北师大八年级下学期《分式运算》练习题及答案
北师大版八年级数学下册分式测试题及答案
八年级下册第三章分式测试题一、填空题(本大题含10个小题,每小题2分,共20分)1. 下列代数式:①y x y x +-;②132+x ;③x x 13-;④4xy ;⑤14.3b a -,其中整式有____________,分式有___________(只填序号).2. 分式392--x x 当x __________时分式的值为零.3. 当x __________时分式xx 2121-+有意义. 4. ())0(,10 53≠=a axy xy a 5. 约分: =+--96922x x x __________ . 6. 计算b b a 12⨯÷的值等于_______. 8. 如果2a b =,则2222a ab b a b -++=__________. 7. 若关于x 的分式方程3232-=--x m x x 有增根,则增根为__________ . 9. 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.10. 某商品原售价为2200元,按此价的8折出售,仍获利10%,那么此商品进价为_ ___元.二、选择题(本大题含8个小题,每小题3分,共24分)每小题给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填入表格内相应位置.11. 下列各式中,是分式的是( ) A.2-πx B. 31x 2 C.312-+x x D.21x 12. 下列判断中,正确的是( ) A 、分式的分子中一定含有字母 B 、当B=0时,分式B A 无意义C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式 13. 下列各分式中,最简分式是A 、()()y x y x +-8534 B 、y x x y +-22 C 、2222xy y x y x ++ D 、()222y x y x +- 14.下列各式与x y x y -+相等的是(A )()5()5x y x y -+++ (B )22x y x y -+ (C )222()()x y x y x y -≠-(D )2222x y x y-+15.计算:y x x -22+x y y 2-,结果为( )A.1 B.-1 C.2x +y D.x +y16. 当a 为任何实数时,下列分式中一定有意义的一个是( ) A.21a a + B.11+a C.112++a a D.112++a a 17. 若把分式2x y x y +-中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍18. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案
最新八年级下册分式及分式方程各个章节测试试题(1)分式无意义:B=0。
(2)分式有意义:B ≠0时。
(3)分式的值为0:A=0,B ≠01、在x1、5ab 2、3y x y 7.0+﹣、mnm +、a5cb +-、π2x 3中,是分式的有 个。
2、如果分式1x 3-有意义,那么x 的取值范围是 。
3、下列分式中,不论a 取何值总有意义的是 。
A 、1a 1a 22+-B 、1a 1a 2+-C 、1a 1a 22-+D 、1a 1a 2-+4、若分式1x 1x 2+-的值是0,则x 的值是 。
5、某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵.实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了______小时完成任务(用含a 的代数式表示).6、若a 、b 都是实数,且04b 16b 2a 22=++-)-(,写3a -b= 。
分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变.1、化简下列分式。
yx 20x y52=abb ab a 22++=22m m 39m --=22112m m m -+-=2、把分式x yy x +中的x 、y 都扩大2倍,那么分式的值 。
A 、扩大2倍B 、不变C 、缩小一半D 、扩大4倍 3、分式x22-可变形为 。
A 、x 22+ B 、x 22+﹣ C 、2x 2- D 、2x 2-﹣4、已知3y1x1=-,则代数式yx y 2x y 2x y 14x 2----= 。
5、对一任意非零实数a 、b ,定义运算“△”如下:a △b=abb a -,计算2△1+3△2+4△3+.......+2024△2023的值。
6、观察下面一列有规律的式子:1x 1x 1x 2+=--1x x 1x 1x 23++=--1x x x 1x 1x 234+++=--1x x x 1x 1x 2345++++=x --.......(1)计算1x 1x n --的结果是(2)根据规律计算:63623222.......2221++++++分式的乘除: 1、计算.(1)2224ab a a b+-÷a 4b a b+-;(2)22(14)41292341y y y y y -++•+-;(3)244x (16x y)()y -÷- (4)222x 6x 92x 69x x 3x-+-÷-+(5)xy x yy x x y x 2--÷+(6))-(-2222y x 4y2x y x y 4x 4÷++2、已知09b 4a =+--,计算22222ba aba b ab a --•+的值。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)(1)
一、选择题1.下列运算中,正确的是( )A .211a a a +=+B .21111a a a -⋅=-+C .1b a a b b a +=--D .0.22100.7710++=--a b a b a b a b2.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .4 3.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn-元/升B .王勇比李刚低()22mn m n -元/升C .王勇比李刚低()22m n mn -元/升D .李刚与王勇的平均单价都是2m n +元/升 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 7.计算221(1)(1)x x x +++的结果是( ) A .1B .1+1xC .x +1D .21(+1)x 8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 9.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 10.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .411.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12-12.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N二、填空题13.若关于x 的分式方程3122++=--x m x x有增根,则m 的值是______. 14.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 15.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 16.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 17.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 18.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.19.计算:262393x x x x -÷=+--______. 20.若()()023248x x ----有意义,则x 的取值范围是______.三、解答题21.(1)分解因式3228x xy -(2)解分式方程:23193x x x +=-- (3)先化简:2443111a a a a a -+⎡⎤÷-+⎢⎥++⎣⎦,然后a 在2-,1-,1,2五个数中选一个你认为合适的数代入求值.22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?24.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意; B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b+=-=-----,故不符合题意;D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】 本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键. 2.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++, ∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mx x x -=--化简得:()13m x +=, ∵方程1122mx x x -=--无解, ∴m +1=0,或321x m ==+, 则m 的值是-1或12,故错误; ③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误; ④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠, ∴1111115,6,7a b b c a c ab a b bc b c ac a c +++=+==+==+=, ∴ab bc ac abc++ =111a b c ++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭=11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭ =()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.3.A解析:A【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mn m n +元,再求解王勇每次加油30升的平均单价为每升:2m n +元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升: ()6006002300300300mn m n m n m n mn==+++(元), 王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n ++=(元), ()()()224222m n m n mn mn m n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠ ()()22m n m n -∴+>0, ∴ 2m n +>2mn m n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a ≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 7.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确;方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.11.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 12.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.二、填空题13.1【分析】分式方程去分母转化为整式方程由分式方程有增根确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2由分式方程有增根得到x ﹣2=0即x =2把x =2代入整式方程得:3﹣2﹣m =0解得:m =1解析:1【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:3﹣2﹣m =0,解得:m =1,故答案:1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.15.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13 【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 16.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 17.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 18.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.三、解答题21.(1)()()222x x y x y +-;(2)4x =-;(3)22a a --+,13【分析】(1)先提取公因式,然后再利用平方差公式进行求解即可;(2)先去分母,然后进行整式方程的求解即可;(3)先算括号内的,然后再进行分式的运算即可,最后选择一个使最简公分母不为零的数代值求解即可.【详解】解:(1)3228x xy -=()2224x x y -=()()222x x y x y +-;(2)23193x x x +=-- 去分母得:()2339x x x ++=-,整理得:312x =-,解得:4x =-,经检验4x =-是方程的解;(3)2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭=()222411a a a a --÷++ =()()()221122a a a a a -+⨯++- =22a a --+, 把1a =代入得:原式=311212-=-+. 【点睛】 本题主要考查因式分解、分式方程及分式的运算,熟练掌握因式分解、分式方程及分式的运算是解题的关键.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】 (1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可;(2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天, 根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;24.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键. 25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。
八年级(下)北师大版分式练习
一、填空题1.若要使分式9632+--x x x 有意义,则x 的值应为 .2.化简:z xy y x 23296 = .3.化简:222693y xy x xyx +-- = .5.已知a+b =2,ab =3,则ba 11+= . 6.yx y -2,y x +1,222y x y x -+的最简公分母是 . 7.已知1112112--++-m m m 的值等于0,则m 的值是 .8. 数与数之间的关系非常奇妙.如:①21211=-,②34322=-,③49433=-,…… 根据式中所蕴含的规律可知第n 个式子是 .9、化简222210522yx ab b a y x -⋅+的结果为 10、化简x x x x x ÷+++1222的结果为 10、若m 等于它的倒数,则分式22444222-+÷-++m m m m m m 的值为11.017·湖北宜昌中考)计算的结果为( )12.变分式的值,将它的分子、分母中各项的系数都化为整数的最简结果是二、选择题1、下列四个分式的运算中,其中运算结果正确的有 【 】 ①b a b a +=+211; ②()3232a aa =;③b a b a b a +=++22;④31932-=--a a a ; A .0个 B .1个 C.2个 D. 3个2.若将分式24a b a +中的a 与b 的值都扩大为原来的2倍,则这个分式的值将【 】A .扩大为原来的2倍 B. 分式的值不变C. 缩小为原来的21D .缩小为原来的41 3.若a –b =2ab ,则ba 11-的值为 【 】 A .21 B .–21 C .–2 D .24已知x 为整数,且分式1222-+x x 的值为整数,则x 可取的值有 【 】A .1个B .2个C .3个D .4个5.017·湖北武汉中考)若代数式在实数范围内有意义,则实数a 的取值范围为( )A.a=4B.a>4C.a<4D.a ≠4 6.分式的值为0,那么x 的值是 ( )A.-1B.-2C.1D.1或-2三、计算 1. y x a xy 28512÷ 2. ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-121121a a3x y x y 2211-+- 41111-÷⎪⎭⎫ ⎝⎛--x x x5、简2142122+⋅--÷⎪⎭⎫ ⎝⎛+-a a a a a a a 分解因式、4416n m -6、化简,再求值:11123132--++-÷--x x x x x x ,其中x=2+1.7、已知:a=10000,b=9999,求a 2+b 2-2ab -6a+6b+9的值。
八年级数学下册《分式方程》练习题及答案(北师大版)
八年级数学下册《分式方程》练习题及答案(北师大版)一、单选题 1.方程123x x=-的解为( ) A .6x =-B .2x =-C .2x =D .6x = 2.方程2113x =+的解的情况是( ). A .5x = B .4x = C .3x = D .无解3.学校为满足学生体育运动的需求,计划购买一定数量的篮球和足球.若每个足球的价格比篮球的价格贵15元,且用600元购买篮球的数量与用800元购买足球的数量相同.设每个篮球的价格为x 元,则可列方程为( )A .60080015x x =+ B .60080015x x =- C .60080015x x =+ D .60080015x x=- 4.甲、乙两人同时开始栽树,栽了一小时,两人共栽了20棵,两人均保持栽树速度不变,当甲栽27棵时,乙恰好栽33棵。
那么甲每小时栽树多少棵?设甲每小时裁树x 棵,则列方程为( )A .273320x x =+B .273320x x =-C .273320x x =+D .273320x x=- 5.如果关于x 的分式方程4122ax x x =+--有解,则a 的值为( ) A .1a ≠B .2a ≠C .1a ≠-且2a ≠-D .1a ≠且2a ≠ 6.方程21211x x =--的解为( ) A .1 B .-1 C .-2 D .无解7.九年级(3)班小王和小张两人练习跳绳,小王每分钟比小张少跳60个,小王跳120个所用的时间和小张跳180个所用的时间相等.设小王跳绳速度为x 个每分钟,则列方程正确的是( )A .12018060x x =+ B .12018060x x =- C .12018060x x =+ D .12018060x x=- 8.分式方程101m x x -=-有解,则m 的取值范围是( ) A .0m ≠ B .1m ≠ C .0m ≠或1m ≠ D .0m ≠且1m ≠9.已知关于x 的方程11a x =+的解是负数,则a 的取值范围是( ) A .1a < B .1a <且0a ≠ C .1a ≤ D .1a ≤ 或0a ≠10.关于x 的分式方程28222m x x x x +=--无解,则m =( ) A .2 B .4 C .2或4D .2或0二、填空题 11.分式方程33x -=2x的解是________. 12.若分式方程11322x x x-+=--有增根,则增根为x =_________. 13.如果分式22224x x x x x x ⎛⎫-÷ ⎪---⎝⎭的值为1,则x 的值为___________. 14.关于x 的方程2322x m x x-+--=3有增根,则m 的值为___________. 15.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,依题意列方程,得_____________.三、解答题 16.解分式方程:3201(1)x x x x +-=--.17.(1)计算:()20120193π-⎛⎫-+- ⎪⎝⎭ (2)计算:()()()22242x y x y x y --+(3)因式分解:22363ax axy ay -+(4)解方程:2216124x x x ++=---18.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾桶,学校先用2400元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外使用的大号垃圾桶,已知一个大号垃圾桶的价格是小号垃圾桶的4倍.且大号垃圾桶购买的数量比小号垃圾桶少50个,求一个小号垃圾桶的价格.19.解分式方程:211 33x x+= --20.新会柑是国家地理标志保护产品,新会柑普茶入口甘醇香甜,保健作用突出,很受市场欢迎.某茶店用4000元购进了A款新会柑普茶若干盒,用8400元购进了B款新会柑普茶若干盒,所购的B款新会柑普茶比A款新会柑普茶多10盒,且B款新会柑普茶每盒进价比A款贵40%.问:A、B两款新会柑普茶每盒进价分别是多少元?。
最新北师大版八年级下册分式方程测试试题以及答案
小王每小时比小李多分拣 8 个物件,设小李每小时分拣 x 个物件,根
据题意列出的方程是 ___.
3
9、某电子元件厂准备生产 4600 个电子元件,甲车间独立生产了一半
后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车
间每天生产的电子元件是甲车间的 1.3 倍,结果用 33 天完成任务,
问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产
8
19、某工程队承接了 3000 米的修路任务,在修好 600 米后,引进了 新设备,工作效率是原来的 2 倍,一共用 30 天完成了任务,求引进 新设备前平均每天修路多少米?
9
20、如图 ,已知△ ABC 在平面直角坐标系中 ,其中点 A、 B、 C 三点的坐 标分别为 ( 1, 2 3 ),(- 1, 0) ,( 3,0) ,点 D 为 BC 中 点 ,P 是 AC 上的一个 动点( P 与点 A、 C 不重合) ,连接 PB、PD,则△ PBD 周长的最小值是
4 a2
a2
x2 x1
x1
2
4、下列四个方程中,不是分式方程的是
。
A、 1 1
x
B、 1 2
x-1
C、 x 1-1 x-2
3
2
D、 3 7
x-5 x
5、在方程 x 3-5
2
0、4 x
6、 x 2x
3、3 - x x4
1、x π
2 中,分式方程有
个。
6、小朱要到距家 1500 米的学校上学,一天,小朱出发 10 分钟后,
7
18、 为提高饮水质量,越来越多的居民开始选购家用净水器,一商场 抓住商机,从厂家购进 A、B 两种型号家用净水器共 160 台, A 型号家 用净水器进价是 150 元/ 台, B 型号家用净水器进价是 350 元 / 台,购 进两种型号的家用净水器共用去 36000 元, 1)求 A、 B 两种型号家用净水器各购进多少台? 2)为使每台 B 型号家用净水器的毛利润是 A 型号的 2 倍,且保证售 完这 160 台家用净水器的毛利润不低于 11000 元,求每台 A 型号家用 净水器的售价至少是多少元.(注:毛利润 =售价 - 进价)
北师大版初二数学下册分式练习题
3. 1分式课程引入分数在我们中国很早就有了 ,最初分数的表现形式跟现在不一样。
后来,印度出现了和我国相似的分数表示法。
再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数 成几份,分子表示取了其中的几份•那么,分式又是怎样的呢? 课前预习 ※自主阅读1. 复习:什么是整式?2 .在代数式中,整式的除法可以用类似分数的形式表示:来表示;60+(x )可以用式子m 吨,平均每公顷产量可以用式子 x 公顷,收棉花 m 千克,第二块图书的库存全部售出时,其销售额为 b 元.降价销售开始时,文林书店这种图书的库存量是3.分式的定义:整式 A 除以整式B ,可以表示成 的形式.如果 其中A 称为分式的分子,B 称为分式的分母.4 .分式中,字母可以取任意实数吗?当 x值时,分式 有意义5 .当x 时,分式的值为0※质疑问难 课堂研习 ※知识理解分式与整式的本质区别是 ※典例剖析(1) 下列各式中,哪些是整式?哪些是分式? 5x — 7, 3x2 — 1, , , — 5,,,. (2 )当x 取什么值时,下列分式有意义? ①;②;③;④(3)当x 取何值时,下列分式的值为零?① ② ③(4)把甲、乙两种饮料按质量比 混合在一起,可以调制成一种混合饮料,调制1 kg 这种混合饮料需多少甲种饮料? ※反馈练习1.下面各式中, x+ y, , , — 4xy ,,分式的个数有()A 、1个B 、2个C 、3个D 、4个2 .当x 时,分式 无意义;当x 时,分式 有意义;3 .当x 时,分式的值为0。
4 .当x时,分式无意义?,分母表示把一个物体平均分(1) 90*x 可以用式子 (2) n 公顷麦田共收小麦 (3) 有两块棉田,有一块 棉田平均每公顷的棉产量是(4 )文林书店库存一批图书,其中一种图书的原价是每册 来表示。
北师大版八年级数学下册分式与分式方程专项测试题-附答案解析一
)(一第五章分式与分式方程专项测试题分)分,共4515小题,每小题3一、单项选择题(本大题共有)的值为1,则的值为(、若分式 D. B. A.C.本,第二2、某班在“世界读书日”开展了图书交换活动,第一组同学共带图书组同学共带图书本.已知第一组同学比第二组同学平均每人多带本图书,第二组人数是第一组人数的)倍.则第一组的人数(人D. 人C. 人 A. 人B.、杭州到北京的铁路长千米时,3千米.火车的原平均速度为提速后平均速度增加了时,由杭州到北京的行驶时间缩短千米()小时,则可列方程为了B.A.D.C.4、炎炎夏日,甲安装队为小区安装小区安装台空调,乙安装队为台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装台.设乙队每天安装台,( )根据题意,下列所列方程正确的是D. B.A.C.5、若关于的分式方程有增根,则的值是() A. D.C.或 B.)、分可变形为(D.C.B.A.7、在下列方程中,关于的分式方程的个数有()①;②;③;④;⑤;⑥个D. 个C. 个 A. 个B.)、化简的结果为(8 D.A. B.C.)、的运算结果正确的是(9 D.C.A.B.中的分子、分母的、同时扩大倍,那么分10、把分式)式的值(不改变D. 倍C. 改变原来的缩小 A. 扩大倍B.)的最简公分母是(、11、下列三个式子、B.D.C.A.)12、下列分式是最简分式的是(D.C.B.A.)、下列代数式中,属于分式的是(13D.B.C. A.)的解为(14、分式方程D.B.C.A.,若,则原方程可化1、用换元法解方程)为(A. B.D.C.分)25小题,每小题5分,共5二、填空题(本大题共有.的根是16、方程;②;③17、下列方程:①(为已知数);.④______.其中是分式方程的是形式)a/b的解是18、方程.(若结果为分数,写成.19、化简:______.20、若,则____________分)分,共30三、解答题(本大题共有3小题,每小题10的取值范围.的解为正数,求21、若分式方程.、计算:22.?23、计算:答案部分一) 第五章分式与分式方程专项测试题(分)分,共45一、单项选择题(本大题共有15小题,每小题3),则、若分式1的值为的值为( A.B.C.D.B【答案】【解析】解:且由题意知且.故答案应选:2本,第二、某班在“世界读书日”开展了图书交换活动,第一组同学共带图书本图书,第二组同学共带图书本.已知第一组同学比第二组同学平均每人多带组人数是第一组人数的( 倍.则第一组的人数)人 A.人 B.人 C.人 D.A【答案】人【解析】解:设第一组有根据题意,得.解得经检验,是原方程的解,且符合题意.人.答:第一组有 3 、杭州到北京的铁路长时,千米.火车的原平均速度为千米提速后平均速度增加了时,由杭州到北京的行驶时间缩短千米()小时,则可列方程为了A.B.C.D.A【答案】【解析】解:根据题意得:台空4、炎炎夏日,甲安装队为台空调,乙安装队为小区安装小区安装调,台.设乙队每天安装两队同时开工且恰好同时完工,甲队比乙队每天多安装台,( )根据题意,下列所列方程正确的是A.B.C.D.A【答案】由题意得【解析】解:根据两队同时开工且恰好同时完工可得两队所用时间相等. 甲队每天安装台,,乙队所用时间为,利用时间相等建立方程所以甲安装所有时间为.得:)的分式方程有增根,则5、若关于的值是(A.B.C.或 D.A【答案】,【解析】解:去分母得:,由题知方程的增根为,所以代入上式得:解得.:.故正确答案为、分式6 可变形为() A.B.C.D.D【答案】【解析】解:=,=故正确答案为:.7、在下列方程中,关于的分式方程的个数有()①;②;③;④;⑤;⑥个 A.个 B.个 C.个 D.B【答案】【解析】解:的分母不含有未知数,它;②⑥①们是整式方程,不是分式方程;,故是分式方程.的分母中含有未知数③;④;⑤)的结果为(、化简8 A.B.C.D.A【答案】【解析】解:)的运算结果正确的是(9、A. B.C.D.C【答案】【解析】解:10、把分式中的分子、分母的、倍,那么分同时扩大)式的值(倍 A. 扩大倍 B. 缩小改变原来的 C.不改变 D.D【答案】【解析】解:,根据分式的基本性质,则分式的值同时扩大倍,即、分子、分母的不变.)的最简公分母是(、下列三个式子、、11A.B.C.D.D【答案】.【解析】解:、的分母分别是、分式、,、故最简公分母为.)12、下列分式是最简分式的是(A.B.C.D.B【答案】【解析】解:中,分子、分母含有公因式,则它不是最简分式,故本选项错误;的分子、分母不能再分解,且不能约分,是最简分式,故本选项正确;中,分子、分母含有公因式,则它不是最简分式,故本选项错误;,则它不是最简分式,故本选项错误.分子、分母含有公因式)13、下列代数式中,属于分式的是( A.B.C.D.C【答案】【解析】解:是整式,不符合题意;是整式,不符合题意;是分式,符合题意;是根式,不符合题意.故正确答案是:)的解为(14、分式方程A.B.C.D.B【答案】【解析】解:.,解得去分母,得,则原方程可化15,若设、用换元法解方程)为( A.B.C.D.A【答案】【解析】解:把代入原方程得:,.方程两边同乘以整理得:分)25分,共5小题,每小题5二、填空题(本大题共有 .、方程16的根是【答案】【解析】解:,.去分母,得化简整理,得.是原方程的根,经检验. 原方程的根为.故答案为:为已知数);17、下列方程:①(;②;③.______④.其中是分式方程的是【答案】①④【解析】解:是分式方程;①是整式方程;②(为已知数)是整式方程;③是分式方程.④形式).(若结果为分数,写成18a/b的解是、方程30【答案】【解析】解:,去分母得:,移项合并得:解得:,是分式方程的解.经检验.19______、化简【答案】【解析】解:.,则____________20、若【答案】,得,【解析】由则分)30小题,每小题10分,共三、解答题(本大题共有3的取值范围.的解为正数,求21、若分式方程【解析】解:得:在方程两边同乘以最简公分母,整理,得,.原方程的解为正数,,. 即原方程可能的增根为和,得代入代入得,把.或当.,无解和时,原方程分别有增根.时方程的解为正数当且、计算:22.【解析】解:..?23、计算:【解析】解:原式?.。
[北师大版]八年级数学下册《分式》单元测试1(含答案)
八年级数学 第三章 分式单元测试A 卷(基础层 共100分)一、选择题:(每小题3分,共30分) 1、若a ,b 为有理数,要使分式ba的值是非负数,则a ,b 的取值是 ( ) (A)a ≥0,b ≠0; (B)a ≥0,b>O ; (C)a ≤0,b<0; (D)a ≥0,b>0或a ≤0,b<02、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
(A)2 (B)3 (C)4 (D)5 3、下列各式,正确的是 ( )(A)326x x x =; (B)b a x b x a =++;(C))(1y x y x y x ≠-=-+-; (D)b a ba b a +=++22; 4、要使分式2||1-x 有意义,x 的值为 ( )(A)x ≠2; (B)x ≠-2; (C)-2<x<2; (D)x ≠2且x ≠-2; 5、下列判断中,正确的是( ) (A)分式的分子中一定含有字母; (B)对于任意有理数x ,分式252+x 总有意义 (C)分数一定是分式;(D)当A=0时,分式BA的值为0(A 、B 为整式) 6、如果x>y>0,那么xyx y -++11的值是 ( ) (A)零; (B)正数; (C)负数; (D)整数; 7、若ab ba s -+=,则b 为 ( )(A)1++s as a ; (B)1+-s as a ; (C)2-+s as a ; (D)1-+s asa ; 8、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
(A)221v v +千米; (B)2121v v v v +千米; (C)21212v v v v +千米; (D)无法确定9、若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( ) (A)扩大3倍; (B)缩小3倍; (C)缩小6倍; (D)不变;10、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )(A)9448448=-++x x ; (B)9448448=-++x x ; (C)9448=+x ; (D)9496496=-++x x ;二、填空题:(每小题3分,共30分) 1.在分式11||+-x x 中,x =_______时,分式无意义;当x =_________时,分式的值为零. 2、①())0(,10 53≠=a axy xy a ②约分:=+--96922x x x __________。
北师大版数学八年级下册第五章测试题及答案《分式与分式方程》
北师大版数学八年级下册第五章测试卷一、单选题1.在代数式ab a ,23a b ,-0.5xy +23y ,b ca c +-,12x x ---,1π中,是分式的有( ).A .1个B .2个C .3个D .4个2.下列各式从左到右变形正确的是A .1-2-2122x y x y x y x y =++ B .0.220.22a b a b a b a b ++=++C .-1-1--x x x y x y += D .--a b a ba b a b+=+ 3.计算11x x y--的结果是( ). A .()yx x y --B .2()x yx x y +-C .2()x yx x y --D .()yx x y -4.计算2623993m mm m m ⋅÷+--的结果为( ). A .21(3)m +B .21(3)m -+C .21(3)m -D .219m -+5.下列分式方程有解的是( ).A .210x x+=B .123x -=0 C .2111x x x x +=-- D .11x -=1 6.按下列程序计算,当a =-2时,最后输出的答案是().A .132- B .52-C .-1D .12-7.已知a ,b 为实数,且ab =1,设M =11a b a b +++,N =1111a b +++,则M ,N 的大小关系是( ). A .M >NB .M =NC .M <ND .无法确定8.某工程限期完成,甲队独做正好按期完成,乙队独做则要延期3天完成.现两队先合做2天,再由乙队独做,也正好按期完成.如果设规定的期限为x 天,那么根据题意可列出方程:①223x x ++=1;②1122()133x x x x -++=++;③213xx x +=+;④233x x =+.其中正确的个数为( ). A .1 B .2C .3D .4二、填空题9.当x______时,分式22x x -+有意义;当x_______时,分式22x x -+的值为零. 10.若关于x 的分式方程1133ax x -=++在实数范围内无解,则实数a =________.11.已知114a b+=,则3227a ab ba b ab -++-=______.12.某商店销售一种衬衫,四月份的营业额为5 000元,为扩大销售,五月份将每件衬衫按原价的8折销售,销售量比四月份增加了40件,营业额比四月份增加了600元,求四月份每件衬衫的售价.解决这个问题时,若设四月份的每件衬衫的售价为x 元,由题意可列方程为_______.三、解答题13.先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.14.(1)解方程:23311x x x +---=0;(2)解方程:11322xx x-=---.15.我们把分子为1的分数叫做单位分数,如12,13,14,….任何一个单位分数都可以拆分成两个不同的单位分数的和,如12=13+16,13=14+112,14=15+120,….(1)根据对上述式子的观察,你会发现1115=+□○.请写出□,○所表示的数.(2)进一步思考,单位分数1n(n是不小于2的正整数)=11+△☆,请写出△,☆所表示的代数式,并加以验证.16.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过点P 跑回到起跑线l(如图所示),途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50秒,捡球过程不算在内时,甲的速度是我的1.2倍.”根据图文信息,请问哪位同学获胜?参考答案1.C 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】2a b 3,-0.5xy +2y 3,1π的分母中均不含有字母,因此它们是整式,而不是分式,ab a ,b ca c+-,1x 2x ---的分母中含有字母,因此是分式.故选C . 【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式,要注意圆周率π是常数字母. 2.A 【解析】A 原式=222222x yx y x y x y --=++,正确;B 原式=210102a ba b ++,错误;C 原式=1x x y ---,错误;D 显然错误.故选A 3.A111.()()()()x y x x y x x x y x x y x x y x x y x x y ----=-==------故选A 4.B 【解析】 【分析】首先把分式的分子或分母能分解因式的分解因式,再把除法变为乘法,然后约分后相乘即可. 【详解】原式=()m 3m 3+•()()63m 3m -+•m 32m -=-()21m 3+,故选:B . 【点睛】此题主要考查了分式的乘除法,分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分. 5.D 【解析】 【分析】分别按照解分式方程的步骤去分母,解整式方程可判断方程的解的情况. 【详解】A 、方程两边都乘以x 得:x 2+1=0,此整式方程无解,故原分式方程无解;B 、方程两边都乘以2x-3得:1=0,不成立,故方程无解;C 、方程两边都乘以x-1得:2x=x+1,解得x=1,而x=1时分母x-1=0,故原分式方程无解;D 、方程两边都乘以x-1得:x-1=1,解得x=2,当x=2时,分母x-1=1≠0,x=2是原分式方程的解; 故选:D . 【点睛】本题主要考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 6.D 【解析】根据题意列出关于m 的代数式,将a=-2代入计算即可求出值. 【详解】由题可知(a 3-a )÷a 2+1=a-1a +1, 当a=-2时,原式=-2-12-+1=12-. 故选:D . 【点睛】此题考查了代数式求值,根据题意列出正确的关系式是解本题的关键. 7.B 【解析】M -N =1a a ++1b b +-(11a ++11b +) =1a a ++1b b +-11a +-11b + =11a a -++11b b -+ =111111a b b a a b -++-+++()()()()=1111ab a b ab b a a b +--++--++()()=2211ab a b -++()()∵ab =1, ∴M -N =0, ∴M =N . 故选B.点睛:本题主要借助作差法将两个数比较大小问题转化为分式化简求值问题. 8.C 【解析】根据规定日期为x 天,则甲队完成任务需要x 天,乙队完成任务需要(x+3)天. 记该工程总量为“1”,根据题意,得:甲、乙的工作效率分别为1x 、13x +. 根据“甲乙合做的工作量+乙做的工作量=1”,由此可列方程:1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭.根据“甲的工作量+乙做的工作量=1”,可列方程:213xx x+=+.再根据题意得“乙2天做的工作量=甲3天做的工作量”,可列方程:233 x x=+.综上可知②③④方程均符合题意.故选C.点睛:此题考查了由实际问题抽象出分式方程,关键步骤在于找相等关系.当题中没有一些必须的量时,为了简便,应设其为1.本题要掌握好工作效率,工作总量和工作时间的等量关系.9.≠-2 =2【解析】【分析】分式有意义:分母不为零;分式的值为零时,分子为零,且分母不为零.【详解】当分母x+2≠0,即x≠-2时,分式x2x2-+有意义;当分子x-2=0,即x=2时,分式x2x2-+的值为零.故答案分别是:≠2;=2.【点睛】本题考查了分式有意义的条件和分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.1【解析】【分析】按照一般步骤解方程,用含a的代数式表示x,既然无解,所以x应该是能令最简公分母为0的值,代入即可解答a.【详解】原方程化为整式方程得:1-x-3=a,整理得x=-2-a,因为无解,所以x+3=0,即x=-3,所以a=-2+3=1. 故答案为:1 【点睛】分式方程无解的可能为:整式方程本身无解,但当整式方程的未知数的系数为一常数时,不存在整式方程无解;分式方程产生增根. 11.1 【解析】∵11a b +=4, ∴4b a ab+=,∴a+b=4ab, ∴-322-7a ab b a b ab ++=()32()7a b ab a b ab +-+-=4387ab ab ab ab --=ab ab=1 故答案为:1. 12.5?0006005?00080%x x+-=40 【解析】设四月份的每件衬衫的售价为x 元, 则五月份的每件衬衫的售价为80%x 元, 五月份的营业额为(5000+600)元,依据“销售量比四月份增加了40件”可得5000600500080%x x+-=40.故答案为:5000600500080%x x+-=40点睛: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程. 13.12x x +-,当x =0时,原式=12-(或:当x =-2时,原式=14). 【解析】 【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可. 【详解】 解:原式=21x x --×()()2x 1x 1(2)x +--=12x x +-.x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.当x=0时,原式=﹣12(或:当x=﹣2时,原式=14).【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.14.(1)x=0;(2)原方程无解.【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)方程两边都乘(x+1)(x-1),得3(x+1)-(x+3)=0,3x+3-x-3=0,2x=0,x=0,检验:将x=0代入原方程,得左边=0=右边.所以x=0是原方程的解;(2)方程两边同乘(x-2),得1=-(1-x)-3(x-2),解这个方程,得x=2,检验:当x=2时,分母x-2=0,所以x=2是增根,原方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(1) 6,30;(2)n+1,n(n+1)【解析】试题分析:(1)通过观察直接写出口,○所表示的数分别为:6 ,30 ;(2)通过前面几个式子找出规律,再对找出的规律验证即可. 试题解析: (1) 6 ,30 ;(2)n =2时, 111236=+=112123++⨯; n =3时,11133134=++⨯; n =4时,11144145=++⨯; ……1n =11n ++11n n +(). 所以□,△所表示的式子n +1, n (n +1). 验证:()()1111111n n n n n n n++==+++. 点睛:掌握分式的加法运算.16.乙同学获胜. 【解析】 【分析】应算出甲乙两人所用时间.等量关系为:(甲同学跑所用时间+6)+乙同学所用时间=50. 【详解】设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, 根据题意,得606061.2x x ⎛⎫++⎪⎝⎭=50,解得x =2.5, 经检验,x =2.5是原方程的解,且符合题意, 所以甲同学所用的时间为601.2x+6=26(秒), 乙同学所用的时间为60x=24(秒), 因为26>24, 所以乙同学获胜. 【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.第11 页。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(包含答案解析)(2)
一、选择题1.下列运算中,正确的是( )A .211a a a+=+B .21111a a a -⋅=-+C .1b a a b b a +=-- D .0.22100.7710++=--a b a ba b a b2.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b +A .4B .3C .2D .13.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为( ) A .10B .15C .18D .204.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( ) A .3B .4C .5D .65.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 6.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( )A .112m ≤< B .312m ≤<C .322m ≤< D .522m ≤<7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.若a =1,则2933a a a -++的值为( ) A .2 B .2-C .12D .12-9.若ab ,则下列分式化简中,正确的是( )A .22a ab b+=+ B .22a ab b -=- C .33a a b b = D .22a a b b=10.若0234x y z==≠,则下列等式不成立的是( ) A .::2:3:4x y z = B .27x y z += C .234x y zx y z+++== D .234y x z ==11.对于两个非零的实数a ,b ,定义运算*如下:11a b b a*=-.例如:113443*=-.若2x y *=,则xy x y -的值为( )A .12B .2C .12-D .2-12.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±1二、填空题13.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______. 14.已知2a b=,则a ba b +-=_____.15.关于x 的分式方程211mx =-+无解,则m 的取值是_______. 16.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 17.观察给定的分式,探索规律: (1)1x ,22x,33x ,44x ,…其中第6个分式是__________;(2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________;(3)2b a -,52b a ,83b a -,114b a ,…其中第n 个分式是__________(n 为正整数).18.已知215a a+=,那么2421a a a =++________. 19.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.20.计算:22x x xyx y x -⋅=-____________________. 三、解答题21.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送) 22.解下列分式方程(1)42122x x x x ++=--; (2)()()21112x x x x =+++-. 23.解方程: (1)81877--=--x x x; (2)21124x x x -=--. 24.计算(1)()()2222232322a a a a a -⋅+-+(2)()()()2235x x x ---+(3)用简便方法计算:22202020204020-⨯+(4)解分式方程:52332x x x=-- (5)2124111x x x +=+-- 25.今年11月14日,“行孝仗义,柿柿如意”2020第三届孝义柿子文化节在兑镇镇产树原村隆重开幕.柿子是孝义市地理标志农产品,开发柿子产业是转型跨越发展致富的新路.某食品公司有一批新鲜柿子,公司将一部分新鲜柿子直接销售,这批新鲜柿子的总售价为4000元,剩余的一部分加工成柿饼后进行销售,这批柿饼的总售价为80000元.已知柿饼的销售数量比直接销售的新鲜柿子多2000千克,且每千克的售价是新鲜柿子的10倍.求新鲜柿子和柿饼每千克的售价各多少元?26.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据分式的运算法则及分式的性质逐项进行计算即可. 【详解】A :211a a a a+=+,故不符合题意;B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意;C :1b a b a a b b a a b a b+=-=-----,故不符合题意; D :0.22100.7710++=--a b a ba b a b,故不符合题意;【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键.2.A解析:A 【分析】分母是整式且整式中含有字母,根据这点判断即可. 【详解】 ∵3x中的分母是3,不含字母, ∴3x不是分式; ∵1n中的分母是n ,是整式,且是字母, ∴1n是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b+中的分母是15,不含字母, ∴15a b+不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y是分式;∵()22aba b +中的分母是2()a b +,是整式,含字母a ,b ,∴()22aba b +是分式;共有4个, 故选A . 【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键.3.D解析:D设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可. 【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++,解得x=20,且x=20是所列方程的根, 故选D . 【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.4.A解析:A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得. 【详解】 解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解, 即放入口袋中的黄球总数n =3, 故选:A . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.C解析:C 【分析】先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】∵211x x ++=22-12(1)-112111x x x x x ++==-+++,又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32, 又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C . 【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键.7.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.D解析:D 【分析】 设234x y zk ===,则2x k =、3y k =、4z k =,分别代入计算即可. 【详解】 解:设234x y zk ===,则2x k =、3y k =、4z k =, A .::2:3:42:3:4x y z k k k ==,成立,不符合题意; B .23427k k k +=,成立,不符合题意; C.2233441234k k k k k k k k++++===,成立,不符合题意; D. 233244k k k ⨯=⨯≠⨯,不成立,符合题意; 故选:D . 【点睛】本题考查了等式的性质,解题关键是通过设参数,得到x 、y 、z 的值,代入判断.11.A解析:A 【分析】根据新定义,把2x y *=转化为分式的运算即可. 【详解】解:根据定义运算*,2x y *=,112y x-=, 去分母得,2x y xy -=, 代入xyx y-得, 122xy xy =, 故选:A . 【点睛】本题考查了新定义运算以及分式运算,解题关键是根据新定义运算找到x 、y 之间的关系,再整体代入.12.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121xx-+值为0,∴2x+1≠0,210x-=,解得:x=±1.故选:D.【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.二、填空题13.3≤b<4【分析】首先解分式方程求得a的值然后根据不等式组的解集确定x的范围再根据只有3个整数解确定b的范围【详解】解:解方程两边同时乘以a得:2-a+2a=3解得:a=1∴关于x的不等式组则解集是解析:3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a -+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b<4.故答案是:3≤b<4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.3【分析】首先由可设a=2kb=k然后将其代入即可求得答案【详解】解:∵∴设a=2kb=k∴==3故答案为:3【点睛】本题考查了分式的化简求值本题的关键是能利用设k法设出未知数解析:3【分析】首先由2a b=,可设a =2k ,b =k ,然后将其代入a b a b +-,即可求得答案. 【详解】 解:∵2a b=, ∴设a =2k ,b =k , ∴a b a b +-=22k k k k+-=3. 故答案为:3.【点睛】 本题考查了分式的化简求值,本题的关键是能利用设k 法,设出未知数.15.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键. 16.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷=2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13 故答案为:13【点睛】 本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 20.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.三、解答题21.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+, 整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.22.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)无解;(2)x =﹣32【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:()8187x x -+=-,整理得:749x =解得:x =7,经检验x =7是原方程的增根,∴原方程无解;(2)去分母得:()2214x x x +-=-, 整理得:23x =-解得:x =32-, 经检验x =﹣32是分式方程的解.【点睛】本题考查分式方程的解法,解题的关键是化分式方程为整式方程的方法,同时注意检验方程的根.24.(1)46274a a a ++;(2)1519x +;(3)4000000;(4)x=-5;(5)无解.【分析】(1)原式先分别计算积的乘方与幂的乘方,以及单项式乘以单项式,然后再合并同类项即可得到答案;(2)原式分别根据完全平方公式和多项式乘以多项式运算法则去括号,然后再合并同类项即可得到答案;(3)原式运用差的完全平方公式进行计算即可;(4)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(5)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()2222232322a a a a a -⋅+-+ =4462924a a a a -++=46274a a a ++(2)()()()2235x x x ---+=()22102556x x x x ++--+=22102556x x x x ++-+-=1519x +(3)22202020204020-⨯+=222020*********-⨯⨯+=2(202020)-=22000=4000000; (4)52332x x x=-- 去分母得,x=-5 经检验,x=-5是原方程的解,∴原方程的解为:x=-5;(5)2124111x x x +=+-- 去分母得,(1)2(1)4x x -++= 解得,x=1经检验,x=1是增根,∴原方程无解.【点睛】此题考查了整式的运算和解分式方程,熟练掌握相关运算法则是解答此题的关键.25.新鲜柿子每千克2元,柿饼每千克20元【分析】设每千克新鲜柿子x元,则每千克柿饼10x元,根据题意列出方程求解即可;【详解】解:设每千克新鲜柿子x元,则每千克柿饼10x元.依题意得,400080000200010x x+=,方程两边乘10x,得40000+20000x=80000,解得,x=2,检验:当x=2时,10x≠0.所以,原分式方程的解为x=2,且符合实际意义,当x=2时,10x=20,答:新鲜柿子每千克2元,柿饼每千克20元.【点睛】本题主要考查了分式方程的应用,准确计算是解题的关键.26.(1)每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元;(2)学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意列出方程求解即可;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意列出一元一次不等式组求解即可;再结合m为整数即可得出各种购买方案;【详解】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:12x=200.2x+,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:()()1.5800.3800.534m mm m-⎧⎪⎨-+≤⎪⎩≥,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,正确理解题意是解题的关键;。
北师大版八年级数学下册-分式与分式方程-单元测试题含答案
单元测试题北师大版八年级下册第五章 分式与分式方程分) 一、选择题(每小题3分,共301+x x 有意义,则)的取值应满足( 1.要使分式2x -xxxx 1=. A . ≠2B . ≠﹣1C .﹣=2D 2xx )的结果是( 2.计算 ﹣ 1--xx 1 . . A0B . 1C . xD 1( ) 3的结果是.当时,1)?(?2a ?a 2a 3311 .. B . CD A .??222235= )的解为( 4.分式方程x +2x x=4.x=3D . A .x=1B .x=2C 5).下列各式正确的是( cccc ???? A. B.b ?a ??aba ?b ?a ?bcccc ????? D. C. ba ?ba ?b ??a ?b ?a 14 ),则w 等于( 6.若( +)?w=12a4-2x -2 a . ﹣﹣﹣a+2C . a ﹣2Da+2A .B .3m x 的分式方程)+=1的解是非负数,则m 的取值范围是( 7.已知关于xx--113≠2且m .m ≥2且m ≠3D m >2.m A .>2B m ≥C .2|x |? ),下列说法正确的是(8 .对于分式24x ?xx 0B .时,它的值为=-2 A .=2时,它的值为0 xx 0取何值,它的值都不可能为0 x==2或-2时,它的值为 D .不论C .x 2?x 3??. ”9.学完分式运算后,老师出了一道题“计算:24?x 2?x228x (x ?3)(?2)x ?2xx ?x ?6?x ?2????? 小明的做法:原式;22224??4x ?4x ?4xx 224?2??x ?x ?(2?x )?x ?x ?63)(?(x ?x ?2) 小亮的做法:原式;13?x ?3x ?2x ?31x ?1?????? 小芳的做法:原式.2xx ?2(x ?2)(?2)x ?2x ?2x ? 其中正确的是( ) D .没有正确的.小芳 C A .小明 B .小亮采用了新技术,使得工作效套后,套运动装,在加工完10.某服装厂准备加工400160问:计划每天加工服装多少套?.20%,结果共用了18天完成任务率比原计划提高了x 在这个问题中,设计划每天加工)套,根据题意可得方程为(160400?16040016018????18B..A x (1?20%)xx (1?20x %)160400?400160?40016018??18??. D.C x ?20%)x (1xx 20% 分)二、填空题(每小题3分,共2424x ? x= 11.当时,0.分式的值为2?x22n?44mmn??.约分:. 1222n?m431?x.若.和的值相等,则131?22xx?1x2?1x .1)的结果等于14.计算(--)÷(xx元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾.小明上周三在超市用10 15元钱,却2活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了袋牛奶,则根据题意列得方程x比上次多买了2袋牛奶.若设他上周三买了.为1xy)÷的值为.那么(,16.如果实数xy满足方程x+3y=0,2x+3y=3+2y+yx+xmx mx≠___. = 17. 如果关于的方程有解,那么2-3?x3?x1ba bna=+对任意自然数18. =___,若=都成立,则????122nn?1?1?2nn2?11111m. ==___+___;计算:+…++2175??191?33?5分)三、解答题(共46 分)计算:(每小题4分,共8 19.2221xa--92aa)2(1﹣)÷(﹣(1)(+3))÷.(2-x+1xa-3x-221分)解下列方程:4分,共8 20. (每小题x341x???1. (1;+=1))(2-9x-32x?11?x2xm?n2m nm,其中=-21.(62. 分)先化简,再求值:·()22m?2mn?nn3x?4x?2x)?(x?. ,再任选一个你喜欢的数( 22.6分)先化简代入求值x?1x?111xxyyxy)的值.﹣(,求代数式+分)已知(. 238=1-+(﹣)1yx分)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行(10 24.天内完道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40乙工程队单独完成此项工成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,天完成.乙两工程队合做只需程的时间是甲工程队单独完成此项工程时间的2倍,若甲、10 )甲、乙两个工程队单独完成此项工程各需多少天?(1万元,2.52)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是(请你设计一种方案,既能按时完工,又能使工程费用最少.附加题(20分)12aa?ABCa的三构成△(10分)化简.其中与2、3,并求值·- 25. 22a?2a3?a4?a a. 边,且为整数AB 两种年底投入使用,计划在广场内种植,(10分)南洋火车站北广场将于201926.AB 花木数量的2倍少600 棵.花木共 6600棵,若花木数量是AB 两种花木的数量分别是多少棵?) ,(1AB 花棵或花木2)如果园林处安排26人同时种植这两种花木,每人每天能种植60(AB 花木,才能确保同时完成各自的任务?花木和木40 棵,应分别安排多少人种植参考答案B.C 10.. 一、1.A 2.C 3.D 4.C 5B 6.D 7.C 8.D910n 2m ?12x .﹣. 137 14. 12二、11.-2 0.5=.-1 15 x 2?xnm ?21 17.316.1b 10a 11= =- 提18.示:+????1?2n 2n ?11n ?221n ?1222????????b ?b ?2n ?1n 2n ?12?a ?baa banab 即=据.根题意,得2=()+1)+(,-????????12?1n ?2n ?1n ?12n 21?,?a ?0,?ba ??1011111111?2 m . )=(1-解得)==(1-…+-++-??11,a ?b ?2125211921233??.?b ??2?2-9a 2aa )÷+3(1)(:三、19.解3-a(a +3)(a -3)aa =+3()÷ a -3a -3aa +3 = )×( )+3)(a -3(a a . =2-21x (2)(1﹣)÷(﹣2) 2x -2x +1x -11. = x -12xxxxxx 4. 解得﹣3+,得=(+3)=﹣9.)()方程两边乘((解 20.:1+3)﹣3xxx 0. )≠3﹣()+3(时,4﹣=检验:当x 4.所以原分式方程的解为=﹣222x=1.解得-4=x-1. (2)方程两边乘(x-1),得(x+1)2. 不是原分式方程的解检验:当x=1时,x-1=0,因此x=1 所以,原分式方程无解.n??n2m2mn?2m nmnm. ·(--)) 21. 解:==·(222??n?nmm?2mn?n?mnn?m4nm5. 所以原式==. =因为2,所以2=nn?n22??22x?2??14??x3xx?x1?4??x4xx2?x??. 22.=解:原式===??2xx?1?1x?21x?x?2x???x10?x)注:不能取取1和2 ,则原式=8.(1yx+yx+1xyxyyxyyxx﹣)﹣)1﹣+)解 23.:因为(+1=,所以﹣==﹣+-(1﹣(yxyxyx xyxy1+0=0. ﹣=1﹣1++ 24.解:(2x天,天,则乙工程队单独完成该工程需1)设甲工程队单独完成该工程需x111=+x=15. 根据题意,得解得.10xx22x=30.是原分式方程的解且符合题意,经检验,x=15 答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5(万元);方案二:由乙工程队单独完成需要2.5×30=75(万元);10+2.5 方案三:由甲乙两队合做完成需要4.5××10=70(万元).所以选择甲工程队,既能按时完工,又能使工程费用最少.2?aa1aa?21=25.解:·-=·??223a?a?2a2?a22a?3a?aa?a?423a1?a?1.+=????32?a?2a?3a?3a?2a?a3?a aaABCaa为整数,所因为1<<5.<因为、与23构成△的三边,所以3-2,即<3+21aaa=1. 时,原式=,所以当,,±又、、以可能取234.≠023=43?4.xBxA棵,根据题意,得-棵,则600)花木的数量是(226.解:(1)设花木的数量是xxxx4200. =,则2-+(2=-600)6600.解得600=2400BA.棵花木的数量是2400答:4200花木的数量是棵,4200BAyy=(26-)人种植2()设安排花木,根据题意,得人种植花木,则安排y602400y=解得14..40(26?y)yy=-12.经检验,14=是原分式方程的解且符合题意,26AB.花木,才能确保同时完成各自的任务人种植12花木,人种植14答:安排.。
北师大版数学八年级下册《分式》课后练习分式 课后练习一及详解
分式课后练习(一)题一:下列各式:①312-x ;②x x 22;③21x ;④πv .其中分式有( ) A .1个 B .2个 C .3个 D .4个题二:已知分式11+-x x 的值是零,那么x 的值是( )A ..0 C .1 D .±1题三:下列说法中正确的是( )A .如果A 、B 是整式,那么B A就叫做分式B .分式都是有理式,有理式都是分式C .只要分式的分子为零,分式的值就为零D .只要分式的分母为零,分式就无意义题四:当x____时,分式2)2(--x x x 无意义.题五:若分式21x +的值为正整数,则整数x 的值为()题六:若分式23x x -的值为负,则x 的取值是( )A .x <3且x≠0 B.x >3C .x <3D .x >-3且x≠0分式课后练习参考答案题一: B详解:分母中含有字母的式子是分式,有x x 22,21x. 题二: C . 详解:由11+-x x 知,1=010x x -+≠,,所以x=1. 题三: D .详解:B 中不一定含有字母,BA 就不一定是分式,故A 不对.有理式可能是分式,也可能是整式,故B 不对.分式的分子为零时,分母要为零,分式就无意义了,故C 不对.所以,本题选D .题四: 2. 详解:分式无意义,其分母为零.由,得x=2. x+1>时,分式的值为正整数, x=0题六: 详解:由题意可得,分母x 2≠0,即x≠0,则x 2>0,显然分母为正数,要使分式的值为负必使分子为负.由<0得x <3,所以x 的取值为x <3且x≠0.题七:1x+<x。
2020北师大版八年级数学下:分式的运算(含答案)
【文库独家】2、分式方程及其应用【知识精读】1. 解分式方程的基本思想:把分式方程转化为整式方程。
2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
下面我们来学习可化为一元一次方程的分式方程的解法及其应用。
【分类解析】例1. 解方程:分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得例2. 解方程分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。
解:原方程变形为:方程两边通分,得经检验:原方程的根是例3. 解方程:分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。
解:由原方程得:即例4. 解方程:分析:此题若用一般解法,则计算量较大。
当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。
解:原方程变形为:约分,得方程两边都乘以注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。
因此要学会根据方程结构特点,用特殊方法解分式方程。
5、中考题解:例1.若解分式方程产生增根,则m的值是()A. B.C. D.分析:分式方程产生的增根,是使分母为零的未知数的值。
由题意得增根是:化简原方程为:把代入解得,故选择D。
例2. 甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?分析:利用所用时间相等这一等量关系列出方程。
北师大版八年级数学下册分式测试题及答案
北师大版八年级数学下册分式测试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八年级数学下册分式测试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版八年级数学下册分式测试题及答案的全部内容。
八年级下册第三章分式测试题一、填空题(本大题含10个小题,每小题2分,共20分)1。
下列代数式:①;②;③;④;⑤,其中整式有____________,分式有___________(只填序号).2. 分式当x __________时分式的值为零. 3。
当x __________时分式有意义。
4. 5。
约分: __________ 。
6。
计算的值等于_______. 8。
如果,则=__________。
7。
若关于x 的分式方程有增根,则增根为__________ . 9. 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.10. 某商品原售价为2200元,按此价的8折出售,仍获利10%,那么此商品进价为_ ___元。
二、选择题(本大题含8个小题,每小题3分,共24分)每小题给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填入表格内相应位置。
11。
下列各式中,是分式的是( )A.B. x 2C.D 。
12。
下列判断中,正确的是( )A 、分式的分子中一定含有字母B 、当B=0时,分式yx yx +-132+xx x 13-4xy 14.3ba -392--x xx x 2121-+())0(,1053≠=a axy xy a =+--96922x x x b b a 12⨯÷2a b =2222a ab b a b-++3232-=--x m x x 2-πx31312-+x x 21x BA无意义C 、当A=0时,分式的值为0(A 、B 为整式)D 、分数一定是分式13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式运算练习 一、填空题 1.计算:
__________x
2y y y
x 2x 2=-+
-.
2.计算:
____________1a 1
a a
2
=---.
3.计算:______________1
x
1x 2x x
1112
2
=-+--
--
.
4.计算:
______________a
6a 53
2
a 3a
3
2
2
=---
+-.
5.计算:________________)1x (11x 1
1
x 1
2
=-⎪⎭
⎫
⎝⎛-++
-. 6.若01x 4x 2=++则______________x
1x 2
2=+.
7.若x +y =-1,则_______________xy 2
y x
2
2
=++.
8.________________b
a a
b a 2
=+-
-.
二、选择题
9.3x =时,代数式x
1x 21x x
1
x x
-÷
⎪⎭⎫
⎝⎛+-
-的值是( ) A .2
13-
B .
2
3
1- C .
2
3
3-
D .
2
33+
10.化简
2
22
2
a
ab b ab ab
b a
---
-的结果是( )
A .a b
b a
2
2
+-
B .b
a C .b
a -
D .
ab
b 2a
2
2
+
11.下面的计算中,正确的是( ) A .
21
x x 1x
11x =-----
B .
2
24
42
22
32
2a
b b
a b
a b
a b
a b a =
÷
=
⋅
÷
C .1b
a a
b b
a b
a b
a m
m m
m m
m m
3m 3m
2m 2=⋅
=
⋅
÷
D .
0)
1x (x )
1x (x )
x 1(x )
1x (x 6
6
6
6
=--
-=
-+
-
12.化简分式ab
b a a
b b a 2
2
+-
-的结果是( ) A .10
B .b
a 2-
C .a
b 2-
D .
a
b 2
13.计算⎪⎭
⎫ ⎝⎛
-+÷⎪⎭⎫ ⎝
⎛
-+
1x 111x 1
12的结果是( ) A .1
B .x +1
C .
x
1x +
D .
1
x 1-
三、解答题 14.化简:4
x 24
x 216
x
42
--
++
-.
15.化简:x 1x 3x 2x 1
x x 3x 1x 22
22+÷⎪⎪⎭⎫ ⎝
⎛-----+.
16.已知23y 32x -=
+=,,求y
x y
x
)y x
(2
2
4
4
++÷
-的值.
17.先化简代数式)n m ()n m (mn 2n m n m n m n m 22222-+÷⎪⎪⎭
⎫ ⎝⎛+---+,然后请你自取一组a 、b 的值代入求值(所取a 、b 的值要保证原代数式有意义).
18.观察下列关系式:2
12111
+=
,6
13
12
1+=,12
14
13
1+=,…
请你观察上列各式并归纳出一般结论.
19.已知实数
x 、y
满足04y 2x 32|1y x 2|=+-++-,求代数式
2
2
2
2
y
4x y 4x
y
x y
2x y x 1+--÷
---
的值.
20.已知122y 22x -=-=,,求
2y
x y 2x
y
x y
x y x 2
2
2
2
-++-+
+-.
参考答案
【同步达纲练习】 一、 1.1 2.
1a 1-
3.
1
x
1
x 32
--
4.
)
3a )(1a (6--
5.1x 2x 2
++-
6.14 7.
2
1 8.b
a b
2
+-
二、
9.B 10.B 11.C 12.C 13.C 三、 14.
4
x 24
x 216
x
42
--
++
-
)
4x )(4x (8x 28x 24-+---+=
16
x
122
--=
. 15.
3
x 1-.
16.2
)y x )(y x (+-,48. 17.m +n .
18.
)
1n (n 11
n 1n
1++
+=
(n 为整数且n ≥1).
19.⎩
⎨⎧==5y 2x ,
y
x y 3+=
原式
7
15=.
20.y
x y 4+-
=原式
20212
-=.。