电磁兼容技术

合集下载

电磁兼容技术基础教程

电磁兼容技术基础教程

电磁兼容技术基础教程
电磁兼容技术(EMC)是指在电子系统中,各种电磁波之间互相作用,导致电磁干扰和互相干扰,从而使电子系统的性能发生改变或者无法正常工作的现象。

EMC技术是保证电
子设备正常工作和电磁环境不受干扰的重要手段。

EMC技术研究的目标是:尽可能地消除电子设备对电磁波的敏感性,降低电磁辐射和
感受到的外部电磁场的影响,以实现设备的正常工作和减小对周围环境的干扰。

EMC技术
研究内容主要包括电磁辐射、电磁敏感度、电磁暂态现象和接地等方面。

在EMC技术中,接地是一项非常重要的内容。

正确的接地可以有效地减小电磁波在设
备内部形成的回路,并使设备内部的信号和电源共用地,降低信号电流和电源电流之间的
相互影响。

因此,在设计电子系统时,需要充分考虑接地问题,采用合理的接地方案。

另外,EMC技术还需要考虑设备的电磁波传输路径和抗干扰能力问题。

在设计过程中,需要采取合适的屏蔽措施、滤波措施和阻抗匹配措施来降低电磁波的辐射和敏感度。

EMC技术的应用范围非常广泛。

除了在电子系统设计中应用之外,还广泛应用于无线
电通信、电力电子、石化、航空航天、汽车等领域。

在这些领域中,EMC技术能够保证设
备的正常工作,同时减少对周围环境和其他设备的干扰。

EMC技术的发展是一个不断完善和提高的过程。

在今后的发展中,需要更加注重EMC
技术的标准化和体系化、提高EMC技术的适用性和实用性等方面的问题。

同时,需要在确
保设备正常工作和环境保护的基础上,不断推进EMC技术的创新和发展。

电磁兼容解决方案

电磁兼容解决方案

电磁兼容解决方案电磁兼容(Electromagnetic Compatibility,简称EMC)是指各种电子设备在相互连接和共存的情况下,能够在无干扰和无辐射的条件下正常工作的能力。

在现代社会中,电子设备的广泛应用使得电磁兼容问题日益突出。

为了解决这一问题,人们提出了各种电磁兼容解决方案。

本文将从五个方面详细介绍这些解决方案。

一、电磁屏蔽技术1.1 金属屏蔽:利用金属材料对电磁波进行屏蔽,如使用金属外壳、金属屏蔽罩等。

1.2 电磁屏蔽涂料:在电子设备表面涂覆电磁屏蔽涂料,以提高设备的屏蔽性能。

1.3 电磁隔离设计:通过合理的电路布局和屏蔽结构设计,减少电磁辐射和电磁感应。

二、电磁干扰抑制技术2.1 滤波器设计:在电子设备的电源线路、信号线路等关键位置添加滤波器,以阻止电磁干扰信号的传播。

2.2 接地设计:合理的接地设计能够有效地抑制电磁干扰,如采用单点接地、分层接地等方法。

2.3 电磁屏蔽设计:在电子设备内部采用屏蔽隔离措施,减少电磁干扰的传播。

三、电磁辐射控制技术3.1 电磁辐射测试:通过对电子设备进行电磁辐射测试,了解辐射源和辐射路径,从而采取相应的控制措施。

3.2 电磁辐射限制:根据不同的电子设备,制定相应的辐射限制标准,确保设备的辐射水平在合理范围内。

3.3 电磁辐射抑制:采用电磁屏蔽、滤波器等措施,减少电磁辐射的产生和传播。

四、电磁感应抑制技术4.1 电磁感应测试:通过对电子设备进行电磁感应测试,了解感应源和感应路径,从而采取相应的控制措施。

4.2 电磁感应限制:根据不同的电子设备,制定相应的感应限制标准,确保设备的感应水平在合理范围内。

4.3 电磁感应抑制:采用电磁屏蔽、隔离设计等措施,减少电磁感应的产生和传播。

五、电磁兼容测试技术5.1 电磁兼容测试方法:制定合理的测试方法,对电子设备进行电磁兼容测试,评估设备的兼容性能。

5.2 电磁兼容测试标准:根据不同的应用领域和设备类型,制定相应的兼容性测试标准,确保设备的兼容性能达到要求。

机电一体化技术-机电一体化技术-5.2 机电一体化系统的电磁兼容技术

机电一体化技术-机电一体化技术-5.2  机电一体化系统的电磁兼容技术
1. 屏蔽技术
屏蔽技术用来抑制电磁噪声沿着空间的传播、切断辐射 电磁噪声的传输途径。用金属材料或磁性材料把所需屏蔽 的区域包围起来,使屏蔽体内外的“场”相互隔离。
屏蔽技术对于不同的辐射场分为三大类:电场屏蔽、磁 场屏蔽及电磁场屏蔽。
第五章 机电一体化系统的接口与电磁兼容技术
6
2. 接地技术
“地”可定义为一个等位点或一个等位面, 它为电路、系统提供一个参考点位,电路、系统 中的各部分电流都必须经“地线”或“地平面” 构成电流回路。
扰; 按耦合方式分为传导耦合方式和辐射耦合方式。
2. 电磁噪声耦合途径 电磁噪声传导耦合 电磁辐射耦合 串扰 浪涌
第五章 机电一体化系统的接口与电磁兼容技术
5
三、常用的干扰抑制技术
电磁干扰的抑制要从干扰干扰的影响也将被消除。
常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔 离等。
8
4. 隔离技术
布线的隔离是通过加大受扰电路器件或装置与干 扰源之间的距离,来降低干扰的一种行之有效的措施。 因为干扰与距离的平方成反比,距离增加1倍则干扰降 低4倍。
布线时要正确使用“短”、“乱”、“辫”、“共 地”、“浮地”。
第五章 机电一体化系统的接口与电磁兼容技术
9
例:在对某一款塑料外壳的设备进行静电放电时,发现表
5.2 机电一体化系统的电磁兼容技术
一、电磁兼容技术基本概念
1.电磁兼容性(EMC): 是指“设备 (分系统、系统) 在共同的电磁环
境中能一起执行各自功能的共存状态,即该设备不 会由于受到处于同一电磁环境中其它设备的电磁发 射导致或遭受不允许的降级;它也不会使同一电磁 环境中其它设备(分系统、系统)因受到其电磁发 射导致或遭受不允许的降级。”

电磁兼容标准及测试技术(EMC)

电磁兼容标准及测试技术(EMC)
特性
EMC包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面,前者关注设备对外界干 扰的抵抗能力,后者关注设备对外部干扰的发射控制。
EMC的重要性和影响
重要性
随着电子设备广泛应用于各个领域, EMC问题日益突出,它不仅影响设备 的正常运行,还可能对人身安全和环 境造成威胁。
影响
EMC问题可能导致设备性能下降、数 据传输错误、控制精度降低、甚至设 备损坏等后果。
测量和校准工具
使用测量和校准工具对设备的电磁兼容性能进 行测试和校准。
实验测试技术
通过实验测试技术对设备的电磁兼容性能进行实际测试和验证。
05
电磁兼容未来的发展趋势和挑战
新兴的电磁兼容标准和法规
国际电磁兼容标准
国际电工委员会(IEC)和国际无线电干扰特别委员会(CISPR)等国际组织正在制定 更加严格的电磁兼容标准,以应对新技术和应用的挑战。
区域电磁兼容标准
不同国家和地区也在制定符合其特定需求的区域电磁兼容标准,以确保产品在该地区的 电磁兼容性。
法规和政策
政府和监管机构正在加强电磁兼容性法规和政策的制定,以确保电子设备和系统的正常 运行,并减少电磁干扰对环境和公众健康的影响。
新的测试技术和方法
自动化测试系统
01
随着技术的发展,自动化测试系统已经成为电磁兼容测试的重
瞬态干扰测试
瞬态干扰测试是评估电子设备在瞬态电压或电 流冲击下的抗干扰能力,例如雷电等自然现象 或开关操作等人为现象。
测试方法包括模拟瞬态电压或电流冲击对电子 设备的影响,以观察其在瞬态干扰下的性能表 现。
瞬态干扰测试的目的是评估电子设备在瞬态电 磁环境中的稳定性和可靠性,以确保其在受到 瞬态电压或电流冲击时仍能正常工作。

电磁兼容原理技术及应用

电磁兼容原理技术及应用

电磁兼容原理技术及应用
电磁兼容(Electromagnetic Compatibility,简称EMC)是指各
种电子设备在相同的电磁环境中能够共存和相互协调工作的能力。

电磁兼容原理技术和应用是保证电子设备在正常工作状态下不受干扰,同时也不对其他设备造成干扰的关键技术。

电磁兼容原理技术主要包括两个方面:电磁辐射控制和电磁敏感度控制。

电磁辐射控制是通过合理设计电路和导线布局、使用屏蔽材料以及降低高频振荡电路等方式来减少设备产生的电磁辐射。

电磁敏感度控制是通过改进设备的电磁兼容性,提高设备的抗干扰能力,降低其对外部干扰的敏感度。

在实际应用中,电磁兼容原理技术被广泛用于各个领域。

在电子通信领域,电磁兼容技术可以保证手机、电视、无线网络设备等在相同频段工作时不会相互干扰;在军事领域,电磁兼容技术可以保证雷达、通信设备等正常工作,并提高其抗电磁干扰能力;在汽车领域,电磁兼容技术可以减少车载设备对车辆电子系统的干扰,保证车辆电子系统的正常工作。

此外,电磁兼容原理技术还被广泛应用于航空航天、医疗设备、能源等领域。

在航空航天中,电磁兼容技术可以保证航空器的各个电子设备在恶劣的电磁环境中正常工作;在医疗设备中,电磁兼容技术可以减少医疗设备对周围环境的干扰,并确保医疗设备的安全性和可靠性;在能源领域,电磁兼容技术可以保证电力系统的各个设备正常工作,提高电力系统的稳定性和可靠性。

总之,电磁兼容原理技术和应用在现代社会中具有重要的意义,它可以保证各种电子设备的正常工作,并提高设备的可靠性和稳定性。

通过合理应用电磁兼容技术,可以减少电子设备对周围环境和其他设备的干扰,保证各个设备之间的协调工作。

电磁兼容技术(第二章)

电磁兼容技术(第二章)

电容引线电感对策
高频(不能滤掉)

短引线电容、贴片电容
三端电容,
四端电容
三端电容
插入损耗:没有接入时,从噪声源传输到负载的噪声功 率P1和接入后噪声源传输到负载的噪声功率P2的比值
片状固态电容器阵列
数个三端电容的集成 各信号线之间的串扰很低 简化印制板板的设计、减少对印制板的占 用面积,方便滤波器的安装
3. 大部分干扰在进入系统后都会演变成传导干扰。
4. 抑制传导的关键在于找出传导干扰与信号之间可 以被利用的差异。
5. 分布参数的存在,使得EMC更加复杂和困难。
6. 如果传导干扰无法利用“一般”方法剔除,可以 考虑数字化、运算处理等“先进”方法。
§2 公共阻抗干扰
A
B
C
DC
Za
Zb
Zc
Za、Zb、Zc的存在会对电路的工作产生什么影响? 噪声电流在系统间的公共阻抗上产生噪声电压,并 由此对系统的工作产生干扰。
LPF 信号+干扰 信号
加设各种滤波器,其中最常用的滤波 器是低通滤波器(LPF)
常用的几种无源低通滤波电路
d B
敏感电 路
fo
f
1 2 LC
高通滤波器
d B
f
帯通(带阻)滤波器
(带通带阻滤波器)
d B
+
f
d B
dB
=
f f
无源滤波器与有源滤波器有什么区别?
无源滤波器:这种电路主要有无源元件R、L和C组 成。 有源滤波器:集成运放和R、C组成,具有不用电 感、体积小、重量轻等优点。
电容的使用
电容的等效电路 不同类型电容,特点不同,适用场合也不同 电容值不是越大越好 电容的容值越大,谐振频率越低,电容能有效补 偿电流的频率范围也越小。 同样容量的电容,并不是并联越多的小电容越好 焊点阻抗、漏电阻 电容都有一定的耐压值,要合理选择

开关电源的电磁兼容性技术及解决方法

开关电源的电磁兼容性技术及解决方法

开关电源的电磁兼容性技术及解决方法⒈引言电磁兼容是一门新兴的跨学科的综合性应用学科。

作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。

电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。

其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。

电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。

所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。

这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。

这便是设备研制中所必须解决的兼容问题。

电磁兼容技术涉及的频率范围宽达0 GHz "400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。

电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。

切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。

⒉电磁兼容技术名词(1)电磁兼容性电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

(2)电磁骚扰电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。

电磁骚扰可引起设备、传输通道或系统性能的下降。

它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。

电子系统受干扰的路径为:经过电源,通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等。

电磁兼容技术手册

电磁兼容技术手册

电磁兼容技术手册第一章介绍电磁兼容(Electromagnetic Compatibility,简称EMC)是指在特定的电磁环境中,电子设备能够正常运行,同时不对其周围的其他设备或系统产生不可接受的电磁干扰。

为了确保设备之间的电磁兼容性,技术手册扮演着重要的角色。

本手册旨在提供关于电磁兼容技术的详细信息和实用指南。

第二章 EMC基础知识2.1 电磁辐射电磁辐射是指电子设备在操作过程中产生的电磁波向周围空间传播的现象。

这些电磁波会传播到其他设备中,可能引起干扰或损害其正常运行。

在本章中,我们将介绍电磁辐射的原理、测量方法和控制措施。

2.2 电磁感应电磁感应是指电子设备由于周围环境中的电磁场变化而产生的电磁干扰。

这种干扰可能会导致设备操作不稳定或引起故障。

本章将探讨电磁感应的原理、测量方法和抑制技术。

第三章 EMC测试与评估3.1 EMC测试方法EMC测试是评估设备的电磁兼容性的关键步骤。

在本章中,我们将详细介绍常见的EMC测试方法,包括辐射测试和传导测试。

同时,还会提供测试设备和测试环境的要求。

3.2 EMC评估标准为了确保设备的电磁兼容性,各国和行业建立了一系列的电磁兼容性标准。

在本节中,我们会列举并详细解释一些常见的EMC标准,如CISPR、IEC和FCC等。

第四章 EMC问题分析与解决4.1 故障分析方法当设备出现电磁兼容性问题时,及时准确地分析故障原因是解决问题的关键。

本章将介绍一些常用的故障分析方法,如频谱分析、射频干扰源定位等。

4.2 EMC问题解决技术针对不同的电磁兼容性问题,我们可以采取不同的解决技术。

本章将介绍一些常见的EMC问题解决技术,如滤波器的应用、屏蔽技术和接地技术等。

第五章 EMC设计指南5.1 PCB布局与布线在电子设备设计中,合理的PCB(Printed Circuit Board)布局和布线对于提高电磁兼容性至关重要。

本章将提供一些建议和指南,帮助工程师设计EMC友好的PCB。

2024版年度关于电磁兼容(EMC)的基础知识解析

2024版年度关于电磁兼容(EMC)的基础知识解析

电磁干扰现象
电磁干扰(EMI)是指电磁骚扰引起的设备、传输通道或系统 性能的下降。常见的电磁干扰现象包括辐射干扰和传导干扰。
危害
电磁干扰可能导致设备性能下降、误动作、数据丢失等,严重 时甚至可能损坏设备或系统。此外,电磁干扰还可能对人体健 康产生不良影响,如引起头痛、失眠、心悸等症状。
5
电磁兼容研究历史与发展趋势
2024/2/2
6
2024/2/2
02
电磁兼容基本原理
7
电磁场理论基础
麦克斯韦方程组
描述电场、磁场与电荷密 度、电流密度之间关系的 基本方程,是电磁场理论
的基础。
2024/2/2
电磁场波动方程
由麦克斯韦方程组推导出 的描述电磁波在空间中传
播的方程。
电磁场边界条件
描述电磁波在不同媒质分 界面上传播时,场量应满
测试标准
2024/2/2
13
抗扰度测试方法及标准
测试方法
抗扰度测试是通过模拟设备或系统在实际 工作环境中可能遇到的电磁干扰情况,来 评估其抗干扰能力。测试时,需使用合适 的干扰源和耦合装置对设备或系统施加干 扰信号,并观察其性能变化情况。
VS
测试标准
抗扰度测试的标准主要包括IEC的相关标准, 如IEC 61000-4系列标准等,以及各国或地 区的特定标准。这些标准规定了不同设备 或系统应能承受的电磁干扰类型、干扰强 度及测试方法。同时,还规定了设备或系 统在受到干扰时应保持的性能水平或允许 的性能降级范围。
21
医疗设备EMC特殊要求及实现方法
特殊要求
医疗设备对电磁兼容性有严格要 求,以确保设备在复杂电磁环境 中正常工作,同时不对其他设备
产生干扰。

电磁兼容在空调设计中的运用分析

电磁兼容在空调设计中的运用分析

电磁兼容在空调设计中的运用分析一、电磁兼容技术的基本原理电磁兼容技术是指在电磁环境中,设备和系统能够在不产生电磁干扰的情况下正常工作,同时也能够抵抗来自外部电磁场的干扰。

其基本原理是通过采取各种技术手段,使设备和系统在电磁环境中不会产生电磁干扰,同时也能够抵抗来自外部电磁场的干扰,从而确保设备和系统的正常工作。

在空调设计中,电磁兼容技术可以通过减小电磁辐射、提高电磁抗扰能力等手段来实现。

在空调内部,可以通过优化线路布局、采用合适的电磁屏蔽材料、提高元器件的抗扰能力等来降低电磁辐射;也可以通过合理设计接地系统、滤波器等手段来提高空调系统的电磁抗扰能力,确保其在电磁环境中的正常工作。

二、电磁兼容技术在空调设计中的应用1. 减小电磁辐射对于空调产品来说,减小电磁辐射是十分重要的。

因为过大的电磁辐射不仅会对人体健康造成影响,也会对其他电子设备造成干扰。

在空调设计中,需要采取一系列措施来减小电磁辐射。

在空调内部,可以采用电磁屏蔽材料来隔离电磁辐射;也可以通过优化线路设计、降低电磁噪声等手段来减小电磁辐射。

通过这些手段的应用,可以有效降低空调产品的电磁辐射水平,保障用户和其他设备的安全和稳定性。

2. 提高电磁抗扰能力在电磁环境中,空调产品还需要具备一定的抗干扰能力,以确保其能够在电磁环境中稳定工作。

在空调设计中,需要采取措施来提高其电磁抗扰能力。

在系统设计中,可以合理设计空调的接地系统,提高其对外部电磁干扰的抵抗能力;也可以采用滤波器、抑制器等元器件来提高系统的抗干扰能力。

通过这些措施的应用,可以有效提高空调产品在电磁环境中的稳定性和可靠性。

3. 符合相关标准和法规在空调设计中,也需要考虑到电磁兼容相关的标准和法规要求。

国家对于电磁辐射的限制、对于电磁抗扰能力的要求等都有明确的规定。

在空调设计中,需要严格遵守相关的标准和法规要求,确保产品在电磁兼容性方面能够符合相关的规定,从而保障产品的质量和安全性。

1. 保障用户的健康和安全通过减小电磁辐射、提高电磁抗扰能力等手段的应用,可以有效降低空调产品对人体健康的影响,保障用户的健康和安全。

元器件行业的电磁兼容性技术解决电磁干扰和抗干扰问题

元器件行业的电磁兼容性技术解决电磁干扰和抗干扰问题

元器件行业的电磁兼容性技术解决电磁干扰和抗干扰问题随着科技的飞速发展,电子产品的普及程度越来越高,而电磁干扰也成为困扰人们的一个问题。

电磁干扰指的是电子设备之间由电磁场引起的相互干扰现象。

为了能够正常使用和衔接各种设备,元器件行业在电磁兼容性技术的研发上做出了重要贡献,使得电磁干扰得以解决。

一、电磁兼容性技术的定义及作用电磁兼容性技术,简称EMC,是指在电子设备的设计和使用过程中,通过采取合适的技术手段来确保在特定的环境中,设备之间和设备与环境之间不会产生互相干扰的问题。

该技术主要包括电磁干扰控制以及抗干扰能力提升两个方面。

电磁兼容性技术能够解决电磁干扰对设备正常工作的影响,保证各种设备稳定运行。

通过电磁兼容性技术,可以有效防止设备间相互干扰、提高设备抗干扰能力,确保设备在复杂的电磁环境中正常工作。

二、电磁干扰的产生原因电磁干扰是由设备之间相互产生的电磁场相互作用引起的。

电磁干扰主要包括辐射干扰和传导干扰两种形式。

辐射干扰是指设备通过天线等装置发出的电磁辐射,会引起其他设备的敏感元器件发生干扰,从而导致设备的正常工作受到影响。

传导干扰是指电磁场通过传导的方式,通过电源线、信号线、地线等传导到其他设备上,导致设备之间的相互干扰。

传导干扰的主要来源是电源线噪声和地线共模电压。

三、电磁兼容性技术的解决方法为了解决电磁干扰问题,元器件行业采取了以下一些常见的电磁兼容性技术:1.屏蔽技术:通过在设备内部或元器件外部加装金属屏蔽罩、屏蔽套管等来抑制电磁辐射干扰或阻挡传导干扰,从而达到减少电磁干扰的效果。

2.滤波技术:采用滤波电路来对电源线、信号线进行滤波处理,降低电磁噪声的干扰。

3.接地技术:采用合理的接地设计,包括单点接地、星型接地、布线接地等方式,有效降低地线共模电压,减少传导干扰。

4.阻抗匹配技术:通过调整设备的输入输出特性和阻抗来实现抗干扰能力的提高,从而减少电磁干扰。

5.辐射抑制技术:通过改善设备的结构和电路设计,在设计阶段就能减少设备的辐射干扰。

电磁兼容技术

电磁兼容技术

电磁兼容技术电磁兼容技术是解决电磁干扰相关问题的一门技术。

电磁兼容设计的目的是解决电路之间的相互干扰,防止电子设备产生过强的电磁发射,防止电子设备对外界干扰过度敏感。

近年来,电磁兼容设计技术的重要性日益增加。

1 什么是电磁兼容标准为了规范电子产品的电磁兼容性,所有的发达国家和部分发展中国家都制定了电磁兼容标准。

电磁兼容标准是使产品在实际电磁环境中能够正常工作的基本要求,之所以称为基本要求,也就是说,产品即使满足了电磁兼容标准,在实际使用中也可能会发生干扰问题。

大部分国家的标准都是基于国际电工委员会(IEC)所制定的标准。

电磁兼容标准分为基础标准、通用标准、产品类标准和专用产品标准。

基础标准:描述了EMC现象、规定了EMC测试方法、设备,定义了等级和性能判据.基础标准不涉及具体产品。

产品类标准:针对某种产品系列的EMC测试标准。

往往引用基础标准,但根据产品的特殊性提出更详细的规定。

通用标准:按照设备使用环境划分的,当产品没有特定的产品类标准可以遵循时,使用通用标准来进行EMC测试。

对使设备的功能完全正常,也要满足这些标准的要求。

2 电磁兼容标准的内容尽管电磁兼容标准文件繁多,内容复杂,但从对设备的要求方面看,无非是从以下几个方面进行划分。

两方面的要求:电磁兼容标准对设备的要求有两个方面,一个是设备工作时不会对外界产生不良的电磁干扰影响,另一个是不能对外界的电磁干扰过度敏感。

前一个方面的要求称为干扰发射(EMI)要求,后一个方面的要求称为敏感度(EMS)或抗扰度要求。

从能量传播的途径划分:围绕这两个方面的要求,从电磁能量传出设备和传入设备的途径来进一步划分,又有传导干扰和辐射干扰两个方面,传导干扰是指干扰能量沿着电缆以电流的形式传播,辐射干扰是指干扰能量以电磁波的形式传播。

因此,对设备的电磁兼容要求可以分为:传导发射、辐射发射、传导敏感度(抗扰度)、辐射敏感度(抗扰度)。

按照干扰特性划分:干扰信号的波形有不同的种类,电磁场也有不同的种类,干扰注入的方式也有不同的种类,按照这些不同进一步划分就得到了全部的要求项目。

电磁兼容原理和技术讲解

电磁兼容原理和技术讲解

随着科学技术的发展,对电磁兼容和标准不断提 出新的要求,其研究范围也日益扩大,现在的电磁兼 容已不限于电子和电气设备本身,还涉及到信息泄漏 及电磁污染、电磁饥饿等一系列生态效应及其它一些 学科领域。所以某些学者已将电磁兼容改称为环境电 磁学。联合国确定电磁污染是继环境中的空气、水质、 噪声等污染之后的第四大环境污染。
电磁兼容原理和技术讲解
第一章 概论
电磁兼容的含义
根据我国军用标准(GJB72-85)中给出的定义: “设备(分系统、系统)在共同的电磁环境中能一起执
行 各自功能的共存状态。即:该设备不会由于受到处于同 一电磁环境中其它设备的电磁发射导致或遭受不允许的 降级;它也不会使同一电磁环境中其它设备(分系统、 系统)因受其电磁发射导致或遭受不允许的降级。”
电磁兼容理论和技术的发展历史
1881年英国人希维赛德发表“论干扰”;
1833年法拉弟发现电磁感应定律,指出变化的磁场在导线 中产生电动势;
1864年麦克斯韦引入位移电流的概念,指出变化的电场将 激发磁场,并由此预言电磁波的存在。电磁场的相互激发并在 空间传播,是电磁干扰的理论基础;
1887年柏林电气协会成立了全部干扰问题研究委员会;
如果对所有的电子产品不进行综合设计和 规划,任其发展下去,其后果将是带来史无前 例的大灾难。
有关国际组织和许多国家对电子、电气产品规定了电 磁兼容质量标准,不满足电磁兼容要求的产品不准进 入市场。电磁兼容性标准已成为西方发达国家限制进 口产品的一道坚固的技术壁垒。入世后,这种技术壁 垒对我们的障碍更大。
根据国际电工技术委员会(IEC)所给出的定义: “ 电磁兼容是设备的一种能力,它在其电磁环境中能完 成它的功能,而不至于在其电磁环境中产生不能容忍的 结果,电子设备的密集度已成为衡量现 代化程度的一个重要指标,大量的电子设备在同一电磁环境中 工作,电磁干扰的问题呈现出前所未有的严重性。现代电子产 品的一个主要特征是数字化、集成化和密集化越来越高,随之 而来的是宽频干扰和对电磁脉冲很高的敏感性。在电子系统、 设备以及元器件的生产中必须进行电磁兼容设计才能保证正常 工作; 据统计,世界范围内的工业、科学和医疗(ISM)设备的数 量已经接近3亿台,并以每年5%的速度逐年递增。这些设备的 输出功率多为千瓦或兆瓦级,而且有相当数量的ISM 设备工作 在国际电信联盟(ITU)指定的频段之外,或者超过国际无线电 干扰特别委员会(CISPR)对 ISM设备所规定的辐射干扰极限值 的要求,其功率泄漏及高次谐波将造成强烈的干扰。在一些发 达国家,电子设备的数量每4到5年增加一倍。

电力系统自动化设备的电磁兼容技术

电力系统自动化设备的电磁兼容技术

电力系统自动化设备的电磁兼容技术随着电力系统的不断升级和发展,自动化设备在电力系统中的应用越来越广泛。

随之而来的问题是电磁兼容性(EMC)技术。

电磁兼容性是指电子设备在电磁环境中能够正常工作而不对周围环境或其他设备产生不良影响的能力。

而在电力系统中,电磁兼容性技术显得尤为重要,因为电力系统中存在着各种电磁干扰源,如高压输电线路、变压器、电机等,这些干扰源对自动化设备的正常运行会产生严重的影响。

本文将从电磁兼容性的概念和重要性出发,探讨电力系统自动化设备的电磁兼容技术。

一、电磁兼容性的概念和重要性二、电磁兼容技术的相关标准为了确保电力系统自动化设备的正常运行和电磁兼容性,国际上已经制定了一系列相关的电磁兼容性标准。

例如IEC61000系列标准,该系列标准将电磁兼容性分为两大部分:抗干扰性和抗干扰性。

IEC61000-4系列标准是对抗干扰性进行规范,而IEC61000-3系列标准是对抗干扰性进行规范。

IEC61800-3标准则是专门针对变频器的电磁兼容性进行规范。

这些标准的制定和遵守,对于保障电力系统自动化设备在电磁环境中的正常运行具有重要意义。

1. 地线设计在电力系统自动化设备中,地线设计是确保设备正常工作的关键。

合理的地线设计可以有效地降低设备受到的电磁干扰。

在地线设计中,需要注意地线的长度、材质和连接方式。

通常情况下,采用较粗的铜线作为地线,并且要求地线与设备之间的连接要牢固可靠。

在地线连接时,要避免出现接触不良或者接地电阻过大的情况。

2. 屏蔽设计在电力系统自动化设备中,采用屏蔽设计是降低电磁干扰的常用手段。

屏蔽可以有效地避免设备受到外界电磁干扰,提高设备的抗干扰能力。

通常情况下,屏蔽可以采用金属外壳或者金属屏蔽罩来实现。

要注意的是,在屏蔽设计时,要确保屏蔽结构的连接牢固,并且要避免屏蔽结构产生漏电现象。

3. 过滤设计电力系统自动化设备的电磁兼容技术对于保障设备的正常运行具有重要意义。

在实际应用中,需要充分遵守相关的电磁兼容性标准,同时根据具体的电力系统环境采取合适的电磁兼容技术措施。

电磁兼容技术报告

电磁兼容技术报告

电磁兼容技术报告一、引言电磁兼容是指各种电子设备在正常工作时不相互干扰,也不受外界电磁环境的干扰。

电磁干扰对电子设备的正常工作和通信质量有着重要影响,因此电磁兼容技术的研究和应用备受关注。

本报告将重点介绍电磁兼容技术的基本概念、原理和应用。

二、电磁兼容基本概念1.电磁辐射:电子设备在工作过程中会产生电磁辐射,即电磁波信号。

这些辐射会扩散到周围环境中,可能会对附近的其他电子设备产生干扰。

2.电磁敏感度:电子设备对外界电磁辐射的敏感程度。

敏感度高的设备容易受到干扰,从而影响设备的正常工作。

3.电磁兼容性:指电子设备在正常工作时既不干扰其他设备,也不受其他设备的干扰。

4.电磁干扰:当设备的电磁辐射使周围的其他设备产生异常行为时,称为电磁干扰。

三、电磁兼容技术原理1.屏蔽技术:通过在设备内部或外部加上屏蔽材料,阻止电磁辐射传播或外界电磁辐射的进入,减少干扰。

2.滤波技术:通过使用滤波器,选择性地通过或抑制特定频段的电磁辐射,减少干扰。

3.接地技术:合理的接地设计可以降低设备的电磁干扰,提高设备的抗干扰能力。

4.电磁兼容设计:通过电磁兼容设计,合理安排设备之间的布局和连接方式,减少干扰机会。

四、电磁兼容技术应用1.军事领域:在军事通信、雷达等设备中,电磁兼容技术的应用非常重要。

军事设备的高度敏感性和可靠性要求,对电磁干扰的抵抗能力有很大挑战。

2.汽车电子设备:随着汽车电子化的发展,汽车内部的各种电子设备相互之间的干扰也成为重要问题。

电磁兼容技术可以减少由于车载电子设备干扰引发的故障和安全隐患。

3.通信设备:移动通信设备的快速发展,对电磁兼容技术的要求提出了更高的要求。

提高通信设备的兼容性,可以更好地保证通信的质量和稳定性。

五、电磁兼容技术挑战与展望1.多频段和宽带通信对电磁兼容技术提出了更高要求,如何在不同频段和大范围的带宽内实现兼容性是一个挑战。

2.电子设备的小型化和集成化使得兼容性设计更加困难。

如何在有限的空间内有效地控制电磁干扰,是未来的技术发展方向。

电磁兼容 emc 技术及应用实例详解

电磁兼容 emc 技术及应用实例详解

电磁兼容emc 技术及应用实例详解电磁兼容(EMC)是指不同电子设备在同一电磁环境中共存并保持正常工作的能力。

在现代社会中,电子设备的数量和种类越来越多,它们之间的互相干扰和互不干扰的问题也成为了人们关注的焦点。

EMC技术就是解决这个问题的一种方案。

EMC技术可以分为两个方面,即抗扰度和抗干扰。

抗扰度是指设备自身的能力,即抵抗外界干扰的能力;而抗干扰是指设备对其他设备干扰的抵抗能力。

EMC技术的应用广泛,包括消费电子、通信设备、医疗设备、工业设备等各个领域。

以下是一些EMC技术应用的实例:1. 汽车电子系统:现代汽车装备了大量的电子设备,如发动机控制单元(ECU)、车载导航系统、车载娱乐系统等。

这些设备之间需要保持相互兼容,以确保汽车的正常运行。

同时,汽车内部的电子设备也需要抵抗外界干扰,以避免对驾驶员和乘客的安全产生影响。

2. 医疗设备:医疗设备的EMC要求非常严格,因为它们与人类的生命和健康直接相关。

例如,电子血压计、心电图仪、医用电刀等设备都需要抗扰度和抗干扰能力,以确保准确的测量和治疗结果。

3. 无线通信:无线通信系统的干扰问题是非常关键的。

例如,手机和基站之间的互相干扰可能导致通信质量下降或通话中断。

通过使用EMC技术,可以降低设备对未经授权的频谱的干扰,提高通信质量和可靠性。

4. 工业自动化:工业设备通常集成了大量的电子控制器和传感器,用于监测和控制各种工艺。

这些设备之间需要保持相互兼容,以确保工业过程的正常运行。

此外,工业环境中存在大量的电磁噪声,工业设备需要具备一定的抗干扰能力。

以上只是一些典型的EMC技术应用实例,实际上,EMC技术几乎涵盖了所有电子设备的相关领域。

通过正确地应用EMC技术,可以避免电子设备之间的干扰问题,提高设备的稳定性和可靠性,保障人们的生命和财产安全。

电磁兼容技术

电磁兼容技术

电磁兼容技术本节主要介绍电磁兼容的基本概念、电磁干扰源,分析现代电动汽车的电磁兼容问题及抑制电磁干扰的技术措施等。

一.电磁兼容基础1.1 电磁兼容的含义电磁兼容(Electro Magnetic Compatibility,EMC)是指电气及电子设备在共同的电磁环境中能执行各自功能的共存状态,即要求在同一电磁环境中的相关设备都能正常工作又互不干扰,达到兼容状态。

该表述包含两方面的含义:①设备不会由于受到处于同一电磁环境中其他设备的电磁发射导致或遭受不允许的降级。

②它也不会使同一电磁环境中其他设备因受其电磁发射而导致或遭受不允许的降级。

国际电工技术委员会(IEC)对电磁兼容性的定义:电磁容性是设备的一种能力,它在其电环境中能完成自身的功能,且不在其环境中产生不允许的干扰。

电磁兼容的理论基础涉及数学、电磁场理论、电路基础、信号分析等学科与技术,其应用范国又几乎涉及所有用电领域。

因为其理论基础宽、工程实践综合性强、物理现象复杂,所以在观察与判断物理现象或解决实际问题时,实验与测量具有重要的意义。

因为在新能汽车上采用了更多的电力电子设备,同时车辆工作电压一般可以达到几百伏,尤其是采用高频调制的电机驱动系统,谐波现象明显,所以电磁兼容问题就越加突出。

1.2 现代汽车电磁兼容问题随着汽车安全性、舒适性和经济性等要求的不断提高,以汽车电子产业为代表的汽车相关技术发展非常迅猛。

据统计,近年来,有关汽车的技术创新70%都来源于汽车电子;在国内外生产的部分轿车中,汽车电子设备价值超过了整车价值的30%。

然而随着汽车电气设备数量、种类和密度的不断增加,工作频率的不断提高,汽车内的电磁环境更加悉劣,各电子设备相互间的电磁干扰愈加严重,导致了诸多汽车电磁干扰问题。

例如,各种信号指示灯的误动作,刮水器、安全气囊的误开启,ABS制动效能降低等。

这些电磁干扰问题产生的原因主要来自汽车的内部,如点火系统、电子燃油喷射系统、各种电机、一些集成芯片的控制器、通信系统等高频工作的设备和大量开关性元器件。

电磁兼容技术的使用注意事项

电磁兼容技术的使用注意事项

電磁兼容技術的使用注意事項引言在现代社会中,电磁波的使用已经无处不在,从家用电器到工业设备,从智能手机到通讯网络,无不涉及电磁波的发送和接收。

然而,这种广泛使用的电磁辐射也带来了一定的问题,例如电子设备之间的相互干扰、电磁辐射对人体健康的潜在风险等。

为了解决这些问题,人们开发了电磁兼容技术,以确保各种设备和系统在电磁环境中能够安全可靠地工作。

为了保证电磁兼容技术的有效使用,以下是一些使用上的注意事项。

1. 电磁辐射和干扰的认识在开始关注电磁兼容技术之前,我们首先需要了解电磁辐射和干扰的基本概念。

电磁辐射是指由电流和电荷运动产生的电磁波,它可以分为电磁辐射和非电磁辐射两种。

电磁辐射通常是指无线电波、微波和红外线等辐射。

电磁干扰是指一个电子设备或系统的电磁辐射对其他设备或系统的正常工作产生的不良影响,通常以电压、电流和功率等形式显现。

2. 了解电磁兼容技术的基本原理电磁兼容技术的基本原理是通过设计和规范的电磁兼容性测试,来确保设备或系统在特定的电磁环境下能够安全可靠地工作。

这包括两个方面:一是电磁辐射的控制,通过合理的设计和屏蔽措施来减少设备的辐射水平;二是电磁干扰的抵抗,通过合理的设备和系统设计来降低对外界电磁干扰的敏感度。

3. 注意电磁兼容性测试电磁兼容性测试是评估设备或系统在电磁环境中的表现的重要手段。

在进行测试时,需要注意以下事项:3.1. 选择适当的测试方法和标准:不同的设备或系统需要进行不同的测试,根据实际情况选择相应的测试方法和标准。

3.2. 测试设备的合适性:测试设备应具备相应的准确性和可靠性,以确保测试结果准确可信。

3.3. 测试环境的准备:测试环境应符合测试设备的要求,包括电磁保护、接地等措施的配置。

3.4. 测试结果的分析和评估:对测试结果进行仔细的分析和评估,确保设备或系统在电磁环境中的性能能够满足要求。

4. 设备和系统的设计与布局在电磁兼容技术中,设备和系统的设计与布局起着关键的作用。

电磁兼容与可靠性

电磁兼容与可靠性

电磁兼容与可靠性电磁兼容(Electromagnetic Compatibility,简称EMC)和可靠性是电子与电气工程中非常重要的概念。

在现代社会中,电子设备的广泛应用使得电磁兼容和可靠性成为了我们不可忽视的问题。

本文将从理论与实践两个方面探讨电磁兼容与可靠性的重要性及其相关的技术。

一、电磁兼容的概念与意义电磁兼容是指电子设备在电磁环境中能够正常工作,同时不对周围电子设备和系统造成干扰的能力。

在现代社会中,电子设备的密集使用导致了电磁环境的复杂性和电磁干扰的增加。

如果电子设备之间相互干扰,将会导致通信中断、数据丢失、设备损坏等问题,甚至可能对人身安全造成威胁。

因此,电磁兼容的研究和应用对于保障电子设备的正常运行和社会的稳定发展具有重要意义。

二、电磁兼容的技术与方法1. 电磁干扰的特点与来源电磁干扰是指电子设备之间或电子设备与电磁环境之间相互作用导致的不良影响。

电磁干扰主要来源于电磁波的传播和电磁辐射。

电磁波的传播路径包括导线传输、空间传播和电磁波辐射。

电磁辐射主要包括电磁波的辐射和电磁波的散射。

了解电磁干扰的特点和来源,有助于我们制定相应的电磁兼容技术和方法。

2. 电磁兼容的技术措施为了提高电子设备的电磁兼容性,我们可以采取一系列的技术措施。

例如,通过合理的电磁屏蔽设计,减少电磁波的传播路径,降低电磁辐射的强度。

同时,通过合理的布线和接地设计,减少电磁波的辐射和散射。

此外,还可以采用滤波器、隔离器、抑制器等电磁兼容器件,对电磁干扰进行有效的抑制和控制。

这些技术措施的应用可以显著提高电子设备的电磁兼容性。

三、可靠性的概念与意义可靠性是指电子设备在一定时间内正常工作的能力。

在电子与电气工程中,可靠性是评价和保证电子设备性能的重要指标。

电子设备的可靠性不仅关系到设备的使用寿命和性能稳定性,还关系到用户的安全和财产的保护。

因此,提高电子设备的可靠性对于保证设备的正常运行和用户的满意度具有重要意义。

四、可靠性的评估与提高1. 可靠性的评估方法可靠性的评估是指通过一系列的测试和分析,对电子设备的可靠性进行定量或定性的评估。

电路中的电磁兼容与抗干扰技术

电路中的电磁兼容与抗干扰技术

电路中的电磁兼容与抗干扰技术电路中的电磁兼容(Electromagnetic Compatibility,简称EMC)与抗干扰(Electromagnetic Interference,简称 EMI)技术是保证电子设备正常运行的重要手段。

随着科技的不断进步和电子设备的普及,电磁兼容与抗干扰技术的重要性愈发凸显。

本文将介绍电路中的电磁兼容与抗干扰技术的基本概念、主要影响因素以及应对策略。

一、电磁兼容和抗干扰的基本概念电磁兼容是指电子设备在共同工作条件下,实现正常工作而不引起互相干扰的能力。

而抗干扰则是指电子设备在外部电磁场的辐射或传导干扰下,保持正常工作的能力。

两者紧密相关,相辅相成。

在电路中,当不同电子设备之间的电磁信号发生干扰导致电路异常行为时,我们就需要进行电磁兼容和抗干扰的设计与优化。

这包括减小电路中互联电缆或线路的电磁辐射、降低电磁干扰对电路的影响等。

二、电磁兼容和抗干扰的主要影响因素1. 电磁干扰源:电磁干扰源可以是任何能够产生电磁辐射或传导的设备,如电源线、脉冲发生器、开关电源等。

这些设备在工作过程中会产生电磁噪声,对其他设备产生干扰。

2. 设备敏感度:电子设备对电磁干扰的敏感程度不同。

有些设备对干扰较为敏感,响应较大,而有些设备则相对较弱。

因此,在进行电磁兼容设计时,需要根据设备的敏感度来调整抗干扰措施。

3. 信号传输线路:电磁信号在传输线路中的特性也会对电磁兼容和抗干扰产生影响。

线路的长度、布局、屏蔽和接地方式等都会影响电磁信号的传导和辐射。

三、电磁兼容和抗干扰的应对策略为了降低电磁干扰对电路正常运行的影响,必须采取相应的应对策略。

以下是常用的一些应对策略:1. 电磁屏蔽:通过选择适当的材料和设计屏蔽结构,可以有效地阻止电磁信号的辐射和传导。

屏蔽可以是金属外壳、金属屏蔽罩、金属箔等。

2. 滤波器设计:在设计电路时,可以增加滤波器来抑制电磁干扰。

滤波器可以是低通滤波器、带通滤波器或带阻滤波器等,根据具体情况选择合适的滤波器类型和参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁兼容技术
电磁兼容的英文名称为Electromagnetic Compatibility ,简称EMC。

电磁兼容技术涉及的频率范围宽达0-400GHz,研究对象除传统设施外,涉及芯片级,直到各型舰船、航天飞机、洲际导弹,甚至整个地球的电磁环境。

本篇主要讲计算机中的电磁兼容情况。

一、计算机TEMPEST技术
计算机TEMPEST技术发展至今已有40年的历史,它是在电磁兼容(EMC)领域发展起来的一个新的研究方向。

TEMPEST计划的具体内容是针对信息设备的电磁辐射与信息泄漏问题,从信息接收和防护两个方面所展开的一系列研究和研制工作,包括信息接收、破译水平、防泄漏能力与技术、相关夫范标准及管理手段等。

由于计算机系统是各种信息处理设备中最关键和重要的组成部分,因而也是利用信息设备的电磁发射来获取信息情报更为及时、准确、广泛、连续,且安全、可靠、隐蔽。

正是这样,TEMPEST防护研究一般都是针对计算机系统及其外设配置而言的。

TEMPEST 的研究对象还包括接收系统、电传机、数字电话等。

信息处理设备的电磁辐射有两方面影响:1)对电磁环境构成污染;2)对信息安全与信息保密会构成严重威胁。

已经分析表明:对于由数字电路组成的信息处理设备来说,由于辐射频谱及谐波非常丰富,因而很容易被窃收和解译,其信息泄漏问题更为突出一严重,以计自机算机视频显示器例,其中各种印刷电路板,各部件之间的电源。

信号接口与连线、数据线接地线、驱动电路、阴极射击线管等都可以产生程度不同的电磁辐射。

在辐射频
谱中,所包含的信息也不相同,包括时钟/数据信息频信息等。

从理论上讲这些信息都是可以接收和解译的,只是难易程度。

利用信息设备的电磁发射来获取信息情报更为及时、准确、广泛、连续,而且安全、可靠、隐蔽。

总之,在信息化社会,研究计算机TEMPEST技术已和研究计算机病毒一样,被认为是涉及计算机安全的重要方面,受到国内外学者的广泛关注。

二、计算机印刷电路板(PCB)中的电磁兼容(EMC)问题
信息化社会的电子产品越来越趋向高速、宽带、高灵敏度、高密集度和小型化,这种趋势导致了EMC问题更加严重。

计算机系统中PCB是一个典型的代表,PCB的电磁兼容(EMC)问题是目前微型计算机设计中急待解决的技术难题。

1、印刷电路板(PCB)中带状线、电线、电缆间的串音和电磁耦合印刷电路板(PCB)中带状线、电线、电缆间的串音是印刷电路板线路中存在的最难克服的问题之一。

这里所说的串音是较广意义上的串音,不管其源是有用信号还中噪声,串音用导线的互容和互感来表示。

当在EMC预测和解决EMI问题时,首先应确定发射源的耦合途径是传导的、辐射的、还是串音。

例如,当PCB上某一带状线上载人控制和逻辑电平,与其靠近的第二条带状线上载有低电平信号,当平行布线长度超过10厘米时,预期产生串音干扰。

当一长电缆载人几组串行或并行高速数据和遥控线时,串音干扰也成为主要问题。

靠近的电线和电缆之间的串音是由电场通过互容,磁场通过互感引起的。

当考虑在PCB带状线、电缆中导体或靠近的电线和电缆的串音问题时,是主要的是确定电场(互容)、磁场(互感)耦合哪个是主要的。

确定那种耦合模型主要取决于线路阻抗、频率和其他因素。

对线路阻抗,一个粗略的原则是:1)当源和接收器阻抗乘积小于3002时,耦合的主要是磁场;2)当源和接收器阻抗乘积大于10002时,耦合的主要是电场;3)当源和接收器阻抗乘积在3002-10002之间时,则磁场或电场都可能成为主要耦合,这时取决于线路间的配置和频率。

然而,上述标准并不适用于所有的情况,例如在地(底)板上PCB 带状线之间的串音,这时,PCB上带状线特性阻抗可能较低,而负载和源阻抗可能较高,但串音仍以电场(互容)耦合为主。

一般来说,在高频时电容耦合是主要的,但是如果源或接收器之一或两者采用屏蔽电缆并在屏蔽层两端接地,则磁场耦合将是主要的。

另外;低频一般有较低的电路阻抗、电感耦合是主要的。

串音预测计算程序是计算机辅助PCB设计软中的重要内容,通过串音预测,可以保证PCB上数字和模拟信号适当的间距。

由Quantic 实验室编制的程序GREENFIELF2TM和EESOF编制的u Wave SPICKE程序可预测串音、延时和振荡。

该程序可确定几层PCB布置的电压和脉冲上升时间表格。

电磁耦合预测:当导体之间或信号导体与返回导体(可以是地平面)之间的距离较大时,采用电流元和电流环的发射和接收特性进行耦合预测更为精确。

例如PCB上带状线端接高阻抗并远离地平面时,用电流元模拟电场和磁场的发射特性更为方便。

当带状线形成环路
时,无论是圆形还是矩形,都可用环的接收和发射特性模拟。

当两环在同块PCB表面时,则为共面耦合。

当一环在一块PCB上面,另一环在附近PCB上时,则为共轴耦合。

2、数字PCB的采用使计算机的电磁辐射加重
计算机等电子设备的电路一般都是由数字PCB实现的,在很多情况下,数字PCB产生的辐射问题要比模拟PCB更为严重。

由于数字电路的驱动电流较大,致使辐射的强度也较大;而高速时钟脉冲和数字信号又使得辐射他的带加宽,由于时钟电路产生的信号一般都是周期方波,春谐波分量都是以基频为倍频的分立频谱,因而,时钟电路的辐射频谱也都是分立的。

而数字化的信息信号一般都是非周期信号,其辐射频谱将是窄带与宽带两种辐射的叠加,频率可从几兆到数字百兆赫兹,如此宽的辐射频率范围,不可避免地会引起一系列EMI和TEMPEST问题。

PCB电磁辐射分两种基本类型:差模辐射与共模辐射。

差模辐射的特点取决于闭合环路中电流特性;共模辐射由对地的干扰(噪声)电压引起。

目前的文献中对共模辐射讨论较少,但实际PCB或电路并非都是由单根或回路轨迹组成,而且即使是并行电路轨迹是的电汉也并非相等反向,所以在分析辐射问题时,只考虑差模电汉的作用远远不够,必须考虑轨迹中所有电流的作用,同时因为差模电流的辐射是相减的,尽管不完全抵消,而共模电流的辐射则是相加的。

所以共模电流即使比差模的电流小很多,也会产生相当程度的辐射电场。

电磁辐射主要表现在:对周围的电子系统构成窄带与宽带干扰;另
一方面造成潜在的信息泄漏问题。

影响PCB电磁辐射的因素主要是PCB的结构的激励因素:PCB的结构不同,其辐射效果也不同,传输带的长度、回路面积、地线走向、整体布局等都会影响到辐射效果。

除结构因纯洁外,激励因不比如幅值、周期、脉冲宽度、上升与下降时间、频率等,也都是影响辐射效果及频率特征的重要因素。

显然,PCB的布局设计,将直接关系到整机电磁辐射的强弱。

在确定的激励状态下,整机系统辐射水平的抑制和降低,必须从PCB的辐射分析及布局的优化设计着手。

目前有不少文献对PCB的辐射问题进行讨论,提出PCB辐射的简化计算方法和测试手段。

然而,由于结构参数与激励参数的差异,PCB的辐射问题不可能象其他用电路那样,用一种模型就可以分析解决。

比如:电偶极子和磁偶极子的辐射模型只有在电路线度过错小于波长和测试点距离的情况下才能适用。

另外,对一块PCB来说,众多的线路和回路是潜在的辐射源。

所以PCB的整体辐射效果应是各辐射单元辐射效果的叠加,总体辐射作用的大小主要与频率、辐射源长度或面积、激励强度、方位等因素有关;此外,布线结构的合理设计对降低PCB辐射也具有关键的作用。

消除辐射干扰最有效的方法是采取屏蔽,屏蔽噪声源或屏蔽敏感电路。

除屏蔽方法外,还可以通过改变电路设计来提高系统的抗干扰能力。

从TEMPEST意义上讲,凡与串行数据和信息相关的PCB,其辐射水平都应设法降低到最低点,对并行数据的PCB,则相应放宽限制,
但应注意避免通过耦合作用为串行信息提供通路。

为了抑制PCB电磁辐,除了采用相应的技术措施外,CISPR、CENELEC、FCC和VDE等国际组织先后颁布了有关数字电子设备
电磁辐射的约束规范。

目前辐射标准覆盖的频率从30兆赫到1吉赫,在不久的将来会扩展到5-40吉赫。

作者:东方中科集成日期:2000-12-28。

相关文档
最新文档