辽宁省北镇市2017届中考数学几何复习第七章圆第2课时圆(二)教案

合集下载

初中数学中考圆教案

初中数学中考圆教案

初中数学中考圆教案教学目标:1. 理解圆的定义及基本概念,掌握圆的性质和运算方法。

2. 能够运用圆的相关知识解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

教学重点:1. 圆的定义及基本性质。

2. 圆的运算方法。

3. 圆的实际应用。

教学难点:1. 圆的证明和推导。

2. 圆的方程和不等式。

教学准备:1. 教学课件或黑板。

2. 圆规和直尺。

3. 练习题和答案。

教学过程:一、导入(5分钟)1. 引入话题:探讨圆的定义和性质。

2. 学生分享对圆的理解,教师总结并板书。

二、新课讲解(15分钟)1. 讲解圆的定义:圆是平面上所有到定点距离相等的点的集合。

2. 讲解圆的基本性质:圆心到圆上任意一点的距离等于半径;圆上任意两条切线垂直;圆的周长和面积公式。

3. 讲解圆的运算方法:圆的加减法、乘除法。

4. 举例说明圆的实际应用,如圆的周长和面积计算、圆的切割等。

三、课堂练习(10分钟)1. 学生独立完成练习题,教师巡回指导。

2. 选取部分学生的作业进行讲解和点评。

四、课堂小结(5分钟)1. 学生总结本节课所学内容,教师补充。

2. 强调圆的重要性质和运算方法。

五、课后作业(课后自主完成)1. 巩固圆的定义和性质。

2. 熟练掌握圆的运算方法。

3. 尝试解决实际问题。

教学反思:本节课通过讲解和练习,使学生掌握了圆的定义、性质和运算方法,并能应用于实际问题。

在教学过程中,注意引导学生主动探究和思考,培养学生的空间想象能力和逻辑思维能力。

同时,通过课堂练习和课后作业,巩固所学知识,提高学生的解题能力。

但在教学过程中,也发现部分学生对圆的证明和推导较为困难,需要在今后的教学中加强指导和练习。

辽宁省北镇市第一初级中学2017届九年级数学复习几何教案第26课时两个圆的公切线1

辽宁省北镇市第一初级中学2017届九年级数学复习几何教案第26课时两个圆的公切线1

辽宁省,北镇市,第一,初级中学,2017届,九年级,初三几何教案第七章:圆第29课时:两圆的公切线(一)教学目标:1、使学生理解两圆公切线等有关概念.2、使学生学会两圆外公切线的求法.3、通过对两圆公切线的直观演示的观察,培养学生能从直观演示中归纳出几何概念的能力;4、在指导学生学习求两圆外公切线长的过程中,培养学生的总结、归纳能力.教学重点:使学生理解两圆公切线等有关概念,会求两圆的外公切线长.教学难点:两圆公切线和公切线长学生理解得不透,容易搞混.教学过程:一、新课引入:运转着的机器上主动轮和从动轮和传动带之间,很明显地给我们留下了一条直线和两个圆同时相切的形象,现在我们来研究和两圆都相切的直线.二、新课讲解:在直线和圆的位置关系中,切线非常重要,那么在两圆的位置关系中,尤其是与两个圆都相切的切线,应该具有什么特殊的性质呢?请同学打开练习本,画出所有可能的一条直线同时与两个圆相切的情形.学生动手画,教师巡视,当所有学生把认为可能的情形画完之后,教师打开计算机或幻灯作演示,演示过程中提醒学生观察,每一种圆与圆的位置关系是否都能作出符合条件的直线?两个圆与所作出的直线的位置如何?不同的位置能作出的直线的条数,哪一种圆与圆的位置关系中的符合条件的直线上存在线段?线段的端点是什么?最终教师指导学生定义两圆公切线及有关概念:1.定义:和两个圆都相切的直线,叫做两圆的公切线.2.分类:外公切线和内公切线.3.定义内外公切线.两个圆在公切线同旁时,公切线叫外公切线;两个圆在公切线两旁时,公切线叫内公切线.4.公切线长:公切线上两个切点的距离叫做公切线长.5.圆与圆各种位置的公切线及条数.两圆公切线的系列概念,主要是通过演示观察归纳获得.务必使每个学生都清楚,并不是每一种圆与圆的位置关系都存在公切线,两个圆若存在公切线,公切线的条数也因不同的位置关系而不相同.而两圆即使存在公切线,但不一定有切线长,教师可指导学生观察每一种位置关系的公切线,最终得到结论:只有两圆外离、外切、相交可求外公切线长,而两圆外离时又可求内公切线长.特别要使学生明白公切线和公切线长是两个不同的概念,因而意义也就不同,公切线是一条和两圆同时相切的直线,而公切线长是公切线上两个切点间的线段长,故可求之.怎样求两圆的外公切线长?可指导学生回顾切线长求法,是在一个由圆外一点到圆心的线段、半径、切线长为边的直角三角形中完成的.同样地,我们也考虑把公切线长的求出放置到一个直角三角形中去.这时可指导学生首先运用切线的性质,连结过切点的半径O1A、O2B于是得到直角梯形O1ABO2,只要过O1作O1C⊥O2B,便得到矩形O1ABC,于是AB=O1C,O1C可在Rt△O1CO2中求得.练习一,当两圆外离时,外公切线、圆心距、两半径之差一定组成 [ ]A.直角三角形 B.等腰三角形.C.等边三角形 D.以上答案都不对.此题考察外公切线与外公切线长之间的差别,答案(D)练习二,外公切线是指(A)和两圆都相切的直线.(B)两切点间的距离(C)两圆在公切线两旁时的公切线(D)两圆在公切线同旁时的公切线直接运用外公切线的定义判断.答案:(D)例1 已知⊙O1、⊙O2的半径分别为2cm和7cm,圆心距O1O2=13cm,AB是⊙O1、⊙O2、的外公切线,切点分别是A、B.求:公切线的长AB.例题解法参考教材P.140例1.练习三已知⊙O1、⊙O2的半径分别为15cm和5cm,它们外切于点T,外公切线AB与⊙O1、⊙O2分别切于点A、B.求外公切线长AB.此题中因为两圆外切,所以圆心距⊙O1O2等于两半径之和.解:连结O1A、O2B,过点O2作O2C⊥O1A,垂足为C.四边形ACO2B是矩形在Rt△O1CO2中:O1O2=20,O1C=10,三、课堂小结:为培养学生阅读教材的习惯,让学生看教材P.140至P.141,从中总结出本课学习的主要内容:1.两圆公切线等有关内容,注意概念之间质的区别.2.两圆外公切线长的求法.如图7-105求两圆的外公切线长AB.就是要把AB转化到Rt△O1CO2中.Rt△O1CO2的三边分别由圆心距、两半径之差、外公切线长组成.这三个量中已知任意两个量,都可以求出第三个量.同时在Rt△O1CO2中,我们完全可以依据已知条件,用直角三角形的性质或三角函数求出锐角∠O2O1C来,从而得到两圆外公切线的夹角的度数:2∠O2O1C.3.两圆在外离、外切、相交时可求外公切线长.已知条件中的圆心距,两圆外离、相交时一定给出,而两圆外切时则不必给出,务必请同学注意.四、布置作业1.教材P.150中10.2.教材P.152中11.。

中考数学 几何复习 第七章 圆 第26课时 圆和圆的位置关系(二)教案(2021学年)

中考数学 几何复习 第七章 圆 第26课时 圆和圆的位置关系(二)教案(2021学年)

辽宁省北镇市2017届中考数学几何复习第七章圆第26课时圆和圆的位置关系(二)教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(辽宁省北镇市2017届中考数学几何复习第七章圆第26课时圆和圆的位置关系(二)教案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为辽宁省北镇市2017届中考数学几何复习第七章圆第26课时圆和圆的位置关系(二)教案的全部内容。

第七章:圆第26课时:圆和圆的位置关系(二)教学目标:1、使学生掌握相交两圆的连心线垂直平分两圆的公共弦这一性质,2、通过例题与练习题的教学使学生进一步巩固圆和圆的位置关系及本节所学习的性质.3、逐步培养学生观察、比较、分析、概括问题的能力及推理论证的能力.教学重点:相交两圆的连心线垂直平分两圆的公共弦.教学难点:利用轴对称来证明相交两圆连心线的性质及两圆相交常用的引辅助线的方法是本节课的难点.教学过程:一、新课引入:同学们,上节课我们学习了在同一平面内圆和圆的位置关系及相切两圆的连心线的性质.本节课我们在相切两圆连心线的性质的基础上,继续来学习相交两圆连心线的性质.教师出示板书:“7.13圆和圆的位置关系(二)”.如果两圆相切,那么切点一定在连心线上.那么将相切改成相交,这时连心线又有什么性质呢?教师这样做有意识留给学生一种悬念,提示给学生能否用类比的方法去探索出结论.二、新课讲解:为了使学生进一步来学习相交两圆连心线的性质.向学生提出以下几个问题:(1)在平面内圆和圆有几种位置关系?(2)要判定圆和圆的位置关系你学过了什么方法?(3)相切两圆连心线有什么性质?(4)如果把相切改成相交,那么连心线又有怎样的性质呢?教师引导学生能够准确地回答上节课所学习的知识点,把本节课所要讲的内容也抛给学生,启发学生去画图——观察—-思考—-分析—-比较——探索出结论.为了便于思考,教师把学生探索出的结论写在黑板上:相交两圆的连心线垂直平分两圆的公共弦:分析:设⊙O1与⊙O2相交于点A、B,O1O2既是⊙O1的对称轴,又是⊙O2的对称轴,所以直线O1O2是⊙O1、⊙O2所组成的图形的对称轴,将图形沿O1O2折叠,上、下两个半圆互相重合,它们的交点重合,所以点A与点B是对称点.这就得到对称点A、B的连线被对称轴O1O2垂直平分.由此可得:定理:相交两圆的连心线垂直平分两圆的公共弦.为了使学生能够更好地应用相交两圆连心线的性质和相切两圆连心线的性质,出示两组练习题:练习一,判断下列语句是否正确:1.两圆的连心线过切点,两圆一定是内切. ()2.相交两圆的公共弦垂直平分两圆的连心线.()3.相切两圆的连心线必过切点. ()这组题的目的是强化学生对相切两圆、相交两圆的性质的掌握,要求语言叙述准确而规范.练习二,(1)图7-99,已知两个等圆的半径为5cm,公共弦长6cm,求圆心距.本小题由学生回答,教师概括总结方法.因为O1O2垂直平分AB,交AB于E,所以可得到由一条半径和弦的一半构成的直角三角形,用勾股定理就得到O2E,从而得到O1O2的长.(2)书上的例2已知两个等圆⊙O1和⊙O2相交于A、B两点.⊙O1经过点O2.求∠O1A B的度数.由于通过分析上题学生已初步掌握构造直角三角形方法求解,对于此题可以说是上一题的特殊情况.教师为了不代替学生,让学生参与到教学活动中,启发学生分析解题思路,指导学生上黑板板演,就把例2做为练习题出现.(3)如图7—101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.这时,教师提出怎样证明AB∥CD呢?由学生来分析证明弦AB∥CD.总结出相交两圆经常引的辅助线是公共弦,有时还可以引连心线.找一名中等生证明这道题,教师把证明过程写在黑板上,做为参考.证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴AB⊥O1O2,DC⊥O1O2.∴AB∥CD.在⊙O2中,∵AB∥CD,又∵AB≠CD,∴四边形ABCD是等腰梯形.接下来投影出示例3已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?教师对例3的处理不是直接给出证明,而是给出命题的题设,启发学生探索能得到什么结论.这样做一方面调动学生的积极性和主动性;另一方面考察学生的思维灵活性和深刻性.由学生猜想的结论出发,进一步引导学生证明你的结论是否正确,最后由教师概括出证明的分析思路.是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵PA⊥MN,∴PA∥O1C∥O2D,∵O1P=O2P,∴AC=AD.∴AM=AN.巩固练习:第139页2题.三、课堂小结:本节课主要讲了相交两圆连心线垂直两圆的公共弦的性质.投影出示本节的知识结构图:本节课学到的方法:两圆相交常引辅助线有:(1)公共弦;(2)连心线;(3)构造由半径、公共弦的一半组成的直角三角形.四、布置作业教材P.152中A组5、6、7、8、9.以上就是本文的全部内容,可以编辑修改。

初中数学 圆教案

初中数学 圆教案

初中数学_圆教案一、教学目标1、理解圆的基本概念和性质。

2、掌握圆的周长和面积的计算方法。

3、培养学生的逻辑思维能力和空间观念。

二、教学内容1、圆的基本概念:圆心、半径、直径、弧、弦等。

2、圆的性质:圆的对称性、圆的直径与半径的关系等。

3、圆的周长和面积的计算方法。

三、教学重点与难点1、重点:掌握圆的基本概念和性质,掌握圆的周长和面积的计算方法。

2、难点:理解圆的对称性,掌握弧长和弦长的计算方法。

四、教学方法1、实物演示法:通过实物的演示,让学生更加直观地了解圆的基本概念和性质。

2、讲解法:通过讲解,让学生理解圆的基本概念和性质,掌握圆的周长和面积的计算方法。

3、练习法:通过练习,让学生巩固所学的知识,加深对圆的理解。

五、教学过程1、导入新课:通过展示一些圆形的物体,引导学生思考圆的基本概念和性质。

2、新课教学:讲解圆的基本概念和性质,演示如何计算圆的周长和面积。

3、巩固练习:让学生练习圆的周长和面积的计算方法,并解决一些实际问题。

4、归纳小结:总结本节课所学的知识,让学生更加清晰地了解圆的基本概念和性质,掌握圆的周长和面积的计算方法。

六、教学评价1、课堂提问:通过提问,检查学生对圆的理解情况。

2、作业布置:布置一些有关圆的练习题,让学生回家后继续巩固所学的知识。

初中数学圆思维导图标题:初中数学圆思维导图在思维导图中,我们可以把圆的知识点以层级结构的形式进行展示,使得各个知识点之间的关系一目了然。

以下是一个以“初中数学圆”为主题的思维导图的大致结构。

我们将圆的知识点分为以下几个主要部分:1、圆的基本性质2、圆的周长3、圆的面积4、圆的应用在每一部分中,我们又细分为更小的知识点。

例如,在“圆的基本性质”部分,我们可以包括以下几点:1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

2、圆心:定义中提到的固定端点叫做圆心,用字母O表示。

3、半径:连接圆心和圆上任意一点的线段叫做半径,用字母r表示。

辽宁省北镇市中考数学 几何复习 第七章 圆 第3课时 过三点的圆教案

辽宁省北镇市中考数学 几何复习 第七章 圆 第3课时 过三点的圆教案

第七章:圆第3课时:过三点的圆教学目标:1、本节课使学生了解“不在同一条直线上三点确定一个圆”的定理及掌握它的作图方法.2、了解三角形的外接圆,三角形的外心,圆的内接三角形的概念.3、培养学生观察、分析、概括的能力;教学重点:经过不在一条直线上三点确定圆的定理.教学难点:理解“不在一条直线上”确定圆的条件.教学过程:一、新课引入:某一个城市在一块空地上新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上.要想规划一所中学,使这所中学到三个小区的距离相等.请问同学们这所中学建在哪一个位置?你怎么确定这个位置呢?教师提出问题,学生思考回答.接着教师进一步提出这样一个问题,初一我们学习了直线公理,直线公理内容是什么?教师重复学生的回答:“经过两点确定一条直线.”对于一个圆来说,是否也有由几点确定的问题呢?此时教师出示课题:“7.2经过三点的圆”,教师这种引导虽然简短,但在学生的心理上起到了一定的定势作用,使学生明确了本节课的教学目标,学生带着一种好奇心,兴致勃勃去探索研究怎么作圆,从而调动学生学习积极性.二、新课讲解:学生在教师的引导下,亲自动手试验发现经过三点的圆,这三点的位置要进行讨论.有两种情况;①在一条直线上三点;②不在一条直线上三点,通过学生小组的讨论认为不在同一条直线上三点能确定一个圆.怎样才能做出这个圆呢?这时教师出示幻灯片.例1作圆,使它经过不在同一直线上三点.由学生分析首先得出这个命题的题设和结论.已知:△ABC.求作:⊙O,使它经过A、B、C三点.接着教师进一步引导学生分析要作一个圆的关键是要干什么?由于一开课在设计学校的位置时,学生已经有了印象,学生会很快回答是确定圆心,确定圆心的方法:作△ABC的三边垂直平分线,三边垂直平分线的交点O就是圆心.圆心O确定了,那么要经过三点A、B、C的圆的半径可以选OA或OB都可以.作图过程教师示范,学生和老师一起完成.一边作图,一边指导学生规范化的作图方法及语言的表达要准确.定理:不在同一条直线上的三个点确定一个圆.注意:经过在同一条直线上三点不能确定一个圆.这样做的目的,不是教师“填鸭式”的往里灌,而是学生自己经过探索确定圆的条件,这样得到的结论印象深刻,效果要比全部由老师讲更好.接着,由于学生完成了作圆的过程,引导学生观察这个圆与△ABC的顶点的关系,得出:经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形.强调“接”指三角形的顶点在圆上,“内接”、“外接”指在一个图形的“里面”和“外面”.理解这些术语的意义,指出语言表达的规范化.为了更好的掌握新概念,出示小黑板的练习题.练习1:按图7-4填空:(1)△ABC是⊙O的________三角形;(2)⊙O△ABC的________圆.这组题的目的就是理解“内接”,“外接”的含意,练习2:判断题:(1)经过三点一定可以作圆;()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()(4)三角形的外心是三角形三边中线的交点;()(5)三角形的外心到三角形各顶点的距离相等.()这组练习题主要巩固对本节课的定理和有关概念的理解,加深学生对概念辨析的准确性.练习3:经过4个(或4个以上的)点是不是一定能作圆?练习4:选择题:钝角三角形的外心在三角形[ ]A.内部B.一边上C.外部D.可能在内部也可能在外部练习3、4两道小题,引导学生动手画一画,和对定理的理解是否深刻,训练学生思维的广阔性和准确性有关.练习5:教材P.73中4题(略).三、课堂小结:师生共同完成总结.知识点方面:2.(1)三角形外接圆的圆心叫做三角形的外心;(2)三角形的外心是三角形三边垂直平分线的交点;(3)三角形的外心到三角形的三个顶点的距离相等.3.方法方面:1.用尺规作三角形的外接圆的方法.2.重点词语的区别:“内接”,“外接”.四、布置作业:1.教材P.83中7、8、9.2.补充作业:已知一个破损的轮胎,要求在原轮胎的基础上补一个完整的轮胎.。

中考数学复习圆专题复习教案

中考数学复习圆专题复习教案

中考数学复习-圆专题复习-教案一、教学目标1. 知识与技能:(1)掌握圆的定义、性质、公式等基本知识;(2)学会运用圆的相关知识解决实际问题。

2. 过程与方法:(1)通过复习,巩固已学过的圆的相关知识;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(2)培养学生团队协作、积极进取的精神。

二、教学内容1. 圆的定义与性质(1)圆的定义;(2)圆的性质:圆心到圆上任意一点的距离相等,圆上任意一点到圆心的连线与圆的切线垂直。

2. 圆的直径与半径(1)直径与半径的定义;(2)直径与半径的关系。

3. 圆的周长与面积(1)周长的计算公式:C = 2πr;(2)面积的计算公式:S = πr²。

4. 圆的方程(1)圆的标准方程:(x h)²+ (y k)²= r²(2)圆的一般方程:x²+ y²+ Dx + Ey + F = 05. 圆与圆的位置关系(1)外切;(2)内切;(3)相离;(4)相交;(5)内含。

三、教学重点与难点1. 重点:圆的定义、性质、公式、方程及位置关系的理解与应用。

2. 难点:圆的方程求解及圆与圆的位置关系的判断。

四、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生掌握圆的相关知识;2. 通过例题、习题,培养学生的实际应用能力;3. 组织学生进行小组讨论,提高学生的合作能力。

五、教学过程1. 导入:回顾已学过的圆的相关知识,引导学生进入复习状态;2. 讲解:讲解圆的定义、性质、公式、方程及位置关系,重点讲解圆的方程求解及圆与圆的位置关系的判断;3. 示范:通过示例,展示圆的相关知识的应用;4. 练习:布置练习题,让学生巩固所学知识;5. 讨论:组织学生进行小组讨论,分享解题心得;6. 总结:对本节课的内容进行总结,强调重点知识;7. 作业:布置课后作业,巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

中考数学圆复习教案

中考数学圆复习教案

中考数学圆复习教案1.1 设计意图:通过复习圆的相关知识,帮助学生巩固和加深对圆的理解,提高解题能力。

1.2 适用对象:初中九年级学生1.3 教学时长:2课时二、知识点讲解2.1 圆的定义及性质2.1.1 圆是平面上所有点到一个固定点(圆心)距离相等的点的集合。

2.1.2 圆心决定圆的位置,半径决定圆的大小。

2.1.3 圆的基本性质:圆的对称性、连续性、旋转不变性。

2.2 圆的方程2.2.1 标准方程: (xa)² + (yb)² = r²2.2.2 一般方程: x² + y² + Dx + Ey + F = 02.2.3 圆的方程与圆的性质的关系。

2.3 圆的切线和弦2.3.1 切线的性质:切线与半径垂直,切线过半径的外端点。

2.3.2 弦的性质:弦的中垂线垂直于弦,且平分弦。

2.3.3 圆的切线和弦的判定方法。

三、教学内容3.1 圆的定义及性质3.1.1 圆的定义3.1.2 圆心的作用3.1.3 半径与圆的大小3.2 圆的方程3.2.1 标准方程的推导3.2.2 一般方程的转化3.2.3 圆的方程与圆的性质的运用3.3 圆的切线和弦3.3.1 切线的判定和性质3.3.2 弦的判定和性质3.3.3 切线和弦的综合应用四、教学目标4.1 知识与技能:理解和掌握圆的定义及性质、圆的方程、圆的切线和弦的基本知识。

4.2 过程与方法:通过自主学习、合作交流,提高分析问题、解决问题的能力。

4.3 情感态度价值观:培养对数学的兴趣,提高自信心,培养克服困难的勇气。

五、教学难点与重点5.1 教学难点:圆的方程的转化、圆的切线和弦的判定方法的运用。

5.2 教学重点:圆的定义及性质、圆的方程、圆的切线和弦的基本知识。

六、教具与学具准备6.1.1 圆规6.1.2 直尺6.1.3 三角板6.1.4 多媒体教学设备6.2.1 圆规6.2.2 直尺6.2.3 练习本6.2.4 彩色笔七、教学过程7.1.1 复习已学过的圆的相关知识7.1.2 提出问题,引发学生思考7.1.3 导入新课7.2 知识讲解7.2.1 圆的定义及性质7.2.1.1 引导学生通过实际操作理解圆的定义7.2.1.2 讲解圆心的作用7.2.1.3 引导学生通过实例理解半径与圆的大小7.2.2 圆的方程7.2.2.1 讲解标准方程的推导过程7.2.2.2 讲解一般方程的转化方法7.2.2.3 引导学生运用圆的方程解决实际问题7.2.3 圆的切线和弦7.2.3.1 讲解切线的判定和性质7.2.3.2 讲解弦的判定和性质7.2.3.3 引导学生运用切线和弦的知识解决实际问题7.3 巩固练习7.3.1 针对本节课的知识点设计练习题7.3.2 学生自主练习,教师巡回指导7.3.3 学生交流解题思路,教师点评并讲解八、板书设计8.1 圆的定义及性质8.1.1 圆的定义8.1.2 圆心的作用8.1.3 半径与圆的大小8.2 圆的方程8.2.1 标准方程8.2.2 一般方程8.2.3 圆的方程与圆的性质8.3 圆的切线和弦8.3.1 切线的性质8.3.2 弦的性质8.3.3 切线和弦的判定方法九、作业设计9.1 针对本节课的知识点设计作业题9.1.1 巩固圆的定义及性质9.1.2 巩固圆的方程9.1.3 巩固圆的切线和弦的知识9.2 要求学生在规定时间内完成作业,并认真检查9.3 教师及时批改作业,反馈问题,并进行讲解十、课后反思及拓展延伸10.1 课后反思10.1.1 总结本节课的教学效果10.1.2 反思教学过程中的不足之处10.1.3 制定改进措施10.2 拓展延伸10.2.1 引导学生探索圆与其他几何图形的联系10.2.2 引导学生运用圆的知识解决实际问题10.2.3 鼓励学生参加数学竞赛和课外活动,提高数学素养重点和难点解析一、重点环节1.1 圆的定义及性质1.1.1 圆的定义是理解圆的基础,需要通过实际操作和几何图形来让学生直观地感受圆的特点。

《圆的认识(二)》教案(精选3篇)

《圆的认识(二)》教案(精选3篇)

《圆的认识(二)》教案(精选3篇)《圆的认识(二)》篇1教学目标:1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系2、进一步理解轴对称图形的特征,体会圆的对称性。

3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。

重点:理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。

难点:在折纸的过程中体会圆的特征教具:教学圆规教学过程:一、创设情境:亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。

你有办法找出来吗?二、探索活动:1、引导学生开展折纸活动,找到圆心。

(1)自己动手找到圆心。

(2)汇报交流找圆心的过程,并说出这样做的想法。

2、通过折纸你发现了什么?理解圆的对称性。

(1)欣赏美丽的轴对称图形。

(2)再折纸,体会圆的轴对称性,画出圆的对称轴。

(3)圆有无数条对称轴。

对称轴是直径所在的直线。

3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。

(1)边折纸边观察思考同一个圆里的半径有什么特点?(2)边折纸边观察思考,同一圆里的直径与半径有什么关系?(3)引导学生用字母表示一个圆的直径与半径的关系。

三、课堂练习。

1、让学生独立完成“试一试”做完后交流汇报。

2、完成“练一练”进一步巩固圆的半径与直径的关系。

3、完成“填一填”让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。

汇报交流,说答题根据。

4、完成书后第3题。

四、课堂小结。

引导学生小结本节内容。

《圆的认识(二)》教案篇2课题圆的认识(二)课型新授内容科书(北师大版)第十一册第6-7页教学目标1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2、进一步体会轴对称图形的特征,体会圆的对称性。

3、发展空间观念。

重点圆的对称性、半径与直径的关系难点找出各对称图形的对称轴及提高识图能力一、新授活动一:请用含有圆形的物体在纸上画一个圆活动二:你能找出这个圆的圆心吗?试一试有哪些方法活动三:说一说你发现了什么?可能发现:把圆至少对折两次就可以找到圆心;圆是轴对称图形;折痕就是圆的直径,圆有无数条直径,有无数条半径;直径长度是半径的2倍等。

辽宁省北镇市2017届中考数学几何复习第七章圆第30课时两圆的公切线(二)教案

辽宁省北镇市2017届中考数学几何复习第七章圆第30课时两圆的公切线(二)教案

第七章:圆第30课时:两圆的公切线(二)教学目标:1、使学生学会两圆内公切线长的求法.2.使学生会求出公切线与连心线的夹角或公切线的夹角.2、使学生在学会求两圆内公切线长的过程中,探索规律,培养学生的总结、归纳能力.3、培养学生会根据图形分析问题,培养学生的数形结合能力.教学重点:使学生进一步掌握两圆公切线等有关概念,会求两圆内公切线长及切线夹角.教学难点:两圆内公切线和内公切线长容易搞混.教学过程:一、新课引入:上一节我们学会了求两圆的外公切线长,这一节我们将学习两圆内公切线长的求法及两圆公切线夹角的求法.实际上,我们首先要清楚,什么样的两圆的位置关系存在两圆内公切线?有几条?什么样的两圆位置关系有内公切线长?请同学们打开练习本,动手画一画,结合图形,考虑上面的问题.学生动手画图,教师巡视,当所有学生都画完图后,教师打开计算机或幻灯作演示,演示过程由学生回答上述三个问题,并认定只有两圆外离时,存在内公切线长.二、新课讲解:有了上一节求两圆外公切线长的基础,学生不难想到求两圆的内公切线长也要在一个直角三角形中完成,只要稍加提示,学生便会作出直角三角形,同时教师要提醒学生注意两种公切线长的求法中,三角形的边有所不同.例2 如图7-106,P.142已知⊙O1、⊙O2的半径分别为4cm和2cm,圆心距为10cm,AB是⊙O1、⊙O2的内公切线,切点分别为A、B.求:公切线的长AB.分析:仿照上节的辅助线方法作辅助线,我们会发现,不论从O1或O2向另一条半径作垂线,垂足都落在半径的延长线上,因此O2C是两圆半径之和.例题解法参照教材P.142例2.结论:由于圆是轴对称图形,1.两圆的两条外公切线长相等,两条内公切线长相等.2.如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在连心线上.练习一,如图7-107,已知⊙O1、⊙O2的半径分别为1.5cm和2.5cm,O1O2=6cm.求内公切线的长.此题分析类同于例题.解:连结O2A、O1B,过点O2作O2C⊥O1B交O1B的延长线于C.在Rt△O2CO1中:∵O1O2=6,O1C=O1B+BC=4,结论:在由公切线长、圆心距、两圆半径的和或差构成的Rt△中,已知任意两量,都可以求出第三量来,同时,我们也可以求出所需角来.例3 P.143要做一个如图7-108.那样的V形架,将两个钢管托起,已知钢管的外径分别为20mm和80mm,求V形角α的度数.分析:首先指导学生将实际问题转化为两圆外公切线问题,V形角α实际上就是求两圆公切线的夹角.由矩形、外公切线的基本图形知,矩形A BO2C的边O2C∥AB,则Rt△O1CO2中的锐角∠CO2O1=∠解:设两圆管的圆心分别为O1、O2,它们与V形架切于点A、B,AB与O1O2交于点P,连结O1A,O2B,过点O2作O2C⊥O1A,垂足为C.∴∠CO2O1=25°23′.∴∠α=50°46′练习二,P.145中1.如图7-109,⊙A、⊙B外切于点C,它们的半径分别为5cm,2cm,直线l与⊙A、⊙B都相切.求直线AB与l所成的角.分析:这是两圆外公切线与两圆连心线夹角问题,属于两圆外公切线的基本图形,只要在Rt △ADB中求出∠ABD的度数即可.解:设l与⊙A、⊙B分别切于点M、N,连结AM、BN,过点B作BD⊥AM,垂足为D.∴∠ABD=25°23′.∴∠1=25°23′.答:直线AB与l所成的角为25°23′.三、课堂小结:为培养学生阅读教材的习惯,让学生看教材P.142—P.145,从中总结出本课主要内容:1.求两圆的内公切线,仍然归结为解直角三角形问题,注意基本图形中的直角三角形,圆心距仍然为斜边,内公切线长、两半径之和作直角边,三个量中已知任何两个量,都可以求出第三个量来.2.如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上.3.求两圆两外(或内)公切线的夹角.要根据基本图形,归结为求Rt△中的锐角.从而根据平行线的同位角相等,进而求出两公切线的夹角.四、布置作业教材P.153中12、13、14.。

辽宁省北镇市第一初级中学2017届九年级数学复习几何教案_第36课时圆的弧长二

辽宁省北镇市第一初级中学2017届九年级数学复习几何教案_第36课时圆的弧长二

初三几何教案第七章:圆第39 课时:圆周长、弧长(二)教学目标:1、应用圆周长、弧长公式综合圆的有关知识解答问题.2、通过应用题的教学,培养学生从实际问题中抽象出数学模型的能力,培养用数学的意识;3、通过应用题的教学培养学生综合运用知识、分析问题、解决问题的能力.教学重点:运用圆周长、弧长公式,综合其它方面的知识解有关的应用题.教学难点:从实际问题中抽象出数学模型,综合运用其它知识解决问题.教学过程:一、新课引入:上节课我们复习了圆的周长公式,学习了弧长公式,我们说圆的周长公式与弧长公式应用很广泛,并且跟其它知识联系很密切,今天我们继续学习“7.19圆周长、弧长”继续研究它的应用.由于圆的周长和弧长公式有广泛的应用性,所以在解决实际应用问题中不仅复习了这两个公式而且学会了从中抽象数学模型的方法.由于这两个公式跟其它知识有密切的联系,所以在解决实际问题中又复习了一系列的相关知识,而且又培养了学生综合分析问题解决问题的能力.二、新课讲解:(复习提问)1.哪位同学回答圆的周长公式?(安排中下生回答:C=2πR),2.如果⊙O的周长为C,它的半径R,设这个圆的半径增加a,那么它的周长增加多少?(在学生思考、计算后,安排中等生回答:2π周长是多少?(在学生思考,计算后,安排中下生回答:内切圆周长2π,外接圆周长4π).(幻灯供题):火车机车上的主动轮直径为1.2米,主动轮每分转400转,火车每小时行几公里(精确到1公里)?哪位同学知道机车轮子转一圈,在轨道上走多远距离?(安排中上学生回答:1.2π米)你计算的依据是什么?(轮子转一圈,在轨道上的距离就是圆的一个周长.)请同学们计算出这题的结果(约90公里).弧长公式中的n与中心角度数n°有什么联系和区别?(安排中上生回答:公式中的n表示1°弧长的n倍,它在数值上恰等于中心角的度数的数值.)如果已知条件中中心角的度数不仅有度还有分,还有秒,要计算此角所对弧长应首先做什么工作,(安排中等生回答:将度、分、秒转化为度,从而得到公式中所需的n)同学们请计算这样一道题:在半径10cm的⊙O中,圆心角为32°幻灯供题:如图7-158,有一圆弧形桥拱,拱的跨度AB=40m,拱形的半径R=29m,求拱形的高和拱形的弧长(保留4个有效数字.)哪位同学知道,“有一圆弧形桥拱”这句话给我们解题提供什么信息?(找中上生回答,桥拱的弧是一个圆的一部分.)“拱上跨度AB=40m”又为我们提供什么信息?(安排中上生回答:AB是桥拱弧所在圆的弦,其长40m).“拱形的半径R=29m”又为我们提供什么信息?(安排中下生回答:桥拱弧所在圆的半径29m) 哪位同学能画出解决此实际问题的几何图形?(安排一名上等生上黑板画,其余学生在练习本上画)在这个图形中,拱形的高是哪条线段.为什么是它?(安排中上生回答:CD,概括弓形高的定义.)看到这个图,你想到了什么定理?(安排中等生回答:垂经定理.)哪位同学能叙述一下垂径定理?(安排中等生回答)请同学们研究一下拱高怎么求?(安排中下生回答:先用勾股定理求出OD,然后用半径减OD即可).要求拱形弧长,半径已知,还缺少什么条件?(安排中下生回答,少弧所对中心角的度数)中心角∠AOB的度数你打算通过什么方法求出来?(中图7-159上生回答:作直角三角形AOD).请同学们完成这题,(安排上等生上黑板)答:拱形的高8m,拱形弧的长约44.14m.幻灯供题:如图7-160,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转.“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?(安排中等生回答:两个圆的圆心距为2.1m)题目中皮带长,在图形中指的是哪几部分的和?(安排中等生回答:+DC++AB)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(安排中下生回答:AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等.) 前面单元大家已学过了公切线长的求法,哪位同学还记得计算两圆外公切线长的途经?(安排中上学生回答:构造由圆心距、半径差和切线长的平移线段组成的直角三角形,解这个三角形即可)请同学们把切线长AB求出来,(安排一名中上生到黑板做)解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E要求的长度,已具备了什么条件,还缺少什么条件?(安排中下生:已具备了半径0.325,缺少所对圆心角的度数),观察图形,你打算通过什么途径求出所对圆心角α1?(安排中上生:α1=360°-2α,而α可通过解Rt△O1EO2解决).请同学们求出的长度.(安排一名中上生到黑板前完成此题)同样要求的长度,半经0.12,∠BO2C怎么求?请同学们观察图形,哪位同学谈谈看法:(安排上等生回答:∠BO2C=2∠α=168.8°,因O1A∥O2B,O1D∥O2C所以∠BO2C=2∠α)请同学们求出的长度,(安排一名中上生到黑板完成)∴皮带长l=l1+l2+2AB=5.62(m).现在我们解决第(2)个问号,大轮与小轮的半径不同,转数不同,由于皮带传动的作用,大轮与小轮具备一个什么等量关系?(安排中上学生回答:小轮与大轮每分钟所走的路程相等) 如果设大轮每分钟转数为n,哪位同学能列出方程?(安排中等生回答,0.65·π·n=0.24·π×750)请同学们计算出n来.(安排一中下生报答案:n≈277(转))三、课堂小结:本节课复习了圆的周长和弧长公式,并在做题中综合复习了正多边形、垂经定理、两圆公切线等有关知识,学习了从实际问题中抽象出数学模型的方法.四、布置作业教材P.178.练习1、2、3;教材P.187中6、7。

初中九年级数学上册《圆(2)》教案

初中九年级数学上册《圆(2)》教案

24.1 圆(第2课时)教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.ABO老师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.二、探索新知如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(学生活动)请同学们按下列要求作图并回答问题:如图所示的⊙O中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?B 'AB =''A B ,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴AB 与''A B 重合,弦AB 与弦A ′B ′重合 ∴AB =''A B ,AB=A ′B ′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作.(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,•分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.B ''A A '(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:AB =''A B ,AB=A /B /.现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等. (学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB与∠COD呢?D分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可.(2)∵OE=OF,∴在Rt△AOE和Rt△COF中,又有AO=CO是半径,∴Rt△AOE≌Rt•△COF,∴AE=CF,∴AB=CD,又可运用上面的定理得到AB=CD解:(1)如果∠AOB=∠COD,那么OE=OF理由是:∵∠AOB=∠COD∴AB=CD∵OE⊥AB,OF⊥CD∴AE=12AB,CF=12CD∴AE=CF又∵OA=OC∴Rt△OAE≌Rt△OCF∴OE=OF(2)如果OE=OF,那么AB=CD,AB=CD,∠AOB=∠COD 理由是:∵OA=OC,OE=OF∴Rt△OAE≌Rt△OCF∴AE=CF又∵OE⊥AB,OF⊥CD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD三、巩固练习教材练习1 教材练习2.四、应用拓展例2.如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.NP(3) (4)分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,•只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1)AB=CD理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F∵∠APM=∠CPM∴∠1=∠2OE=OF连结OD、OB且OB=OD∴Rt△OFD≌Rt△OEB∴DF=BE根据垂径定理可得:AB=CD(2)作OE⊥AB,OF⊥CD,垂足为E、F∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°∴Rt△OPE≌Rt△OPF∴OE=OF连接OA、OB、OC、OD易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF∴∠1+∠2=∠3+∠4∴AB=CD五、归纳总结(学生归纳,老师点评)本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材复习巩固4、5、6、7、8.2.选用课时作业设计.第二课时作业设计一、选择题.1.如果两个圆心角相等,那么(D )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是(A ) A .AB =2CD B .AB >CD C .AB <2CD D .不能确定 3.如图5,⊙O 中,如果AB =2AC ,那么(C ).A .AB=ACB .AB=AC C .AB<2ACD .AB>2ACOBAC OBA CED(5) (6) 二、填空题1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________. 2.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.3.如图6,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________. 三、解答题1.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N•在⊙O 上. (1)求证:AM =BN ;(2)若C 、D 分别为OA 、OB 中点,则AM MN NB ==成立吗?2.如图,以ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=50°,求BE 的度数和EF 的度数.3.如图,∠AOB=90°,C、D是AB三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD.答案:一、1.D 2.A 3.C二、1.圆的旋转不变形2.13或533.3三、1.(1)连结OM、ON,在Rt△OCM和Rt△ODN中OM=ON,OA=OB,∵AC=DB,∴OC=OD,∴Rt△OCM≌Rt△ODN,∴∠AOM=∠BON,∴AM NB=(2)AM MN NB==2.BE的度数为80°,EF的度数为50°.3.连结AC、BD,∵C、D是AB三等分点,∴AC=CD=DB,且∠AOC=13×90°=30°,∵OA=OC,∴∠OAC=∠OCA=75°,又∠AEC=∠OAE+∠AOE=45°+30°=75°,∴AE=AC,同理可证BF=BD,∴AE=BF=CD数学选择题解题技巧1、排除法。

辽宁省北镇市届中考数学几何复习第七章圆第2课时圆(二)教案【精品教案】

辽宁省北镇市届中考数学几何复习第七章圆第2课时圆(二)教案【精品教案】

第七章:圆第2课时:圆(二)教学目标:1、本节课使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念.2、初步会运用本节的概念判断真假命题.3、逐步培养学生亲自动手实践,总结出新概念的能力.教学重点:理解圆的有关概念.教学难点:对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解.教学过程:一、新课引入:同学们,上节课我们学习了圆的定义、点和圆的位置关系.教师提问学生回答上节课的知识点,学生之间互相补充、评价.接着启发学生在练习本上画一个圆,要求学生在圆上任取两点A、B.请同学们一边画图,一边观察,一边思考教师提出的问题.这两点A、B之间的部分是什么?连结两点得到线段AB又是什么?AB把圆分成两部分得到图形又叫做什么?在学生想说又叫不准的情况下,教师出示板书.这节课我们学习“7.1圆(二)”,本节专门研究圆的有关概念.二、新课讲解:学生画图后观察出圆的一些概念,由学生回答出概念的名称和内容.如果学生回答的很准确,教师不必重复.在学生回答中,教师板书出重点概念.1.弦:连结圆上任意两点的线段叫做弦.教师提问一名中下生,“一个圆有多少条弦?”找一名中等生回答“在这些弦中,最长的弦是什么?怎么定义这个最长的弦?”2.直径:经过圆心的弦是直径.直径与半径之间关系找一名中下学生回答.3.圆弧:圆上任意两点间的部分叫做圆弧.简称弧.教师讲清弧的符号“”的表示.以A、B为端点的弧,记作,读作“圆弧AB”或“孤AB”.这时教师引导学生观察圆中的圆弧有几种情况?通过学生观察、比较、归纳出三种圆弧,师生一起总结出这三种弧的定义.半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆弧.优弧:大于半圆的弧叫优弧.优弧CBA,记作“”是优弧.劣弧:小于半圆的弧叫做劣弧.这时幻灯打出一组练习题:练习1 判断下列语句是否正确?为什么?1.半圆是弧.2.弧是半圆.3.两个劣弧之和等于半圆.4.两个劣弧之和等于圆周长.这样做的目的使学生对圆弧的定义加以理解.弓形:由弦及其所对的弧组成的图形叫做弓形.了解到弓形定义,为了使学生更好地了解圆中一条弦能得到两个弓形,引导学生观察得到,这样对今后学习弦所对的圆周角的问题起奠基作用.接下来讲同心圆、等圆、等弧的三个概念时,从字意义让学生探索出概念的内含外延.培养学生通过理解字意感受到图形与概念的有机结合,是学习好几何的基本保障.例如同心圆:即圆心相同,半径不相等的两个圆叫做同心圆.等圆的讲解以投影演示,让学生观察、比较得出等圆是互相重合两个圆.由等圆可以证明半径相等,直径相等.反过来半径相等,直径相等两个圆是等圆.同时告诉学生同圆或等圆的半径相等.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.等弧是本节的难点,教师从引导学生能“理解互相重合”入手,联系到如果互相重合.说明同圆的半径相等,进一步证明满足同圆或等圆的前提条件.这样分析的好处是让学生真正认识到等圆、等弧都是从“互相重合”得到的,进一步理解“等弧”的条件已经具备同圆或等圆,这样又消除对等弧不理解的心理障碍,从而顺理成章的让学生从认识→到理解→最后到准确应用.接下来给学生一组练习题巩固已学过的知识.学生回答,学生之间参与评价.练习2 判断题:1.直径是弦;2.弦是直径;3.半圆是弧,但弧不一定是半圆;4.半径相等的两个半圆是等弧;5.长度相等的两条弧是等弧;例2 如图在圆O中,AB、CD为直径.求证:AD∥BC.由学生分析,学生写出证明过程,学生纠正存在问题.巩固练习:教材P.66中2、3题(学生自己完成).三、课堂小结:本节小结引导学生自己做出总结:1.本节所学的知识点有:2.方法上要进一步理解的有:①弦与直径,②弧与半圆,③同心圆、等圆指两个图形,④等圆,等弧是互相重合得到,等弧的条件作用.3.新定义符号“”的表示方法.四、布置作业:教材P.83中5题,P.82中1(3)、(4).参考题:一、判断题(40分)(1)直径是弦,但弦不一定是直径。

辽宁省北镇市第一初级中学2017届九年级数学复习几何教案_第30课时正多边形和圆2

辽宁省北镇市第一初级中学2017届九年级数学复习几何教案_第30课时正多边形和圆2

初三几何教案第七章:圆第33课时:正多边形和圆(二)教学目标:1、使学生了解在任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆;正多边形都是轴对称图形,有偶数条边的正多边形又是中心对称图形;边数相同的正多边形都相似.2、使学生理解正多边形的中心、半径、边心距、中心角等概念.3、通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;4、通过正多边形有关概念的教学,培养学生的阅读理解能力.教学重点:正多边形的性质;正多边形的有关概念.教学难点:对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.教学过程:一、新课引入:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.那么给定正多边形能否得到圆呢?为解决此问题本堂课继续研究正多边形和圆.正多边形是一种特殊的多边形,它有一些类似于圆的性质.例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在的直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合.正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它又是中心对称图形,而且绕中的联系.根据“任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆”这个定理和圆的有关概念,得到了“正n边形的半径和边心矩把正n边形分成2n个全等的直角三角形”这个定理,从而使正多边形的有关计算转变为解直角三角形问题.二、新课讲解:复习提问:1.作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?[安排记起来的学生回答].2.作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?[请回忆起来的学生回答].请两名中上学生到黑板前一人画不等边三角形的外接圆与内切圆,另一人画正三角形的外接圆与内切圆,其余学生在练习本上画上述两种三角形的外接圆与内切圆.教师引导:通过作图不难发现,不等边三角形都既有一个外接圆,又都有一个内切圆.大家观察黑板上两种三角形的外接圆与内切圆,结合你画的图,你发现正三角形的外接圆与内切有什么特殊之处?(学生思考、回答:正三角形的外接圆与内切圆是同心圆.)教师引导:正方形是不是既有一个外接圆又有一个内切圆,并且两圆同心呢?[学生讨论]在学生讨论的基础上,教师依次提问如下问题:1.正方形外接圆的圆心在哪?(安排中上生回答:正方形对角线的交点.)2.根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?(安排中上生回答)3.正方形有内切圆吗?圆心在哪?半径是谁?(安排中上生回答).引导:通过大家画图实践与理论探讨发现正方形既有一个外接圆又有一个内切圆并且两圆同心.大家再看看矩形、菱形是否具有这条性质?(学生在练习本上画、前后左右讨论得出矩形只有外接圆,菱形只有内切圆结论)引导:我们发现正三角形既有外接圆又有内切圆且两圆同心,发现正方形也是如此,我们猜想正多形是否都具备这个性质呢?挂出预先画好一个正五边形ABCDE的小黑板.讲解:如果正五边形ABCDE有外接圆,则A、B、C、D、E五点应都在同一个圆上,且它们到圆心的距离相等.大家知道不在同一直线上的三点确定一个圆,不妨过正五边形ABCDE的顶点A、B、C作⊙O,连结OA、OB、OC、OD、OE.OA=OB=OC;证OD=OA、OE=OA即可.板书:过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.分析、启发、提问:1.证点D在⊙O上就是证OD=OA,你打算证哪两个三角形全等?(安排中下生回答).2.要证△AOB≌△COD已具备了哪些全等条件?(安排中下生回答).3.要证△AOB≌COD 还缺少什么条件?(安排中下生回答).4.谁能证∠3=∠4?(安排中上生完成)板书:△OAB≌△ODCABCDE有一个外接圆⊙O.讲授:照此法证明,正六边形、正七边形、…正n边形不都应当有一个外接⊙O吗?分析、启发、提问:既然正五边形有一个外接⊙O,那么正五边形的五条边也就应是⊙O的五条等弦.根据弦等、弦心距相等,可知点O到五边的距离相等.那么正五边形有无内切圆呢?圆心是谁?半径是谁?(按中等生回答).同样,正n边形也应有一个内切⊙O,且两圆同心.哪位同学能叙述一下正多边形的这个性质定理?(安排中上生回答)板书:定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.引导,正n边形既有一个外接圆又有一个内切圆,而且两圆同心就给正多边形带来了一系列的有关概念,请阅读教材P.158下数第2自然段.学生看书,教师板书:1.正多边形中心;2.正多边形半径;3.正多边形的边心距;4.正多边形的中心角.幻灯显示练习题,教师提问:1.O是正△ABC的中心,它是正△ABC的______圆与______圆的圆心;2.OB叫正△ABC的______它是正△ABC的______圆的半径;3.OD叫作正△ABC的______,它是正△ABC的______圆的半径.4.正方形ABCD的外接圆圆心O叫做正方形ABCD的______.5.正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.6.⊙O是正五边形ABCDE的外接圆,弦AB的弦心距OF叫正五边形ABCDE的______,它是正五边形ABCDE的圆的半径.7.∠AOB叫做正五边形ABCDE的______角,它的度数是______.8.图中正六边形ABCDEF的中心角是______,它的度数是______.9.你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么?10.正三角形的一个外角度数是______;正方形的一个外角度数是______;正五边形的一个外角度数是______;正六边形的一个外角度数是______;正n边形的一个外角度数是______.11.正n边形的一个外角度数与它的______角的度数相等.教师引导:下面我们研究正多边形都具有哪些性质?教师提问:根据正多边形的定义,你想到它应具有什么性质?(安排中下生回答)板书:正多边形性质:1.各边都相等;2.各角都相等.教师提问:1.什么叫轴对称图形?(安排记起来的学生回答).2.正三角形是不是轴对称图形?(让中下生答).3.它有几条对称轴?(中等生回答).4.正方形是不是轴对称图形?(中下生回答).5.它有几条对称轴?(中等生回答)幻灯演示:观察图中正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?(学生思考、讨论)引导:以此类推,对正n边形又该有什么结论?(让中下生回答)板书:性质3.正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.教师提问:1.什么叫中心对称图形?(让记起来的学生回答).2.正三角形是不是中心对称图形?正方形呢?正五边形呢?正六边形呢?3.什么样的正多边形是中心对称图形?(安排中等学生回答).板书:续性质3 边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.教师提问:1.所有的等边三角形都相似吗?为什么?(安排中上生回答).2.所有的正方形都相似吗?为什么?(安排中等生回答).3.所有的边数相同的正多边形都相似吗?为什么?(由中下生回答).板书:性质4.边数相同的正多边形相似.(教师讲解):大家都记得相似多边形的周长比等于相似比.面积的比等于相似比平方,不难证明,相似正多边形的边心距、半径的比都等于相似比.板书:续性质4,它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.性质5:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.三、课堂小结:本堂课主要学习了正多边形的两部分有关内容:1.概念;2.性质.教师提问:1.你学习了正多边形的哪些有关概念?2.正多边形有哪些性质?四、布置作业教材P.172中4;P.159中练习1、2、3.。

辽宁省北镇市中考数学 几何复习 第七章 圆 第10课时 圆周角(二)教案

辽宁省北镇市中考数学 几何复习 第七章 圆 第10课时 圆周角(二)教案

第七章:圆第10课时:圆周角(二)教学目标:1、本节课使学生在掌握圆周角的定义和圆周角定理的基础上,进一步学习圆周角定理的三个推论;2、掌握三个推论的内容,并会熟练运用推论1、推论2证明一些问题.3、通过推论1、推论2的教学,培养学生动手操作能力和独立获得知识的能力.4、结合例2的教学进一步培养学生观察、分析及解决问题的能力及逻辑推理能力.教学重点:圆周角定理的三个推论的应用.教学难点:理解三个推论的“题设”和“结论”.教学过程:一、新课引入:同学们,上节课我们学习了圆周角的概念及圆周角定理,请两位中等学生回答这两个问题.接着请同学们看这样一个问题:已知:如图7-34,在⊙O中,弦AB与CD相交于点E,求证:AE·EB=DE·EC.师生共同分析:欲证明AE·EB=DE·EC,只有化乘积式为比例角形相似条件为∠AED=∠CEB.当学生分析得到∠AED=∠CEB,发现两个三角形相似条件不充分,只有一对角相等,不符合相似三角形的判定,这时教师补充到:如能填加∠A=∠C这个条件,能不能得到这两个三角形相似呢?请同学观察∠A、∠C是什么角呢?这节课我们继续学习“7.5圆周角(二)”本节课我们就来解决∠A=∠C的问题.教师利用一道题创设问题的情境,有意制造一种悬念,就是为了以需要激发学生的情趣,用需要这个动力源泉激发学生的积极性.二、新课讲解:为了把教师的教变成学生自己要学习.学生们带着要解决∠A=∠C的问题,思维处于积极探索状态时,教师及时提出问题:请同学们画一个圆,以B、C为弧的端点能画多少个圆周角?这时教师要求学生至少画出三个,要求学生用量角器度量一个这三个角有什么关系?请三名同学将量得答案公布于众.得到结果都是一致的,三个角均相等.通过度量我们可以知道∠A=∠A1=∠A2,想一想还有没有别的方法来证明这三个角相等呢?学生分析证明思路,师生共同评价.教师概括总结出方法:要证明∠A=∠A1=∠A2,只要构造圆心角进行过渡即可.接下来引导学生观察图形;在⊙O中,若= ,能否得到∠C=∠G呢?根据什么?反过来,若∠C=∠G,是否得到= 呢?学生思考,议论,最后得到结论.若= ,则∠C=∠G,反过来当∠C=∠G,在同圆或等圆中,可得若= ,否则不一定成立.这时教师要求学生举出反面例子:若∠C=∠G,则≠,从而得到圆周角的又一条性质.推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.强调:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?教师提出这样的问题后,学生通过争论得到的看法一致.接下来出示一组练习题:1.半圆所对的圆心角是多少度?半圆所对的圆周角呢?为什么?2.90°的圆周角所对的弧是什么?所对的弦呢?为什么?由学生自己证明得到了推论2:推论2:半圆或(直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.巩固练习1:判断题:1.等弧所对的圆周角相等;()2.相等的圆周角所对的弧也相等;()3.90°的角所对的弦是直径;()4.同弦所对的圆周角相等.()这组练习题的目的是强化对圆周角定理的推论1、推论2的理解,加深对推论1、推论2的理解,掌握并准确运用.接下来出示幻灯片:形呢?O上.∴∠ACB=90°,∴△ACB是直角三角形.于是得到推论3.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.数学表达式:教师告诉学生这是证明一个三角形是直角三角形的判定定理.这时教师提醒学生开课时的问题能否解决:学生回答出解决思路和方法,最后教师强调.接下来教师给出例1已知:如图7-41,AD是△ABC的高,AE是△ABC的外接圆的直径.求证:AB·AC=AE·AD.由学生分析证明思路,教师把分析过程写在黑板上:有证明△ABE~△ADC即可.引导学生总结:在解决圆的有关问题中,常常需要添加辅助线,构成直径上的圆周角.接下来教师提示,把例1中的AD延长交⊙O于F,求证:BE=FC.由学生分析,两名同学证明出两种不同方法写在黑板上.(法一):连结EF.EF∥BC = BE=FC(法二):△ABE~△ACF ∠BAE=∠FAC = BE=FC.巩固练习P.95中1、2、3.三、课堂小结:本节课知识点:本节课所学方法:常用引辅助线的方法①构造直径上的圆周角;②构造同弧所对的圆周角.四、布置作业教材P.100中8、9、10、11、12.。

中考数学圆复习教案

中考数学圆复习教案

第七篇圆专题二十七圆的有关概念与性质一、考点扫描二、考点训练1.用直角钢尺检查某一工件是否恰好是半圆环形,根据图1-3-54所表示的情形,四个工件哪一个肯定是半圆环形()2.如图2,点A,B,C在⊙O上,AO∥BC,∠OAC=20°,则∠AOB的度数是()A.10°B.20°C.40°D.70°3.如图3,已知⊙O的半径为5mm,弦AB=8mm,则圆心O到AB的距离是( )A.1mmB.2mmm C.3mm D.4mm4.(2004、北京,4分)如图1-3-8,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上.如果∠P=50○,那么∠ACB等于()A.40○B.50○ C.65○D.130○5..(2006年长春市)如图5,BD为⊙O的直径,∠A=30°,则∠CBD的度数为( )A.30° B.60°C.80° D.120°6.(2006年绵阳市)如图6,AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于()A.100° B.110° C.120° D.130°7.如图l-3-12,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为( )A.50°B.80° C.100°D.130°8.如图1-3-13是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()A.180°B.15 0°C.135°D.120°9.如图1-3-14所示,直线AB交圆于点A,B,点M的圆上,点P在圆外,且点M,P在AB的同侧,∠AMB=50°.设∠APB=x°,当点P移动时,则x的变化范围是。

中考数学复习教案-圆2.doc

中考数学复习教案-圆2.doc

中考数学复习教案圆、知识点1、与圆有关的角——圆心角、圆周角(/ \(1)如图,已知 ZA0B=5 0 度,则/ACB=度;2、圆的对称性:人一(1)圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,...CD 是圆 0 的直径,CD±AB 于 E =, =,3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;4、直线和圆的位置关系有三种:相_____ 、相_____ 、相______ .5、圆与圆的位置关系:(6、切线性质: B 例4: (1)如图,PA是。

的切线,点A是切点,贝MPAO=度。

(2)如图,PA、PB是③0的切线,点A、B是切点,则=, Z=Z7、圆中的有关计算:(1)弧长的计算公式; (2)扇形的面积;8、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;二、练习:(一)填空题//\\1、如图,弦AB分圆为1: 3两段,则弧AB的度数= , \弧 ACB 的度数等于; ZAOB= , ZACB= ,2、。

的半径为5,圆心。

到弦0的距离0D=3,则AD=,的长为O3、如图,已知的半径 0A=13 cm,弦AB=24 cm,则 0D二 cm04、如图,已知。

的直径AB=10cm,弦M=8cm, 则弦心距仞等于.5、已知:(DO】的半径为3,。

2的半径为4,若。

01与。

2外切,贝lj 0i02==已知 AB = BC,求证:ZBAC=20° ,求/P 的度7、已知:如图,AB 是。

的直径,点P 在BA 的延长线点C, BDXPD,垂足为D,连接©0于3、如图,。

的内接四边形ABCD 的对角线若。

Ol 与。

2 内切,贝IJ 010:=O 若。

Ol 与。

相切,贝IJ 0i02=O6、 一个圆锥的母线与高的夹角为30。

辽宁省北镇市中考数学 几何复习 第七章 圆 第22课时

辽宁省北镇市中考数学 几何复习 第七章 圆 第22课时

第七章:圆第23课时:和圆有关的比例线段(一)教学目标:1、使学生理解相交弦定理及其推论;2、初步学会运用相交弦定理及其推论;3、使学生学会作线段的比例中项.4、在推导定理的过程中培养学生由图形总结出几何性质的能力;5、在运用相交弦定理时,使学生清楚是运用几何性质,代数解法解有关弦长计算问题,培养学生的综合运用能力;教学重点:使学生正确理解相交弦定理及其推论,这是以后学习中非常重要的定理.教学难点:在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.而不能死记硬背,也不能只从形式上去认识定理,只知是线段的积,而对内容不加理解.教学过程:一、新课引入:前边,我们已经学习了和圆有关的角,现在我们通过圆内一点引圆的两条弦,它们之间又有什么关系呢?二、新课讲解:实际上,它们之间存在着数量关系.不妨从⊙O内一点P引圆的两条弦AB、CD,我们称它们为相交弦,这时,各弦分别被P点分成二条线段,只要连结AC、DB,我们马上发现这四条线段在两个三角形中,容易证得,这两个三角形是相似的,于是得到了这四条线段的比例线段,转化成乘积式后,便得到相交弦定理,教师指导学生观察相交弦定理中的两弦的位置是任意的,当两弦的位置特殊时,会出现怎样的情形呢?请同学打开练习本画一画.学生动手画,教师巡视.当图7-79三个图形都出现后,教师指出,当P点重合于圆心O时,是两条直径的相交弦,结论是显然的,并且没有因为位置上的变化而发生形式上的变化.我们不研究这种情形,然后指导学生观察图7-79(3),这种特殊的位置:弦与直径垂直相交,会给相交弦定理带来怎样形式上的改变呢?最终指导学生完成相交弦定理的推论及证明.1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段的积相等.2.如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.相交弦定理及其推论是和圆有关的比例线段中的两个数量关系式,在今后学习中有着重要的意义,教师必须严格要求学生独立完成定理的证明,加深对定理的理解.练习一,P.126中1.如图7-80,AP=3cm,PB=5cm,CP=2.5cm,求CD.(答案:8.5cm)练习二,教材P.126中2,如图7-81,O是圆心,OP⊥AB, AP=4cm,PD=2cm.求OP.(答案:3cm)此两题是直接运用定理或推论.P.125例1 已知圆中两条弦相交,第一条弦被交点分为12cm和16cm两段,第二条弦的长为32cm,求第二条弦被交点分成的两段的长.分析,这是一道利用相交弦定理的计算题,由于无图对照,在叙述时务必讲清第几条弦,在由相交弦定理列出方程后,解一元二次方程只作为其中一个步骤.做答案时要特别注意,对x1、x2的解释,以防止最终出现两解.解法参照教材P.126.P126例2 已知:线段a、b求作:线端 c,使c2=ab分析题目,可将三条线段的数量关系转化为相交弦定理的推论.若线段c作出来,它将与线段a、b在圆中构成弦与直径垂直相交的位置关系.这时学生对作法心中有数,最终教师指导学生完成作图.作法参照教材P.126.三、课堂小结:指导学生阅读教材P.125—P.126.培养学生的读书习惯,并总结出本课的主要内容:1.相交弦定理及其推论是圆中重要的比例线段,它反映了圆中两条相交弦的数量关系.推论是定理的特殊情形.二者只是形式上的不同,实质上都是一样的.需要指出的是相交弦定理涉及到四条线段,而它的推论涉及到三条线段.2.本节例1是利用相交弦定理进行计算,它是圆的有关计算题的重要部分.3.本节例2是运用相交弦定理的推论作图题,这是初中阶段务必要掌握的作图题之一,务必向学生讲清.四、布置作业1.教材P.132中9;P.133中14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章:圆
第2课时:圆(二)
教学目标:
1、本节课使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念.
2、初步会运用本节的概念判断真假命题.
3、逐步培养学生亲自动手实践,总结出新概念的能力.
教学重点:
理解圆的有关概念.
教学难点:
对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解.
教学过程:
一、新课引入:
同学们,上节课我们学习了圆的定义、点和圆的位置关系.教师提问学生回答上节课的知识点,学生之间互相补充、评价.
接着启发学生在练习本上画一个圆,要求学生在圆上任取两点A、B.请同学们一边画图,一边观察,一边思考教师提出的问题.这两点A、B之间的部分是什么?连结两点得到线段AB又是什么?AB把圆分成两部分得到图形又叫做什么?在学生想说又叫不准的情况下,教师出示板书.这节课我们学习“7.1圆(二)”,本节专门研究圆的有关概念.
二、新课讲解:
学生画图后观察出圆的一些概念,由学生回答出概念的名称和内容.如果学生回答的很准确,教师不必重复.在学生回答中,教师板书出重点概念.
1.弦:连结圆上任意两点的线段叫做弦.教师提问一名中下生,“一个圆有多少条弦?”找一名中等生回答“在这些弦中,最长的弦是什么?怎么定义这个最长的弦?”
2.直径:经过圆心的弦是直径.
直径与半径之间关系找一名中下学生回答.
3.圆弧:圆上任意两点间的部分叫做圆弧.简称弧.教师讲清弧的符号“”的表示.以A、
B为端点的弧,记作,读作“圆弧AB”或“孤AB”.
这时教师引导学生观察圆中的圆弧有几种情况?通过学生观察、比较、归纳出三种圆弧,师生一起总结出这三种弧的定义.半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆弧.
优弧:大于半圆的弧叫优弧.
优弧CBA,记作“”是优弧.
劣弧:小于半圆的弧叫做劣弧.
这时幻灯打出一组练习题:
练习1 判断下列语句是否正确?为什么?
1.半圆是弧.
2.弧是半圆.
3.两个劣弧之和等于半圆.
4.两个劣弧之和等于圆周长.
这样做的目的使学生对圆弧的定义加以理解.
弓形:由弦及其所对的弧组成的图形叫做弓形.了解到弓形定义,为了使学生更好地了解圆中一条弦能得到两个弓形,引导学生观察得到,这样对今后学习弦所对的圆周角的问题起奠基作用.接下来讲同心圆、等圆、等弧的三个概念时,从字意义让学生探索出概念的内含外延.培养学生通过理解字意感受到图形与概念的有机结合,是学习好几何的基本保障.
例如同心圆:即圆心相同,半径不相等的两个圆叫做同心圆.
等圆的讲解以投影演示,让学生观察、比较得出等圆是互相重合两个圆.由等圆可以证明半径相等,直径相等.反过来半径相等,直径相等两个圆是等圆.同时告诉学生同圆或等圆的半径相等.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.
等弧是本节的难点,教师从引导学生能“理解互相重合”入手,联系到如果互相重合.说明同圆的半径相等,进一步证明满足同圆或等圆的前提条件.这样分析的好处是让学生真正认识到等圆、等弧都是从“互相重合”得到的,进一步理解“等弧”的条件已经具备同圆或等圆,这样又消除对等弧不理解的心理障碍,从而顺理成章的让学生从认识→到理解→最后到准确应用.
接下来给学生一组练习题巩固已学过的知识.学生回答,学生之间参与评价.练习2 判断题:
1.直径是弦;
2.弦是直径;
3.半圆是弧,但弧不一定是半圆;
4.半径相等的两个半圆是等弧;
5.长度相等的两条弧是等弧;
例2 如图在圆O中,AB、CD为直径.求证:AD∥BC.
由学生分析,学生写出证明过程,学生纠正存在问题.
巩固练习:
教材P.66中2、3题(学生自己完成).
三、课堂小结:
本节小结引导学生自己做出总结:
1.本节所学的知识点有:
2.方法上要进一步理解的有:
①弦与直径,
②弧与半圆,
③同心圆、等圆指两个图形,
④等圆,等弧是互相重合得到,等弧的条件作用.
3.新定义符号“”的表示方法.
四、布置作业:
教材P.83中5题,P.82中1(3)、(4).
参考题:
一、判断题(40分)
(1)直径是弦,但弦不一定是直径。

()
(2)半径相等的两个圆叫等圆。

()
(3)直径相等的两个圆是等圆。

()
(4)半圆是弧,但弧不一定是半圆。

()
(5)长度相等的两条弧是等弧。

()
(6)连接圆上任意两点所得的图形叫圆弧。

()
(7)等弧的长度一定相等。

()
(8)经过圆心的直线是直径。

()
二、单选题(30分)
(1)下列说法正确的是()
(A)半圆是弧(B)弧是半圆(C)劣弧大于半圆(D)优弧小于半圆(2)过圆O内一点的最长弦长为10cm,那么圆的直径是()
(A)20cm (B)10cm (C)5cm (D)以上都不对(3)下列说法中正确的是()
(A)四边形的四个顶点都在同一个圆上(B)菱形的四个顶点在同一个圆上
(C)矩形的四个顶点在同一个圆上(D)平行四边形的四个顶点在同一个圆上
三、解答题(30分)
(1)如图,已知AB为⊙O的直径,AC为弦,OD∥BC交AC于D,OD=4cm,求BC的长。

(2)如图,已知Rt △ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠A=30°,E是AC的中点,以D为圆心,DE为半径作圆,问:(1)A、B、C三点与⊙D的位置关系如何?说明理由。

(2)若BC=1,能否求出A点距离D的最短距离?。

相关文档
最新文档