BP神经网络与MATLAB神经网络工具箱

合集下载

(完整word版)Matlab的神经网络工具箱入门

(完整word版)Matlab的神经网络工具箱入门

Matlab的神经网络工具箱入门在command window中键入help nnet>> help nnetNeural Network ToolboxVersion 7.0 (R2010b) 03-Aug-2010神经网络工具箱版本7.0(R2010b)03八月,2010图形用户界面功能。

nnstart - 神经网络启动GUInctool - 神经网络分类工具nftool - 神经网络的拟合工具nntraintool - 神经网络的训练工具nprtool - 神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。

查看- 查看一个神经网络。

网络的建立功能。

cascadeforwardnet - 串级,前馈神经网络。

competlayer - 竞争神经层。

distdelaynet - 分布时滞的神经网络。

elmannet - Elman神经网络。

feedforwardnet - 前馈神经网络。

fitnet - 函数拟合神经网络。

layrecnet - 分层递归神经网络。

linearlayer - 线性神经层。

lvqnet - 学习矢量量化(LVQ)神经网络。

narnet - 非线性自结合的时间序列网络。

narxnet - 非线性自结合的时间序列与外部输入网络。

newgrnn - 设计一个广义回归神经网络。

newhop - 建立经常性的Hopfield网络。

newlind - 设计一个线性层。

newpnn - 设计概率神经网络。

newrb - 径向基网络设计。

newrbe - 设计一个确切的径向基网络。

patternnet - 神经网络模式识别。

感知- 感知。

selforgmap - 自组织特征映射。

timedelaynet - 时滞神经网络。

利用网络。

网络- 创建一个自定义神经网络。

SIM卡- 模拟一个神经网络。

初始化- 初始化一个神经网络。

MATLAB-神经网络工具箱-PPT

MATLAB-神经网络工具箱-PPT
前馈网络通常分为不同的层(layer),第i层的 输入只与第i-1层的输出联结。
可见层:输入层(input layer)和输出层(output layer)
隐藏层(hidden layer) :中间层
感知器
感知器(perceptron):单层网络, 传递函数为阀值函数
主要功能是模式分类
感知器的生成
net = newp([-2,+2;-2,+2],2) %生成一个二维输入,两个神经元的感知器
感知器的权值和阀值初始化
newp默认权值和阀值为零(零初始化函数initzero).
net = newp([-2,+2;-2,+2],2);
W= b=
W=net.IW{1,1} %显示网络的权值 0 0 0
函数newp用来生成一个感知器神经网络
net = newp( pr, s, tf, lf )
➢ net: 函数返回参数,表示生成的感知器网络
➢ pr: 一个R×2矩阵, 由R维输入向量的每维最小值和最 大值组成
➢ s: ➢ tf: ➢ lf:
神经元的个数 感知器的传递函数, 默认为hardlim, 可选hardlims 感知器的学习函数,默认为learnp, 可选learnpn
网络输出
输入向量
➢分类结果显示绘图函数
plotpv
plotpv(P,T)
画输入向量的图像
plotpc
plotpc(W,b)
画分类线
例: 创建一个感知器
根据给定的样本输入向量P和目标向量T, 以及需分类 的向量组Q, 创建一个感知器, 对其进行分类.
P=[-0.5 -0.6 0.7;0.8 0 0.1]; T=[1 1 0]; net=newp([-1 1;-1 1],1); handle=plotpc(net.iw{1},net.b{1}); net.trainParam.epochs=10; net=train(net,P,T); Q=[0.6 0.9 -0.1;-0.1 -0.5 0.5]; Y=sim(net,Q); figure; plotpv(Q,Y); handle=plotpc(net.iw{1},net.b{1},handle)

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

Matlab神经网络工具箱介绍与数值试验

Matlab神经网络工具箱介绍与数值试验

Matlab神经网络工具箱介绍与数值试验第一章Matlab神经网络工具箱介绍与数值试验1.1Matlab神经网络工具箱中BP网络相关函数介绍MATLAB神经网络工具箱中包含了许多用于BP网络分析和设计的函数。

BP网络的常用函数如表4-1所示。

[10,12]表4-1 BP网络的常用函数1.2数值试验1.2.1.“异或”问题“异或”问题(XOR)是典型的非线性划分问题。

这里以它为例,简单介绍BP网络的应用。

在Matlab7.0环境下,建立一个三层的BP神经网络,其中输入层和隐层分别各有两个神经元,输出层有一个神经元。

现要求训练这一网络,使其具有解决“异或”问题的能力。

“异或”问题的训练输入和期望输出如表5-1。

表5-1 异或问题的训练输入和期望输出1)基于标准BP 算法结果如下及图5.1所示:横轴表示迭代次数,纵轴表示误差。

迭代到第240次时达到预设精度。

迭代停止时,误差为9.97269e-005,此时的梯度为0.00924693。

5010015020010-410-310-210-110101240 EpochsT r a i n i n g -B l u e G o a l -B l a c kPerformance is 9.97269e-005, Goal is 0.0001图5.1 基于标准BP 算法的“异或”问题2)基于共轭梯度法结果如下及图5.2所示:横轴表示迭代次数,纵轴表示误差。

迭代到第16次时达到预设精度。

迭代停止时,误差为9.0770e-005,此时的梯度为0.00318592。

024681012141610-410-310-210-11010116 EpochsT r a i n i n g -B l u e G o a l -B l a c k Performance is 9.07705e-005, Goal is 0.0001图5.2 基于共轭梯度法的“异或”问题3)基于LM 算法结果如下及图5.3所示:横轴表示迭代次数,纵轴表示误差。

神经网络工具箱操作

神经网络工具箱操作

1. 打开MATLAB,在命令行输入nntool,将出现如下界面:图1 神经网络工具箱主界面其中最主要的分为6个部分:第1部分中显示的是系统的输入数据;第2部分是系统的期望输出;第3部分是网络的计算输出;第4部分是网络的误差,即2和3之间的差异;第5部分呈现的是已经建立的神经网络实例;第6部分的两个按钮分别负责数据的导入和网络模型的建立。

2. 点击“Import”按钮,分别导入输入数据与目标输出数据(数据可从工作区导入,也可从文件导入):图2 导入输入数据集图3 导入期望输出数据集导入数据后主界面的情况如下:图4 导入数据后的情况重要说明:神经网络的数据是以列为基本单位的,即输入与输出数据的列数必须相同,否则将报错!如果原先数据是以行为单位组织的话,可以先在MATLAB 中实现转置然后再导入,即B = A’。

3.现在需要的数据已经有了,下一步就是建立一个神经网络模型对数据集进行学习。

以下步骤以BP网络为例,首先点击“New”按钮,出现如下界面:几个重要部分已在上图中框出:1处用于定义该神经网络的名称;2处用于选择神经网络的类型;3处用于选择网络的输入数据;4处用于确定网络的期望输出数据;5、6、7处分别对神经网络的主要机制函数进行设置;8处设置网络层数;9处用于选择各网络层(需要说明的是:第1层指的是隐含层而不是输入层),从而在10和11处可以对该层的神经元个数和传递函数进行设置;12处按钮可以用于查看当前所设置的神经网络的结构图(下附图);点击13处按钮即可生成对应的神经网络模型。

前面只是简单地介绍了各个部分的作用,具体参数应该如何设置就只有各位自行去学习相关的文献了,此处不再多言。

图6 神经网络结构预览4.现在模型和数据都有了,下一步该进行模型的训练了。

回到主界面如下:图7 回到主界面选中我们刚才建立的神经网络模型,然后点击“Open”按钮,将会出现如下界面:图8 神经网络界面在这里主要介绍两个选项卡中的内容,一个是“Train”,另一个是“Adapt”。

matlab神经网络工具箱简介和函数及示例

matlab神经网络工具箱简介和函数及示例

目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本

实验六 MATLAB神经网络工具箱汇总

实验六 MATLAB神经网络工具箱汇总

实验七 MATLAB 神经网络工具箱一、实验目的1、掌握Matlab 对感知器网络的构建与训练方法。

2、掌握Matlab 对线性神经网络的构建与训练方法。

3、掌握Matlab 对BP 神经网络的构建与训练方法。

二、实验原理1、感知器的MATLAB 仿真感知器(Pereceptron)是一种特殊的神经网络模型,是由美国心理学家F.Rosenblatt 于1958年提出的,一层为输入层,另一层具有计算单元,感知器特别适合于简单的模式分类问题,也可用于基于模式分类的学习控制和多模态控制中。

(一)感知器神经元模型感知器神经元通过对权值的训练,可以使感知器神经元的输出能代表对输入模式进行的分类,图1.1为感知器神经元模型。

图1.1 感知器神经元模型感知器神经元的每一个输入都对应于一个合适的权值,所有的输入与其对应权值的加权和作为阀值函数的输入。

由于阀值函数的引入,从而使得感知器可以将输入向量分为两个区域,通常阀函数采用双极阶跃函数,如:⎩⎨⎧<≥=0,00,1)(x x x f (1.1) 而感知器神经元模型的实际输出为⎪⎭⎫⎝⎛-=∑-=R ii i b x w f o 1 (1.2)其中b 为阀值(二)感知器的网络结构图1.2所描述的是一个简单的感知器网络结构,输入层有R 个输入,Q 个输出,通过权值w ij 与s 个感知器神经元连接组成的感知器神经网络。

根据网络结构,可以写出感知器处理单元对其输入的加权和操作,即:∑==Rj j ij i p w n 1(1.3)而其输出a i 为a i =f (n i +b i ) (1.4)由式2.1易知⎩⎨⎧<+≥+=0001i i i i i b n b n a (1.5) 则当输入n i +b i 大于等于0,即有n i ≥-b i 时,感知器的输出为1;否则输出为0。

上面所述的单层感知器神经网络是不可能解决线性不可分的输入向量分类问题,也不能推广到一般的前向网络中去。

用MATLAB的神经网络工具箱实现三层BP网络

用MATLAB的神经网络工具箱实现三层BP网络

用MATLAB的神经网络工具箱实现三层BP网络用MATLAB的神经网络工具箱实现三层BP网络% 读入训练数据和测试数据Input = [];Output = [];str = {'Test','Check'};Data = textread([str{1},'.txt']);% 读训练数据Input = Data(:,1:end-1);% 取数据表的前五列(主从成分)Output = Data(:,end);% 取数据表的最后一列(输出值)Data = textread([str{2},'.txt']);% 读测试数据CheckIn = Data(:,1:end-1);% 取数据表的前五列(主从成分)CheckOut = Data(:,end);% 取数据表的最后一列(输出值)Input = Input';Output = Output';CheckIn = CheckIn';CheckOut = CheckOut';% 矩阵赚置[Input,minp,maxp,Output,mint,maxt] = premnmx(Input,Output);% 标准化数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% 神经网络参数设置%====可以修正处Para.Goal = 0.0001;% 网络训练目标误差Para.Epochs = 800;% 网络训练代数Para.LearnRate = 0.1;% 网络学习速率%====Para.Show = 5;% 网络训练显示间隔Para.InRange = repmat([-1 1],size(Input,1),1);% 网络的输入变量区间Para.Neurons = [size(Input,1)*2+1 1];% 网络后两层神经元配置Para.TransferFcn= {'logsig' 'purelin'};% 各层的阈值函数Para.TrainFcn = 'trainlm';% 网络训练函数赋值% traingd : 梯度下降后向传播法% traingda : 自适应学习速率的梯度下降法% traingdm : 带动量的梯度下降法% traingdx :% 带动量,自适应学习速率的梯度下降法Para.LearnFcn = 'learngdm';% 网络学习函数Para.PerformFcn = 'sse';% 网络的误差函数Para.InNum = size(Input,1);% 输入量维数Para.IWNum = Para.InNum*Para.Neurons(1);% 输入权重个数Para.LWNum = prod(Para.Neurons);% 层权重个数Para.BiasNum = sum(Para.Neurons);% 偏置个数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%Net = newff(Para.InRange,Para.Neurons,Para.TransferFcn,...Para.TrainFcn,Para.LearnFcn,Para.PerformFcn);% 建立网络%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%Net.trainParam.show = Para.Show;% 训练显示间隔赋值Net.trainParam.goal = Para.Goal;% 训练目标误差赋值Net.trainParam.lr = Para.LearnRate;% 网络学习速率赋值Net.trainParam.epochs = Para.Epochs;% 训练代数赋值Net.trainParam.lr = Para.LearnRate;Net.performFcn = Para.PerformFcn;% 误差函数赋值%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 调试Out1 =sim(Net,Input);% 仿真刚建立的网络Sse1 =sse(Output-Out1);% 刚建立的网络误差%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [Net TR] = train(Net,Input,Output);% 训练网络并返回%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Out3 =sim(Net,Input);% 对学习训练后的网络仿真。

Matlab神经网络工具箱BP算法比较

Matlab神经网络工具箱BP算法比较
!
!
"
[
!
)( "
$ %
] )(
"
# 0 0
分别取 "( """# 和 "( """"# ; 复杂网络为 % 层, 各层神经元数 分别为 $" , )" , !" , #, 目标误差取 "( """# 。 经过多组训练, 得到的结论基本相同。取其中一组, 训 练时间迭代次数如表 # ( 划 * 的因其劣势很明显, 未做仿真, 其中 +,-./01 和 +,-./012 简单网络 ( 03-4 5 "( """# ) 学习步长为 "( ") , 其余对步长未做改动)
2* 其中 LM 为误差对 ,2 ( <+ = !<+ 0 >!!?) <+ = !@ 进行修正,
权值微分的 N$+@7%$& 矩阵, O 为误差向量, )K 为调整量。该 方法学习速度很快, 但占用内存很大, 对于中等规模的网络 来说, 是最好的一种训练算法。对于大型网络, 可以通过置 参数 );) = #;(K+ 将 N$+@7%$& 矩阵分为几个子矩阵。这样可 以减少内存的消耗, 但学习时间会增大。 *1 )"#$%&7#: 贝叶斯规则法。对 H;?;&7;#’ = I$#JK$#(" 算 法进行修改, 降低了确定最优网络结构的难度。
学习步长, " 为神经元连接权值, &’%( 为网络性能函数, 默认
— %*! 万方数据 —

基于MATLAB神经网络工具箱的BP网络实现

基于MATLAB神经网络工具箱的BP网络实现
本文将以 MATLAB6.1 为 开发 环境 , 介 绍 神经 网络 工 具 箱及其相关函数 , 论述利 用其 神经 网络工 具箱 开发 BP 网 络 的方法及设计步骤 , 给出应用实例 。
2 BP 网络模型
BP 网 络是一种多层前馈神经 网络 , 由输入 层 、隐层和 输 出层组成 。 层与层之间采用全互连方式 , 同一层 之间不存 在 相互连接 , 隐层可以 有一个 或多 个 。 构造 一个 BP 网 络需 要
收稿日期 :2003 -03 -06
确定其 处 理单 元 ——— — 神 经元 的 特 性和 网 络的 拓 扑结 构 。 神经元是神经网络最基本的处理单元 , 隐层中 的神经元采 用 S 型变换 函数 , 输出层的 神经元可采 用 S 型或线 性型变换 函 数 。 图 1 为一个典型的三层 BP 网络的拓扑结构 。
其中 :PR 是一个 由每 个输 入向 量 的最 大最 小值 构成 的 Rx2 矩阵 , R 为输入神经元数目 。
Si 是第 i 层网络的神经元个 数 , 网络共有 N1 层 。 TFi 是第 i 层网络神经元的变换函数 , 缺省为 tansig . BTF 是 BP 训练算法函数 , 缺省为 trainlm. BLF 是学习函数 , 缺省为 learngdm. PF 是性能函数 , 缺省为 mse . newff 在确定网络结构 后会 自动调 用初 始化 函数 init , 用 缺省参数来初始化网络中各个权值和阈值 , 产生 一个可训 练 的前馈网络 , 即该函数的 返回值 net。 在 MATLAB 中 , 神经 网 络 net 当做对象(object)处理 , 其属性用结构来定义 。 3)初始化函数 init :它是 对网 络的 连接 权值 和阈 值进 行 初始化 。 newff 在 创建 网络 对象 的 同时 , 自 动 调动 初始 化 函 数 , 根据缺省的参数对网络进行连接权值和阈 值初始化 。 4)学习函数 :提供多种学习函数 , 用来修 正权值和 阈值 。 基本的学习函数有 :learngd 、 learngdm。 5)性能函数 :它是用来计算网络 的输出误差 。 为训练 提 供判据 , 包 括 :函 数 mae , 计 算网 络 的 平 均 绝 对 误 差 ;函 数 mse, 计算网络的均方误差 ;函 数 msereg , 计算 均方误差 和权/ 阈值的加权 ;函数 sse , 计算网络的均方误差和 。 6)训练函数 train : BP 网 络的训练初始化后 , 可对 它进行训练 。 在 MATLAB 中训练网络有两类模式 :逐变模式 和批处理 模式 。 在逐变 模 式中 , 每输入一个学习样本就根据网 络性能指标 函数对连 接 权值和阈值更新一次 。 在批处理模式中 , 所有的 学习样本 都 学习完成后 , 连接权值和阈值才被 更新一次 。 使 用批处理 模 式不需要为每一层的连接权值和阈值设定 训练函数 , 而只 需 为整个网络指定 一个 训练 函数 , 使用 起来 相对方 便 , 而且 许 多改进的快速训练算法只能采用批处理模式 。 训练网 络 的 函 数 是 train 按 设 置 的 net.trainFcn 和 net. trainParam 参数来 训练网络 , 采用批处理方式进行网络的权 值 和阈值修正 , 最终达到设定的网络性能指标的 要求 。 7)BP 训练算法函数 :它是 根据网络 的输入 、目 标期望 输 出 , 对由 函数 newff 生成的 BP 网络 进行计 算 , 修正其 权值 和 阈值 , 最终达到设定的网络性能指 标的要求 。 不 同的训练 算 法函数对应不同的训练算法 , 如 traingd 对应最基 本梯度下 降 法 ;traingdm 带有动量 项 的梯 度下 降法 ;traingdx 带有 采用 动

matlab神经网络工具箱简介

matlab神经网络工具箱简介

matlab神经网络工具箱简介MATLAB软件中包含MATLAB神经网络工具箱,工具箱以人工神经网络为基础,只要根据自己需要调用相关函数,就可以完成网络设计、权值初始化、网络训练等,MATLAB神经网络工具箱包括的网络有感知器、线性网络、BP神经网络、径向基网络、自组织网络和回归网络,BP神经网络工具箱主要包括newff,sim和train三个神经网络函数各函数的解释如下:1 newff::::BP神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数函数功能:构建一个BP神经网络。

函数形式:net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)P:输入数据矩阵T:输出数据矩阵S:隐含层节点数TF:节点传递函数,包括硬限幅传递函数hardlim,对称硬限幅传递函数hardlims,线性传递函数purelin,正切S型传递函数tansig,对数S型传递函数logsigBTF:训练函数,包括梯度下降BP算法训练函数traingd,动量反传的梯度下降BP算法训练函数traingdm,动态自适应学习率的梯度下降BP算法训练函数traingda,动量反传和动态自适应学习率的梯度下降BP算法训练函数traingdx,Levenberg_Marquardt 的BP算法训练函数trainlmBLF:网络学习函数,包括BP学习规则learngd,带动量项的BP 学习规则learngdmPF:性能分析函数,包括均值绝对误差性能分析函数mae,均方差性能分析函数mse IPF:输入处理函数OPF:输出处理函数DDF:验证数据划分函数一般在使用过程中设置前六个参数,后四个参数采用系统默认参数。

2 train::::BP神经网络训练函数神经网络训练函数神经网络训练函数神经网络训练函数函数功能:用训练数据训练BP神经网络。

函数形式:[net,tr] = train(NET,X,T,Pi,Ai)NET:待训练网络X:输入数据矩阵T:输出数据矩阵Pi:初始化输入层条件Ai:初始化输出层条件net:训练好的网络tr:训练过程记录一般在使用过程中设置前三个参数,后两个参数采用系统默认参数。

(整理)BP神经网络matlab实现和matlab工具箱使用实例.

(整理)BP神经网络matlab实现和matlab工具箱使用实例.

(整理)BP神经网络matlab实现和matlab工具箱使用实例.BP神经网络matlab实现和matlab工具箱使用实例经过最近一段时间的神经网络学习,终于能初步使用matlab实现BP网络仿真试验。

这里特别感谢研友sistor2004的帖子《自己编的BP算法(工具:matlab)》和研友wangleisxcc的帖子《用C++,Matlab,Fortran实现的BP算法》前者帮助我对BP算法有了更明确的认识,后者让我对matlab下BP函数的使用有了初步了解。

因为他们发的帖子都没有加注释,对我等新手阅读时有一定困难,所以我把sistor2004发的程序稍加修改后加注了详细解释,方便新手阅读。

%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计%yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大,出来后学习率又还原%v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 动量项clear allclcinputNums=3; %输入层节点outputNums=3; %输出层节点hideNums=10; %隐层节点数maxcount=20000; %最大迭代次数samplenum=3; %一个计数器,无意义precision=0.001; %预设精度yyy=1.3; %yyy是帮助网络加速走出平坦区alpha=0.01; %学习率设定值a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改字串9error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间errorp=zeros(1,samplenum); %同上v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配dv=zeros(inputNums,hideNums); %3*10;w=rand(hideNums,outputNums); %10*3;同Vdeltw=zeros(hideNums,outputNums);%10*3dw=zeros(hideNums,outputNums); %10*3samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习count=1;while (count<=maxcount) %结束条件1迭代20000次c=1;while (c<=samplenum)for k=1:outputNumsd(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内的值endfor i=1:inputNumsx(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量字串4end%Forward();for j=1:hideNumsnet=0.0;for i=1:inputNumsnet=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i)endy(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数endfor k=1:outputNumsnet=0.0;for j=1:hideNumsnet=net+y(j)*w(j,k);endif count>=2&&error(count)-error(count+1)<=0.0001o(k)=1/(1+exp(-net)/yyy); %平坦区加大学习率else o(k)=1/(1+exp(-net)); %同上endend%BpError(c)反馈/修改;errortmp=0.0;for k=1:outputNumserrortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算enderrorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2%end%Backward();for k=1:outputNumsyitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导字串5endfor j=1:hideNumstem=0.0;for k=1:outputNumstem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑endyitay(j)=tem*y(j)*(1-y(j)); %隐层偏导end%调整各层权值for j=1:hideNumsfor k=1:outputNumsdeltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度endendfor i=1:inputNumsfor j=1:hideNumsdeltv(i,j)=alpha*yitay(j)*x(i); %同上deltwv(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);dv(i,j)=deltv(i,j);endendc=c+1;end%第二个while结束;表示一次BP训练结束double tmp;tmp=0.0; 字串8for i=1:samplenumtmp=tmp+errorp(i)*errorp(i);%误差求和endtmp=tmp/c;error(count)=sqrt(tmp);%误差求均方根,即精度if (error(count)<precision)%另一个结束条件< p="">break;endcount=count+1;%训练次数加1end%第一个while结束error(maxcount+1)=error(maxcount);p=1:count;pp=p/50;plot(pp,error(p),"-"); %显示误差然后下面是研友wangleisxcc的程序基础上,我把初始化网络,训练网络,和网络使用三个稍微集成后的一个新函数bpnet %简单的BP神经网络集成,使用时直接调用bpnet就行%输入的是p-作为训练值的输入% t-也是网络的期望输出结果% ynum-设定隐层点数一般取3~20;% maxnum-如果训练一直达不到期望误差之内,那么BP迭代的次数一般设为5000% ex-期望误差,也就是训练一小于这个误差后结束迭代一般设为0.01% lr-学习率一般设为0.01% pp-使用p-t虚拟蓝好的BP网络来分类计算的向量,也就是嵌入二值水印的大组系数进行训练然后得到二值序列% ww-输出结果% 注明:ynum,maxnum,ex,lr均是一个值;而p,t,pp,ww均可以为向量字串1% 比如p是m*n的n维行向量,t那么为m*k的k维行向量,pp为o*i的i维行向量,ww为o* k的k维行向量%p,t作为网络训练输入,pp作为训练好的网络输入计算,最后的ww作为pp经过训练好的BP训练后的输出function ww=bpnet(p,t,ynum,maxnum,ex,lr,pp)plot(p,t,"+");title("训练向量");xlabel("P");ylabel("t");[w1,b1,w2,b2]=initff(p,ynum,"tansig",t,"purelin"); %初始化含一个隐层的BP网络zhen=25; %每迭代多少次更新显示biglr=1.1; %学习慢时学习率(用于跳出平坦区)litlr=0.7; %学习快时学习率(梯度下降过快时)a=0.7 %动量项a大小(△W(t)=lr*X*ん+a*△W(t-1))tp=[zhen maxnum ex lr biglr litlr a 1.04]; %trainbpx[w1,b1,w2,b2,ep,tr]=trainbpx(w1,b1,"tansig",w2,b2,"purelin", p,t,tp);ww=simuff(pp,w1,b1,"tansig",w2,b2,"purelin"); %ww就是调用结果下面是bpnet使用简例:%bpnet举例,因为BP网络的权值初始化都是随即生成,所以每次运行的状态可能不一样。

BP人工神经网络试验报告一

BP人工神经网络试验报告一

BP⼈⼯神经⽹络试验报告⼀学号:北京⼯商⼤学⼈⼯神经⽹络实验报告实验⼀基于BP算法的XX及Matlab实现院(系)专业学⽣姓名成绩指导教师2011年10⽉⼀、实验⽬的:1、熟悉MATLAB 中神经⽹络⼯具箱的使⽤⽅法;2、了解BP 神经⽹络各种优化算法的原理;3、掌握BP 神经⽹络各种优化算法的特点;4、掌握使⽤BP 神经⽹络各种优化算法解决实际问题的⽅法。

⼆、实验内容:1 案例背景1.1 BP 神经⽹络概述BP 神经⽹络是⼀种多层前馈神经⽹络,该⽹络的主要特点是信号前向传递,误差反向传播。

在前向传递中,输⼊信号从输⼊层经隐含层逐层处理,直⾄输出层。

每⼀层的神经元状态只影响下⼀层神经元状态。

如果输出层得不到期望输出,则转⼊反向传播,根据预测误差调整⽹络权值和阈值,从⽽使BP 神经⽹络预测输出不断逼近期望输出。

BP 神经⽹络的拓扑结构如图1.1所⽰。

图1.1 BP 神经⽹络拓扑结构图图1.1中1x ,2x , ……n x 是BP 神经⽹络的输⼊值1y ,2y , ……n y 是BP 神经的预测值,ij ω和jk ω为BP 神经⽹络权值。

从图1.1可以看出,BP 神经⽹络可以看成⼀个⾮线性函数,⽹络输⼊值和预测值分别为该函数的⾃变量和因变量。

当输⼊节点数为n ,输出节点数为m 时,BP 神经⽹络就表达了从n 个⾃变量到m 个因变量的函数映射关系。

BP 神经⽹络预测前⾸先要训练⽹络,通过训练使⽹络具有联想记忆和预测能⼒。

BP 神经⽹络的训练过程包括以下⼏个步骤。

步骤1:⽹络初始化。

根据系统输⼊输出序列()y x ,确定⽹络输⼊层节点数n 、隐含层节点数l ,输出层节点数m ,初始化输⼊层、隐含层和输出层神经元之间的连接权值ij ω和式中, l 为隐含层节点数; f 为隐含层激励函数,该函数有多种表达形式,本章所选函数为:步骤3:输出层输出计算。

根据隐含层输出H ,连接权值jk ω和阈值b ,计算BP 神经⽹络预测输出O 。

BP神经网络在Matlab函数逼近中的应用

BP神经网络在Matlab函数逼近中的应用

燕山大学模式识别与智能系统导论题目: BP网络在函数逼近中的应用专业:控制工程姓名: X X X 学号:一BP神经网络及其原理............................................................ - 1 -1.1 BP神经网络定义............................................................. - 1 -1.2 BP神经网络模型及其基本原理..................................... - 1 -1.3 BP神经网络的主要功能................................................. - 3 -1.4 BP网络的优点以及局限性............................................. - 3 - 二基于MATLAB的BP神经网络工具箱函数 ........................ - 6 -2.1 BP网络创建函数............................................................. - 7 -2.2 神经元上的传递函数...................................................... - 7 -2.3 BP网络学习函数............................................................. - 8 -2.4 BP网络训练函数............................................................. - 9 - 三BP网络在函数逼近中的应用.............................................. - 10 -3.1 问题的提出.................................................................... - 10 -3.2 基于BP神经网络逼近函数......................................... - 10 -3.3 不同频率下的逼近效果................................................ - 14 -3.4 讨论................................................................................ - 17 -一BP神经网络及其原理1.1 BP神经网络定义BP (Back Propagation)神经网络是一种神经网络学习算法。

MATLAB神经网络工具箱中的神经网络模型共55页课件

MATLAB神经网络工具箱中的神经网络模型共55页课件
函数 列向量 w j (t ) 行向量 wi (t)
阈值向量b(t)
标量元素bi (t ) ,i为行,t为时间或迭代函数
网络层符号
加 个权神和经元: ,nns为mm 加,m权为和第m个网络层, s m 为第
网 个络神层经输元出,a为: a输smm出, m为第m个网络层, s m 为第 s m
p2 2,2
p{2}2(,2)
例:
iw
1 ,1 2 ,3
=
iw{1,1}2(,3)
p1,(k1) p{1,k1}
p2 2,(k 1)p{2,k1 }2()
神经网络工具箱常用函数列表
重要的感知器神经网络函数:
初始化: initp 训练: trainp 仿真: simup 学习规则: learnp
Hardlim x>=0 y=1;x<0 y=0 Hardlims:x>=0 y=1; x<0 y=-1 Purelin :y=x Satlin:x<0 y=0;x>1 y=1;x>=0&&x<=1 y=x;
Logsig:y= 1 1 ex
人工神经网络的构成
单个神经元的功能是很有限的,人工神经 网络只有用许多神经元按一定规则连接构 成的神经网络才具有强大的功能。
MATLAB工具箱中的神经网络结构
多层网络的简化表示:
MATLAB神经网络工具箱中的神经 网络模型
基本概念: 标量:小写字母,如a,b,c等; 列向量:小写黑体字母,如a,b,c等,意为一列
数; 矩阵向量:大写黑体字母,如A,B,C等
权值矩阵向量W(t)
标量元素 wi, j (t) ,i为行,j为列,t为时间或迭代
n

BP神经网络

BP神经网络

BP神经网络在函数逼近中的实现1.1 概述BP神经网络是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。

此项课题主要是针对MATLAB软件对BP神经网络的各种算法的编程,将神经网络算法应用于函数逼近和样本含量估计问题中,并分析比较相关参数对算法运行结果的影响。

人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。

神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。

神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。

神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

MATLAB神经网络工具箱

MATLAB神经网络工具箱

MATLAB神经网络工具箱与液位控制BP 模型的设计与仿真随着科学技术的发展,在控制领域中被控对象变得越来越复杂,控制系统呈现出复杂的非线性、时变及不确定性的特点,难于精确建模,有的虽然可以建立粗略的模型,但求解困难。

人工神经网络具有一定的自学习、自适应和非线性映射能力及容错性等优点,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了一条新的途径。

其中,BP 网络,即基于误差反向传播算法的多层前馈神经网络,由于它可以以任意精度逼近任意的连续函数,因此被广泛应用于非线性建模、函数逼近、模式分类、智能控制及预测等领域。

MATLAB神经网络工具箱是以神经网络理论作为背景的专业工具箱,本文针对某发电厂液位控制建立BP 预测模型,利用目前工程领域流行的MATLAB 6.1中提供的神经网络工具箱,对网络模型进行训练和仿真,给出优化的BP 模型实现步骤。

MATLAB及其神经网络工具箱MATLAB是由MATHWORKS公司开发的一个高性能的技术计算语言。

它在一个简单易用的交互式环境中集成了计算、可视化和程序设计等强大的功能。

神经网络工具箱是MATLAB中集成的一个重要工具箱,工具箱中提供了面向不同神经网络模型特别是BP网络模型的丰富多彩的网络学习和训练函数,其中包括了BP算法和各种改进BP算法,为神经网络的仿真分析提供了极大的方便,从而使MATLAB成为目前世界上最为流行的神经仿真平台。

用户只要调用工具箱中相关函数并输入参数,就可以完成相应的训练仿真。

在本文液位控制BP模型的设计与仿真研究中,主要用到以下几个函数及其主要参数:1)Newff格式: net = newff(PR,[S1 S2… S nl],{TF1 TF2… TF nl},BTF,BLF,PF)其中net是神经网络名;S i是第i层神经网络的神经元个数,网络共有nl层;TFi 是第i层网络神经元的转移函数,缺省为tansig; BTF是BP训练函数,缺省为trainlm;BLF 是学习函数,缺省为learngdm;PF是性能函数,缺省为mse。

神经网络与MATLAB神经网络工具箱-liu

神经网络与MATLAB神经网络工具箱-liu

2.2人工神经元与神经网络
人工神经网络(artificial neural network,ANN)是模 仿生物神经网络功能的一种经验模型。它若干简单(通常是 自适应的)元件及其层次组织,以大规模并行连接方式构造 而成的网络,按照生物神经网络类似的方式处理输入的信息。 模仿生物神经网络而建立的人工神经网络,对输入信号有功 能强大的反应和处理能力。 但是,它只是对生物神经网络进行了某种抽象、简化和 模拟。神经网络的信息处理通过神经元的互相作用来实现, 知识与信息的存储表现为网络元件互相分布式的物理联系。 神经网络的学习和识别取决于各种神经元连接权系数的动态 演化过程。
1.3 神经网络的发展与现状
Anderson提出了BSB模型;Webos 提出了BP理论等。这些 都是在20世纪70年代和20世纪80年代初进行的工作。 3)20世纪80年代-90年代:第二次研究高潮进入20世 纪80年代,神经网络研究进入高潮。这个时期最具有标志性 的人物是美国加州工学院的物理学家John Hopfield。他于 1982年和1984年在美国科学院院刊上发表了两篇文章,提 出了模拟人脑的神经网络模型,即最著名的Hopfield模型。 Hopfield网络是一个互连的非线性动力学网络,它解决问题 的方法是一种反复运算的动态过程,这是符号逻辑处理方式 做不具备的性质。20世纪80年代后期到90年代初,神经网络 系统理论形成了发展的热点,多种模型、算法和应用被提出, 研究经费重新变得充足,使得研究者们完成了很多有意义的 工作。
2.2人工神经元与神经网络
2.2. 2人工神经元模型 • 生物神经元是一个多输入、单输出单元。模拟生物神经元, 常用的人工神经元模型如下:
• 输入和输出的关系可表示为:
m s j wij pi b j i 1 a j f (s j )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络与MATLAB神经网络工具箱
胡风华,刘冰,马晓丽
(河南师范大学计算机与信息技术学院,河南新乡453007)
摘要:简要介绍MATLAB语言的特点以及BP神经网络,并较为详细论述了MATLAB神经网络工具箱的相关知识。

关键词:神经网络;工具箱;MATLAB
中图分类号:TP18文献标识码:A
BP Network and Neual Network Tool Kit in MATLAB
HU Feng-hua,LIU Bing,MA Xiao-li
(College of Computer&Information Technology,Henan Normal University,Henan Xinxiang453007)Key words:BP network;tool kit;MATLAB
·计算技术与自动化·
人工神经网络系统由于具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、智能控制、模式识别及系统建模等领域得到越来越广泛的应用。

尤其是BP神经网络,可以以任意精度逼近任意连续函数,所以广泛地应用于非线性建模、函数逼近和模式分类等方面。

但利用神经网络解决实际问题时,必定会涉及到大量的数值计算问题。

为了解决数值计算与计算机仿真之间的矛盾,美国Mathworks公司推出了一套高性能的数值计算和可视化软件包。

Matlab集数学计算、图形计算、语言设计、计算机仿真等于一体,具有极高的编程效率。

其中的神经网络工具箱是以神经网络理论为基础,用Matlab语言构造出典型神经网络的工具函数。

1BP网络模型
BP网络是一种多层前馈神经网络,由输入层、隐层和输出层组成。

层与层之间采用全互连方式,同一层之间不存在相互连接,隐层可以有一个或多个。

构造一个BP网络需要确定其处理单元--神经元的特性和网络的拓扑结构。

神经元是神经网络最基本的处理单元,隐层中的神经元采用S型变换函数,输出层的神经元可采用S型或线性型变换函数。

神经网络学习采用改进BP算法,学习过程由前向计算过程和误差反向传播过程组成。

通过对误差的修改使得最终网络的实际输出与各自所对应的期望输出逼近。

2MATLAB神经网络工具箱及其相关函数简介
BP神经网络设计时,需要确定网络的拓扑结构(隐层的层数及各层的神经元的数目)及其神经元的变换函数,网络的初始化,误差计算,学习规则及网络训练,训练参数及训练样本的归一化处理等方面的工作,在MATLAB6.1神经网络工具箱中,有对应的函数完成所涉及到的全部计算任务。

2.1设计BP网络的相关函数
主要有:①变换函数。

②BP网络生成函数newff。

③初始化函数init。

④学习函数。

⑤性能函数。

⑥训练函数train。

⑦BP训练算法函数:初始化后的网络即可用于训练,即将网络的输入和输出反复作用于网络,不断调整其权重和阈值,以使网络性能函数net.performFcn达到最小,从而实现输入输出间的非线性映射.对于newff函数产生的网络,其缺省的性能函数是网络输出和实际输出间的均方差MSE.在NNbox中,给出了十多种网络学习,训练函数,其采用的算法可分为基本的梯度下降算法和快速算法.在MATLAB中训练网络有两类模式:逐变模式(incrementalmode)和批变模式(batchmode),以批变模式来训练网络的函数是train,其语法主要格式为:[net,tr]=train(NET,p,t),其中p和t分别为输入输出矩阵,NET为由newff产生的要训练的网络,net为修正后的网络,tr为训练的记录(训练步数epoch和性能perf).train根据在newff函数中确定的训练函数来训练,不同的训练函数对应不
同的训练算法。

较常见的算法有Traingd、Traingdm、Traingdx等。

⑧仿真函数sim:可以用来计算网络在给定输入下的输出。

⑨绘
图函数poltperf:可以用来计算网络性能曲线。

2.2数据预处理
如果对神经网络的输入和输出数据进行一定的预处理,可
以加快网络的训练速度。

MATLAB提供的预处理方法有:归一化
处理、标准化处理和主成分分析。

2.3训练数据的导入方法
要对BP网络进行训练,必须准备训练样本。

对样本数据的
获取,有以下几种方法供选择,具体采用那种方法,取决于数据
的多少,数据文件的格式等。

用元素列表方式直接输入数据。


建数据文件,通过MATLAB提供的装载数据函数,从数据文件
中读取。

函数load适合从MAT文件、ASCII文件中读取数据; MATLABI/O函数适合从其它应用中的数据文件中读取数
据;还可以通过数据输入向导(ImportWizard)从文件或剪贴板中
读取数据。

3用MATLAB实现神经网络设计步骤
在进行BP神经网络设计时,需要考虑以下问题:网络的拓
扑结构(隐层的层数及各层的神经元的数目);神经元的变换函数
选取;网络的初始化(连接权值和阈值的初始化);训练参数设置;
训练样本的归一化处理;样本数据导入方式等。

根据以上分析可知,对于网络的实现有四个基本的步骤:网
络建立、初始化、网络训练、网络仿真。

4建立BP神经网络的注意事项
利用MATLAB软件提供的工具箱编制采用BP网络解决非
线性问题程序是一种便捷、有效、省事的途径,但在使用时要解
决好以下几个关键环节:①神经元结点数;②传递函数的选择;
③数据预处理和后期处理;④学习速度的选定;⑤对过拟合的处
理。

5结束语
MATLAB神经网络工具箱功能强大,它提供了许多有关神
经网络设计、训练和仿真的函数,极大地方便了用户。

参考文献:
[1]胡守仁.神经网络导论[M].长沙:国防科技大学出版社,1993.
[2]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合
肥:中国科学技术大学出版社,1998.
[3]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学
出版社,1998.
25。

相关文档
最新文档