2017年襄阳市枣阳市中考数学适应性考试题含答案
2017年湖北省襄阳市枣阳市中考数学模拟试卷(解析版)
2017年湖北省襄阳市枣阳市中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.5 B.﹣3 C.0 D.22.(3分)下列计算正确的是()A.3x2﹣2x2=1 B.x+x=x2C.4x8÷2x2=2x4 D.x•x=x23.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125° D.130°4.(3分)长方体的主视图、俯视图如图所示,则其左视图面积为()A.3 B.4 C.12 D.165.(3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B.C.D.6.(3分)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣7.(3分)在平面直角坐标系中,点P(﹣4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)8.(3分)小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是119.(3分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的度数为()A.128°B.126°C.122° D.120°10.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共15分)11.(3分)计算:(﹣2)0﹣+2﹣1=.12.(3分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x=.13.(3分)已知不等式组:,其解集为.14.(3分)如图,在△ABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ADC的周长为8,AB=6,则△ABC的周长为.15.(3分)如图,AB是⊙O直径,CD⊥AB,∠CDB=30°,CD=2,则S阴影=.16.(3分)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.三、解答题(本大题共9小题,共69分)17.(6分)先化简,再求值:(+2﹣x)÷,其中x满足x2+2x ﹣3=0.18.(6分)为了解学生的艺术特长发展情况,某校音乐决定围绕在“舞蹈、乐器、声乐、戏曲、其他活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了名学生,其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为.扇形统计图中喜欢“戏曲”部分扇形的圆心角为度.(2)请你补全条形统计图.(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.19.(6分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.20.(6分)如图,为美化环境,某小区计划在一块长为60m,宽为40m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建同样宽的通道,当通道的面积与花圃的面积之比等于3:5时,求此时通道的宽.21.(7分)如图,等边△ABO在平面直角坐标系中,点A的坐标为(4,0),函数y=(x>0,k是常数)的图象经过AB边的中点D,交OB边于点E.(1)求直线OB的函数解析式;(2)求k的值;(3)若函数y=的图象与△DEB没有交点,请直接写出m的取值范围.22.(8分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)说明:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.23.(10分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?24.(11分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足E,DE与AB相交于点F.(1)当AB=AC时,(如图1),①∠EBF=°;②求证:BE=FD;(2)当AB=kAC时(如图2),求的值(用含k的式子表示).25.(12分)已知:如图,在平面直角坐标系xOy中,抛物线过点A (6,0)和点B(3,).(1)求抛物线y1的解析式;(2)将抛物线y1沿x轴翻折得抛物线y2,求抛物线y2的解析式;(3)在(2)的条件下,抛物线y2上是否存在点M,使△OAM与△AOB相似?如果存在,求出点M的坐标;如果不存在,说明理由.2017年湖北省襄阳市枣阳市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.5 B.﹣3 C.0 D.2【解答】解:﹣3<0<2<5,则最小的数是﹣3,故选:B.2.(3分)下列计算正确的是()A.3x2﹣2x2=1 B.x+x=x2C.4x8÷2x2=2x4 D.x•x=x2【解答】解:A、3x2﹣2x2=x2,故此选项错误;B、x+x=2x,故此选项错误;C、4x8÷2x2=2x6,故此选项错误;D、x•x=x2,故此选项正确;故选:D.3.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125° D.130°【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.4.(3分)长方体的主视图、俯视图如图所示,则其左视图面积为()A.3 B.4 C.12 D.16【解答】解:由主视图易得高为1,由俯视图易得宽为3.则左视图面积=1×3=3,故选:A.5.(3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B.C.D.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.6.(3分)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.7.(3分)在平面直角坐标系中,点P(﹣4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)【解答】解:如图所示:根据图形得:P1(3,2),P2(﹣2,3),故选A8.(3分)小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是11【解答】解:掷一次骰子,在骰子向上的一面上的点数大于0是必然事件;掷一次骰子,在骰子向上的一面上的点数为7是不可能事件;掷三次骰子,在骰子向上的一面上的点数之和刚好为18是随机事件;掷两次骰子,在骰子向上的一面上的点数之积刚好是11是不可能事件,故选:C.9.(3分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的度数为()A.128°B.126°C.122° D.120°【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,∴∠BEC=180°﹣58°=122°.故选C.10.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【解答】解:由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选:D.二、填空题(本大题共6小题,每小题3分,共15分)11.(3分)计算:(﹣2)0﹣+2﹣1=1.【解答】解:(﹣2)0﹣+2﹣1=1﹣0.5+0.5=1故答案为:1.12.(3分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x=1或6.【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故答案为:1或6.13.(3分)已知不等式组:,其解集为﹣1<x<.【解答】解:解不等式2x<5,得:x<,解不等式3(x+2)>x+4,得:x>﹣1,∴不等式组的解集为﹣1<x<,故答案为:﹣1<x<.14.(3分)如图,在△ABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ADC的周长为8,AB=6,则△ABC的周长为14.【解答】解:根据题意得:MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为8,∴AC+CD+AD=AC+CD+BD=AC+BC=8,∵AB=6,∴△ABC的周长为:AC+BC+AB=14.故答案为14.15.(3分)如图,AB 是⊙O 直径,CD ⊥AB ,∠CDB=30°,CD=2,则S 阴影=.【解答】解:如图,CD ⊥AB ,交AB 于点E , ∵AB 是直径, ∴CE=DE=CD=,又∵∠CDB=30° ∴∠COE=60°, ∴OE=1,OC=2, ∴BE=1, ∴S △BED =S △OEC , ∴S 阴影=S 扇形BOC ==.故答案是:.16.(3分)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则的值等于.【解答】解:在正方形ABCD 中, ∵∠ABD=∠CBD=45°,∵四边形MNPQ 和AEFG 均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.三、解答题(本大题共9小题,共69分)17.(6分)先化简,再求值:(+2﹣x)÷,其中x满足x2+2x ﹣3=0.【解答】解:原式=×=,∵x2+2x﹣3=0,解得:x1=1,x2=﹣3,又∵,∴x≠1且x≠﹣2,∴x=﹣3,∴原式==﹣1.18.(6分)为了解学生的艺术特长发展情况,某校音乐决定围绕在“舞蹈、乐器、声乐、戏曲、其他活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了50名学生,其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为24%.扇形统计图中喜欢“戏曲”部分扇形的圆心角为28.8度.(2)请你补全条形统计图.(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.【解答】解:(1)一共抽查学生数为:8÷16%=50,“舞蹈”活动项目的人数占抽查总人数的百分比为:×100%=24%;∵喜欢戏曲的人数:50﹣12﹣16﹣8﹣10=50﹣46=4人,∴扇形统计图中喜欢“戏曲”部分扇形的圆心角为:×360°=28.8°,故答案为:50,24%,28.8.(2)补全统计图如图:(3)画树状图如下:∵共有12种等可能结果,其中恰好选中“舞蹈、声乐”这两项活动的有2种结果,故恰好选中“舞蹈、声乐”两项活动的概率是:=.19.(6分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,,∴△AEG≌△CFH(ASA),∴AG=CH.20.(6分)如图,为美化环境,某小区计划在一块长为60m,宽为40m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建同样宽的通道,当通道的面积与花圃的面积之比等于3:5时,求此时通道的宽.【解答】解:设此时通道的宽为x米,根据题意,得60×40﹣(60﹣2x)(40﹣2x)=×60×40,解得x=5或45,45不合题意,舍去.答:此时通道的宽为5米.21.(7分)如图,等边△ABO在平面直角坐标系中,点A的坐标为(4,0),函数y=(x>0,k是常数)的图象经过AB边的中点D,交OB边于点E.(1)求直线OB的函数解析式;(2)求k的值;(3)若函数y=的图象与△DEB没有交点,请直接写出m的取值范围.【解答】解:(1)过点B作BC⊥x轴于点C,∵△ABO是等边三角形,点A的坐标为(4,0),∴OC=AC=2.由勾股定理得:BC==2,∴B(2,2),设直线OB的函数解析式y=mx,则2=2m,∴m=.∴直线OB的函数解析式为y=x;(2)∵D为AB的中点,∴D(3,)∴k=3;(3)解得或,∴E(,3),∵B(2,2),D(3,)假设经过B(2,2)时,m=2×2=4假设经过D(3,)时,m=3×=3,假设经过E(,3)时,m=3×=3,∴若函数y=的图象与△DEB没有交点,m>4或m<3且m≠0.22.(8分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)说明:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.【解答】(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP=.∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴.又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD====4.23.(10分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.24.(11分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足E,DE与AB相交于点F.(1)当AB=AC时,(如图1),①∠EBF=22.5°;②求证:BE=FD;(2)当AB=kAC时(如图2),求的值(用含k的式子表示).【解答】解:(1)①∵∠A=90°,AB=AC,∴∠ABC=∠C=45°,∴∠EDB=∠C=22.5°,又BE⊥DE,∴∠EBD=90°﹣22.5°=67.5°,∴∠EBF=67.5°﹣45°=22.5°,故答案为:22.5;②作DG∥AC交BE的延长线于G,则∠BDG=∠C=45°,又∠EDB=∠C,∴∠EDB=∠EDG,在△EDB和△EDG中,,∴△EDB≌△EDG,∴BE=EG=BG,∵∠BDG=∠C=45°,∴HB=HD,∵∠BEF=∠DHF=90°,∴∠HBG=∠HDF,在△BHG和△DHF中,,∴△BHG≌△DHF,∴DF=BG,∴BE=FD;(2)由(1)得,BE=EG=BG,∵DG∥AC,∴==k,∵∠HBG=∠HDF,∠BHG=∠DHF=90°,∴△BHG∽△DHF,∴==k,∴=.25.(12分)已知:如图,在平面直角坐标系xOy中,抛物线过点A(6,0)和点B(3,).(1)求抛物线y1的解析式;(2)将抛物线y1沿x轴翻折得抛物线y2,求抛物线y2的解析式;(3)在(2)的条件下,抛物线y2上是否存在点M,使△OAM与△AOB相似?如果存在,求出点M的坐标;如果不存在,说明理由.【解答】解:(1)依题意,得解得,∴抛物线y1的解析式为:.(2)将抛物线y1沿x轴翻折后,仍过点O(0,0),A(6,0),还过点B关于x 轴的对称点,设抛物线y2的解析式为:,∴,解得:∴抛物线y2的解析式为;(3)过点B作BC⊥x轴于点C,则有.∴∠BOC=30°,∠OBC=60°.∵OC=3,OA=6,∴AC=3.∴∠BAC=30°,∠OBA=120°.∴OB=AB.即△OBA是顶角为120°的等腰三角形.分两种情况:①当点M在x轴下方时,△OAM就是△OAB',此时点M的坐标为.②当点M在x轴上方时,假设△OAM∽△OBA,则有AM=OA=6,∠OAM=120°.过点M作MD⊥x轴于点D,则∠MAD=60°.∴,AD=3.∴OD=9.而(9,)满足关系式,即点M在抛物线上.根据对称性可知,点也满足条件.综上所述,点M的坐标为,,.。
2017年湖北省襄阳市中考数学试卷(解析版)
2017年湖北省襄阳市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.﹣5的倒数是()A.B.﹣C.5 D.﹣52.下列各数中,为无理数的是()A.B.C.D.3.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为()A.65°B.60°C.55°D.50°4.下列运算正确的是()A.3a﹣a=2 B.(a2)3=a5C.a2•a3=a5D.a6÷a3=a25.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中生每天锻炼所用的时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查6.如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A.B.C.D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1 B.y=2x2﹣3C.y=2(x﹣8)2+1 D.y=2(x﹣8)2﹣39.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB 于点F,则AF的长为()A.5 B.6 C.7 D.810.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6二、填空题(共6小题)11.某天襄阳某镇观赏桃花的游客近16000人,数据16000用科学记数法表示为.12.分式方程=的解是.13.不等式组的解集为.14.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.15.在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为.16.如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.三、解答题(共9小题)17.先化简,再求值:(+)÷,其中x=+2,y=﹣2.18.中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是部,中位数是部,扇形统计图中“1部”所在扇形的圆心角为度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.19.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.21.如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.22.如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.23.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.24.如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.25.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.2017年湖北省襄阳市中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的倒数是﹣,故选:B.【知识点】倒数2.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,,是有理数,是无理数,故选:D.【知识点】无理数3.【分析】根据平行线的性质,得到∠ABD=130°,再根据BE平分∠ABD,即可得到∠1的度数.【解答】解:∵BD∥AC,∠A=50°,∴∠ABD=130°,又∵BE平分∠ABD,∴∠1=∠ABD=65°,故选:A.【知识点】平行线的性质4.【分析】分别利用幂的乘方运算法则、同底数幂的乘除法运算法则分别化简求出答案.【解答】解:A、3a﹣a=2a,故此选项错误;B、(a2)3=a6,故此选项错误;C、a2•a3=a5,正确;D、a6÷a3=a3,故此选项错误;故选:C.【知识点】同底数幂的乘法、同底数幂的除法、合并同类项、幂的乘方与积的乘方5.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B、为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C、为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D、为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选:D.【知识点】全面调查与抽样调查6.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是一个小正方形,故选:A.【知识点】简单组合体的三视图7.【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【知识点】中心对称图形、轴对称图形8.【分析】根据平移的规律即可得到平移后函数解析式.【解答】解:抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y=2(x﹣4+4)2﹣1,即y=2x2﹣1,再向上平移2个单位长度得到的抛物线解析式为y=2x2﹣1+2,即y=2x2+1;故选:A.【知识点】二次函数图象与几何变换9.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选:B.【知识点】作图—基本作图、含30度角的直角三角形10.【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【解答】解:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.【知识点】勾股定理的证明二、填空题(共6小题)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【知识点】科学记数法—表示较大的数12.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.【知识点】解分式方程13.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:,解不等式①,得x>2.解不等式②,得x≤3,故不等式组的解集为2<x≤3.故答案为2<x≤3.【知识点】解一元一次不等式组14.【分析】根据题意,通过列树状图的方法可以写出所有可能性,从而可以得到两枚正面向上,一枚正面向下的概率.【解答】解:画树状图得:由树状图可知所有可能情况有8种,其中两枚正面向上,一枚正面向下的情况数为3种,所以两枚正面向上,一枚正面向下的概率=.【知识点】列表法与树状图法15.【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,∴AE=AC=,AD=AB=,∴sin∠AOE==,sin∠AOD==,∴∠AOE=45°,∠AOD=30°,∴∠BAO=60°,∠CAO=90°﹣45°=45°,∴∠BAC=45°+60°=105°,或∠BAC′=60°﹣45°=15°.∴∠BAC=15°或105°.故答案是:15°或105°.【知识点】垂径定理、解直角三角形16.【分析】解法一:根据D,C,E,F四点共圆,可得∠CDE=∠CFE=∠B,再根据CE=FE,可得∠CFE=∠FCE,进而根据∠B=∠FCE,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=AB=5,再判定△CDF∽△CF A,得到CF2=CD×CA,进而得出CD的长.解法二:由对称性可知CF⊥DE,可得∠CDE=∠ECF=∠B,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=5,再判定△CDF∽△CF A,得到CF2=CD×CA,进而得出CD的长.【解答】解:由折叠可得,∠DCE=∠DFE=90°,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CF A,∴CF2=CD×CA,即52=CD×8,∴CD=,故答案为:.解:由对称性可知CF⊥DE,又∵∠DCE=90°,∴∠CDE=∠ECF=∠B,∴CF=BF,同理可得CF=AF,∴F是AB的中点,∴CF=AB=5,又∵∠DFC=∠ACF=∠A,∠DCF=∠FCA,∴△CDF∽△CF A,∴CF2=CD×CA,即52=CD×8,∴CD=,故答案为:.【知识点】勾股定理、翻折变换(折叠问题)三、解答题(共9小题)17.【分析】先根据分式的混合运算顺序和法则化简原式,再将x、y的值代入求解可得.【解答】解:原式=[+]÷=•y(x+y)=,当x=+2,y=﹣2时,原式===.【知识点】分式的化简求值18.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)条形统计图如图所示,(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.【知识点】全面调查与抽样调查、中位数、扇形统计图、众数、条形统计图、列表法与树状图法19.【分析】(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2014年到2016年利润的年平均增长率来解答.【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2017年的利润能超过3.4亿元.【知识点】一元二次方程的应用20.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.【解答】(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.【知识点】菱形的判定与性质21.【分析】(1)由点B的坐标求出k=6,得出双曲线的解析式为y2=.求出A的坐标为(1,6),由点A和B的坐标以及待定系数法即可求出直线的解析式为直线y1=2x+4;(2)求出点C的坐标为(﹣2,0),即可得出当y1<0时x的取值范围.【解答】解:(1)∵点B(﹣3,﹣2)在双曲线y2=上,∴,∴k=6,∴双曲线的解析式为y2=.把y=6代入y2=得:x=1,∴A的坐标为(1,6),∵直线y1=ax+b经过A、B两点,∴,解得:,∴直线的解析式为直线y1=2x+4;(2)由直线y1=0得,x=﹣2,∴点C的坐标为(﹣2,0),当y1<0时x的取值范围是x<﹣2.【知识点】反比例函数与一次函数的交点问题22.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∴∠DOC=∠BOC,∴CD=CB=2,∵ED=1,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.【知识点】切线的判定与性质、弧长的计算23.【分析】(1)将x=600、y=18000代入y1=k1x可得k1;将x=600、y=18000和x=1000、y=26000代入y1=k2x+b可得k2、b.(2)分0≤x<600和600≤x≤1000两种情况,根据“绿化总费用=种草所需总费用+种花所需总费用”结合二次函数的性质可得答案;(3)根据种草部分的面积不少于700m2,栽花部分的面积不少于100m2求得x的范围,依据二次函数的性质可得.【解答】解:(1)将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入,得:,解得:;(2)当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元;(3)由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值27900元.【知识点】二次函数的应用24.【分析】(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;(2)①证得△CDF∽△CED,根据相似三角形的性质得到,即CD2=CE•CF,根据等腰直角三角形的性质得到CD=AB,于是得到AB2=4CE•CF;②如图,过D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,求得CD=2,推出△CEN∽△GDN,根据相似三角形的性质得到=2,根据勾股定理即可得到结论.【解答】(1)证明:∵∠ACB=90°,AC=BC,AD=BD,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,,∴△DCE≌△DCF,∴DE=DF;(2)解:①∵∠DCF=∠DCE=135°,∴∠CDF+∠F=180°﹣135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴,即CD2=CE•CF,∵∠ACB=90°,AC=BC,AD=BD,∴CD=AB,∴AB2=4CE•CF;②如图,过D作DG⊥BC于G,则∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,由CD2=CE•CF得CD=2,∴在Rt△DCG中,CG=DG=CD•sin∠DCG=2×sin45°=2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴=2,∴GN=CG=,∴DN===.【知识点】几何变换综合题25.【分析】(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得△PBE∽△OCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;(3)当四边形PMQN为正方形时,则可证得△COQ∽△QAB,利用相似三角形的性质可求得CQ的长,在Rt△BCQ中可求得BQ、CQ,则可用t分别表示出PM和PN,可得到关于t的方程,可求得t的值.【解答】解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+x+4;(2)由题意可设P(t,4),则E(t,﹣t2+t+4),∴PB=10﹣t,PE=﹣t2+t+4﹣4=﹣t2+t,∵∠BPE=∠COD=90°,∠PBE=∠OCD,∴△PBE∽△OCD,∴=,即BP•OD=CO•PE,∴2(10﹣t)=4(﹣t2+t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;(3)当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴=,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==2,BQ==4,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ=t,PN=PB•sin∠CBQ=(10﹣t),∴t=(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或.【知识点】二次函数综合题。
2017枣阳中考适应性试题(【定稿)
枣阳市2017年中考适应考试语文试题(本试题共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位臵.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B铅笔或0.5毫米黑色签字笔。
4.考试结束后,请将本试题卷与答题卡一并上交。
一、积累与运用(20分)1.下面句子中有两个错别字,请改正后用正楷字将整个句子抄写在米字格中。
(2分)潜心惯注出成效,克尽职守现风采。
2.根据语境,给下面一段话中加点的字注音。
(2分)一捧汉江水,浪花里溅出无数金戈铁马的故事;一段古城墙,城砖上刻下风雨沧桑的历史记忆。
古城与山水的交融,历史与今天的贯通,繁华与典雅的邂.()逅,这就是让人忍不住即物起兴.()的大美襄阳!3.下列句子中加点词语使用不正确的一项是()(2分)A.《成都》这首歌抚慰了听众失落的情感和疲惫的心灵,因而一时间风靡..大街小巷。
B.热爱、传承祖国文化,是每一个炎黄子孙义不容辞....的责任。
C.遍布襄阳街头的共享单车正转弯抹角....地改变着人们的日常行为习惯,并逐步成为生活新时尚。
D.中国人民的梦想和各国人民的梦想息息相通....,打造人类命运共同体适逢其时。
4.下列句子没有语病的一项是()(2分)A.通过开展“戏曲进校园”活动,青少年能近距离感受戏曲艺术的魅力。
B.只有尽快修建好横跨汉江之上的庞公大桥,就能缓解襄城、樊城的交通压力。
C.发扬和培育“社会主义核心价值观”是一项凝魂聚气、强基固本的基础工程。
D.电视剧《三生三世十里桃花》自首播以来,牢牢占据新媒体榜单魁首第一位置。
5.将下列句子组成语意连贯的一段话,语序排列正确的一项是()(2分)①读诗词,可以让我们学习古往今来仁人志士的气节情怀,汲取诗词歌赋的精神给养②那些丰富多彩的艺术形象、引人入胜的深邃意境、凝练生动的优美词句③中国自古就是诗的国度。
襄阳市襄州区2017年中考适应性考试数学试题(扫描版附答案)
襄州区2017年适应性考试数学 参考答案一、 选择题(每小题3分,共30分)二、 填空题(每小题3分,共18分)11. )2)(2(-+m m m ; 12. 9; 13.94; 14. AC ⊥BD(答案不唯一,只要正确,均给分);15.32+或32-; 16.413-. 三、解答题(共72分)17.(本小题6分) 解:122)12124(22+-+÷+--+x x x x x x =2)1()1)(1()2(22+-∙-++x x x x x ………2分=1221)1(2+-=+-x x x x ……………4分当12-=x 时,原式=112)112(2+---=222-……6分18.(本小题6分)解:(1)56÷20%=280(名),答:这次调查的学生共有280名;………………1分(2)互助:280×15%=42(名),进取:280﹣42﹣56﹣28﹣70=84(名),………2分 补全条形统计图,如图所示,………………3分(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩” 用树状图为:………………4分如图,共有20个等可能结果,恰好选到“C ”和“E ”有2个,……5分∴恰好选到“进取”和“感恩”两个主题的概率是.……………6分19.(本小题6分)解:(1)∵点A (4,1)在反比例函数y=的图象上, ∴m=4×1=4,∴反比例函数的解析式为y=.………………1分 ∵点B 在反比例函数y=的图象上,∴将点B 的坐标为(n ,2)代入y=得n=2.∴B (2,2),…2分 将点A (4,1),B (2,2)分别代入y=kx+b ,用待定系数法可求得一次函数解析式为321+-=x y ;………4分 (2)由图象可知,当1y >2y 时,x <0或42<<x .…………6分20.(本小题6分)解:(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x +20)元, 由题意得:20216002400+⨯=x x .………………1分解得:x =60.………………2分经检验,x =60是原方程的解.x +20=80答:购买一个甲种足球需60元,购买一个乙种足球需80元..…………3分(2)设这所学校可购买y 个甲种足球,由题意得:)50(8060y y -+≤3500,.………4分,解得:y ≥25.……………5分 答:这所学校此次最少可购买25个甲种足球.………………6分21.(本小题6分)解:(1)由旋转的性质得:△ABC ≌△ADE ,且AB=AC ,∴AE=AD ,AC=AB ,∠BAC=∠DAE ,.……………1分∴∠BAC+∠BAE=∠DAE+∠BAE ,即∠CAE=∠DAB ,∴△AEC ≌△ADB (SAS );.………………2分(2)过点B 作BM ⊥EC 于点M ,∵∠BAC=30°AB=AC,∴∠ABC=∠ACB=75°.…………3分∵当四边形ADFC 是菱形时,AC ∥DF,∴∠FBA=∠BAC=30°,∵AB=AD,∴∠ADB=∠ABD=30°,∴∠ACE=∠ADB=30°,∴∠FCB=45°.……4分 ∵BM ⊥EC ,∴∠MBC=45°,∴BM=MC=BCsin45°=22×2=2,………………5分 ∵∠ABC =75°,∠ABD =30°,∠FCB=45°,∴∠BFC =180°-75°-45°-30°=30°, ∴BF=2BM=22………………6分22.(本小题8分)(1)证明:连接OC ,则OC ⊥CD ,又AD ⊥CD ,∴∠ADC=∠OCD=90°, ∴AD ∥OC ,∴∠CAD =∠OCA ,………………1分又OA =OC ,∴∠OCA =∠OAC ,∴∠CAD =∠CAO ,∴AC 平分∠DAB .………2分(2)解:连接BC 、OE,∵∠EOA =2∠CAD ,∠COB=2∠CAO∵∠CAD =∠CAO,∴∠EOA =∠COB,∴BC=EC=6………………3分∵AB 是⊙O 的直径,∴∠ACB=90°, 又AC=8,勾股定理易得AB=10,…………4分 ∵∠DAC =∠CAB,∠ADC =∠ACB=90°,∴△ADC ∽△ACB,∴AB AC AC AD =, ∴AD=1086⨯=4.8,………………6分 又∠DEC=∠ABC,同理可得DE=3.6,∴AE=AD-DE=6.4-3.6=2.8.………8分23.(本小题11分)解:(1)由题意得:(120-90)÷1+10=40(套);………………2分(2)当10<x ≤40时,w =x (60-x )=x x 602+-;………………4分 当x >40时,w =(90-70)x =20x ………………5分(3)当x >40时,w =20x , w 随x 的增大而增大,符合题意;………6分当10<x ≤40时, w =x x 602+-=900)30(2+--x ………8分∵a =﹣1<0, ∴抛物线开口向下.对称轴是直线x=30 ∴ 10<x ≤30,w 随着x 的增大而增大,………………9分 而当x =30时,w 最大值=900; ………………10分∵要求卖的数量越多赚的钱越多,即w 随x 的增大而增大, ∴由以上可知,当x =30,最低售价为120﹣(30﹣10)=100元.……11分24.(本小题11分)解:(1)由折叠的性质可知,∠APH=∠B=90°, ∴∠APD+∠HPC=90°,又∠PHC+∠HPC=90°, ∴∠APD=∠PHC ,………1分又∠D=∠C=90°,∴△HCP ∽△PDA ;…………2分(2) AB=2BH. ∵HC:HB=3:5,设HC=3x ,则HB=5x ,在矩形ABCD 中,BC=AD=8 ,∴HC=3,则HB=5……3分由折叠的性质可知HP=HB=5,AP=AB,在Rt △HCP,易得PC=4,∵△HCP ∽△PDA, ∴HP CP AP AD =, ∴10458=⨯=AP ……………5分 ∴AB=AP=10=2BH,即AB=2BH.………6分(3)EF 的长度不变. ………………7分作MQ ∥AB 交PB 于Q , ∴∠MQP=∠ABP ,由折叠的性质可知,∠APB=∠ABP ,∴∠MQP=∠APB ,∴MP=MQ ,又BN=PM ,∴MQ=BN ,∵MQ ∥AB ,∴BNMQ FB QF =, ∴QF=FB ,………………8分∵MP=MQ ,ME ⊥BP , ∴PE=QE ,∴EF=21PB , ………………9分 由(2)得,PC=4,BC=8, ∴PB=22BC PC +=54,…………10分∴EF=52.………………11分25.(本小题12分)解:(1)∵抛物线28y ax bx =++经过点A (﹣4,0),B (6,0),∴⎩⎨⎧=++=+-0863608416b a b a , ………………2分 解得⎪⎩⎪⎨⎧=-=3231b a ,………………3分 ∴抛物线的解析式是:832312++-=x x y ;………………4分 (2)如图,作DM ⊥抛物线的对称轴于点M ,设G 点的坐标为(1,n ),由翻折的性质,可得AD=DG , ∵A (-4,0),C (0,8),点D 为AC 的中点,∴点D 的坐标是(-2,4),…………6分∴点M 的坐标是(﹣1,4),DM=2﹣(﹣1)=3,∵B (6,0),C (0,8),∴∴AD=………………7分在Rt △GDM 中,222MG DM DG +=32+(4﹣n )2=20, 解得n=4,………………8分∴G 点的坐标为(1,41,4);………………9分(3)存在.符合条件的点E 、F 的坐标为:1E (-1,0) ,1F (1,4);………10分2E (3,0),2F (1,-4);……11分3E (-3,0),3F (1,12).…………12分。
2017年湖北省襄阳市中考数学试卷
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前湖北省襄阳市2017年初中毕业生学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5-的倒数是( )A .15B .15-C .5D .5- 2.下列各数中,为无理数的是( )ABC .13D3.如图,BD AC ∥,BE 平分ABD ∠,交AC 于点E .若50A =︒∠,则1∠的度数为( )A .65︒B .60︒C .55︒D .50︒ 4.下列运算正确的是( )A .32a a -=B .235()a a =C .235a a a =D .632a a a ÷= 5.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中生每天锻炼所用的时间,选择全面调查B .为了解襄阳电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查6.如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是( )ABC D 7.下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD8.将抛物线22(4)1y x =--先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A .221y x =+B .223y x =-C .22(8)1y x =-+D .22(8)3y x =--9.如图,在ABC △中,90ACB =︒∠,30A =︒∠,4BC =.以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ;作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .810.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若2()21a b +=,大正方形的面积为13,则小正方形的面积为 ( )A .3B .4C .5D .6第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 11.某天到襄阳某镇观赏桃花的游客近16000人,数据16000用科学记数法表示为 .12.分式方程233x x=-的解是 .13.不等式组211841x x x x -+⎧⎨+-⎩>≥的解集为 .14.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是 .15.在半径为1的O 中,弦AB ,AC 的长分别为1,则BAC ∠的度数为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)16.如图,在ABC △中,90ACB =︒∠,点D ,E 分别在AC ,BC 上,且CDE B =∠∠,将CDE △沿DE 折叠,点C 恰好落在AB 边上的点F 处,若8AC =,10AB =,则CD 的长为 .三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分6分)先化简,再求值:2111()x y x y xy y +÷+-+,其中2x =,2y =.18.(本小题满分6分)中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是 部,中位数是 部;扇形统计图中“1部”所在扇形的圆心角为 度; (2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为 .19.(本小题满分6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,襄阳市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?20.(本小题满分7分)如图,AE BF ∥,AC 平分BAE ∠,且交BF 于点C ,BD 平分ABF ∠,且交AE 于点D ,连接CD .(1)求证:四边形ABCD 是菱形; (2)若30ADB =︒∠,6BD =,求AD 的长.21.(本小题满分6分)如图,直线1y ax b =+与双曲线2ky x=交于A ,B 两点,与x 轴交于点C ,点A 的纵坐标为6,点B 的坐标为(3,2)--. (1)求直线和双曲线的解析式;(2)求点C 的坐标,并结合图象直接写出10y <时x 的取值范围.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)22.(本小题满分8分)如图,AB 为O 的直径,C ,D 为O 上两点,BAC DAC =∠∠,过点C 作直线EF AD ⊥,交AD 的延长线于点E ,连接BC .(1)求证:EF 是O 的切线;(2)若1DE =,2BC =,求劣弧BC 的长l .23.(本小题满分10分)为了“创建文明城市,建设美丽家园”,襄阳市某社区将辖区内的一块面积为21000m 的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为2(m )x ,种草所需费用1y (元)与2(m )x 的函数关系式为112,0600,6001000k x x y k x b x ⎧=⎨+⎩≤<,≤≤,其图象如图所示;栽花所需费用2y (元)与2(m )x 的函数关系式为220.012030000y x x =--+(01000)x ≤≤.(1)请直接写出1k ,2k 和b 的值;(2)设这块21000m 空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于2700m ,栽花部分的面积不少于2100m ,请求出绿化总费用W 的最小值.24.(本小题满分10分)如图,在ABC △中,90ACB =︒∠,CD 是中线,AC BC =.一个以点D 为顶点的45︒角绕点D 旋转,使角的两边分别与AC ,BC 的延长线相交,交点分别为点E ,F ,DF 与AC 交于点M ,DE 与BC 交于点N .(1)如图1,若CE CF =,求证:DE DF =; (2)如图2,在EDF ∠绕点D 旋转的过程中:①探究三条线段AB ,CE ,CF 之间的数量关系,并说明理由; ②若4CE =,2CF =,求DN 的长.25.(本小题满分13分)如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(100),,抛物线24y ax bx =++过B ,C 两点,且与x 轴的一个交点为(20)D -,,点P 是线段CB 上的动点,设()010CP t t =<<.(1)请直接写出B ,C 两点的坐标及抛物线的解析式;(2)过点P 作PE BC ⊥,交抛物线于点E ,连接BE ,当t 为何值时,PBE OCD =∠∠? (3)点Q 是x 轴上的动点,过点P 作PM BQ ∥,交CQ 于点M ,作PN CQ ∥,交BQ 于点N .当四边形PMQN 为正方形时,请求出t 的值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2017年湖北省襄阳市中考数学试卷-答案
湖北省襄阳市2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】5-的倒数是15-,故选:B 。
【考点】倒数的概念 2.【答案】D13是无理数,故选:D 。
【考点】无理数的概念 3.【答案】A【解析】∵BD AC ∥,50A ∠=︒,∴130ABD ∠=︒,又∵BE 平分ABD ∠,∴11652ABD ∠=∠=︒,故选:A 。
【考点】角平分线的性质,平行线的性质 4.【答案】C【解析】A ,32a a a -=,故此选项错误;B ,236()a a =,故此选项错误;C ,235a a a =,正确;D ,633a a a ÷=,故此选项错误;故选:C 。
【考点】整式的相关运算 5.【答案】D【解析】A ,为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B ,为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C ,为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D ,为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选:D 。
【考点】调查方式的选择 6.【答案】A【解析】从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是一个小正方形,故选:A 。
【考点】几何体三视图的确定 7.【答案】C【解析】A ,是轴对称图形,不是中心对称图形,故本选项错误;B ,是中心对称图,不是轴对称图形,故本选项错误;C ,既是中心对称图又是轴对称图形,故本选项正确;D ,是轴对称图形,不是中心对称图形,故本选项错误,故选C 。
【考点】中心对称图形与轴对称图形的认识 8.【答案】A【解析】抛物线22(4)1y x =--先向左平移4个单位长度,得到的抛物线解析式为22(44)1y x =-+-,即221y x =-,再向上平移2个单位长度得到的抛物线解析式为2212y x =-+,即221y x =+,故选A 。
湖北省枣阳市中考适应性考试数学考试卷(解析版)(初三)中考模拟.doc
湖北省枣阳市中考适应性考试数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型 选择题填空题简答题xx 题 xx 题 xx 题 总分 得分一、xx 题(每空xx 分,共xx 分)【题文】计算-(-1)的结果是A. ±1B. -2C. -1D. 1 【答案】D【解析】试题分析:利用“负负得正”的口诀,可得-(-1)=1,故答案选D. 考点:有理数的运算.【题文】下列调查中,最适合采用全面调查(普查)方式的是 A. 对襄阳市辖区内汉江流域水质情况的调查 B. 对乘坐飞机的旅客是否携带违禁物品的调查 C. 对一个社区每天丢弃塑料袋数量的调查 D. 对襄阳电视台“襄阳新闻”栏目收视率的调查 【答案】B【解析】逐项分析四个选项中们案例最适合的调查方法,即可得出结论. 解:A 、对襄阳市辖区内长江流域水质情况的调查,应采用抽样调查; B 、对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查; C 、对一个社区每天丢弃塑料袋数量的调查, 应采用抽样调查; D 、对襄阳电视台“襄阳新闻”栏目收视率的调查,应采用抽样调查. 故选B .“点睛”本题考查了全面调查与抽样调查,解题的关键是逐项分析四个选项应用的调查方法.本题属于基础题,难度不大,解决该题型题目时,联系实际选择调查方法是关键. 【题文】如图所示,用量角器度量∠AOB,可以读出∠AOB 的度数为A. 45°B. 55°C. 125°D. 135° 【答案】B【解析】试题分析:由生活知识可知这个角小于90度,排除C 、D ,又OB 边在50与60之间,所以,度数评卷人得分应为55°.故选B.考点:用量角器度量角.【题文】下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、不是轴对称图形,不符合题意;B、是轴对称图形不是中心对称图形,不符合题意;C、是轴对称图形又是中心对称图形,符合题意;D、是轴对称图形不是中心对称图形,不符合题意;故选C.“点睛”此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.【题文】下列计算中,结果是的是A. B. C. D.【答案】D【解析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.解:A、a2+a4≠a6,不符合;B、a2•a3=a5,不符合;C、a12÷a2=a10,不符合;D、(a2)3=a6,符合.故选D.“点睛”本题考查了合并同类项、同底数幂的乘法、幂的乘方。
2017枣阳数学适应参考答案
2017年枣阳市适应性考试数学评分标准及参考答案一.选择题 题号1 2 3 4 5 6 7 8 9 10 答案D B B C D C A C A B 二.填空题11.5.5×107 12.B 13.15 14. 34 15.2 16. 223或553 三.解答题 17.解:原式22)1()1)(1()1(+-+÷+-=x x x x x x ………………………………2分 1--=x x . ………………………………………………3分 解不等式组得1-≤x <25. …………………………5分 ∴不等式组的整数解为-1,0,1,2.……………………………6分若使分式有意义,只能取2=x .∴原式2122-=--= . …………………………………………7分 18.解:(1)100;(2)略;72°;(3)32. 19.解:证明:(1)∵四边形 ABCD 是菱形,∴CD=CB.^^…………1分在△CFD 和△CEB 中,⎪⎩⎪⎨⎧===,,,BE DF CE CF CB CD ∴△CFD ≌△CEB.………………3分(2)∵△CFD ≌△CEB ,∴∠CDB=CBE, ∠DCF=∠BCE.∵CD=CB ,∴∠CDB=∠CBD ,∴∠ABD=∠CBD=∠CBE=60°,∴∠DCB=60°,………4分 ∴∠FCE=∠FCB+∠BCE=∠FCB+∠DCF=60°.…………………………5分又CF=CE ,∴△CFE 为等边三角形,∴∠CFE=60°.……………………6分20.解:设比赛组织者应邀请x 个队参赛.依题意列方程得:28)1(21=-x x , ……………………………………3分 解之,得81=x ,72-=x . …………………………5分7-=x 不合题意舍去,8=x .答:比赛组织者应邀请8个队参赛.…………………………6分21.解:(1)∵点A (2,4)在xm y =的图象上,∴8=m . ∴反比例函数的表达式为xy 8=.……………………………………2分 ∴2-=n ,∴B (-4,-2).∵点A (2,4)、B (-4,-2)在直线b kx y +=上,∴⎩⎨⎧+-=-+=,42,24b k b k ∴⎩⎨⎧==.2,1b k∴一次函数的表达式为2+=x y .…………………………4分(2)-4<x <0或x >2.……………………………………6分(3)解:设AB 交x 轴于点D ,则点D 的坐标为(-2,0).∴CD=2.∴S △ABC = S △BCD + S △ACD =642212221=⨯⨯+⨯⨯.………………7分 22.(1)如图,连接OD ,与AF 相交于点G.∵CE 与⊙O 相切于点D ,∴OD ⊥CE ,∴∠CDO=90°.……………………1分∵AD ∥OC ,∴∠ADO=∠1,∠DAO=∠2.∵OA=OD ,∴∠ADO=∠DAO. ∴∠1=∠2.………………2分在△CDO 和△CBO 中,OD=OB ,∠1=∠2,OC=OC ,∴△CDO ≌△CBO.………………3分∴∠CBO=∠CDO=90°,∴CB 是⊙O 的切线.…………4分(2)由(1)得,△CDO ≌△CBO ,∴∠3=∠OCB.∵∠ECB=60°,∴∠3=21∠ECB=30°. ∴∠1=∠2=60°. ∴∠4=60°.…………………………5分∵OA=OD ,∴△OAD 为等边三角形。
最新襄阳市襄州区-学年中考适应性考试数学试题含答案.doc
襄州区2016—2017学年度九年级适应性考试数 学 试 题(本试题共4页,满分120分,考试时间120分钟)★祝考试顺利★一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将序号在答题卡上涂黑作答. 1.2017的相反数是( )A .﹣2017B .2017C .20171D .201712.实数5的值在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.下列计算正确的是( )A.3a +4b =7abB.(ab 3)3=ab 6C .x 12÷x 6=x 6D.(a +2)2=a 2+4 4.如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=125°,则∠2的度数是( )A .55°B .65°C .75°D .85°5.2017年4月8日,中国财经新闻报道中国3月外汇储备30090.9亿,这个数据用科学计 数法表示为( )A .3.00909×104B .3.00909×105C .3.00909×1012D .3.00909×10136.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是( )A .B .C .D .7.某校九年级(1)班全体学生2017年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有50名同学B .该班学生这次考试成绩的众数是30分C .该班学生这次考试成绩的中位数是27分D .该班学生这次考试成绩的平均数是26.8分8.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6, EF=2,则BC 长为( )A .8B .10C .12D .149.如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( ) A .50° B .51°C .51.5°D .52.5°10.如图,在Rt △AOB 中,∠AOB=90°,OA=2,OB=1,将Rt △AOB 绕点O 顺时针旋转90°后 得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、 ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( ) A .π B .5+π C .414π- D .410π- 二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上. 11.分解因式:m 3-4m =_____________.12.已知x ﹣2y =3,那么代数式3+2x-4y 的值是________.13.某校在甲、乙两名同学中选拔一人参加襄阳广播电台举办“国学风,少年颂”襄阳首届少 年儿童经典诵读大赛.在相同的测试条件下,两人3次测试成绩(单位:分)如下: 甲:79,86,82;乙:88,79,90.从甲、乙两人3次的成绩中各随机抽取一次成绩进 行分析,求抽到的两个人的成绩都大于80分的概率是_______.14.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件______________________使其成为菱形(只填一个即可).15.若点O 是等腰△ABC 的外心,且∠BOC=60°,底边BC=2,则△ABC 的面积 为____________________.16.如图,在正方形ABCD 中,△APBC 是等边三角形,连接PD ,DB ,则.___________=∆A B C DBPDS S 正方形 三、解答题(本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.) 17.(本小题满分6分) 化简求值:122)12124(22+-+÷+--+x x x x x x ,其中12-=x .18.(本小题满分6分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数. (3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法, 求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次 记为A 、B 、C 、D 、E ). 19.(本小题满分6分)如图,一次函数b kx y +=1(k <0)与反比例函数xmy =2的图象相交于A 、B 两点, 一次函数的图象与y 轴相交于点C ,已知点A (4,1),B (n,2))(1)求反比例函数和一次函数的解析式;(2)写出1y>2y时,x的取值范围;20.(本小题满分6分)某学校去年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2400元,购买乙种足球共花费1600元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)今年学校为编排“足球操”,决定再次购买甲、乙两种足球共50个.如果两种足球的单价没有改变,而此次购买甲、乙两种足球的总费用不超过3500元,那么这所学校最少可购买多少个甲种足球?21.(本小题满分6分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F,BD交AE于M.(1)求证:△AEC≌△ADB;(2)若BC=2,∠BAC=30°,当四边形ADFC是菱形时,求BF的长.22.(本小题满分8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1) 求证:AC平分∠DAB;xCE(2) 连接CE ,若CE=6,AC=8,求AE 的长.23.(本小题满分11分) 某淘宝店专销某种品牌的运动服,每套进价70元,售价120元/套.为了促销,淘宝店决定凡是一次购买数量不超过10套的,按原价每套120元购买;10套以上的,每多买1套,每套降价1元,每多买2套,每套降价2元…^(例如,某人一次性购买15套运动服,多出5套,按每套降价5元购买,共需(15×115)元;但是最低价90元/套. (1)求顾客一次至少买多少套,才能以最低价购买?,(2)写出当一次购买x (x >10)件时,利润w (元)与购买量x (件)之间的函数关系式;(3)有一天,一位顾客买了35套运动服,另一位顾客买了40套运动服,淘宝店发现卖了 40套反而比卖35套赚的钱少!为了使每次卖的数量多赚的钱也多,在其它促销条件 不变的情况下,最低价为90元/套至少要提高到多少?为什么?24.(本小题满分11分) 如图,将矩形ABCD 沿AH 折叠,使得顶点B 落在CD 边上的P 点处.折痕与边BC 交于点 H, 已知AD=8,HC:HB=3:5. (1)求证:△H CP∽△PDA;(2) 探究AB 与HB 之间的数量关系,并证明你的结论;(3)连结BP ,动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长 线上,且BN=PM ,连结MN 交PB 于点F ,作ME⊥BP 于点E .试问当点M 、N 在移动过 程中,线段EF 的长度是否发生变化?若变化,说明理由;说明理由;若不变,求 出线段EF 的长度.25.(本小题满分12分)已知,△ABC 在平面直角坐标系中的位置如图①所示,A 点坐标为(﹣4,0),B 点坐标 为(6,0),点D 为BC 的中点,点E 为线段AB 上一动点,连接DE 经过点A 、B 、C 三点 的抛物线的解析式为28y ax bx =++.(1)求抛物线的解析式;(2)如图①,将△ADE 以DE 为轴翻折,点A 的对称点为点G ,当点G 恰好落在抛物线的 对称轴上时,求G 点的坐标;(3)如图②,当点E 在线段AB 上运动时,抛物线28y ax bx =++的对称轴上是否存在 点F ,使得以C 、D 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E\F 的坐标;若不存在,请说明理由.襄州区2017年适应性考试数学 参考答案11. )2)(2(-+m m m ; 12. 9; 13.94; 14. AC ⊥BD(答案不唯一,只要正确,均给分);15.32+或32-; 16.413-. 三、解答题(共72分) 17.(本小题6分)解:122)12124(22+-+÷+--+x x x x x x=2)1()1)(1()2(22+-∙-++x x x x x ………………2分=1221)1(2+-=+-x x x x ………………4分当12-=x 时,原式=112)112(2+--- =222-…………6分 18.(本小题6分)解:(1)56÷20%=280(名),答:这次调查的学生共有280名;………………1分 (2)互助:280×15%=42(名),进取:280﹣42﹣56﹣28﹣70=84(名),………………2分 补全条形统计图,如图所示,………………3分(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩” 用树状图为:………………4分如图,共有20个等可能结果,恰好选到“C ”和“E ”有2个,……5分∴恰好选到“进取”和“感恩”两个主题的概率是.……………6分19.(本小题6分)解:(1)∵点A (4,1)在反比例函数y=的图象上, ∴m=4×1=4,∴反比例函数的解析式为y=.………………1分∵点B 在反比例函数y=的图象上,∴将点B 的坐标为(n ,2)代入y=得n=2. ∴B (2,2), ………………2分 将点A (4,1),B (2,2)分别代入y=kx+b , 用待定系数法可求得一次函数解析式为 321+-=x y ;………………4分 (2)由图象可知,当1y >2y 时,x <0或42<<x .…………6分20.(本小题6分)解:(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x +20)元, 由题意得:20216002400+⨯=x x .………………1分解得:x =60.………………2分 经检验,x =60是原方程的解.x +20=80答:购买一个甲种足球需60元,购买一个乙种足球需80元..…………3分 (2)设这所学校可购买y 个甲种足球,由题意得: )50(8060y y -+≤3500,.………………4分 解得:y ≥25.………………5分答:这所学校此次最少可购买25个甲种足球..………………6分21.(本小题6分)解:(1)由旋转的性质得:△ABC ≌△ADE ,且AB=AC , ∴AE=AD ,AC=AB ,∠BAC=∠DAE ,.………………1分 ∴∠BAC+∠BAE=∠DAE+∠BAE ,即∠CAE=∠DAB , ∴△AEC ≌△ADB (SAS );.………………2分 (2)过点B 作BM ⊥EC 于点M ,∵∠BAC=30°AB=AC, ∴∠ABC=∠ACB=75°.…………3分 ∵当四边形ADFC 是菱形时,AC ∥DF, ∴∠FBA=∠BAC=30°, ∵AB=AD,∴∠ADB=∠ABD=30°,∴∠ACE=∠ADB=30°,∴∠FCB=45°.…………4分 ∵BM ⊥EC ,∴∠MBC=45°, ∴BM=MC=BCsin45°=22×2=2,.………………5分 ∵∠ABC =75°,∠ABD =30°,∠FCB=45° ∴∠BFC =180°-75°-45°-30°=30°, ∴BF=2BM=22..………………6分 22.(本小题8分)(1)证明:连接OC ,则OC ⊥CD ,又AD ⊥CD ,∴∠ADC=∠OCD=90°, ∴AD ∥OC ,∴∠CAD =∠OCA ,..………………1分 又OA =OC ,∴∠OCA =∠OAC ,∴∠CAD =∠CAO ,∴AC 平分∠DAB ...………………2分 (2)解:连接BC 、OB,∵∠EOA =2∠CAD ,∠COB=2∠CAO ∵∠CAD =∠CAO,∴∠EOA =∠COB ∴BC=EC=6………………3分 ∵AB 是⊙O 的直径,∴∠ACB=90°,又AC=8,勾股定理易得AB=10,………………4分 ∵∠DAC =∠CAB,∠ADC =∠ACB=90°,∴△ADC ∽△ACB,∴ABACAC AD =, ∴AD=1086⨯=4.8,………………6分又∠DEC=∠ABC,同理可得DE=3.6,∴AE=AD-DE=6.4-3.6=2.8.………………8分 23.(本小题11分)解:(1)由题意得:(120-90)÷1+10=40(套);………………2分 (2)当10<x ≤40时,w =x (60-x )=x x 602+-;………………4分 当x >40时,w =(90-70)x =20x ………………5分 (3)当x >40时,w =20x ,w 随x 的增大而增大,符合题意; ………………6分 当10<x ≤40时,w =x x 602+-=900)30(2+--x ………………8分 ∵a =﹣1<0,∴抛物线开口向下.对称轴是直线x=30∴ 10<x ≤30,w 随着x 的增大而增大,………………9分 而当x =30时,w 最大值=900; ………………10分∵要求卖的数量越多赚的钱越多,即w 随x 的增大而增大, ∴由以上可知,当x =30,最低售价为120﹣(30﹣10)=100元.……11分24.(本小题11分)解:(1)由折叠的性质可知,∠APH=∠B=90°, ∴∠APD+∠HPC=90°, 又∠PHC+∠HPC=90°, ∴∠APD=∠PHC ,………………1分 又∠D=∠C=90°,∴△HCP ∽△PDA ;………………2分(2) AB=2BH.∵HC:HB=3:5,设HC=3x ,则HB=5x ,在矩形ABCD 中,BC=AD=8 ,∴HC=3,则HB=5 ……3分 由折叠的性质可知HP=HB=5,AP=AB,在Rt △HCP,易得PC=4,∵△HCP ∽△PDA∴HP CP AP AD =,∴10458=⨯=AP ………………5分 ∴AB=AP=10=2BH,即AB=2BH.………………6分(3)EF 的长度不变. ………………7分作MQ ∥AB 交PB 于Q , ∴∠MQP=∠ABP , 由折叠的性质可知,∠APB=∠ABP ,∴∠MQP=∠APB ,∴MP=MQ ,又BN=PM ,∴MQ=BN ,∵MQ ∥AB ,∴BNMQ FB QF =, ∴QF=FB ,………………8分∵MP=MQ ,ME ⊥BP , ∴PE=QE ,∴EF=21PB , ………………9分 由(2)得,PC=4,BC=8,∴PB=22BC PC +=54,………………10分 ∴EF=52 .………………11分25.(本小题12分)解:(1)∵抛物线28y ax bx =++经过点A (﹣4,0),B (6,0),∴⎩⎨⎧=++=+-0863608416b a b a , ………………2分 解得⎪⎩⎪⎨⎧=-=3231b a ,………………3分 ∴抛物线的解析式是:832312++-=x x y ;………………4分 (2)如图,作DM ⊥抛物线的对称轴于点M ,设G 点的坐标为(1,n ),由翻折的性质,可得AD=DG , ∵A (-4,0),C (0,8),点D 为AC 的中点, ∴点D 的坐标是(-2,4),………………6分∴点M 的坐标是(﹣1,4),DM=2﹣(﹣1)=3, ∵B (6,0),C (0,8),∴∴AD=………………7分在Rt △GDM 中,222MG DM DG +=32+(4﹣n )2=20,解得n=4,………………8分 ∴G 点的坐标为(1,4)或(1,4………………9分(3)存在.符合条件的点E 、F 的坐标为:1E (-1,0) ,1F (1,4);………………10分 2E (3,0),2F (1,-4);………………11分 3E (-3,0),3F (1,12).………………12分。
枣阳市中考适应性考试数学答案
枣阳市中考适合性考试数学答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C D A B C A D B D C D 二.填空题:(每小题3分,共15分)13.21 14.-1,0,1,2 15. 10 16. 75°或15° 17. π4 三、解答题:(共69分)18.解:原式=1)1)(1(2----x x x x ·14412+--x x x …………………………1分 112--=x x ·x x x 211)12(12-=--.………………………………3分 由022=-+x x ,解得21-=x ,12=x .………………………5分由题意,得x ≠1,将2-=x 代入,得原式=51.………………6分 19.(1) 100………………………………………1分(2)条形统计图中,空气质量为“良”的天数为100×20%=20(天),所以要补画一个高为20的长方形;条形统计图略. ………………2分 72°……………………3分(3)共有6种等可能情况………………5分其中符合一男一女的有4种,故所求概率为P 32=.…………………………………………6分 20.(1)证明:由图知BC=DE ,∴∠BDC=∠BCD.∵∠DEF=30°,∴∠BDC=∠BCD=75°………………………………1分∵∠ACB=45°,∴∠DOC=30°+45°=75°. ∴∠COD=∠BDC.∴△CDO 是等腰三角形.……………………………………3分(2)在Rt △BDF 中,=BDDF tan ∠DBF 33=……………………4分 ∵BD 3=·=32 6.…………………………………………5分在Rt △ABC 中,=BCAB tan45°, ∴AB=22·623=.………6分 21.解:(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运x 2趟,根据题意得121211=+x x ,解得18=x ,则362=x . 经检验,18=x 是原方程的解.……………3分答:甲车单独运完需18趟,乙车单独运完需36趟.(2)设甲车每一趟的运费是a 元,则题意得:4800)200(1212=-+a a ,解得300=a .……………………5分则乙车每一趟的费用是300-200=100(元),单独租用甲车总费用是18×300=5400(元),单独租用乙车总费用是36×100=3600(元),3600<5400,故单独租用一台车,租用乙车合算.………………6分22.(1)∵点A (1,4)在x k y =1的图象上,∴4=k , ∴xy 41=.………………1分 ∵点B 在xy 41=的图象上, ∴2-=m ,∴点B (-2,-2).……………2分又∵点A 、B 在一次函数b ax y +=2的图象上,∴⎩⎨⎧-=+-=+,22,4b a b a 解得⎩⎨⎧==,2,2b a ∴222+=x y .……………………3分 ∴这两个函数的表达式分别为:x y 41=,222+=x y . (2)由图象可知,当1y >2y 时,自变量x 的取值范围为0<x <1或x <-2.……4分(3)∵点C 与点A 关于x 轴对称,∴C (1,-4).如图,过点B 作BD ⊥AC ,垂足为D ,作D (1,-2),于是△ABC 的高BD=|1-(-2)|=3,底AC=8.…………………………5分∴S △ABC =21AC ·BD=12.………………………………6分 23.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD.∴∠OAE=∠OCF ,∠OEA=∠OFC.……………………1分又∵AE=CF ,∴△AEO ≌△CFO (ASA ). ∴OE=OF.………………2分(2)连接BO.∵OE=OF ,BE=BF ,∴BO ⊥EF ,且∠EBO=∠FBO.………………3分∵四边形ABCD 是矩形,∴∠BCF=90°,又∵∠BAC=2∠BAC ,∠BEF=∠BAC+∠EOA ,∴∠BAC=∠EOA ,∴AE=OE.……4分∵AE=CF ,OE=OF ,∴OF=CF.又∵BF=BF ,∴△BOF ≌△BCF (HL ).……………………5分∴∠CBF=∠FBO=∠OBE. ∴∠ABC=90°,∴∠OBE=30°.∴∠BEO=60°,∴∠BAC=30°.……………………6分∵tan ∠BAC AB BC =,∴tan30°AB 32=,即AB 3233=,∴AB=6.…………7分 24. 解:(1)连接OC ,∵OA=OC ,∴∠OAC=∠OCA.∵PC 是⊙O 的切线,AD ⊥CD ,∴∠OCP=∠D=90°,∴OC ∥AD.………2分∴∠CAD=∠OCA=∠OAC.即AC 平分∠DAB.………………………………3分(2)PC=PF.………………………………………………………………4分证明:∵AB 是直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.………………5分又∵∠ACE=∠BCE ,∠PFC=∠CAB+∠ACE ,∠PCF=∠PCB+∠BCE. ∴∠PFC=∠PCF. ∴PC=PF.……………………………………6分(3)连接AE. ∵∠ACE=∠BCE ,∴=,∴AE=BE. 又∵AB 是直径,∴∠AEB=90°.AB 102==BE ,∴OB=OC=5.……………………8分∵∠PCB=∠PAC ,∠P=∠P, ∴△PCB ∽△PAC.∴CA BC PC PB =.∵tan ∠PCB=tan ∠PCD 43=. ∴CA BC PC PB =43=.……………………9分 设PB x 3=,则PC x 4=,在Rt △POC 中,2225)4()53(+=+x x , 解之,得01=x ,7302=x . ∵x >0,∴730=x ,∴PF=PC=7120.……………………10分 25. 解:(1)30;………………………………………………1分(2)甲y =3015+-x ; ………………………………2分=乙y ⎩⎨⎧⋯⋯⋯⋯<<+-⋯⋯⋯⋯⋯⋯≤≤分分4).21(60303),10(30x x x x令甲y =乙y ,得x x 303015=+-,解之,得32=x .…………5分 进而甲y =乙y =20,∴点M 的坐标是(32,20).…………6分 ∴M 的坐标表示:甲、乙经过32h 第一次相遇,此时离点B 的距离是20km.……7分 (3)分三种情况讨论:①当0≤x ≤32时,即甲乙两人相遇前相距3km 以内, 甲y -乙y ≤3,得x x 303015-+-≤3,解之得 x ≥53, ∴53≤x ≤32; ……8分 ②当32<x ≤1时,甲乙两人相遇后相距3km 以内 乙y -甲y ≤3,得)3015(30+--x x ≤3,解之得 x ≤1511 ∴32<x ≤1511……9分 ③当1<x ≤2时,即乙返回时与甲相距3km 以内乙y -甲y ≤3,得)3015()6030(+--+-x x ≤3,解之得 x ≥59 ∴59≤x ≤2 综上可得:53≤x ≤1511或59≤x ≤2时,甲、乙两人能够有无线对讲机保持联系。
湖北省襄阳市2017年中考数学试题(附答案)
2017年襄阳市初中毕业生学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-5的倒数是( )A . 15B . 15- C . 5 D . -5 2.下列各数中,为无理数的是( )A .B .C .13D 3. 如图,//,BD AC BE 平分ABD ∠,交AC 于点E .若050A ∠=,则1∠的度数为( )A . 65°B . 60°C .55°D . 50°4. 下列运算正确的是( )A .32a a -=B . ()325a a = C. 235a a a = D .632a a a ÷=5. 下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中生每天锻炼所用的时间,选择全面调查B .为了解襄阳电视台《襄阳新闻》栏目的收视率,选择全面调查C. 为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查6. 如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是( )A .B . C. D .7.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B . C.D .8. 将抛物线()2241y x =--先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A . 221y x =+B .223y x =- C. ()2281y x =-+D .()2283y x =--9. 如图,在ABC ∆中,0090,30,4ACB A BC ∠=∠==.以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ;作射线CE 交AB 于点F .则AF 的长为( )A . 5B . 6 C. 7 D .810. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,大正方形的面积为13,则小正方形的面积为( )A . 3B . 4 C. 5 D .6二、填空题(本大题共6个小题,每小题3分,共18分,将答案填在答题纸上)11.某天到襄阳某镇观赏桃花的游客近16000人,数据16000用科学计数法表示为___________.12.分式方程233x x=-的解是____________. 13.不等式组211841x x x x ->+⎧⎨+≥-⎩的解集为 .14.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是 .15.在半径为1的O 中,弦,AB AC 的长分别为1则BAC ∠的度数为 .16.如图,在ABC ∆中,090ACB ∠=,点,D E 分别在,AC BC 上,且CDE B ∠=∠,将CDE ∆沿DE 折叠,点C 恰好落在AB 边上的点F 处,若8,10AC AB ==,则CD 的长为 .三、解答题 (本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2,2x y =. 18.中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是____________部,中位数是___________部;扇形统计图中“1部”所在扇形的圆心角为____________度;(2)请将条形统计图补充完整;(3)没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为______________.19.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?20.如图,//AE BF ,AC 平均BAE ∠,且交BF 于点,C BD 平分ABF ∠,且交AE 于点D ,连接CD .(1)求证:四边形ABCD 是菱形;(2)若030,6ADB BD ∠==,求AD 的长.21. 如图,直线1y ax b =+与双曲线2k y x=交于,A B 两点,与x 轴交于点C ,点A 的纵坐标为6,点B 的坐标为()3,2--.(1)求直线和双曲线的解析式;(2)求点C 的坐标,并结合图象直接写出10y <时x 的取值范围.22.如图,AB 为O 的直径,,C D 为O 上两点,BAC DAC ∠=∠,过点C 作直线EF AD ⊥,交AD 的延长线于点E ,连接BC .(1)求证:EF 是O 的切线;(2)若1,2DE BC ==,求劣弧BC 的长l .23. 为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为21000m 的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为()2x m ,种草所需费用1y (元)与()2x m 的函数关系式为()()112,0600,6001000k x x y k x b x ≤<⎧⎪=⎨+≤≤⎪⎩,其图象如图所示;栽花所需费用2y (元)与()2x m 的函数关系式()220.01203000001000y x x x =--+≤≤.(1)请直接写出12,k k 和b 的值;(2)设这块21000m 空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于2700m ,栽花部分的面积不少于2100m ,请求出绿化总费用W 的最小值.24.如图,在ABC ∆中,090ACB ∠=,CD 是中线,AC BC =.一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与,AC BC 的延长线相交,交点分别为点,E F ,DF 与AC 交于点M ,DE 与BC 交于点N .(1)如图1,若CE CF =,求证:DE DF =;(2)如图2,在EDF ∠绕点D 旋转的过程中:①探究三条线段,,AB CE CF 之间的数量关系,并说明理由;②若4,2CE CF ==,求DN 的长.25.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为()10,0,抛物线24y ax bx =++过,B C 两点,且与x 轴的一个交点为()2,0D -,点P 是线段CB 上的动点,设()010CP t t =<<.(1)请直接写出,B C 两点的坐标及抛物线的解析式;(2)过点P 作PE BC ⊥,交抛物线于点E ,连接BE ,当t 为何值时,PBE OCD ∠=∠?(3)点Q 是x 轴上的动点,过点P 作//PM BQ ,交CQ 于点M ,作//PN CQ ,交BQ 于点N .当四边形PMQN 为正方形时,请求出t 的值.。
2017年湖北省襄阳市中考数学真题及答案
2017年湖北省襄阳市中考数学真题及答案一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣5的倒数是()A.B.﹣ C.5 D.﹣52.下列各数中,为无理数的是()A.B.C.D.3.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为()A.65° B.60° C.55° D.50°4.下列运算正确的是()A.3a﹣a=2 B.(a2)3=a5C.a2•a3=a5D.a6÷a3=a25.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查6.如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A.B.C.D.7.下列图形中,既是中心对称图又是轴对称图形的是()A. B.C.D.8.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1 B.y=2x2﹣3 C.y=2(x﹣8)2+1 D.y=2(x﹣8)2﹣39.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.810.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.某天襄阳某镇观赏桃花的游客近16000人,数据16000用科学记数法表示为.12.分式方程的解是.13.不等式组的解集为.14.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.15.在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为.16.如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C 恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.三、解答题(本大题共9个小题,共72分)17.先化简,再求值:( +)÷,其中x=+2,y=﹣2.18.中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题做法全校学生中进行了抽样调查,根据调查结果绘制城如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是部,中位数是部,扇形统计图中“1部”所在扇形的圆心角为度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.19.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.21.如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.22.如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.23.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.24.如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.25.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.2017年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣5的倒数是()A.B.﹣ C.5 D.﹣5【考点】17:倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的倒数是﹣,故选:B.2.下列各数中,为无理数的是()A.B.C.D.【考点】26:无理数.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,,是有理数,是无理数,故选:D.3.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为()A.65° B.60° C.55° D.50°【考点】JA:平行线的性质.【分析】根据平行线的性质,得到∠ABD=130°,再根据BE平分∠ABD,即可得到∠1的度数.【解答】解:∵BD∥AC,∠A=50°,∴∠ABD=130°,又∵BE平分∠ABD,∴∠1=∠ABD=65°,故选:A.4.下列运算正确的是()A.3a﹣a=2 B.(a2)3=a5C.a2•a3=a5D.a6÷a3=a2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】分别利用幂的乘方运算法则、同底数幂的乘除法运算法则分别化简求出答案.【解答】解:A、3a﹣a=2a,故此选项错误;B、(a2)3=a6,故此选项错误;C、a2•a3=a5,正确;D、a6÷a3=a3,故此选项错误;故选:C.5.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B、为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C、为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D、为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选:D.6.如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是一个小正方形,故选:A.7.下列图形中,既是中心对称图又是轴对称图形的是()A. B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.8.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1 B.y=2x2﹣3 C.y=2(x﹣8)2+1 D.y=2(x﹣8)2﹣3【考点】H6:二次函数图象与几何变换.【分析】根据平移的规律即可得到平移后函数解析式.【解答】解:抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y=2(x﹣4+4)2﹣1,即y=2x2﹣1,再向上平移2个单位长度得到的抛物线解析式为y=2x2﹣1+2,即y=2x2+1;故选A.9.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6【考点】KR:勾股定理的证明.【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【解答】解:∵如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.某天襄阳某镇观赏桃花的游客近16000人,数据16000用科学记数法表示为 1.6×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.12.分式方程的解是x=9 .【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.13.不等式组的解集为2<x≤3 .【考点】CB:解一元一次不等式组.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:,解不等式①,得x>2.解不等式②,得x≤3,故不等式组的解集为2<x≤3.故答案为2<x≤3.14.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.【考点】X6:列表法与树状图法.【分析】根据题意,通过列树状图的方法可以写出所有可能性,从而可以得到两枚正面向上,一枚正面向下的概率.【解答】解:画树状图得得:由树状图可知所有可能情况有8种,其中两枚正面向上,一枚正面向下的情况数为3种,所以两枚正面向上,一枚正面向下的概率=.15.在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为15°或105°.【考点】M2:垂径定理;T7:解直角三角形.【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,∴AE=AC=,AD=AB=,∴sin∠AOE==,sin∠AOD==,∴∠AOE=45°,∠AOD=30°,∴∠BAO=60°,∠CAO=90°﹣45°=45°,∴∠BAC=45°+60°=105°,或∠BAC′=60°﹣45°=15°.∴∠BAC=15°或105°.故答案是:15°或105°.16.如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C 恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】根据D,C,E,F四点共圆,可得∠CDE=∠CFE=∠B,再根据CE=FE,可得∠CFE=∠FCE,进而根据∠B=∠FCE,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=AB=5,再判定△CDF∽△CFA,得到CF2=CD×CA,进而得出CD的长.【解答】解:由折叠可得,∠DCE=∠DFE=90°,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF2=CD×CA,即52=CD×8,∴CD=,故答案为:.三、解答题(本大题共9个小题,共72分)17.先化简,再求值:( +)÷,其中x=+2,y=﹣2.【考点】6D:分式的化简求值.【分析】先根据分式的混合运算顺序和法则化简原式,再将x、y的值代入求解可得.【解答】解:原式=[+]÷=•y(x+y)=,当x=+2,y=﹣2时,原式===.18.中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题做法全校学生中进行了抽样调查,根据调查结果绘制城如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是 1 部,中位数是 2 部,扇形统计图中“1部”所在扇形的圆心角为126 度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.【考点】X6:列表法与树状图法;V2:全面调查与抽样调查;VB:扇形统计图;VC:条形统计图;W4:中位数;W5:众数.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)条形统计图如图所示,(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.19.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?【考点】AD:一元二次方程的应用.【分析】(1)设这两年该企业年利润平均增长率为x.根据题意2013年创造利润250(1+x)万元人民币,2014年创造利润250(1+x)2 万元人民币.根据题意得方程求解;(2)根据该企业从2014年到2016年利润的年平均增长率来解答.【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2017年的利润能超过3.4亿元.20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.【考点】LA:菱形的判定与性质.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.【解答】(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.21.如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由点B的坐标求出k=6,得出双曲线的解析式为y2=.求出A的坐标为(1,6),由点A和B 的坐标以及待定系数法即可求出直线的解析式为直线y1=2x+4;(2)求出点C的坐标为(﹣2,0),即可得出当y1<0时x的取值范围.【解答】解:(1)∵点B(﹣3,﹣2)在双曲线y2=上,∴,∴k=6,∴双曲线的解析式为y2=.把y=6代入y2=得:x=1,∴A的坐标为(1,6),∵直线y1=ax+b经过A、B两点,∴,解得:,∴直线的解析式为直线y1=2x+4;(2)由直线y1=0得,x=﹣2,∴点C的坐标为(﹣2,0),当y1<0时x的取值范围是x<﹣2.22.如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【考点】ME:切线的判定与性质;MN:弧长的计算.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.23.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.【考点】HE:二次函数的应用.【分析】(1)将x=600、y=18000代入y1=k1x可得k1;将x=600、y=18000和x=1000、y=26000代入y1=k2x+b 可得k2、b.(2)分0≤x<600和600≤x≤1000两种情况,根据“绿化总费用=种草所需总费用+种花所需总费用”结合二次函数的性质可得答案;(3)根据种草部分的面积不少于700m2,栽花部分的面积不少于100m2求得x的范围,依据二次函数的性质可得.【解答】解:(1)将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入,得:,解得:;(2)当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元;(3)由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值27900元.24.如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.【考点】RB:几何变换综合题.【分析】(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;(2)①证得△CDF∽△CED,根据相似三角形的性质得到,即CD2=CE•CF,根据等腰直角三角形的性质得到CD=AB,于是得到AB2=4CE•CF;②如图,过D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,求得CD=2,推出△CEN∽△GDN,根据相似三角形的性质得到=2,根据勾股定理即可得到结论.【解答】(1)证明:∵∠ACB=90°,AC=BC,AD=BD,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,,∴△DCE≌△DCF,∴DE=DF;(2)解:①∵∠DCF=∠DCE=135°,∴∠CDF+∠F=180°﹣135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴,即CD2=CE•CF,∵∠ACB=90°,AC=BC,AD=BD,∴CD=AB,∴AB2=4CE•CF;②如图,过D作DG⊥BC于G,则∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,由CD2=CE•CF得CD=2,∴在Rt△DCG中,CG=DG=CD•sin∠DCG=2×sin45°=2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴=2,∴GN=CG=,∴DN===.25.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.【考点】HF:二次函数综合题.【分析】(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得△PBE∽△OCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;(3)当四边形PMQN为正方形时,则可证得△COQ∽△QAB,利用相似三角形的性质可求得CQ的长,在Rt △BCQ中可求得BQ、CQ,则可用t分别表示出PM和PN,可得到关于t的方程,可求得t的值.【解答】解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+x+4;(2)由题意可设P(t,4),则E(t,﹣ t2+t+4),∴PB=10﹣t,PE=﹣t2+t+4﹣4=﹣t2+t,∵∠BPE=∠COD=90°,∠PBE=∠OCD,∴△PBE∽△OCD,∴=,即BP•OD=CO•PE,∴2(10﹣t)=4(﹣t2+t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;(3)当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴=,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==2,BQ==4,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ=t,PN=PB•sin∠CBQ=(10﹣t),∴t=(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或.。
2017年湖北省襄阳市中考数学试题(含解析)
2017年湖北省襄阳市中考数学试卷满分:120分 版本:人教版一、选择题(每小题3分,共10小题,合计30分) 1.(2017湖北襄阳,1,3分)-5的倒数是( ) A .15B .-15C .5D .-5答案:B ,解析:因为乘积为1的两个数互为倒数,而(-5)×(-51)=1,所以-5的倒数是-51. 2.(2017湖北襄阳,2,3分)下列各数中,为无理数的是( ) A .38B .4C .13D .2答案:D ,解析:因为38=2,4=2,,所以38,4和31都是有理数;2是开方开不尽的数,属于无理数.3.(2017湖北襄阳,3,3分)如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E.若∠A =50°,则∠1的度数为( )A .65°B .60°C .55°D .50°答案:A ,解析:∵BD ∥AC ,∠A=50°,∴∠ABD=180°-50°=130°.又∵BE 平分∠ABD ,∴∠1=12×130°=65°. 4.(2017湖北襄阳,4,3分)下列运算正确的是( )A .3a -a =2B .(a 2)3=a 5C .a 2·a 3=a 5D .a 6÷a 3=a 2答案:C ,解析:3a-a=2a ;(a 2)3=a 2×3=a 6;a 2·a 3=a 2+3=a 5;a 6÷a 3=a 6-3=a 3.5.(2017湖北襄阳,5,3分)下列调查中,调查方式选择合理的是( ) A .为了解襄阳市初中生每天锻炼所用的时间,选择全面调查 B .为了解襄阳电视台《襄阳新闻》栏目的收视率,选择全面调查 C. 为了解神舟飞船设备零件的质量情况,选择抽样调查 D .为了解一批节能灯的使用寿命,选择抽样调查答案:D ,解析:选项A ,B 中调查对象众多,采用全面调查工作量太大,应选择抽样调查;选项C 为了保证神舟飞船成功发射,应采用全面调查;选项D 了解节能灯的使用寿命具有破坏性,应选择抽样调查. 6.(2017湖北襄阳,6,3分)如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是( )A .B .C .D .答案:A ,解析:从几何体上面看几何体得到的平面图形是该几何体的俯视图. 7.(2017湖北襄阳,7,3分)下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .答案:C ,解析:选项A 、D 都是轴对称图形,但不是中心对称图形;选项B 是中心对称图形,但不是轴对称图形;选项C 既是轴对称图形,又是轴对称图形. 8.(2017湖北襄阳,8,3分)将抛物线y =2(x -4)2-1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A .y =2x 2+1B .y=2x 2-3C .y =2(x -8)2+1D .y =2(x -8)2-3答案:A ,解析:根据抛物线的平移规律“左加右减,上加下减”可得,平移后的抛物线的解析式为:y=2(x-4+4)2-1+2,即y=2x 2+1. 9.(2017湖北襄阳,9,3分)如图,在△ABC 中, ∠ACB =90°,∠A =30°,BC =4,.以点C 为圆心, CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D为圆心,大于12BD 的长为半径作弧,两弧相交于点E ;作射线CE 交AB 于点F.则AF 的长为( )A .5B .6C .7D .8答案:B ,解析:在△ABC 中, ∠ACB =90°,∠A=30°,BC=4,∴AC=tan 33BC A ∠43.由作图可知,CF ⊥AB ,∴AF=AC ·cos30°=43×23=6. 10.(2017湖北襄阳,10,3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6答案:C ,解析:∵大正方形的面积为13,∴a 2+b 2=13①.又(a+b )2=21,得a 2+b 2+2ab=21②.②-①,得2ab=8.∴(a-b )2=a 2+b 2-2ab=13-8=5. 二、填空题:(每小题3分,共6小题,合计18分) 11.(2017湖北襄阳,11,3分)某天到襄阳某镇观赏桃花的游客近16000人,数据16000用科学计数法表示为___________.答案:1.6×104,解析:16000=1.6×10000=1.6×104.12.(2017湖北襄阳,12,3分)分式方程233x x=-的解是____________.答案:x =9,解析:对于分式方程233x x=-,方程两边同乘以x (x-3),得2x=3(x-3),解这个整式方程,得x=9.经检验x=9是分式方程的根.13.(2017湖北襄阳,13,3分)不等式组211841x x x x ->+⎧⎨+≥-⎩的解集为____________.答案:2<x ≤3,解析:解不等式2x-1>x+1得,x>2;解不等式x+8≥4x-1得,x ≤3.∴不等式组的解集为2<x ≤3. 14.(2017湖北襄阳,14,3分)同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是 .答案:38,解析:画树状图如下:由树状图可知,共有8种等可能性结果,其中“两枚正面向上,一枚正面向下”的结果有3种,∴p(两枚正面向上,一枚正面向下)=83. 15.(2017湖北襄阳,15,3分)在半径为1的⊙O 中,弦AB,AC 的长分别为12,则∠BAC 的度数为 .答案:105°或15°,解析:如图1,当点O 在∠BAC 的内部时,连接OA ,过点O 作OM ⊥AB ,ON ⊥AC ,垂足分别为M ,N ,则AM=21,AN=22.在Rt △AOM 中,cos ∠MAO=AO AM =21,∴∠MAO=60°.正开始正 反 正 反正反第一枚 反正 反 正 反正反第二枚 第三枚在Rt △AON 中,cos ∠NAO=AO AN=22,∴∠NAO=45°,∴∠BAC=60°+45°=105°;如图2,当点O 在∠BAC ′的外部时,∠BAC ′=60°+45°=105°.图1 图2 16.(2017湖北襄阳,16,3分)如图,在△ABC 中,∠ACB =90°,点D,E 分别在AC,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,若则CD 的长为 .答案:258,解析:在△ABC 中,∠ACB =90°,AC =8,AB =10,∴BC 22108- 6. 由折叠的性质可知CF ⊥DE ,∴∠CDE+∠DCF =90°.又∵∠DCF+∠FCB =90°,∴∠CDE =∠FCB. 又∵∠B=∠CDE ,∴∠B=∠FCB ,∴FC=FB.同理FC=FA ,∴FA=FB.∴CF=21AB =21×10=5.易证△CDF ∽△CFA ,∴=CF CD CA CF ,即6=85CD,解得CD=825. 三、解答题:本大题共9个小题,满分72分. 17.(2017湖北襄阳,17,6分)先化简,再求值:2111x y x y xy y⎛⎫+÷⎪+-+⎝⎭,其中52,52x y ==.思路分析:先根据分式的运算法则化简,再代入求值.解:原式=()()()2x y x y x y x y ⋅++-=2xyx y -.当x 52,y 5225252125+252=-+.18.(2017湖北襄阳,18,6分)中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是____________部,中位数是___________部;扇形统计图中“1部”所在扇形的圆心角为____________度;(2)请将条形统计图补充完整;(3)没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为______________.思路分析:(1)由条形统计图和扇形统计图可知“2部”人数为10,所占百分比为25%,∴调查总人数为10÷25%=40(人),∴“1部”人数为40-2-10-8-6=14(人),故本次调查所得数据中,出现次数最多的数据是1,即众数是1;最中间的数据是第20个数据和第21个数据,它们都是2,故中位数是2;“1部”所占百分比为14÷40=35%,∴对应所在扇形的圆心角为360°×35%=126°;(2)“1部”人数为14(人);(3)先列表或画树形图表示出所有可能的结果,再利用概率公式计算.解:(1)1,2,126;(2)补全条形统计图如图所示:(3)14.19.(2017湖北襄阳,19,6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?思路分析:(1)根据“2014年利润×(1+平均增长率)2=2016年利润”列方程求解;(2)根据“2016年利润×(1+平均增长率)=2017年利润”求出2017年利润,再判断是否超过3.4亿元.解:(1)设该企业利润的年平均增长率为x,根据题意,得2(1+x)2=2.88.解这个方程,得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业利润的年平均增长率为20%.(2)2.88×(1+20%)=3.456>3.4.答:该企业2017年的利润能超过3.4亿元.20.(2017湖北襄阳,20,7分)如图,AE∥BF,AC平分∠BAE,且交BF于点C.BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.思路分析:(1)根据平行线的性质和角平分线的性质可证明△ABD和△ABC都是等腰三角形,从而得到AD=AB=BC,又有AD∥BC,从而得到四边形ABCD是平行四边形和菱形;(2)根据“菱形对角线互相互相垂直且平分”可知在△AOD中,∠AOD=90°,OD=12BD=3,又∠ADB=30°,利用锐角三角函数知识可求得AD的长度.解:(1)证明:∵AE∥BF,∴∠ADB=∠CBD.又∵∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD.同理可证AB=BC.∴AD=BC,∴四边形ABCD是平行四边形.又∵AB=AD,∴四边形ABCD是菱形.(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=12BD=3.∴ODAD=cos∠ADB=cos303AD=333.21.(2017湖北襄阳,21,6分)如图,直线y1=ax+b与双曲线y2=kx交于A,B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(-3,-2).(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.思路分析:(1)先将点B的坐标代入y2=kx可求得k,再将点A的纵坐标代入y2=kx可求得点A的横坐标,然后将点A和点B的坐标代入y1=ax+b可求得a,b;;(2)将点C的纵坐标y=0代入一次函数解析式即可求得点C的横坐标,一次函数的图像在x轴下方的部分对应x的取值范围即为y1<0时x的取值范围.解:(1)∵点B(-3,-2)在双曲线y2=kx上,∴3k-=-2,解得k=6.∴双曲线的解析式为y2=6x.把y2=6代入6x,得x=1,∴点A的坐标为(1,6).∵直线y1=ax+b经过点A(1,6),B(-3,-2),∴6,32a ba b+=⎧⎨-+=-⎩,解得=2,4ab⎧⎨=⎩,∴直线的解析式为y1=2x+4.(2)由y1=0,得x=-2,∴点C的坐标为(-2,0).当y1<0时,x的取值范围是x<2.22.(2017湖北襄阳,22,8分)如图,AB为⊙O的直径,C,D为⊙O上两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧»BC的长l.思路分析:(1)连接OC,通过证明EF与半径OC垂直即可得到EF为⊙O的切线;(2)连接OD、DC,由∠BAC=∠DAC可得到DC=BC=2.在Rt△EDC中,利用锐角三角函数的知识可求得∠ECD=30°,进而得到△ODC和△OCB都是等边三角形,然后利用弧长公式求得劣弧»BC的长l.解:(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA.∵∠OAC=∠DAC,∴∠DAC=∠OCA.∴AD∥OC.∵∠AEC=90°,∴∠OCF=∠AEC=90°.∴EF是⊙O的切线.(2)连接OD,DC.∵∠DAC=12∠DOC,∠OAC=12∠BOC,∠DAC=∠OAC,∴∠DOC=∠BOC,∴DC=BC=2.在Rt△EDC中,∵ED=1,DC=2,∴sin∠ECD=DEDC=12,∴∠ECD=30°.∴∠OCD=60°.又∵OC=OD,∴△DOC为等边三角形.∴∠BOC=∠COD=60°,OC=2.∴l=6022=1803ππ⨯.23.(2017湖北襄阳,23,10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为()()112,0600,6001000k x xyk x b x≤<⎧⎪=⎨+≤≤⎪⎩,其图象如图所示;栽花所需费用y2(元)与x(m2)的函数关系式y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.思路分析:(1)利用待定系数法求解;(2)分0≤x<600和600≤x≤1000两种情况求出W关于x的函数关系式,分别求出两种情况下的最大值并进行比较;(2)先根据不等式关系求出x的取值范围,再结合(2)中W关于x的函数关系式求解.解:(1)k1=30,k2=20,b=6000.(2)当0≤x<600时,W=30x+(-0.01x2-20x+30000)=-0.01x2+10x+30000.∵-0.01<0,W=-0.01(x-500)2+32500,∴当x=500时,W取最大值为32500(元).当600≤x≤1000时,W=20x+6000+(-0.01x2-20x+30000)=-0.01x2+36000.∵-0.01<0,∴当600≤x≤1000时,W随x的增大而减小.∴当x=600时,W的最大值为32400(元).∵32400<32500,∴W的最大值为32500(元).(3)由题意,点1000-x≥100,解得x≤900.又x≥700,∴700≤x≤900.∵当700≤x≤900时,W随x的增大而减小.∴当x=900时,W取最小值为27900(元).24.(2017湖北襄阳,24,10分)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC.一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC,BC的延长线相交,交点分别为点E,F,DF 与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF ,求证:DE=DF ; (2)如图2,在∠EDF 绕点D 旋转的过程中:①探究三条线段AB,CE,CF 之间的数量关系,并说明理由; ②若CE =4,CF =2,求DN 的长.思路分析:(1)根据“SAS ”证明△DCE ≌△DCF 即可;(2)①通过证明△CDF ∽△CED 可得到CD,CE,CF之间的关系,由“CD =12AB ”进而得到AB ,CE,CF 之间的关系;②通过证明△CEN ∽△GDN 求得GN ,再根据勾股定理求得DN 的长度.解:(1)证明:∵∠ACB =90°,AC =BC ,AD =BD , ∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°. ∴∠DCE =∠DCF =135°.又∵CE =CF ,CD =CD ,∴△DCE ≌△DCF. ∴DE =DF.(2)解:①∵∠DCF =∠DCE =135°,∴∠CDF +∠F =180°-45°=135°. 又∵∠CDF +∠CDE =45°,∴∠F =∠CDE. ∴△CDF ∽△CED,∴CD CF CE CD=,即CD 2=CE ·CF. ∵∠ACB =90°,AC =BC ,AD =BD ,∴CD =12AB. ∴AB 2=4CE ·CF.②如图,过点D 作DG ⊥BC 于G ,则∠DGN =∠ECN =90°,CG =DG. 当CE =4,CF =2时,由CD2=CE ·CF ,得CD =2. ∴在Rt △DCG 中,CG=DG=CD ·sin ∠DCG =2×sin45°=2. ∵∠ECN =∠DGN ,∠ENC =∠DNG ,∴△CEN ∽△GDN. ∴2CN CE GN DG ==,∴GN =13CG =23. ∴DN 2222221023GN DG ⎛⎫+=+= ⎪⎝⎭25.(2017湖北襄阳,25,13分)如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过B,C两点,且与x轴的一个交点为D(-2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B,C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥CQ,交CQ于点M,作PN∥CQ,交BQ于点N.当四边形PMQN 为正方形时,请求出t的值.思路分析:(1)对于抛物线y=ax2+bx+4,当x=0时y=4,故点C的坐标为(0,4).由点A(10,0)可知点B的坐标为(10,4),再将点B(10,4),D(-2,0)代入y=ax2+bx+4即可求得a,b;(2)假设∠PBE=∠OCD,易证△PBE∽△OCD,根据“相似三角形对应线段成比例”可列出关于t的方程,求解即可;(2)假设四边形PMQN为正方形,易证Rt△COQ∽Rt△QAB,根据“相似三角形对应线段成比例”求出OQ的长度,进而求得t的值.解:(1)B(10,4),C(0,4).抛物线的解析式为y=-16x2+53x+4.(2)由题意,得P(0,t),E(t,-16t2+53t+4),∴PB=10-t,PE=-16t2+53t.∵∠BPE=∠OCD=90°,∠PBE=∠OCD,∴△PBE∽△OCD,∴BP PECO OD,即BP·OD=CO·PE.∴2(10-t )=4(-16t 2+53t ). 解得t 1=3,t 2=10(不合题意,舍去).∴当t =3时,∠PBE =∠OCD.(3)当四边形PMQN 为正方形时,∠PMC =∠PNB =∠CQB =90°,PM =PN ,∴∠CQO +∠AQB =90°.又∵∠CQO +∠OCQ =90°,∴∠OCQ =∠AQB.∴Rt △COQ ∽Rt △QAB ,∴CO OQ AQ AB =,即OQ ·AQ =CO ·AB,设OQ =m ,则AQ =10-m ,∴m (10-m )=4×4,解得m 1=2,m 2=8.①当m =2时,CQ BQ∴sin ∠BCQ ==5BQ BC ,sin ∠CBQ ==5CQ BC .∴PM =PC ·sin ∠PCQ =5t ,PN =PB ·sin ∠CBQ =5(10-t ).t 10-t ),解得t =103. ②当m =8时,同理可求得t =203. ∴当四边形PMQN 为正方形时,t =103或203.。
中考数学模拟试题(扫描版)
湖北省枣阳市2017年中考数学模拟试题2017年枣阳市模拟考试数学评分标准及参考答案一.选择题二.填空题 11. 1 12. 1或6 13. -1≤x <25 14. 14 15.π32 16.98 三.解答题17.解:原式21)2(11)1)(2(4222+=+-⨯---++-=x x x x x x x x .………4分 ∵0322=-+x x ,∴ 11=x ,32-=x又∵⎩⎨⎧≠+≠-,02,01x x ∴1≠x 且2-≠x ,∴3-=x …………………5分 ∴ 原式1231-=+-=. …………………………………………6分 18.解:(1)50 24% 28.8……………………3分(2)喜欢“戏曲“的人数为50-12-16-8-10=4,……………………4分补全条形统计图略.……………………………………………5分(3)画树状图如图: 6分由树状图可知,共有12种等可能的情况,其中恰好选中“舞蹈、声乐”这两项的情况有2种,故恰好选中“舞蹈、声乐”这两项的概率61122==P .(7分) 19.证明:∵E 、F 分别为边AD 、BC 的中点,∴AE=DE=21AD ,CF=BF=21BC.…………1分 又∵四边形ABCD 是平行四边形,∴AD∥BC,且AD=BC.DE∥BF 且DE=BF ,∴四边形BEDF 是平行四边形.………………3分∴∠BED=∠DFB,∠AEG=∠DFC.………………4分∵AD∥BC,∴∠EAG=∠FCH.又∵AE=CF,∴△AGE≌△CHF,∴AG=CH. ………6分20. 解:设通道宽为a 米,由题意可得,406083)260)(240(4060⨯⨯=---⨯a a ,…………………………3分 解得51=a ,452=a (不合题意,舍去).……………………………5分答:通道的宽为5m.………………………………………………………6分21.解:(1)过点B 作BC ⊥x 轴于点C ,则OC=AC=2. 由勾股定理,得322422=-=BC ,∴B(2,32).设直线OB 的解析式为ax y =,将点B(2,32)代入,得a 232=,故3=a , ∴直线OB 的解析式为x y 3=.…………………………………………3分(2)∵点D 为AB 的中点,∴D(3,3). ∴33=k .………………5分(3)m >34或m <33且0≠m .……………………………………7分22.(1)证明:如图,连接AO,AC.∵BC 是⊙O 的直径,∴∠BAC=∠CAD=90°.………………………………1分∵点E 是CD 的中点,∴CE=DE=AE ,∴∠ECA=∠EAC.……………………2分∵OA=OC ,∴∠OAC=∠OCA. ∵CD 是⊙O 的切线,∴CD ⊥OC ,∴∠ECA+∠OCA=90°,∴∠EAC+∠OAC=90°,∴OA ⊥AP.……………………………………………………3分∵点A 是⊙O 上一点,∴AP 是⊙O 的切线.………………4分(2)由(1)知OA ⊥AP.在Rt △OAP 中 , ∵∠OAP=90°,OC=CP=OA, ∴OP=2OA, ∴21sin ==∠OP OA P ,…………………………………………5分 ∴∠P=30°,∴∠AOP=60°. ∵OC =OA ,∴∠ACO=60°.………………6分在Rt △BAC 中,∵∠BAC=90°,AB=6,∠ACO=60°, ∴32tan =∠=ACOAB AC .……………………………………7分 又在Rt △ACD 中,∠CAD=90°,∠ACD=90°-∠ACO=30°, ∴430cos 32cos ==∠=ACD AC CD .……………………8分23. 解:(1)如图,过点P 作PB ⊥OA ,垂足为B .设点P 的坐标为(x ,y ).在Rt△POB 中, ∵OB PB =αtan ,∴y PB OB 2tan ==α.……1分 在Rt △PAB 中,∵AB PB =βtan , ∴y PB AB 32tan ==β.…………2分 ∵OB=OB+AB,即4322=+y y .…………………3分 ∴32=y .……………………………………………4分 ∴3=x . ∴点P 的坐标为(3,23).…………………………………………5分 (2)设这条抛物线表示的二次函数为y =ax 2+bx .由函数y =ax 2+bx 的图像经过(4,0)、(3,23)两点,可得⎪⎩⎪⎨⎧=+=+.2339,0416b a b a 解方程组,得 这条抛物线表示的二次函数为..…………………7分 当水面上升1 m 时,水面的纵坐标为1,即,………8分 解方程,得…………………………………9分因此,水面上升1 m ,水面宽约2.8 m .………………………………10分24.(1)①22.5.……………………2分②证明:如图,过点D 作DG ∥CA ,与BE 的延长线相交于点G ,与AB 相交于点H , 则∠GDB=∠C ,∠BHD=∠A=90°=∠GHB (3)分 ∵∠EDB=21∠C=21∠GDB=∠EDG.又DE=DE ,∠DEB=∠DEG=90°,∴△DEB ≌△DEG. ∴BE=GE=21GB.……………………4分∵∠A=90°,AB=AC ,∴∠ABC=∠C=∠GDB ,∴HB=HD.…………5分∵∠BED=∠BHD=90°,∠BEF=∠DFH ,∴∠EBF=∠HDF ,∴△GBH ≌△FDH ,∴GB=FD ,∴BE=21FD.……………………………………6分(2)如图,过点D 作DG ∥CA ,与BE 的延长线相交于点G ,与AB 相交于点H ,同理可证△DEB ≌△DEG ,BE=21GB ,∠BHD=∠GHB=90°,∠EBF=∠HDF.…………7分∴△GBH ∽△FDH. ∴DH BHFD GB=,即DH BHFD BE 2=.……………………8分 又∵CA DH BA BH =,即k CA BADH BH ==. ∴2kFD BE=.……………………………………10分25.(1)依题意,得⎩⎨⎧=+=+,339,0636b a b a ………………………………1分 解得⎪⎪⎩⎪⎪⎨⎧=-=,332,93b a …………………………………………………………2分∴抛物线1y 的解析式为x x y 3329321+-=.………………3分(2)将抛物线1y 沿x 轴翻折后,仍过点O (0,0),A (6,0),还过点B 关于x 轴的对称点B ′(3,3-),…………………………………………………4分设抛物线2y 的解析式为nx mx y +=22,∴⎩⎨⎧-=+=+,339,0636n m n m ……………5分解得⎪⎪⎩⎪⎪⎨⎧-==,332,93n m ∴抛物线2y 的解析式为x x y 3329322-=.……………6分(3)存在.如图,过点B 作BC ⊥x 轴于点C ,则有tan ∠BCO 33==OC BC , ∴∠BOC=30°, ∠OBC=60°.………………………7分∵OC=3,OA=6,∴AC=3,∴∠BAC=30°,∠OBA=120°.∴OB=AB ,即△OAM 是顶角为120°的等腰直角三角形.……………8分分以下两种情况:①当点M 在x 轴下方时,△OAM 就是△OAB ′,此时点M 的坐标为(3,3-).……9分 ②当点M 在x 轴上方时,假设△OAM ∽△OBA ,则有AM=OA=6,∠OAM=120°.过点M 作MD ⊥x 轴于点D ,则∠MAD=60°.∴MD=33,AD+3,∴OD=9,∴点M 的坐标为(9,33),……………………10分 易得点M 在x x y 3329322-=的抛物线上.……………………………………11分 根据抛物线的对称性可知,点(-3,33)也满足条件.综上所述,点M 的坐标为(3,3-),(9,33)或(-3,33).……12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
枣阳市2017年中考适应考试数 学 试 题(本试题共4页,满分120分,考试时间120分钟)★祝 考 试 顺 利★一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.计算-(-1)的结果是A.±1B.-2C.-1D.12.下列调查中,最适合采用全面调查(普查)方式的是A.对襄阳市辖区内汉江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对襄阳电视台“襄阳新闻”栏目收视率的调查3.如右图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为A.45°B.55°C.125°D.135°4.下列图形中,既是轴对称图形又是中心对称图形的是C5.下列计算中,结果是6a 的是A.42a a +B.32a a ⋅C.212a a ÷D.32)(a6.估计19的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.如图,四边形ABCD 内接于⊙O ,四边形ABCO 是平行四边形,则∠ADC的度数为A.60°B.50°C.45°D.75°8.如图,已知钝角三角形ABC ,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C 为圆心,CA 为半径画弧①;步骤2:以点B 为圆心,BA 为半径画弧②,交弧①于点D ;步骤3:连接AD ,交BC 的延长线于点H.下列叙述正确的是:A.BH 垂直平分线段ADB.AC 平分∠BADC.S △ABC =BC ²AHD.AB=AD9.一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/小时的速度匀速跑至点B ,原地休息半小时后,再以10千米/小时的速度匀速跑至终点C ;乙以12千米/ 小时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)之间的函数关系的图象是10.已知二次函数1)(2+-=h x y (h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值是5,则h 的值为A.1或-5B.-1或5C.1或-3D.1或3二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上.11.我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为 千米.12.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件:A.摸出的三个球中至少有一个球是黑球;B.摸出的三个球都是白球;C.摸出的三个球都是黑球;D.摸出的三个球中有两个球是白球.其中是不可能事件的为 (填序号).13. 某校学生利用双休时间去距学校20km 的白水寺参观,一部分学生骑自行车先走,过了40min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,骑车学生的速度是 Km/h.14.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高 米(结果保留根号).15.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若AB 22=,∠BCD=22°30′,则⊙O 的半径为 cm.16.如图,已知AD ∥BC,AB ⊥BC ,AB=3.点E 为射线 BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N.当点B ′为线段MN 的三等分点时,BE 的长为 .三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17.(本题满分7分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组的整数解中选取.18.(本题满分6分)“宜居襄阳”是我们的共同愿景,空气质量备受人们关注.我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了2017年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)统计图共统计了 天的空气质量情况;(2)请将条形统计图补充完整;空气质量为“优”所在扇形的圆心角度数是 ;(3)从小源所在环保兴趣小组4名同学(2名男同学,2名女同学)中,随机选取两名同学去该空气质量监测站点参观,则恰好选到一名男同学和一名女同学的概率是 .19.(本题满分6分)如图,在菱形ABCD 中,点F 为对角线BD 上一点,点E 为AB的延长线上一点,DF=BE ,CE=CF.求证:(1)△CFD ≌△CEB ;(2)∠CFE=60°.20.(本题满分6分)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,则比赛组织者应邀请多少个队参赛?21.(本题满分7分)如图,一次函数b kx y +=与反比例函数xm y =的图象交于A (2,4)、B (-4,n )两点.(1)分别求出一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式b kx +>xm 的解集;(3)过点B 作BC ⊥x 轴,垂足为C ,连接AC ,求S △ABC .22.(本题满分8分)如图,在△BCE 中,点A 是边BE 上一点,以AB 为直径的⊙O 与CE 相切于点D ,AD ∥OC ,点F 为OC 与⊙O 的交点,连接AF.(1)求证:CB 是⊙O 的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.23.(本题满分10分)某公司生产的某种时令商品每件成本为20元, 经过市场调研发现,这种商品在未来40未来40天内1的函数关系式为2525.01+=t y(1≤t ≤20且t 为整数),后20天每天的价格2y (元/件)与时间t (天)的函数关系式405.02+-=t y (21≤t ≤40且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品,就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,请直接写出a 的取值范围.24.(本题满分10分)将一副三角尺如图①摆放(在Rt △ABC中,∠ACB=90°,∠B=60°.Rt △DEF中,∠EDF=90°,∠E=45°).点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,且BC=2.(1)求证:△ADC ∽△APD ;(2)求△APD 的面积;(3)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE ′F ′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断CN PM 的值是否会随着α的变化而变化,如果不变,请求出CN PM 的值;反之,请说明理由. 25.(本题满分12分)如图(1),直线n x y +-=34交x轴于点A ,交y 轴于点C (0,4),抛物线c bx x y ++=232经过点A ,交y 轴于点B (0,-2).点P为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m .(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图(2),将△BDP 绕点B 逆时针旋转,得到△B D ′P ′,当旋转角∠PBP ′=∠OAC ,且点P 的对应点P ′落在坐标轴上时,请直接写出点P 的坐标.2017年枣阳市适应性考试数学评分标准及参考答案一.选择题二.填空题11.5.5³107 12.B 13.15 14. 34 15.2 16. 223或553三.解答题17.解:原式22)1()1)(1()1(+-+÷+-=x x x x x x ………………………………2分 1--=x x . ………………………………………………3分 解不等式组得1-≤x <25. …………………………5分 ∴不等式组的整数解为-1,0,1,2.……………………………6分若使分式有意义,只能取2=x . ∴原式2122-=--= . …………………………………………7分 18.解:(1)100;(2)略;72°;(3)32. 19.解:证明:(1)∵四边形 ABCD 是菱形,∴CD=CB.^^…………1分在△CFD 和△CEB 中,⎪⎩⎪⎨⎧===,,,BE DF CE CF CB CD ∴△CFD ≌△CEB.………………3分(2)∵△CFD ≌△CEB ,∴∠CDB=CBE, ∠DCF=∠BCE.∵CD=CB ,∴∠CDB=∠CBD ,∴∠ABD=∠CBD=∠CBE=60°,∴∠DCB=60°,………4分 ∴∠FCE=∠FCB+∠BCE=∠FCB+∠DCF=60°.…………………………5分又CF=CE ,∴△CFE 为等边三角形,∴∠CFE=60°.……………………6分20.解:设比赛组织者应邀请x 个队参赛.依题意列方程得: 28)1(21=-x x , ……………………………………3分 解之,得81=x ,72-=x . …………………………5分7-=x 不合题意舍去,8=x .答:比赛组织者应邀请8个队参赛.…………………………6分21.解:(1)∵点A (2,4)在xm y =的图象上,∴8=m . ∴反比例函数的表达式为xy 8=.……………………………………2分 ∴2-=n ,∴B (-4,-2).∵点A (2,4)、B (-4,-2)在直线b kx y +=上,∴⎩⎨⎧+-=-+=,42,24b k b k ∴⎩⎨⎧==.2,1b k ∴一次函数的表达式为2+=x y .…………………………4分(2)-4<x <0或x >2.……………………………………6分(3)解:设AB 交x 轴于点D ,则点D 的坐标为(-2,0).∴CD=2.∴S △ABC = S △BCD + S △ACD =642212221=⨯⨯+⨯⨯.………………7分 22.(1)如图,连接OD ,与AF 相交于点G.∵CE 与⊙O 相切于点D ,∴OD ⊥CE ,∴∠CDO=90°.……………………1分∵AD ∥OC ,∴∠ADO=∠1,∠DAO=∠2.∵OA=OD ,∴∠ADO=∠DAO. ∴∠1=∠2.………………2分在△CDO 和△CBO 中,OD=OB ,∠1=∠2,OC=OC ,∴△CDO ≌△CBO.………………3分∴∠CBO=∠CDO=90°,∴CB 是⊙O 的切线.…………4分(2)由(1)得,△CDO ≌△CBO ,∴∠3=∠OCB.∵∠ECB=60°,∴∠3=21∠ECB=30°. ∴∠1=∠2=60°. ∴∠4=60°.…………………………5分∵OA=OD ,∴△OAD 为等边三角形。