电磁兼容技术及应用
电磁兼容解决方案
电磁兼容解决方案电磁兼容(Electromagnetic Compatibility,简称EMC)是指各种电子设备在相互连接和共存的情况下,能够在无干扰和无辐射的条件下正常工作的能力。
在现代社会中,电子设备的广泛应用使得电磁兼容问题日益突出。
为了解决这一问题,人们提出了各种电磁兼容解决方案。
本文将从五个方面详细介绍这些解决方案。
一、电磁屏蔽技术1.1 金属屏蔽:利用金属材料对电磁波进行屏蔽,如使用金属外壳、金属屏蔽罩等。
1.2 电磁屏蔽涂料:在电子设备表面涂覆电磁屏蔽涂料,以提高设备的屏蔽性能。
1.3 电磁隔离设计:通过合理的电路布局和屏蔽结构设计,减少电磁辐射和电磁感应。
二、电磁干扰抑制技术2.1 滤波器设计:在电子设备的电源线路、信号线路等关键位置添加滤波器,以阻止电磁干扰信号的传播。
2.2 接地设计:合理的接地设计能够有效地抑制电磁干扰,如采用单点接地、分层接地等方法。
2.3 电磁屏蔽设计:在电子设备内部采用屏蔽隔离措施,减少电磁干扰的传播。
三、电磁辐射控制技术3.1 电磁辐射测试:通过对电子设备进行电磁辐射测试,了解辐射源和辐射路径,从而采取相应的控制措施。
3.2 电磁辐射限制:根据不同的电子设备,制定相应的辐射限制标准,确保设备的辐射水平在合理范围内。
3.3 电磁辐射抑制:采用电磁屏蔽、滤波器等措施,减少电磁辐射的产生和传播。
四、电磁感应抑制技术4.1 电磁感应测试:通过对电子设备进行电磁感应测试,了解感应源和感应路径,从而采取相应的控制措施。
4.2 电磁感应限制:根据不同的电子设备,制定相应的感应限制标准,确保设备的感应水平在合理范围内。
4.3 电磁感应抑制:采用电磁屏蔽、隔离设计等措施,减少电磁感应的产生和传播。
五、电磁兼容测试技术5.1 电磁兼容测试方法:制定合理的测试方法,对电子设备进行电磁兼容测试,评估设备的兼容性能。
5.2 电磁兼容测试标准:根据不同的应用领域和设备类型,制定相应的兼容性测试标准,确保设备的兼容性能达到要求。
电磁兼容技术的研究及应用前景
电磁兼容技术的研究及应用前景在当今高科技时代,电子产品已经成为人们日常生活的必需品。
随着电子产品的普及,电磁污染的问题也逐渐受到人们的关注。
电磁兼容技术作为解决电磁污染问题的重要方法,在许多领域都得到了广泛应用。
一、电磁兼容技术的应用范围电磁兼容技术主要应用于电子设备的研发和生产过程中,以及设备的使用过程中。
在电子设备的研发过程中,需要对设备进行电磁兼容测试,以保证设备能够在正常的电磁环境下正常工作。
在设备的生产过程中,还需要对设备进行电磁兼容性的评估,以保证设备在正常使用情况下不会对周围环境产生影响。
设备使用过程中,也需要对设备进行定期的电磁兼容测试,以检测设备是否出现了不良的电磁辐射或者电磁干扰现象。
除此之外,电磁兼容技术在交通、电力、通信、军事等领域也有广泛的应用。
例如,在交通领域中,高速公路沿线的电子设备需要经过电磁兼容测试,以避免产生电磁干扰影响到驾驶员安全。
在电力领域中,电子设备需要具有较强的电磁兼容性能,以保证电力系统正常运行。
在通信领域中,电子设备需要能够兼容各种无线信号,以保证无线通信的质量。
在军事领域中,电磁兼容技术被广泛应用于军用电子设备的研发和测试中。
二、电磁兼容技术的研究方法电磁兼容技术的研究主要包括两种方法:电磁兼容设计和电磁兼容测试。
电磁兼容设计是指在电子设备的设计过程中考虑电磁兼容问题,采用一系列的技术措施在设计阶段防止电磁干扰,从源头上解决问题。
电磁兼容设计的主要方法包括:防辐射措施、屏蔽措施、地面措施、滤波措施等。
电磁兼容测试是指对电子设备进行电磁兼容测试,检测设备是否符合电磁兼容要求,以及发现设备产生电磁干扰或者受到电磁干扰的原因和程度。
电磁兼容测试的主要内容包括:放射测试、抗干扰测试、阻抗测试、传导测试等。
三、电磁兼容技术的发展趋势随着电子产品的普及和电磁污染问题的日益严重,电磁兼容技术正在得到越来越广泛的关注。
未来,电磁兼容技术将继续朝着以下几个方向发展。
电磁兼容技术在电力系统中的应用
电磁兼容技术在电力系统中的应用电磁兼容(EMC)是指在电力系统中,电子系统和电力系统之间的互操作性,以确保系统的可靠运行和稳定的性能。
简单地说,电磁兼容是一种技术,旨在确保电子系统和电力系统之间的兼容性,从而控制电磁干扰,减少该干扰所带来的损坏。
电磁兼容技术在电力系统中的应用主要有以下几点:第一,电力系统中的发电厂和电网中的发电设备生成的强电磁场会引起电磁兼容问题,因此发电厂的设备和电网的设备必须具备良好的电磁兼容性才能确保可靠运行。
第二,在电力系统中,大量的设备会产生电磁辐射,因此需要采用电磁兼容技术,以避免电磁辐射造成的一些干扰,例如影响信号传输和电气设备的性能等。
第三,电磁兼容技术可以提高电力系统中电压、电流和功率质量,从而确保安全可靠的供电和正常运行。
第四,电磁兼容技术可以用来测量电力系统的电磁噪声,以及改善电磁环境,防止在电磁环境不良的情况下造成的一系列干扰。
第五,电磁兼容技术可以应用在电力系统中的传输设备,以防止电磁辐射对电力系统中其他设备造成的影响,例如发电、调度、控制等,这样可以有效地提高电力系统的整体可靠性。
总的来说,电磁兼容技术在电力系统中的应用越来越广泛,可以帮助确保电力系统的可靠运行,并有效提高电力系统的整体性能。
另外,电磁兼容技术的使用还可以降低电力系统中的电磁辐射,提高电力系统的安全性和可靠性,有助于保护电力系统中的设备。
因此,在电力系统中实施电磁兼容技术是非常必要的,以保证电力系统的可靠运行。
电磁兼容技术在电力系统中的应用将大大改善电力系统性能,并有助于改善电力系统的整体可靠性。
在实施电磁兼容技术的过程中,必须考虑发电厂和电网的兼容性,以及电力系统中的其他类型设备的电磁兼容性。
同时,应通过加强设备的检测,降低电磁辐射、改善电力系统的电磁环境,并对其他类型的设备提供充分的保护,以保证电力系统的安全可靠性。
综上所述,电磁兼容技术在电力系统中具有重要的作用,为提高电力系统的安全性、可靠性和可操作性提供了重要支持,是电力系统中不可或缺的一部分。
《电磁兼容原理、技术及及应用》第5章 接地及搭接汇编
第5章 接地及搭接
为同时满足宽频系统中低频单点接地和高频多点接地的不 同要求,可利用电容器对高频相当于短路(高频地)、对低 频相当于开路的特点来实现。
混合接地
第5章 接地及搭接
系统工作在低频状态,为避免公共阻抗耦合,串联 单点接地。但系统暴露在高频强电场中,屏蔽电缆 需要双端接地,图示结构解决了这个问题。
解决地环路干扰的方法:基本思路是有两个:一个是减小地线的阻抗, 从而减小干扰电压。另一个是增加地环路的阻抗,从而减小地环路电流。
第5章 接地及搭接
综上所述,单点接地适用于低频,多点接地适用于高 频。一般来说,频率在1 MHz以下可采用一点接地方式; 频率高于10 MHz应采用多点接地方式;频率在1~10 MHz之间,可以采用混合接地(在电性能上实现单点接地、 多点接地混合使用)。
783m 10.6
的
5M 2.13 35.5 2.7 41.3 3.57 50
3.86 53
直 径
10M 4.26 71.2 5.4 82.8 7.14 100 7.7
106
作
50M 21.3 356 27 414 35.7 500 38.5 530
用 减
100M 42.6
54
71.4
77
小
150M 63.9
81
107
115
1. 导体的阻抗与频率关系很大。 2. 导体的阻抗低频时与截面尺寸关系大,高频时关系小。
第5章 接地及搭接
干扰控制接地有3种基本的接法:浮地、单点接地和多 点接地,以及由单点接地和多点接地派生出来的混合接地。
电磁兼容原理技术及应用
电磁兼容原理技术及应用
电磁兼容(Electromagnetic Compatibility,简称EMC)是指各
种电子设备在相同的电磁环境中能够共存和相互协调工作的能力。
电磁兼容原理技术和应用是保证电子设备在正常工作状态下不受干扰,同时也不对其他设备造成干扰的关键技术。
电磁兼容原理技术主要包括两个方面:电磁辐射控制和电磁敏感度控制。
电磁辐射控制是通过合理设计电路和导线布局、使用屏蔽材料以及降低高频振荡电路等方式来减少设备产生的电磁辐射。
电磁敏感度控制是通过改进设备的电磁兼容性,提高设备的抗干扰能力,降低其对外部干扰的敏感度。
在实际应用中,电磁兼容原理技术被广泛用于各个领域。
在电子通信领域,电磁兼容技术可以保证手机、电视、无线网络设备等在相同频段工作时不会相互干扰;在军事领域,电磁兼容技术可以保证雷达、通信设备等正常工作,并提高其抗电磁干扰能力;在汽车领域,电磁兼容技术可以减少车载设备对车辆电子系统的干扰,保证车辆电子系统的正常工作。
此外,电磁兼容原理技术还被广泛应用于航空航天、医疗设备、能源等领域。
在航空航天中,电磁兼容技术可以保证航空器的各个电子设备在恶劣的电磁环境中正常工作;在医疗设备中,电磁兼容技术可以减少医疗设备对周围环境的干扰,并确保医疗设备的安全性和可靠性;在能源领域,电磁兼容技术可以保证电力系统的各个设备正常工作,提高电力系统的稳定性和可靠性。
总之,电磁兼容原理技术和应用在现代社会中具有重要的意义,它可以保证各种电子设备的正常工作,并提高设备的可靠性和稳定性。
通过合理应用电磁兼容技术,可以减少电子设备对周围环境和其他设备的干扰,保证各个设备之间的协调工作。
电磁兼容性技术在电子电气系统中的应用
电磁兼容性技术在电子电气系统中的应用随着人类社会科技的不断发展,电子电气系统已经成为了人们日常生产和生活中不可缺少的一部分,但是同时也带来了很多问题,其中之一就是电磁干扰问题。
电子电气系统中的电磁干扰不仅可影响到它自身的正常运行,还会对周围的其他设备和系统产生负面影响。
因此,电磁兼容性(EMC,Electromagnetic Compatibility)技术的应用就显得尤为重要,本文将从电磁兼容性技术的定义、应用、标准等多个方面阐述电磁兼容性技术在电子电气系统中的应用。
1. 电磁兼容性技术的定义电磁兼容性技术,即是指在一个有多种电器设备和系统的环境下,通过降低电磁干扰的程度和电器设备的敏感程度,保证各种设备能够在同一环境中相互协调工作。
简单来说,它是指保证电子电气设备和系统之间互不干扰的一种技术,也是一项非常重要的技术。
2. 在电子电气系统中,电磁兼容性技术的应用非常广泛,包括以下几个方面:(1)汽车电子系统随着人们生活水平的不断提高,对于汽车的安全性、舒适性、可靠性的要求也越来越高,因此汽车电子系统也不断发展和完善。
车载电子系统是由很多模块和器件组成的,这些模块和器件之间的电磁互相作用不可避免地会在整个系统中形成干扰,甚至可能引起系统故障。
因此,在汽车电子系统的设计中,电磁兼容性问题的解决是一个至关重要的问题。
汽车电子系统中应用的电磁兼容性技术,可以有效避免电子设备产生的电磁泄漏对其他设备产生干扰,从而使整个电子系统稳定运行。
(2)无线通信设备随着移动互联网的发展,无线通信设备在现代社会中的地位变得越来越重要。
然而,在无线通信设备的使用过程中,会产生一定干扰,会对其他无线设备及周围通讯设施造成干扰,对通讯设备的稳定性造成影响。
电磁兼容性技术就是在这样的背景下应运而生的,它可以有效的降低无线通信设备产生的电磁干扰和受到的电磁干扰,使无线通信设备正常运行,并保证通信的质量。
(3)家用电器家用电器越来越依赖于低功率电子设备的应用,它们不仅具有稳定的性能,而且还能够满足消费者对安全性、健康等方面的需求。
电磁兼容性测试及其在通信系统中的应用
电磁兼容性测试及其在通信系统中的应用一、前言现代通信技术以及电子设备已经成为人们日常生活中必不可少的一部分,而随着电子设备的不断增多和通信系统的不断扩张,电磁兼容性问题逐渐凸显出来。
在这样的背景下,电磁兼容性测试逐渐成为了电子设备制造商以及通信系统工程师必须了解和掌握的技术。
二、什么是电磁兼容性测试?电磁兼容性测试(Electromagnetic Compatibility Testing,EMC Testing)是指对电子产品以及通信设备进行的一系列电磁兼容性测试,目的是验证这些设备在相互干扰的情况下是否仍然能够正常工作。
电磁兼容性测试主要包括电磁干扰(Electromagnetic Interference,EMI)测试和电磁耐受(Electromagnetic Susceptibility,EMS)测试两个部分。
三、电磁兼容性测试的意义电磁兼容性测试的意义在于保证电子产品和通信设备在互相干扰的情况下仍然能够正常工作,从而保障设备的性能和安全。
与此同时,电磁兼容性测试也可以减少电子产品和通信设备对周围环境以及其他设备产生的电磁干扰,从而减少对其他设备的影响。
四、电磁兼容性测试的现状随着电子设备制造业和通信系统的发展,电磁兼容性测试的需求也越来越大。
目前市面上已经有多种专业的电磁兼容性测试设备以及测试服务商。
五、电磁兼容性测试在通信系统中的应用对于通信系统来说,由于其本身具有高度集成性和频繁变化性,因此对其进行电磁兼容性测试显得尤为重要。
主要的应用场景包括以下几个方面:1、通信设备出厂测试在通信设备出厂前,需要进行一系列的测试以确保其符合正常使用条件,同时能够正常地与其他设备互操作。
2、安装环境测试通信设备在安装后需要进行电磁兼容性测试来保证其不会对周围的环境和其他设备产生干扰;同时,也需要测试其他设备对其的影响,确保其能够正常工作。
3、设备升级测试在通信系统不断升级和演进的过程中,各个设备的性能和接口功能也会有所变化。
电磁兼容技术的发展状况及应用
电磁兼容技术的发展状况及应用首先,让我们回顾一下电磁兼容技术的发展历程。
电磁兼容技术起源于20世纪70年代,当时电子设备逐渐普及,并出现了设备之间相互干扰的问题。
为了解决这一问题,电磁兼容技术应运而生。
最初,电磁兼容技术主要关注设备之间的电磁辐射和电磁感受性问题。
通过设计合理的电磁屏蔽、隔离和过滤等手段,可以有效降低电磁辐射和感受性。
然而,随着技术的发展和需求的增加,电磁兼容技术也不断发展演变。
现在,电磁兼容技术已经成为整个电子行业的重要组成部分。
它涉及到电磁辐射、电磁感受性、电源线滤波、电磁屏蔽以及故障抗扰等多个方面。
在电磁辐射方面,电磁兼容技术要求设备在工作状态下的电磁辐射需控制在一定范围内,以避免对其他设备造成干扰。
在电磁感受性方面,设备应具有一定的抗干扰能力,减少外部电磁场对设备的影响。
而在电源线滤波方面,通过采用合适的电源线滤波器,可以有效减少电源线上的电磁干扰。
此外,电磁屏蔽技术也是电磁兼容技术的重要组成部分。
通过使用屏蔽材料和屏蔽结构,可以有效限制电磁辐射和阻塞外部干扰。
除了上述方面,电磁兼容技术还针对不同的应用领域进行了专门的研究和发展。
例如,在通信领域,电磁兼容技术可以解决移动通信设备之间的干扰问题,确保通信网络的稳定性和可靠性。
在医疗设备领域,电磁兼容技术可用于确保医疗设备的正常工作,并减少对患者和其他设备的干扰。
在航空航天领域,电磁兼容技术可用于控制飞机和航天器上的电磁辐射,以确保飞行安全。
此外,电磁兼容技术还在汽车、家电、电力系统等领域得到了广泛应用。
总之,电磁兼容技术作为一项重要的技术,在电子行业中发挥着关键作用。
随着电子设备的普及和互联互通的需求增加,电磁兼容技术也在不断发展演变。
通过在电磁辐射、电磁感受性、电源线滤波、电磁屏蔽等方面进行研究和应用,可以有效地实现设备之间的互不干扰和相容共存。
同时,电磁兼容技术也在不同的应用领域得到广泛应用,如通信、医疗、航空航天等。
电磁兼容原理、技术和应用(第2版)课件——邹澎第6章
E2
H2
P2
E1、H1:加屏蔽之前的电磁或磁场, E2、H2:加屏蔽之后电磁或磁场, P1:加屏蔽之前辐射的功率, P2:加屏蔽后辐射的功率。 5、计算屏蔽效果的图解法
屏蔽效能的计算方法有三种:(1)解析法,(2)作图法, (3)查表法。
作图法又称诺模图法,它的特点是不必进行繁琐的公 式运算,只要在诺模图上作几条直线便可迅速求得屏蔽体 的吸收损耗S1、反射损耗S2和多次反射损耗S3等参数,工程 上使用非常方便。屏蔽效能的作图计算必须在几个诺模图 上分别求出S1、S2、S3 ,然后相加。
2 2
1
f r 107
6 1 20
例:f=0.5MHz, 铜板内 λ=0.59mm,
f=1MHz ,
铜板内 λ=0.066mm,
f=100MHz, 铜板内 λ=0.0066mm,
f=50Hz,
铜板内 λ=59mm,
铁板内 λ=4.5mm,
∴ 在低频时,铁板的屏蔽效果好。
③、屏蔽效果 S 20 lg E1 , S 20 lg H1 , S 10 lg P1 ,
第六章 抗干扰技术
6-1 屏蔽技术 6-2 滤波技术 6-3 接地技术 6-4 其它抗干扰技术简介 6-5 频谱管理
干扰信号侵入设备的途径: ①、由天线侵入, ②、由等效天线侵入(电源线、输入、输出信号线), ③、由机壳上的孔洞或缝隙侵入,图6-1
机箱一般是铁板或铝板,若无孔洞、缝隙(全焊接) 屏蔽效果可达100dB以上(对高频电场),由于缝隙、 通风口、表头、调节轴……屏蔽效果一般在60dB以下 (计算机机箱,实测20dB左右)。 ④、由电源线侵入 传导干扰 使用同一电源的其他设备产生的干扰信号,可沿电源 线侵入。 6-1屏蔽技术 屏蔽的概念和分类 1、屏蔽的概念:屏蔽是防止辐射干扰的主要手段,所谓屏
电磁兼容性技术的研究与应用
电磁兼容性技术的研究与应用随着科技的不断发展,我们的生活越来越离不开电子设备和通讯技术。
然而,无论是电子设备还是通讯技术都需要进行电磁兼容性测试,以确保设备不会出现相互干扰的问题。
那么,电磁兼容性技术是什么,它的研究与应用有哪些方面?电磁兼容性技术电磁兼容性技术(EMC)是一种能够确保电子设备能够在相互竞争的干扰环境中正常工作的技术。
EMC技术的研究和应用可以确保电子设备在电磁环境中获得最佳的信号质量和数据传输,同时减少电磁干扰和相互干扰,防止电子设备对环境和人体产生危害。
电磁兼容性技术的研究和应用电磁兼容性技术的研究和应用主要包括以下方面:1. 电磁场极化电磁场是指电磁波在空间中传播的电和磁场。
电磁场的极化是指电磁波在传播过程中,电和磁场方向的变化。
电磁场极化对于电磁兼容性的研究和应用具有重要意义,因为不同的电磁场极化对不同的设备会产生不同的电磁干扰。
2. 电磁兼容性测试电磁兼容性测试是指对电子设备和系统进行电磁兼容性检测和评估,以确保设备在效能、安全性和可靠性方面符合国际标准和法规。
电磁兼容性测试主要包括传导、辐射和抗干扰性等多个测试项目,其中传导测试主要用于测试设备在电源、信号和地线等传导线路上产生的电磁干扰,而辐射测试主要用于测试设备在各种频率范围内产生的电磁辐射干扰。
3. 电磁场仿真电磁场仿真是指通过计算机模拟各种电磁场及其在电子设备和系统中的传播路径来评估电磁兼容性。
电磁场仿真技术广泛应用于电磁干扰和电磁抗干扰设计中,通过仿真计算来减少设备设计中的试错成本和时间。
4. 电磁干扰抑制电磁干扰抑制是指通过各种电磁兼容性设计和抑制措施来减少电子设备与系统之间的电磁干扰。
电磁干扰抑制技术主要包括线路滤波器、屏蔽、接地等,通过这些抑制措施可以实现对电磁干扰的抑制和控制。
结语随着通讯技术和电子设备的不断普及和发展,电磁兼容性技术的研究和应用也越来越重要。
只有通过电磁兼容性测试和评估,才能保证设备和系统在各种电磁场环境下正常工作,同时有效避免电磁干扰和相互干扰的问题。
电磁兼容原理及应用第1章 电磁环境与电磁兼容
(4)电磁环境基本概念
• 电子设备发射出来的电磁干扰具有一定的危害性
——降低电子元件的工作寿命,强度较大的电磁干扰可以击穿电子设备, 导致元件及整个系统的损坏;静电导致计算机及其元器件的损坏造 成的经济损失每年就高达数亿美元,还可以损坏医院里病人的导管 泵而导致病人生命危险。
上世纪50年代开始,随着自动化技术和电力电子器件的快速发展,电力电子技术 的兴起和微电子技术发展迅速向电气设备领域渗透,形成电气设备和电子设备 结合、强电和弱电结合、机械和电气结合、仪表和装置结合、硬件和软件结合 的各种复杂控制系统,而且在结构上也往往融为一体,同一电网中的用电设备 越来越多,产生日趋复杂和严重的电磁环境和电磁干扰问题。
频域:工频(较低频率)噪声和瞬变噪声的频率范围直接关系到所采取的抗干 扰措施:工频噪声的频率较低,对数字电路无严重影响,但对低电平模拟 电路的危害却很大;瞬变噪声的频率范围超过0.5MHz时,将引起一系列问 题。
电磁干扰产生的原因很多,噪声互相交织,传递途径多样,电磁环境错综复杂, 很多情况下是在系统出现异常后人们才意识到所处电磁环境的严峻程度。仅 对电磁环境有定性认识是不够的,应通过测量对电磁环境做出定量描述,如: 用电场强度和磁场强度表示稳定电场和磁场;用电压和电流表示局部电路与 整体的关系;用统计量和振幅概率分布函数表示随机变化的干扰特性;用脉 冲峰值分布、能量分布、发生频度分布等参数表示脉冲噪声等。
(4)电磁环境基本概念
• 随着自动化程度越来越高,人们越来越依赖电气电子设备,科学家和 工程师们一直朝一个共同的目标而努力奋斗者——研究、探索直至打 造新一代经济而卓越的电气与电子产品。然而,然而由电子和电气产 品带来的电磁干扰问题,使得人类和设备本身依赖的这个电磁环境越 来越恶劣,不论怎么精心策划,设计中的缺陷始终象噩梦般挥之不去。 补救的药方就是电磁兼容技术——确保设备或系统不产生电磁干扰的 技术。着力解决电磁干扰问题已成为电气和信息化建设中的重要内容 之一。
电磁兼容在空调设计中的运用分析
电磁兼容在空调设计中的运用分析一、电磁兼容技术的基本原理电磁兼容技术是指在电磁环境中,设备和系统能够在不产生电磁干扰的情况下正常工作,同时也能够抵抗来自外部电磁场的干扰。
其基本原理是通过采取各种技术手段,使设备和系统在电磁环境中不会产生电磁干扰,同时也能够抵抗来自外部电磁场的干扰,从而确保设备和系统的正常工作。
在空调设计中,电磁兼容技术可以通过减小电磁辐射、提高电磁抗扰能力等手段来实现。
在空调内部,可以通过优化线路布局、采用合适的电磁屏蔽材料、提高元器件的抗扰能力等来降低电磁辐射;也可以通过合理设计接地系统、滤波器等手段来提高空调系统的电磁抗扰能力,确保其在电磁环境中的正常工作。
二、电磁兼容技术在空调设计中的应用1. 减小电磁辐射对于空调产品来说,减小电磁辐射是十分重要的。
因为过大的电磁辐射不仅会对人体健康造成影响,也会对其他电子设备造成干扰。
在空调设计中,需要采取一系列措施来减小电磁辐射。
在空调内部,可以采用电磁屏蔽材料来隔离电磁辐射;也可以通过优化线路设计、降低电磁噪声等手段来减小电磁辐射。
通过这些手段的应用,可以有效降低空调产品的电磁辐射水平,保障用户和其他设备的安全和稳定性。
2. 提高电磁抗扰能力在电磁环境中,空调产品还需要具备一定的抗干扰能力,以确保其能够在电磁环境中稳定工作。
在空调设计中,需要采取措施来提高其电磁抗扰能力。
在系统设计中,可以合理设计空调的接地系统,提高其对外部电磁干扰的抵抗能力;也可以采用滤波器、抑制器等元器件来提高系统的抗干扰能力。
通过这些措施的应用,可以有效提高空调产品在电磁环境中的稳定性和可靠性。
3. 符合相关标准和法规在空调设计中,也需要考虑到电磁兼容相关的标准和法规要求。
国家对于电磁辐射的限制、对于电磁抗扰能力的要求等都有明确的规定。
在空调设计中,需要严格遵守相关的标准和法规要求,确保产品在电磁兼容性方面能够符合相关的规定,从而保障产品的质量和安全性。
1. 保障用户的健康和安全通过减小电磁辐射、提高电磁抗扰能力等手段的应用,可以有效降低空调产品对人体健康的影响,保障用户的健康和安全。
电磁干扰排查及故障解决的电磁兼容技术
电磁干扰排查及故障解决的电磁兼容技术电磁兼容技术是指在电子设备和系统中,通过对电磁干扰的排查与解决,使得各种设备能够在同一电磁环境中协调地工作,互不干扰。
本文将介绍电磁兼容技术在干扰排查和故障解决方面的应用。
一、电磁干扰的排查1. 了解电磁干扰的类型和特点:电磁干扰可以分为辐射干扰和传导干扰两种类型。
辐射干扰是指电子设备通过电磁波辐射产生的干扰,传导干扰是指电磁波通过导线或其他介质传导产生的干扰。
了解干扰的类型和特点有助于针对性地进行排查。
2. 使用专业的测试仪器:利用电磁兼容测试仪器,如频谱分析仪、电磁场强度仪等,对电子设备和系统进行测试,以确定是否存在干扰源和受干扰的设备。
测试仪器可以帮助定位干扰源,并提供干扰的频率、强度等参数信息。
3. 进行电磁兼容测试:通过模拟实际工作环境的电磁场,对设备和系统进行电磁兼容测试,以评估其在电磁环境中的性能和抗干扰能力。
通过测试可以了解设备的辐射和传导干扰情况,为后续的故障解决提供依据。
4. 查找干扰源:根据测试结果和设备的工作原理,对潜在的干扰源进行排查。
可能的干扰源包括电源线、高频线路、无线电发射设备等。
排查时可以采用逐步排除法,逐个排查可能的干扰源,确定具体的干扰源。
5. 采取合适的屏蔽措施:针对不同的干扰源,采取相应的屏蔽措施。
例如,对辐射干扰源可以采用屏蔽罩、屏蔽材料等进行屏蔽;对传导干扰源可以采取地线隔离、滤波器等进行屏蔽。
屏蔽措施应根据具体情况进行选择和实施。
二、故障解决的电磁兼容技术1. 分析故障现象:在设备出现故障时,首先需要对故障现象进行分析。
根据故障现象的特点和表现,判断是否与电磁干扰有关。
例如,设备在某个频段出现工作异常,可能是受到了附近无线电发射设备的干扰。
2. 排除其他故障原因:在确认故障与电磁干扰有关后,还需要排除其他可能的故障原因。
例如,设备可能出现了硬件故障、软件问题等,需要逐一排查并进行修复。
3. 优化设备设计:对于频繁受到电磁干扰的设备,可以通过优化其设计来提高其抗干扰能力。
电磁兼容技术研究
电磁兼容技术研究第一章电磁兼容技术概述电磁兼容技术(EMC,Electromagnetic Compatibility) 是指电子设备或系统在保证自身正常功能的同时,不对周围环境的其他电子设备造成电磁干扰(EMI,Electromagnetic Interference),也不受其他电子设备的电磁干扰而影响自身正常工作的能力。
电磁兼容技术已成为现代电子技术应用的重要组成部分,广泛应用于电子信息、通信、计算机、汽车、航空、航天、军事、医疗等领域。
电磁兼容技术主要包括三个方面:电磁兼容(EMC)、电磁干扰(EMI)和抗干扰(ESD)。
第二章电磁兼容技术的作用及意义现代电子制造业、信息技术产业的快速发展,带来了越来越复杂的电子产品,从单片集成电路(IC)到复杂智能系统,大多数都会被周围环境的其他设备所影响,往往引起电磁干扰,导致设备失效。
尤其是在电磁辐射严格控制的特殊环境下,例如数据中心和医疗设备,电磁兼容技术的风险管理更加必要。
因此,电磁兼容技术在实现产品品质控制和市场竞争等方面发挥着重要的作用。
随着世界各国对EMC产业标准的制定和实施,将进一步推动国内电子信息产业发展,提升产品质量,维护市场竞争力。
第三章电磁干扰产生及其类型电磁场的物理特性使得电子设备之间产生相互作用。
因此,电子设备之间的电磁兼容问题不可避免,会产生电磁干扰(EMI)。
电磁干扰按照其产生方式,可划分为连续性干扰和间歇性干扰两类。
其中,连续性干扰是周期性的,例如高频振荡器和同步信号,会引起测试仪器的频谱干扰;间歇性干扰则是不规律性的,例如闩锁开关频繁切换时序,会产生窄带干扰。
此外,电磁干扰还可按照干扰信号的频率、幅度、时域波形等特征进行分类,例如短时干扰、长时干扰、导电干扰、辐射干扰等。
第四章电磁干扰的防治方法有效的电磁干扰控制是保证电子设备正常运行的重要手段。
目前,电磁兼容技术的防治方法主要包括传输线理论、屏蔽技术、滤波技术、接地和分离技术、电磁兼容性设计等。
电磁兼容原理、技术及应用部分课后答案 最新供参考版
第一章P dBW=10lg P、 U dBV=20lg U、I dBA=20lg I第二章2、电磁干扰的三要素是什么?答:骚扰源、耦合通道、敏感单元3、常见的电磁骚扰源有哪些?如何分类?答:(1)从来源分:自然骚扰和人为骚扰(2)从骚扰属性分:功能性骚扰和非功能性骚扰(3)从耦合方式分:传导骚扰和辐射骚扰(4)从频谱宽度分:宽频骚扰和窄频骚扰(5)从频率范围分:甚低频骚扰、工频与音频骚扰、载频骚扰、射频及视频骚扰、微波骚扰6、电磁骚扰的传播主要有哪些途径?答:传导耦合、磁场耦合、电场耦合、辐射耦合7、为什么要对电流返回路径格外重视?答:(1)任何电流都要返回其源,对于高频电流,如果我们能给他提供一个通路,他就可能(主要)沿着这条通路走,如果不提供这种通路,他就会自己找到通路(不在控制之中)。
(2)电流总是沿着最小阻抗路线走12、影响磁场耦合的通路有哪些?如何减小其影响?答:(1)-jwBscosθ、被干扰电路中的源阻抗和负载阻抗、正弦磁通密度、角频率、闭合回路面积、磁通密度与回路面的夹角(2)降低骚扰电流的频率、减小回路之间的互感、减小被干扰回路的负载阻抗13、影响电场耦合的因素有哪些?如何减小其影响?答:(1)骚扰源的频率、骚扰电压、骚扰电路、耦合电容、被干扰回路的源阻抗和负载阻抗。
(2)减小骚扰电压、降低骚扰电压频率、减小被干扰回路中源阻抗和负载阻抗的并联、减小电路之间的耦合电容,可适当增大电路间距离、采取屏蔽措施。
第三章屏蔽按其机理可分为电场屏蔽、磁场屏蔽、电磁场屏蔽、编织带屏蔽。
1、静电屏蔽的原理是什么?答:导体置于静电场中并到达静电平衡后,该导体是一个等位体,内部电场为零,导体内部没有静电荷,电荷只能分布在导体表面。
若该导体内部有空腔,空腔中也没有电场,空腔导体起到了隔绝外部静电场的作用。
如将带电体置于空腔导体内部,会在空腔导体表面感应出等量电荷。
如果把空腔导体接地,不会在导体外部产生电场。
为什么要掌握电磁兼容技术
电磁兼容技术是一种使电子 设备在电磁环境中正常工作 的技术
电磁兼容技术包括电磁屏蔽、 电磁滤波、接地等技术
电磁兼容技术对于保障电子 设备的安全和稳定运行具有
重要意义
电磁兼容技术的基本概念
电磁兼容技术的定义 电磁兼容技术的基本原理 电磁兼容技术的分类 电磁兼容技术的应用领域
单击此处添加副标题
电磁兼容技术的重要性
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 电磁兼容技术的定义与概念
电磁兼容技术的重要性 电磁兼容技术的原理与技术 电磁兼容技术在电子产品中的应用 电磁兼容技术的未来发展与趋势
01
添加目录项标题
02
电磁兼容技术的定义与概念
电磁兼容技术的定义
07
总结与建议
总结电磁兼容技术的重要性
电磁兼容技术对现代电子设备的重要性 电磁兼容技术对通信系统的重要性 电磁兼容技术对医疗设备的重要性 电磁兼容技术对航空航天的重要性
对掌握电磁兼容技术的建议与展望
建议:加强电磁兼容技术的学习和研究,提高对电磁兼容技术的认识 和理解
建议:加强电磁兼容技术的实践和应用,提高解决实际问题的能力Βιβλιοθήκη 电磁兼容技术的未来应用领域
智能家居:随着 物联网技术的发 展,电磁兼容技 术在智能家居领 域的应用将更加 广泛,如智能家 电、智能照明等。
自动驾驶:自动 驾驶汽车需要大 量的传感器和电 子设备,电磁兼 容技术可以确保 这些设备的正常 运行,提高驾驶 安全性。
医疗设备:医疗 设备中的电磁兼 容技术可以确保 设备的准确性和 可靠性,提高医 疗质量。
展望:随着科技的发展,电磁兼容技术将更加重要和受到重视,需要 不断学习和提高
电磁兼容性技术在国防领域中的应用
电磁兼容性技术在国防领域中的应用电磁兼容性技术是一种涉及电磁波信号的无线传输,尤其在军事设备领域中大量使用。
其主要目的是保证军事设备在恶劣的电磁环境下,能够正常使用,同时不会对周围的电磁环境造成妨碍和危害。
今天我们将讨论电磁兼容性技术在国防领域的应用和重要性。
1、电磁兼容性技术定义电磁兼容性技术是为了确保电子设备在相互影响的条件下,能够正常使用的一种技术。
在军事领域,电磁兼容性技术是指军事设备在电磁环境中的一种适应能力。
电磁兼容性不仅包括发射和接收方面的电磁兼容性,还包括电磁体与其他物理体的电磁兼容性。
在军事设备中,电磁兼容性技术的应用十分广泛。
不仅是各类武器装备,还包括通信、雷达、控制等应用领域。
2、电磁兼容性技术的应用电磁兼容性技术作为一种非常关键的技术在军事装备领域中的应用也是非常广泛的。
例如,在军事通信领域,电磁兼容性技术可以防止信号互相干扰或阻塞。
在军事雷达领域,这种技术则可以避免雷达互相产生干扰并导致数据出错。
另外,在导弹鱼雷等军事武器领域,通过电磁兼容性技术可以有效地减少敌方对其的干扰,从而提高武器的使用效果。
同样,还有高技术的光电设备,这些设备的功能非常强大,尤其是在战场上非常重要。
随着技术的进步,光电设备在军事领域的使用也在不断增加。
但由于光电设备本质上是电子设备,对于电磁波的干扰也非常敏感。
因此,在使用光电设备时,必须采取一些措施来减少干扰并保证其正常使用。
利用电磁兼容性技术来解决这个问题,就是一个比较有效的解决方案。
3、电磁兼容性技术的重要性在现代军事战争中,各种军事设备需要在高度复杂的电磁环境中正常工作。
如果设备不能兼容电磁波,就会出现干扰或互相干扰,进而导致设备失灵或无法正常使用。
这种情况对于现代战争的胜利也会发生非常重要的影响。
因此,在现代战争中,电磁兼容性技术的重要性不言而喻。
实际上,电磁兼容性技术目前已经成为现代军事战争的基本技术之一,其在保证军事装备能够正常使用,提高军事装备的生产、开发和维护效率方面都起着非常重要的作用。
电磁兼容技术报告
电磁兼容技术报告一、引言电磁兼容是指各种电子设备在正常工作时不相互干扰,也不受外界电磁环境的干扰。
电磁干扰对电子设备的正常工作和通信质量有着重要影响,因此电磁兼容技术的研究和应用备受关注。
本报告将重点介绍电磁兼容技术的基本概念、原理和应用。
二、电磁兼容基本概念1.电磁辐射:电子设备在工作过程中会产生电磁辐射,即电磁波信号。
这些辐射会扩散到周围环境中,可能会对附近的其他电子设备产生干扰。
2.电磁敏感度:电子设备对外界电磁辐射的敏感程度。
敏感度高的设备容易受到干扰,从而影响设备的正常工作。
3.电磁兼容性:指电子设备在正常工作时既不干扰其他设备,也不受其他设备的干扰。
4.电磁干扰:当设备的电磁辐射使周围的其他设备产生异常行为时,称为电磁干扰。
三、电磁兼容技术原理1.屏蔽技术:通过在设备内部或外部加上屏蔽材料,阻止电磁辐射传播或外界电磁辐射的进入,减少干扰。
2.滤波技术:通过使用滤波器,选择性地通过或抑制特定频段的电磁辐射,减少干扰。
3.接地技术:合理的接地设计可以降低设备的电磁干扰,提高设备的抗干扰能力。
4.电磁兼容设计:通过电磁兼容设计,合理安排设备之间的布局和连接方式,减少干扰机会。
四、电磁兼容技术应用1.军事领域:在军事通信、雷达等设备中,电磁兼容技术的应用非常重要。
军事设备的高度敏感性和可靠性要求,对电磁干扰的抵抗能力有很大挑战。
2.汽车电子设备:随着汽车电子化的发展,汽车内部的各种电子设备相互之间的干扰也成为重要问题。
电磁兼容技术可以减少由于车载电子设备干扰引发的故障和安全隐患。
3.通信设备:移动通信设备的快速发展,对电磁兼容技术的要求提出了更高的要求。
提高通信设备的兼容性,可以更好地保证通信的质量和稳定性。
五、电磁兼容技术挑战与展望1.多频段和宽带通信对电磁兼容技术提出了更高要求,如何在不同频段和大范围的带宽内实现兼容性是一个挑战。
2.电子设备的小型化和集成化使得兼容性设计更加困难。
如何在有限的空间内有效地控制电磁干扰,是未来的技术发展方向。
电磁兼容 emc 技术及应用实例详解
电磁兼容emc 技术及应用实例详解电磁兼容(EMC)是指不同电子设备在同一电磁环境中共存并保持正常工作的能力。
在现代社会中,电子设备的数量和种类越来越多,它们之间的互相干扰和互不干扰的问题也成为了人们关注的焦点。
EMC技术就是解决这个问题的一种方案。
EMC技术可以分为两个方面,即抗扰度和抗干扰。
抗扰度是指设备自身的能力,即抵抗外界干扰的能力;而抗干扰是指设备对其他设备干扰的抵抗能力。
EMC技术的应用广泛,包括消费电子、通信设备、医疗设备、工业设备等各个领域。
以下是一些EMC技术应用的实例:1. 汽车电子系统:现代汽车装备了大量的电子设备,如发动机控制单元(ECU)、车载导航系统、车载娱乐系统等。
这些设备之间需要保持相互兼容,以确保汽车的正常运行。
同时,汽车内部的电子设备也需要抵抗外界干扰,以避免对驾驶员和乘客的安全产生影响。
2. 医疗设备:医疗设备的EMC要求非常严格,因为它们与人类的生命和健康直接相关。
例如,电子血压计、心电图仪、医用电刀等设备都需要抗扰度和抗干扰能力,以确保准确的测量和治疗结果。
3. 无线通信:无线通信系统的干扰问题是非常关键的。
例如,手机和基站之间的互相干扰可能导致通信质量下降或通话中断。
通过使用EMC技术,可以降低设备对未经授权的频谱的干扰,提高通信质量和可靠性。
4. 工业自动化:工业设备通常集成了大量的电子控制器和传感器,用于监测和控制各种工艺。
这些设备之间需要保持相互兼容,以确保工业过程的正常运行。
此外,工业环境中存在大量的电磁噪声,工业设备需要具备一定的抗干扰能力。
以上只是一些典型的EMC技术应用实例,实际上,EMC技术几乎涵盖了所有电子设备的相关领域。
通过正确地应用EMC技术,可以避免电子设备之间的干扰问题,提高设备的稳定性和可靠性,保障人们的生命和财产安全。
电磁兼容技术的发展及典型应用技术
电磁兼容技术的发展及典型应用技术(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--电磁兼容技术的发展及典型应用技术高鹏张英会摘要: 本文简单的介绍了电磁兼容技术的发展现状和几种典型的技术应用, 并对控制和试验技术中的电磁屏蔽技术、干扰抑制滤波技术及 EMI 诊断进行了简单的介绍和分析。
最后, 对几种比较新型的试验室技术做了简单的介绍。
关键词: 电磁兼容; 控制技术; 试验技术; 干扰抑制滤波电磁兼容是指电气设备在同一电磁环境中共存的一种特性, 即要求在同一环境中使用的电气设备正常工作而不能相互干扰, 达到兼容的目的, 更通俗的说, 要求工作中的电气设备对环境的电磁干扰值和抗干扰能力必须满足法律法规的要求, 否则该电气设备则会对其他正常工作的电气设备造成干扰或者不能再正常允许的电磁环境中正常工作。
它是与电磁环境密切相关的一门综合性极强的边缘科学。
主要以电气、电子科学理论为基础, 研究并解决各类电磁污染问题, 可以说电磁兼容技术是一个正在不断发展的新型综合性学科, 也是一门工程性极强的应用技术。
1.发展现状60 年代以来, 现代电子科学技术向高频、高速、高灵敏度、高安装密度、高集成度、高可靠性方面发展, 其应用范围越来越广, 渗透到了社会的每个角落, 因而发达国家在 EMC研究方面投入了大量的人力和物力。
电磁兼容的研究在我国起步较晚, 发达的西方国家早在 20 世纪 80 年代就已经发布了对电气设备的电磁兼容指标进行强制性认证的法令, 任何电气设备必须满足相关的法律法规的要求方可投放市场, 须取得认证合格证后才允许在市场上销售。
早几年前, 我国的电气产品没有对电磁兼容指标作出具体的要求, 相关的法律法规尚在制定中, 国内的产品开发人员还没有把电磁兼容这一理念认识理解, 许多产品在设计、开发阶段根本没有考虑到电磁兼容这一问题, 加之不了解国外的电磁兼容相关标准, 使得研发的产品不能通过国外强制性的电磁兼容测试, 致使产品不能投放国外市场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁兼容技术及应用摘要:本文简要介绍电磁兼容相关的各项技术,通过对接地、屏蔽、滤波等技术的分析,说明产品如何实现良好的电磁兼容性,如何将电磁兼容技术融入产品研发流程。
对实例分析,结合电磁兼容理论,说明实际测试中的处理摘要:本文简要介绍电磁兼容相关的各项技术,通过对接地、屏蔽、滤波等技术的分析,说明产品如何实现良好的电磁兼容性,如何将电磁兼容技术融入产品研发流程。
对实例分析,结合电磁兼容理论,说明实际测试中的处理方法,从干扰源、耦合路径、敏感源方面逐步分析验证,提高产品可靠性。
关键词:电磁兼容接地屏蔽滤波目前,电磁兼容技术已经发展成为专门的针对电子产品抗电磁干扰和电磁辐射的技术,成为考察电子产品的安全可靠性的一个重要指标,覆盖所有电子产品。
各个电子设备在同一空间工作时,会在其周围产生一定强度的电磁场,这些电磁场通过一定的途径(辐射、传导)耦合给其他的电子设备,影响其他设备的正常工作,可能使通讯出错或者系统死机等,设备间相互干扰相互影响,这种影响不仅仅存在设备间,同时也存在元件与元件之间,系统与系统之间。
甚至存在与集成芯片内部。
电磁兼容技术主要包括接地、滤波、屏蔽技术等,在特定场合需要注意的是不一样的,A、在结构方面,需要注意屏蔽和接地,B、在线缆方面注意接地和滤波,C、在PCB设计方面,需要注意信号布局布线、滤波等。
一、电磁兼容技术首先从构成电磁干扰的三要素入手,即干扰源、敏感源、耦合路径,★干扰源是产生电磁干扰的设备,通过电缆、空间辐射等耦合路径影响干扰敏感源设备。
高频电压/电流是产生干扰的根源,电磁能量在设备之间传播有两种方式:传导发射和辐射发射,传导发射是以导线为媒体,以电流为现象,辐射发射是以空间辐射为媒体,以电磁波为现象。
常见干扰源有雷电、无线通讯、脉冲电路、静电、感性负载通断、天线、电缆导线等。
任何电路都可能成为敏感源,数字电路抗干扰性较好,但是风险大,大的脉冲尖峰可能是数字电路误动作,音频模拟电路对射频信号敏感。
★耦合路径分为空间耦合和传导性耦合,空间耦合包括互感耦合、电容耦合、天线辐射,传导性耦合包括地线和电源线上的传导。
电磁兼容设计主要包括接地设计、屏蔽设计、滤波设计方面的知识。
地线分为安全地、交流地、直流地、数字地、模拟地、机壳地、防雷地等,※地线从电压概念说是提供一个等电位体,从电流概念上说是提供一个电流通路。
地线阻抗决定了线路的抗干扰性,其中导线阻抗决定了地线的电位差,回路阻抗决定了实际的地线电流,地环路的存在是电路受干扰的主要原因,减小地环路的面积,降低对线路的影响,使用屏蔽线或同轴电缆都可能减小信号回路的面积,从而达到降低干扰的影响。
地线电流总是走地线阻抗比较小的路径,高频低频时线路的阻抗是不一样的,可以根据需要设计信号路径。
多层板比双层板的抗干扰性要好,因为多层板有专门的地层和电源层,保证每个信号回路都具有最小的信号回路面积,如果是双层板,最好铺地线网格,来保证最小的回路面积。
单端接地是为了降低电场对设备的影响,两端接地是降低磁场对设备的影响,两端接地形成磁场环路,外界磁场在原来信号与地线构成的回路中产生感应电流的同时,也在屏蔽层与地线构成的回路中产生感应电流Is,Is也会感应出磁场,但是这个磁场与原来的磁场磁场方向相反,相互抵消,导致总磁场减小,减小了干扰。
屏蔽技术,主要是应用在系统的结构上的,也有对线路关键电路进行屏蔽的,如时钟电路、CPU等。
考察系统的屏蔽效能可以利用静电测试,如果系统屏蔽做的好,静电会沿着屏蔽体进行泄放,不会对内部线路造成影响。
良好的电磁屏蔽的关键因素是屏蔽体的导线连续性,如果必须开孔引导线,采用屏蔽电缆,屏蔽层一定要采用360度环接方式进行接地,保证屏蔽的完整性。
根据不同屏蔽层传输阻抗的频率特性和信号工作频率,来选择屏蔽电缆。
滤波包括电源线滤波与信号滤波。
电缆是一个很好的天线,有时候即使屏蔽做的很好,仍然不能通过辐射发射和辐射敏感度的试验,这是因为电缆产生的辐射远高于线路板本身及机箱屏蔽不完整发生泄漏所产生的辐射。
解决这种问题的一个方法是在电缆的端口处安装滤波器,将干扰电流滤除掉。
根据干扰的频率选择滤波器的截止频率,才能有效的滤除干扰。
一个系统使用了二阶LC低通滤波器,做辐射试验还是过不去,将前级电容去掉,辐射发射就不超标了,说明了需要降低截止频率才能滤除一部分干扰,增加滤波器的级数增加了曲线的陡度,提高了在工作频率内的滤波性能,并不能将更低频率的干扰滤除。
滤波电容引线要短,可以采用“V”形接法,减小高频时的回路阻抗,也可以在引线上增加安装磁珠,加大了引线上的电感,增强了滤波效果。
薄膜电容的电阻成分大,应采用陶瓷电容来进行滤波,陶瓷电容的阻抗特性好。
电磁兼容技术应贯穿产品研发始终,包括产品的概要设计、详细设计、原理图印制板设计、结构、组装调试等每个环节,都应该考虑电磁兼容设计,概要设计中需要调研产品应用环境,分析现场干扰类型,评估干扰风险,详细设计中需要针对具体的干扰,采取相应的对策,需要全面设计。
原理图印制板图设计需要将各项措施体现在原理图中,必要时进行仿真,印制板图设计时需要按照模块化设计,注意布局布线,敏感电路的电磁兼容防护。
结构也是电磁兼容设计中主要的一部分,产品的结构对静电、群脉冲、辐射等有很大的关系,结构要求具有良好的屏蔽性和接地。
装配调试环节需要注意信号完整性,保证接地的连续性,注意面板接触问题,在测试环节根据遇到的实际情况,采取相应的措施。
二、电磁兼容实例应用分析学习电磁兼容技术的整体目标是系统地学习电磁兼容方面的知识,通过学习电磁兼容设计理论,使这些方法、规则、措施等融入实际工作中,来保证产品尽可能可靠。
1、接地问题实例一:某系统设备在做422通讯串口的射频场感应传导测试,采用双绞屏蔽线,开始采用的是单端接地,测试时出现的误码率高,几乎没有正确的数据,后来采用双端可靠接地,通讯正常。
实例二:某系统设备在做视频鼠标线的射频场感应传导的试验时,在较低频段(3M 以下)时显示器有波纹,上下闪动,后来将视频线的显示器侧可靠接地,干扰明显降低,几乎不影响显示。
分析:这两种现象都是在做射频场的感应传导试验时出现的,射频场的感应传导抗扰度试验实质是:设备引线变成被动天线,接受射频场的感应,变成传导干扰入侵设备内部,最终以射频电压电流形成的近场电磁场影响设备工作,以低频磁场为主。
双绞线能够有效地抑制磁场干扰,这不仅是因为双绞线的两根线之间具有很小的回路面积,而且因为双绞线的每两个相邻的回路上感应出的电流具有相反的方向,因此相互抵销。
双绞线的绞节越密,则效果越明显。
屏蔽层两端接地时,外界磁场在原来信号与地线构成的回路中产生感应电流的同时,也在屏蔽层与地线构成的回路中产生感应电流Is,Is也会感应出磁场,但是这个磁场与原来的磁场磁场方向相反,相互抵消,导致总磁场减小,减小了干扰。
2、屏蔽问题实例三:某系统为机柜、机箱式结构,其中控制部分为机箱结构,子板总线板结构,子板均安装面板。
做静电试验时,接触放电+5.5kv时,对主板面板及左右相邻的面板进行静电试验时,控制板重启或死机,后来在控制板附近的面板之间安装指形簧片,系统在接触放电±6.6kv时运行正常。
实例四:某系统试验,用普通机柜,系统很敏感,对机柜引出线(通讯线)进行群脉冲试验,采用耦合夹耦合方式,干扰一加上去,系统就不正常,在通讯线两端增加磁环,效果不明显,后来没有办法了,更换了屏蔽机柜,进行试验,有明显效果,做几轮后,系统才会出现倒机想象,在通讯线进机柜处增加安装磁环后,系统工作正常,几轮试验后,没有出现倒机现象,系统工作都正常。
分析:现在很多系统都是机箱结构,即控制板、采集板、驱动板等都安装在同一机箱中,进行数据交换与控制。
安装完成后各电路板会有一定的缝隙,静电脉冲通过面板缝隙,分布电容向主板耦合,使电源失真或控制发生故障系统重启、死机。
在面板之间安装指形簧片,使机箱成为一个良好的屏蔽体,由于电荷的“趋肤效应”,当有静电干扰时,静电会沿着表面泄放至大地,对内部电路的影响减小或者消失。
屏蔽机柜对机柜的缝隙和门都进行了处理,缝隙处安装导电簧片,门与机柜接触位置安装导电布衬垫,提高机柜的屏蔽效能,提高机柜整体的抗干扰性,群脉冲干扰的实质是对线路分布电容能量的积累效应,当能量积累到一定程度时就可能引起线路(乃至设备)工作出错。
通常测试设备一旦出错,就会连续不断的出错,即使把脉冲电压稍稍降低,出错情况依然不断的现象加以解释。
脉冲成群出现,脉冲重复频率较高,波形上升时间短暂,能量较小,一般不会造成设备故障,使设备产生误动作的情况多见。
3、磁环的作用实例五:对一个机箱结构系统做群脉冲实验,机箱内含有控制板、采集板、驱动板等,采集线、驱动线出机柜,需要做信号线群脉冲实验,当干扰施加在采集线上时,所有的采集板上指示灯都闪烁,对采集回路进行分析,采集输入有光电隔离器件,采集回线为动态的12V输出,当干扰施加时,可能造成采集回线上的电压失真,造成指示灯闪烁,找了一个闭合磁环,安装在采集回线上,进行实验,在某一极性下指示灯闪烁,说明磁环有作用,然后根据其阻抗特性,绕制2圈,实验效果不明显,后来试验一下绕制3圈,结果,采集指示灯显示正常,多次试验,系统均正常。
分析:磁环对群脉冲干扰有很好的抑制作用,根据实际情况安装在通讯线的两端或一端,磁环有不同的阻抗特性,对干扰信号进行频率分析,设计磁环的截止频率正好落在干扰信号频率附近,使磁环体现较大的阻抗性,来抑制干扰。
磁环的圈数影响磁环的阻抗特性,圈数越多,阻抗特性曲线向低频率方向移动,即较低频率下的阻抗越大,若此频率比较接近干扰频率时,就能起到很好的抑制干扰的作用。
电磁兼容技术融入电子产品开发设计中,可以提高产品的安全可靠性,如果在实际测试中,某一方面存在缺陷,可以从电磁干扰的方式上入手进行一步一步测试,电磁干扰有两种形式:传导发射和辐射发射,从各自的耦合路径进行查找。
一个系统指标超标,可以先从辐射发射上解决,设备是否屏蔽良好,机壳上孔用导电布封住,导电布要与机壳良好接触,再进行试验,如果还超标,那就是干扰主要是传导发射引起的,在设备机壳出口处安装信号滤波器和电源滤波器,进行试验,如果还超标,那就是干扰是通过电缆辐射和传导发射出来,通过对屏蔽层的接地,减小地环路等措施必定能查找到原因并解决。
三、结语产品需要逐步更新完善,才能达到一定的安全可靠,电磁兼容技术需要不断的积累,才能保证产品的安全可靠,产品应用场合不同,遇到的电磁干扰有所不同,产品的性能也不同,需要根据实际应用环境,分析干扰源,查找耦合路径,明确敏感源,对干扰源采取隔离措施,切断耦合路径或者疏导干扰,对敏感源采取屏蔽、滤波等措施,保证产品安全可靠工作。