used extensively as model anions for sorption studies (Parfitt et al.,1977a,b;Jones et al.,1996a,b;Karltun,1998;Jones0038-0717/03/$-see front matter q 2003Elsevier Science Ltd.All rights reserved.doi:10.1016/S0038-0717(03)00144-5Soil Biology &Biochemistry 35(2003)1015–1026/locate/soilbio*Corresponding author.Tel.:þ44-1248-382579;fax:þ44-1248-354997.E-mail address:d.jones@ (D.L.Jones).and Brassington,1998;Geelhoed et al.,1998;Christofaro et al.,2000).Furthermore,adsorption has been shown to significantly influence the concentrations of organic acids in soil solution(Jones et al.,1996b;Jones and Brassington, 1998;Ponizovsky et al.,1999;Hu et al.,2001).Dissolved LMW organic acids also form an important source of labile C for soil microorganisms(Boudot,1992; Jones and Darrah,1994;van Hees et al.,2002).Typically, LMW organic acids are rapidly degraded in soil with half-lives ranging from0.5to12h(Jones and Darrah,1994; Jones et al.,2001).The rate of mineralization,however,is likely to be dependent upon factors such as microbial biomass and community structure as well as microbial transporter expression(Jones,1998).Adsorption has been found to significantly reduce the decomposition rates of organic acids in model systems(Boudot,1992;Jones and Edwards,1998).Few detailed studies have been undertaken where the sorption characteristics of a soil are measured in the context of realistic soil solution organic acid concentrations. Furthermore,our understanding of the interaction between adsorption and organic acid biodegradation is limited and controversial(Jones et al.,2002).Again,this interaction must be assessed using environmentally realistic concen-trations.Our aim was to examine the quantitative effects of adsorption in three coniferous forest soil profiles.The effect of adsorption on the biodegradation of citrate was evaluated in a model system with mineral phases known to be present in these soil profiles.2.Materials and methods2.1.SoilsSoil was collected from three sites as described in Van Hees et al.(2002).Thefirst two,Nya¨nget(Ny)and Heden (He),were located in the Svartberget Research Park,70km NW of Umea˚,Sweden(648140N,108460E).Both sites are predominantly forested with Scots pine(Pinus sylvestris) and Norway spruce(Picea abies).The understory layer consisted of dwarf Bilberry(Vaccinium myrtillus),Cow-berry(Vaccinium vitis-idaea)and mosses.Both soils are classified as Haplic Arenosols(FAO-Unesco,1988)and are developed on either a glacial till(Ny)or sediment(He) parent material.The third site was located at Delamere(De), Cheshire,UK(538140N,28400W).The site was predomi-nantly forested with Scots pine(P.sylvestris)with a small amount of oak(Quercus robur)also present.The soil was classified as an Orthic Podzol(FAO-Unesco,1988) developed on triassic sandstone parent material.The understory layer consisted of bracken(Pteridium aquili-num)and a sparse mixture of grasses.The upper organic soil layer(O horizon;0–8cm)was collected and living matter such as pieces of moss,grass and herbs removed.The organic soil layer was then divided into two layers,O1(upper,0–4cm)and O2(lower,5–8cm)for Ny and He,and Ol(0–4cm)and Of(5–8cm)for De.At the Ny and Hefield sites,samples were taken in the middle of the E horizon(8–15cm)and below the E horizon at15–20cm(Bs1),20–35cm(Bs2),40–45cm(C1)and80–85cm(C2).At the Defield site soil samples below the O horizon were taken at depths of0–5cm(Ah),10–15cm (E),40–45cm(Bh),60–65cm(Bs)and90–95cm(B/C).Soil for the sorption studies was sampled from the mineral horizons in three vertical transects located50cm apart.Soil for centrifugal removal of soil solution was taken by driving5cm dia cylindrical,plastic sampling devices 7cm horizontally into the side of the profile with one sample removed from each vertical transect(i.e.three independent replicate samples per depth per site).All soil samples were kept at48C until soil solution extraction, which was performed within24h of sample collection.The samples for the microbial decomposition studies were stored in plastic bags at either88C(Ny and He)or128C (De).2.2.Soil solution extraction and chemical analysisThe centrifugation drainage technique described by Giesler and Lundstro¨m(1993)and van Hees et al.(2002) was used to obtain soil anic acids and inorganic anions in the soil solution were analysed by capillary electrophoresis(Go¨ttlein,1998;Dahle´n et al., 2000).2.3.Sorption isotherms of soilsSorption isotherms were measured for citrate,oxalate, acetate and phosphate by the method of Jones and Brassington(1998).A14C-radiolabeled organic acid (specific activity0.07kBq ml21)or KH2PO4solution (2.5ml)was added to0.50g of chloroform-fumigated (48h)field-moist soil contained in6ml plastic vials(soil-to-solution ratio1:5(w/v)).Three organic acids,14C-citric acid(1,5-14C;ICN Pharmaceuticals Inc.,Irvine,CA;3.7GBq mmol21),14C-acetic acid(1-14C;ICN Pharmaceu-ticals Inc.,Irvine,CA;2.2GBq mmol21)and14C-oxalic acid(1,2-14C;Sigma Chemical Co.,St Louis,MO;0.2GBq mmol21)were used in the sorption assays.The initial solution anion concentration was50,250,500or 1000m M and the pH adjusted to4.5with1.0mM KOH prior to addition to the soil.The isotherms were measured in a background of1mM KCl.Following addition,the sample was shaken for10min on a reciprocating shaker operating at a speed of320rpm.The samples were subsequently centrifuged(16000g;5min)and the supernatant solution recovered.The equilibrium solution organic acid concen-tration was determined by liquid scintillation counting (Wallac1409scintillation counter,Wallac EG&G Ltd, Milton Keynes,UK)using Wallac Optiphase3scintillation fluid(Wallac EG&G Ltd,Milton Keynes,UK).P.A.W.van Hees et al./Soil Biology&Biochemistry35(2003)1015–1026 1016The equilibrium solution phosphate concentration was determined by capillary electrophoresis as described above.The Langmuir equation was thenfitted to the experimental results whereA¼ðK s£S max£CÞ=ð1þK s£CÞin which A is the amount of anion adsorbed(m mol g21), S max is the maximum anion sorption capacity(m mol g21),C is the equilibrium solution concentration(m mol cm23),and K s is the affinity constant.The soil’s adsorption coefficient (b)was calculated using the following equation(Barber, 1995):b¼C tot=C where C tot¼ðC£QÞþðA£gÞwhere C tot is the total amount of anion in the soil (m mol cm23),C is the soil solution concentration (m mol cm23),Q is the volumetric water content (cm3cm23)and g is the soil bulk density(g cm23).2.4.Biodegradation of citrate in soil in the presenceof added ferrihydriteThe effect of sorption on organic acid biodegradation was assessed by altering the sorption capacity of the Nya¨nget E horizon soil(intrinsically low sorption capacity) through the addition of different amounts of ferrihydrite (high anion adsorption capacity).Different amounts of(1) a synthetic ferrihydrite(Fe(OH)3content in suspension¼42g l21;Jones et al.,1996a)and(2)a natural siliceous ferrihydrite(T.Fraser m.) collected from a groundwater well in Aberdeenshire,UK, were mixed with1g offield moist Nya¨nget E horizon soil contained in50ml polypropylene tubes.A14C-radio-labeled citrate solution(100m M;specific activity 0.5kBq ml21)was added to the soil according to two procedures.In Procedure1,the ferrihydrite was incorpor-ated with the soil by shaking,left to stand for1h and then the14C-citrate solution added to the soil.In Procedure2,the14C-citrate solution wasfirst added to the ferrihydrite,the mixture allowed to equilibrate for 10min,and the suspension added to the soil.Following14C-citrate addition,the soil was gently shaken to ensure mixing and incubated at128C in gas-tight tubes.Placing a vial containing 1.0ml of1M NaOH inside the tube collected the14CO2produced during the biodegradation of the14C-citrate.The14CO2 trapped as NaH14CO3in the NaOH was determined by liquid scintillation as described above.NaOH traps were sampled at1,3,6,24,48and72h after14C-citrate addition.The two ferrihydrites were added to the Nya¨nget E horizon soil at different rates to achieve sorption capacities of25,50,75and100%of that present in a strongly adsorbing Bs horizon from the same soil profile.In a separate experiment,KH2PO4was added to the synthetic ferrihydrite tofill up the sorption sites with the strongly bound PO432anion.From the sorption isotherm (Section2.6below),KH2PO4was added to saturate25, 50or100%of the measured sorption capacity of the synthetic ferrihydrite.Citrate biodegradation in the presence of the differentially P-loaded ferrihydrite was then measured as described above using both Procedure1 and2.The ferrihydrite was added at a level equivalent to 25%of the Bs horizon sorption capacity.2.5.Sorption isotherms of ferrihydriteFor both the synthetic and natural ferrihydrite,sorption isotherms were determined for citrate and phosphate in the concentration range50–5000m M(pH 4.5)and the Langmuir equationfitted to the results.Briefly,50m l of artificial ferrihydrite suspension(Fe(OH)3content of suspension¼42g l21)or100mg natural ferrihydrite were shaken for10min(320rpm)with1ml of KH2PO4 or14C-citrate solution as described above.The samples were then centrifuged(16000g;5min)and the supernatant removed for equilibrium solution concentration analysis as outlined above.2.6.Calculations and statisticsLangmuir adsorption parameters were determined using a BASIC computerized least squares optimization pro-cedure(N.J.Barrow,m.).Testing for statistical significanceðP,0:05Þwas made using F and t-tests ANOVA(MINITAB1.3,Minitab Inc.).Most experiments were performed in duplicate or triplicate unless otherwise stated.3.Results3.1.Adsorption isotherms of organic acids and phosphateSorption isotherms for the three soil profiles are shown in Fig.1.Generally,the data conformed well to a single Langmuir equation with r2values exceeding0.99for all soil horizons with the exception of phosphate in the O horizons. The degree of sorption to the soil’s solid phase was dependent on both anion type,soil horizon and site.Across almost all the soil samples tested,the degree of sorption followed the seriesphosphate.oxalate$citrate q acetate:Among the soil horizons sampled,the sorption capacity was generally in the orderB.C.E.O:Generally,B horizons containing high sesquioxide contents possessed a high affinity for citrate and phosphate sorption.P.A.W.van Hees et al./Soil Biology&Biochemistry35(2003)1015–10261017This was most pronounced for the Nya¨nget and Heden Bs1and Bs2horizons.Oxalate sorption was substantial in all the organic soil horizons (Fig.1),particularly in comparison to citrate.Across the three sites examined here,the adsorptioncapacity followed the order Nya¨nget .Heden .Delamere.The amount of anion sorption ðA Þpredicted from the isotherm and the ratio of anion held on the solid phase to that in soil solution (adsorption coefficient)at actual soil solution concentrations were calculated and the results are presented in Table 1.For the three organic acids examined here and across all sites,the mean (^SEM)organic acid ‘solid-to-solution’ratio (adsorption coefficient)was 3.5^0.4for the O horizon, 3.8^0.4for the A/E horizons,349^221for the B horizons and 88^32for the C horizons.The adsorption coefficientsfollowedFig.1.Concentration-dependent sorption of citrate,oxalate,acetate and phosphate in different horizons from three coniferous forest soil profiles (Nya¨nget,Heden and Delamere).Symbols denote experimental points while the curves represent Langmuir isotherms fitted to the experimental data.Only mean data points are shown,(SEM ,5%of the mean value for the organic acids;SEM ,10%of the mean value for phosphate).P.A.W.van Hees et al./Soil Biology &Biochemistry 35(2003)1015–10261018the trends of the sorption isotherms with the highest values observed for oxalate and phosphate.The results also showthat the O horizons of the Nya¨nget and Heden profiles in particular constitute a substantial sink for oxalate.The soil solution composition is discussed in greater detail in van Hees et al.(2002).Adsorption coefficients can be used to provide a simple comparable estimate of the degree to which the solid phase buffers soil solution anion concentrations and are routinely used in mathematical models describing solute flow in the soil (Barber,1995).We have calculated the solid-to-solution adsorption coefficients at two concentrations which reflect those in the bulk soil (‘low’,10m M)and in the rhizosphere (‘high’;500m M;Jones,1998).The results are shown in Table 2and confirm that solid phase sorption has a significant effect in lowering soil solutionconcentrations.Fig.1(continued )P.A.W.van Hees et al./Soil Biology &Biochemistry 35(2003)1015–10261019We predict that65–95%of oxalate and50–65%of citrate released into the soil will become adsorbed in the O and E horizons while in the B horizons.99%will become adsorbed on the solid phase.3.2.Effects of sorption on organic acid biodegradationTwo different ferrihydrites were added to Nya¨nget E horizon soil together with14C-labelled citrate.The initial concentration of citrate corresponded to100m M which is within the range reported forfield soils(Table1;van Hees et al.,2000).The amounts of synthetic or natural ferrihydrite added to the E horizon soil were calculated to achieve different degrees of citrate sorption potential.The actual amounts of material added were related(in percent)to the maximum sorption capacityðS maxÞvalue for phosphate in the Nya¨nget Bs1horizon.The Nya¨nget Bs1horizon was chosen as a reference since this soil showed the highest adsorption of all soils investigated.Of the two adsorbents, synthetic ferrihydrite showed the highest anion sorption capacity(Table3).In the control,low citrate sorbing soil(Nya¨nget E horizon),without any ferrihydrite amendment,citrate was rapidly biodegraded and.60%was recovered as14CO2within72h(Fig.2).This is in close agreement with investigations of this and similar forest soils by Jones et al. (2001)and Van Hees et al.(2002).For reasons of comparison,citrate decomposition was also determined in the Nya¨nget and Heden Bs1horizons that are known to possess a high citrate sorption capacity(Table1).In comparison to the Nya¨nget E horizon,the Bs1horizonTable2Calculated soil adsorption coefficients(total anion in soil/total anion in soil solution)for organic acids and phosphate at two equilibrium solution concentrations relecting typical concentrations found in the bulk soil solution(10m M)and those predicted to occur in the rhizosphere(500m M)in three coniferous forest soil profiles(Ny,He and De)Citrate Oxalate Acetate PhosphateBulk soil Rhizosphere Bulk soil Rhizosphere Bulk soil Rhizosphere Bulk soil Rhizosphere Nya¨nget(Ny)O11112611ND NDO2219611ND NDE32653110838Bs19987216526853191945129Bs275270902473313188291C14663732632158144271C2401762154326437Heden(He)O11113621ND NDO22114522ND NDE431064249747Bs1281815322851132121Bs23416781883505101C111029109245470657C2153201391912535747 Delamere(De)Ol119621ND NDOf215331ND NDAh42643211E63544132Bh1261364214441Bs3820412375344119B/C1063411230167573112 Values were calculated using the Langmuir isotherms(Fig.1).ND indicates not determined.Table3Optimised values for the Langmuir isotherm parameters,maximumsorption capacityðS maxÞand the sorption affinity constantðK sÞ;for citrateand phosphate for mineral phases and soils employed in the biodegradationexperimentsCitrate PhosphateS max(m mol g21)K s S max(m mol g21)K sMineral additivesSynthetic ferrihydrite12077.0£10231496 3.0£1022Natural ferrihydrite12 1.4£102391 2.5£1023SoilsNya¨nget E(control)0.37.4£1024 3.7 5.0£1023Nya¨nget Bs17.2 3.6£1022268.3£1023Heden Bs1 2.7 1.3£102312 1.7£1022 P.A.W.van Hees et al./Soil Biology&Biochemistry35(2003)1015–10261021demonstrated a 70-fold slower rate of citrate mineralization (,5%recovered as 14CO 2over 72h).In contrast,the rate of citrate mineralization in the Heden Bs1soil was intermedi-ate with approximately 40%recovered as 14CO 2.The addition of even small amounts of synthetic ferrihydrite to the soil almost completely inhibited citrate decomposition (Fig.2a )in agreement with the results of Jones and Edwards (1998).The natural ferrihydrite also caused a significant decline in citrate mineralization with increasing additions to the soil,but was much less than that observed with synthetic ferrihydrite (Fig.2b ).The two methods of citrate addition to the soil (citrate added to the soil after the ferrihydrite had been added (Procedure 1),or citrate pre-mixed with the ferrihydrite phase and then the ‘mix’added to the soil (Procedure 2))did not modify subsequent mineralization rates significantly except for the natural ferrihydrite added at the 50%level (Fig.2;P ,0:05).The effects of filling the sorption sites of syntheticferrihydrite with a strongly sorbing anion (PO 432)prior to performing the citrate decomposition experiment was also evaluated.Synthetic ferrihydrite was loaded with sufficient phosphate to satisfy 25,50and 100%of its measured adsorption capacity prior to its addition to soil.Only in thecase where the ferrihydrite should have been fully PO 432saturated was a considerable increase in citrate degradationapparent when compared to the non-PO 432saturated ferrihydrite (Figs.2a and 3).However,the total percentage of citrate mineralized was still only one-third of that of the non-ferrihydrite amended (control)soil.Small but significant differences between the two procedures of citrate addition (Procedures 1and 2)were observed for this treatment.Attempts were made to predict the citrate mineralization curves shown in Fig.2by mathematically combining the Langmuir adsorption isotherm (Table 3)with apreviouslyFig.2.Cumulative soil 14CO 2production after the addition of 14C-labelled citrate (50m mol kg 21)to a low sorption capacity E horizon soil either before (Control)or after the addition of strongly sorbing mineral phases to the soil.The mineral phases employed (Panel A,synthetic ferrihydrite;Panel B,natural ferrihydrite)were either added to soil before the addition of 14C-citrate (closed symbols)or together with the 14C-citrate (open symbols).In both panels A and B,the minerals were added at different rates to achieve sorption capacities of 25,50,75and 100%of that present in a strongly sorbing Bs horizon of the samesoil.14C-citrate mineralization data for the strongly citrate sorbing Nya¨nget Bs1and Heden Bs1soil horizons are also shown for comparison.Data points represent means ^SEM ðn ¼2Þ:For further details see Section 2.P.A.W.van Hees et al./Soil Biology &Biochemistry 35(2003)1015–10261022parameterised Michaelis–Menten kinetic equation that describes concentration-dependent citrate decomposition (van Hees et al.,2002).Values for the maximum microbial citrate uptake rate (V max ;17nmol g 21h 21)and the affinity constant (K M ;329m M)were obtained from van Hees et al.(2002)for the Nya¨nget E horizon.For this test,the unamended E horizon soil (control),25%synthetic ferrihydrite amended soil (1)and 50%natural ferrihydrite amended soil (2)were chosen as examples.Calculated from the maximum sorption capacity ðS max Þvalues for citrate (Table 3),the additions of the two ferrihydrites should yield a similar (1.5–1.8mmol kg 21)theoretical S max for citrate in the samples.The mineralization curves predicted by the model (dotted/dashed lines in Fig.4)could reproduce the general trend observed in the experiments that citrate decomposition was significantly inhibited by the presence of synthetic ferrihydrite and natural ferrihydrite (Fig.4).However,the absolute fit with the experimental values was generally poor with the exception of the initial 6h for the control sample which showed very close agreement.Generally,the equations overestimated the amount of citrate mineralization.The calculated total amount of citrate mineralized to CO 2over 72h was higher than that observed in the experiments by 20%for the ‘25%synthetic ferrihydrite’treatment,75%for the ‘50%natural ferrihy-drite’treatment and 27%for the control unamendedsoil.Fig.3.Cumulative soil 14CO 2production after the addition of 14C-labelled citrate (50m mol kg 21)to a low sorption capacity E horizon soil either before (control)or after the addition of P-loaded synthetic ferrihydrite to the soil.The synthetic ferrihydrite was treated with KH 2PO 4to fill 0(control),25,50or 100%of its sorption capacity with PO 432and either added to soil before the addition of 14C-citrate (closed symbols)or together with the 14C-citrate (open symbols).14C-citrate mineralization data for the strongly citrate sorbing Nya¨nget Bs1and Heden Bs1soil horizons are also shown for comparison.Data points represent means ^SEM ðn ¼2Þ:For further details see Section2.Fig.4.Predicted and measured cumulative amounts of 14CO 2production following the addition of 14C-labelled citrate (50m mol kg 21)to a low sorption capacity E horizon soil which has either been untreated (control)or amended with a strongly sorbing mineral phase (ferrihydrite or natural ferrihydrite).The minerals were added at rates to achieve sorption capacities of 25%(ferrihydrite)or 50%(natural ferrihydrite)of that present in a strongly sorbing Bs horizon of the same soil.Symbols represent experimental data points (means ^SEM,n ¼2)while the dashed lines represent the modelled cumulative decomposition,calculated by combining the adsorption isotherm and decomposition kinetics using the parameters in Table 3.P.A.W.van Hees et al./Soil Biology &Biochemistry 35(2003)1015–102610234.Discussion4.1.Effects of sorption on organic acid behaviourOur study confirmed the important role that sorption processes play in affecting mobility and bioavailability and therefore longevity of certain LMW organic acids and reactive inorganic anions such as phosphate in forest soils. Both the maximum sorption capacity and the shape of the isotherm are of importance for predicting the quantitative effects of anion behaviour in these soils.The results also demonstrate that these key sorption properties varied widely not only between experimental sites but also for horizons within individual soil profiles.The highest sorption potential was observed for the subsoil Bs horizons,which is in accordance with the studies of Jones et al.(1996b)and Jones and Brassington(1998)on acidic grassland soils.For citrate and acetate sorption at the Nya¨nget and Heden sites there was a significant relationship between the amounts of oxalate-extractable Al plus Fe(Fe ox)(from Karltun et al. (2000))and the maximum sorption capacityðS maxÞvalues determined here(r2¼0:74to0.91).The study also indicated that the natural Fe-(hydr)oxides in these(Nya¨nget and Heden)profiles,which are dominated by ferrihydrite (Karltun et al.,2000),are significantly less reactive than the synthetic source of ferrihydrite employed here.Assuming that all the Fe ox in the Nya¨nget Bs1soil(252mmol kg21) behaves as the synthetic ferrihydrite,this would theoreti-cally provide a maximum P sorption capacity of 36mmol PO432kg21.This is significantly higher than the experimental value of26mmol kg21derived for this soil.We conclude that while synthetic ferrihydrite may provide a model system to examine organic acid reactions in vitro,care must be taken when extrapolating these results to the natural situation where the sorption capacities of aged material will have been strongly modified through long exposure to soil solution containing a range of strongly adsorbing inorganic and organic anions(Table3).The range of calculated organic acid solid adsorption coefficients within the soils was large(0.1–3000; Table1).This can be compared to previous adsorption coefficient estimates for organic acids from acid,neutral and alkaline-based soil extraction procedures(0.2–14; Strobel,2001).Most of the O,E and A horizons examined here are in general agreement with the results of Strobel(2001),however,our results for B and C horizons indicate that this adsorption coefficient range can potentially be much wider.Moreover,the approach of estimations based on isotherms and actual soil solution concentrations used in this work offers two advantages over conventional chemical extraction-based procedures. Firstly,the application of water and harsh chemical extractants may cause significant contamination from damaged microbial cells and plant residues(Jones,1998), and secondly the extraction efficiency might be poor due to irreversible sorption,although this is rarely quantified.For example,an earlier study using the same soil samples reported that only7to30%of citrate sorbed to the solid phase in B and C horizon soils could be recovered when using a 50mM phosphate solution(van Hees et al.,2002).In addition,the use of radioactively labelled organic acids offers great selectivity and sensitivity.A potential limitation of the method used,as in any study with natural soil,is that the experiments are performed against a background of organic acids that are already sorbed.However,calculations of the amount of organic acid initially present on the sorption phase indicate that these are normally very low in comparison to the total adsorption capacity of the soil(Tables1–3;Fig.1).The results indicate that,for Bs horizons,large changes in the amount of oxalate and citrate adsorbed to the solid phase are likely to bring about small changes in soil solution concentrations.The dominance of the sorption process as a controlling mechanism for soil solution concentration in Bs horizons is also supported by observations that LMW organic acid concentrations were very consistent throughout the growing season at the Nya¨nget site(van Hees et al.,2000).Considerably large adsorption coefficient values were obtained for subsoil horizons(Table2).These high values imply that the major part(.50%)of the organic acids,in particular oxalate and citrate,believed to take part in rhizosphere processes such as Al detoxification and nutrient mobilisation(e.g.P and Fe),are adsorbed.Sorption to the solid phase is also known to be a quick process with more than70%of the sorption occurring within1min(Jones et al., 1996a,b;Karltun,1997).Adsorption and the fast biode-gradation of organic acids(van Hees et al.,2002)may therefore strongly reduce the efficiency of organic acids in these rhizosphere processes.Particularly for oxalate,significant amounts of sorption were observed in the surface horizons.We speculate that since the amounts of clay minerals and Al/Fe hydroxides are normally small in these surface horizons,a major part of the observed oxalate removal from solution may be caused by co-precipitation of oxalate with soil solution Ca and exchangeable Ca.The concentration of non-Ca complexed oxalate in equilibrium with Ca-oxalate at mean soil solution concentrations of Ca and pH measured in these three soils(280m M;pH3.7;van Hees et al., 2002)would be27m M.However,since the Ca in soil solution is diluted about8times in a1:5(v/w)soil:water extract it suggests that other Ca pools such as exchange-able Ca may also be involved.This is supported by studies showing that higher adsorption/precipitation occurs in limed soils with larger amounts of exchangeable Ca(van Hees et al.,2003).4.2.Effects of sorption on citrate biodegradationThe protective effect of sorption on biodegradation of organic acids has been shown by Boudot et al.(1989), Boudot(1992)and Jones and Edwards(1998).Additions ofP.A.W.van Hees et al./Soil Biology&Biochemistry35(2003)1015–1026 1024。