最新北师大版九年级上册全册数学单元试卷及期末试卷及答案(35页)
北师大版九年级数学上册全套单元测试卷
北师大版九年级数学上册全套单元测试卷特别说明:本试卷为最新北师大版中学生九年级试卷。
全套试卷共13份。
(含答案)试卷内容如下:1. 第一单元使用(2份)2. 第二单元使用(2份)3. 第三单元使用(2份)4. 第四单元使用(2份)5. 第五单元使用(2份)6. 第六单元使用(2份)7. 期末检测卷(1份)第一章达标测试卷一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为() A.1 B. 3 C.2 D.232.已知正方形的面积为36,则其对角线的长为()A.6 B.6 2 C.9 D.923.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为()A. 3 cm B.2 cm C.2 3 cm D.4 cm4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形6.如图,EF过矩形ABCD对角线的交点O,分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD的面积的()A.15 B.14 C.13 D.3107.如图,在△ABC中,AB=AC,四边形ADEF为菱形,S△ABC=83,则S菱形ADEF 等于()A.4 B.4 6C.4 3 D.288.在四边形ABCD中,点O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAD=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC9.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=6,则四边形ABCD的面积是()A.3 B.4 C.2 6 D.610.如图,把矩形OABC放入平面直角坐标系中,点B的坐标为(10,8),点D 是OC上一点,将△BCD沿边BD折叠,点C恰好落在OA上的点E处,则点D的坐标是()A.(0,4) B.(0,5) C.(0,3) D.(0,2)二、填空题(每题3分,共30分)11.在R t△ABC中,如果斜边上的中线CD=4 cm,那么斜边AB=________.12.已知菱形的两条对角线长分别为2 cm,3 cm,则它的面积是________.13.如图,一活动菱形衣架中,菱形的边长均为16 cm,若墙上钉子间的距离AB =BC=16 cm,则∠1=________.14.已知矩形ABCD的对角线AC,BD相交于点O,当添加条件__________时,矩形ABCD是正方形(只填一个即可).15.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.16.如图,菱形ABCD的顶点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.17.如图,在正方形ABCD的外侧作等边三角形ADE,则∠BED=________.18.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为________.19.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD 于点E,则DE=________.20.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G.下列结论:①BE=DF;②∠DAF=15°;③AC 垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论的序号为__________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为点E,F.求证:BE=CF.22.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.23.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB,EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.24.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使△BPE的周长最小(作图说明);(2)求出△BPE周长的最小值.25.如图,在等腰三角形ABC中,AB=AC,AH⊥BC于点H,点E是AH上一点,延长AH至点F,使FH=EH,连接BE,CE,BF,CF.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.26.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD 的中点G,连接EG,CG,如图①,易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.答案一、1.C 2.B 3.D 4.D 5.C 6.B 7.C 8.C 9.D 10.C 二、11.8 cm 12.3 cm 2 13.120° 14.AC ⊥BD (答案不唯一)15.2 cm ; 3 cm 2 16.(4,4) 17.45° 18.5013 19.2-1 20.①②③⑤ 三、21.证明:∵四边形ABCD 为矩形,∴OA =OC ,OB =OD ,AC =BD . ∴BO =CO .∵BE ⊥AC 于E ,CF ⊥BD 于F , ∴∠BEO =∠CFO =90°. 又∵∠BOE =∠COF , ∴△BOE ≌△COF (AAS). ∴BE =CF .22.(1)证明:∵四边形ABCD 是菱形,∴AB ∥CD ,AB =CD .又∵E 在AB 的延长线上,且BE =AB , ∴BE ∥CD ,BE =CD .∴四边形BECD 是平行四边形. ∴BD =EC .(2)解:∵四边形BECD 是平行四边形,∴BD ∥CE .∴∠ABO =∠E =50°. 又∵四边形ABCD 是菱形, ∴AC ⊥BD .∴∠BAO =90°-∠ABO =40°. 23.(1)证明:∵四边形ABCD 是正方形,∴∠DAB =∠ADC =∠BCD =90°,AD =BC .∵△CDE 是等边三角形,∴∠CDE =∠DCE =60°,DE =CE . ∴∠ADE =∠BCE =30°. 在△ADE 和△BCE 中,⎩⎨⎧AD =BC ,∠ADE =∠BCE ,DE =CE ,∴△ADE ≌△BCE (SAS). (2)解:∵△ADE ≌△BCE ,∴AE =BE . ∴∠BAE =∠ABE .又∵∠BAE +∠DAE =90°, ∠ABE +∠AFB =90°, ∴∠DAE =∠AFB .∵∠ADE =30°,DE =DC =DA , ∴∠DAE =75°. ∴∠AFB =75°.24.解:(1)如图,连接DE ,交AC 于点P ′,连接BP ′,则此时P ′B +P ′E 的值最小,即△BPE 的周长最小.(2)∵四边形ABCD 是正方形,∴B ,D 关于AC 对称. ∴P ′B =P ′D . ∴P ′B +P ′E =DE . ∵BE =2,AE =3BE , ∴AE =6,AD =AB =8. ∴DE =62+82=10.∴PB+PE的最小值是10.∴△BPE周长的最小值=10+BE=10+2=12. 25.证明:(1)∵AB=AC,AH⊥BC,∴BH=CH.∵FH=EH,∴四边形EBFC是平行四边形.又∵EF⊥BC,∴四边形EBFC是菱形.(2)如图所示.∴∠2=∠3=12∠ECF.∵AB=AC,AH⊥BC,∴∠4=12∠BAC.又∵∠BAC=∠ECF,∴∠4=∠3.∵∠4+∠1+∠2=90°,∴∠3+∠1+∠2=90°,即AC⊥CF.26.解:(1)EG=CG,EG⊥CG.(2)EG=CG,EG⊥CG.证明如下:延长FE交DC的延长线于点M,连接MG,如图所示.易得∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,BC=EM,∠EMC=90°.易知∠ABD=45°,∴∠EBF=45°.又∵∠BEF=90°,∴△BEF为等腰直角三角形.∴BE=EF,∠F=45°.∴EF=CM.∵∠EMC =90°,FG =DG , ∴MG =12FD =FG . ∵BC =EM ,BC =CD , ∴EM =CD .∵EF =CM ,∴FM =DM . 又∵FG =DG ,∴∠CMG =12∠EMC =45°. ∴∠F =∠CMG . 在△GFE 和△GMC 中,⎩⎨⎧FG =MG ,∠F =∠GMC ,EF =CM ,∴△GFE ≌△GMC (SAS). ∴EG =CG ,∠FGE =∠MGC . ∵MF =MD ,FG =DG , ∴MG ⊥FD .∴∠FGE +∠EGM =90°. ∴∠MGC +∠EGM =90°, 即∠EGC =90°. ∴EG ⊥CG .第一章达标测试卷一、选择题(每题3分,共30分)1.菱形、矩形、正方形都具有的性质是( )A .四条边相等,四个角相等B .对角线相等C .对角线互相垂直D .对角线互相平分2.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )A .20B .15C .10D .53.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的()A.15B.14C.13D.3104.如图,菱形ABCD的周长为24 cm,对角线AC,BD相交于点O,点E是AD 的中点,连接OE,则线段OE的长等于()A.3 cm B.4 cm C.2.5 cm D.2 cm5.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为()A.3 B.2 2 C. 6 D.336.顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形7.如图,把一张长方形纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45°C.45°或60° D.30°或60°8.如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E,F分别为BC,CD的中点,则∠EAF等于()A.75°B.45°C.60°D.30°9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AEB.△ABE≌△AGFC.EF=2 5D.AF=EF10.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①BE=DF;②∠DAF=15°;③AC 垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE.其中正确结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF 的周长为________.13.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是________.14.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为________.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 019 s时,点P的坐标为________.16.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.17.如图,在矩形ABCD中,AB=3,BC=2,点E为AD的中点,点F为BC 边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG +FH=________.18.如图,在Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=62,则另一直角边BC的长为________.三、解答题(19,20题每题9分,21题10分,22,23题每题12分,24题14分,共66分)19.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.20.如图,点O是菱形ABCD对角线的交点,过点C作CE∥OD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形OCED是矩形.(2)若AB=4,∠ABC=60°,求矩形OCED的面积.21.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE.(2)若BE=10,CE=6,连接OE,求△ODE的面积.22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE.(2)若CD=2,∠ADB=30°,求BE的长.23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F 不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.24.在正方形ABCD的外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并给出证明.答案一、1.D2.B3.B4.A点拨:∵菱形ABCD的周长为24 cm,∴AB=24÷4=6 (cm),OB=OD.又∵E为AD边的中点,∴OE是△ABD的中位线.∴OE=12AB=12×6=3 (cm).故选A.5.D6.D7.D8.C9.D点拨:如图,由折叠的性质得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠的性质得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.又∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又∵AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE=AF=5,∴BE=AE2-AB2=52-42=3.过点F作FM⊥BC于点M,则FM=4,EM=5-3=2.在Rt△EFM中,根据勾股定理得EF=EM2+FM2=22+42=20=25,则选项C正确.∵AF=5,EF=25,∴AF≠EF.故选项D错误.10.C 点拨:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°. 在Rt △ABE 和Rt △ADF 中,∴Rt △ABE ≌Rt △ADF (HL). ∴BE =DF (故①正确), ∠BAE =∠DAF .∴∠DAF +∠DAF =30°,即∠DAF =15°(故②正确). ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , 又∵AE =AF ,∴AC 垂直平分EF (故③正确).设EC =x ,由勾股定理,得EF =AE =2x ,∴EG =CG =22x . ∴AG =62x . ∴AC =6x +2x2. ∴AB =BC =3x +x 2.∴BE =3x +x 2-x =3x -x2.∴BE +DF =3x -x ≠2x (故④错误). 易知S △CEF =x 22,S △ABE =3x -x 2·3x +x 22=x 24,∴2S △ABE =x 22=S △CEF (故⑤正确).综上所述,正确的有4个.二、11.90° 12.16 13.2.514.213 点拨:设正方形的边长为a ,∵S △ABE =18,∴S 正方形ABCD =2S △ABE =36,∴a 2=36.∵a >0,∴a =6. 在Rt △BCE 中,∵BC =6,CE =4,∠C =90°, ∴BE =BC 2+CE 2=62+42=213. 15.⎝ ⎛⎭⎪⎫14,334 16.16 点拨:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°.又∵BD ⊥DE ,点F 是BE 的中点,DF =4,∴BF =DF =EF =4,∴CF =4-BC =4-y.在Rt △DCF 中,DC 2+CF 2=DF 2,即x 2+(4-y )2=42=16.∴x 2+(y -4)2=16. 17.3105 点拨:如图,连接EF ,∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =2,∠A =∠D =90°. ∵点E 为AD 的中点,∴AE =DE =1,∴BE =AE 2+AB 2=12+32=10,CE =DE 2+DC 2=12+32=10, ∴CE =BE .∵S △BCE =S △BEF +S △CEF ,∴12BC ·AB =12BE ·FG +12CE ·FH ,∴BC ·AB =BE (FG +FH ),即2×3=10(FG +FH ),解得FG +FH =3105.18.7 点拨:如图,过点O 作OM ⊥CA ,交CA 的延长线于点M ,过点O作ON ⊥BC 于点N ,易证△OMA ≌△ONB ,CN =OM ,∴OM =ON ,MA =N B.又∵∠ACB =90°,∠OMA =∠ONB =90°,OM =ON , ∴四边形OMCN 是正方形. ∴△OCM 为等腰直角三角形. ∵OC =62,∴CM =OM =6. ∴MA =CM -AC =6-5=1.∴BC =CN +NB =OM +MA =6+1=7. 故答案为7.三、19.证明:连接DB.∵四边形ABCD是菱形,∴BD平分∠ABC.又∵DE⊥AB,DF⊥BC,∴DE=DF.20.(1)证明:∵CE∥OD,DE∥AC,∴四边形OCED是平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD,即∠COD=90°,∴四边形OCED是矩形.(2)解:∵在菱形ABCD中,AB=4,∴AB=BC=CD=4.又∵∠ABC=60°,∴△ABC是等边三角形,∴AC=4,∴OC=12AC=2,∴OD=42-22=23,∴矩形OCED的面积是23×2=4 3.21.(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又∵BE∥AC,E在DC的延长线上.∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.(2)解:如图,过点O作OF⊥CD于点F.∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE=90°.在Rt△BCE中,根据勾股定理可得BC=8.∵BE=BD,∴CD=CE=6,∴DE=12.∵OD=OC,∴CF=DF,又OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4,∴S△ODE=12DE·OF=12×12×4=24.22.(1)证明:∵在矩形ABCD中,AD∥BC,∠A=∠C=90°,∴∠ADB=∠DBC.根据折叠的性质得∠ADB=∠FDB,∠F=∠A=90°,∴∠DBC=∠FDB,∠C=∠F.∴BE=DE.在△DCE和△BFE中,∴△DCE≌△BFE.(2)解:在Rt△BCD中,∵CD=2,∠DBC=∠ADB=30°,∴BD=4.∴BC=2 3.在Rt△ECD中,易得∠EDC=30°.∴DE=2EC.∴(2EC)2-EC2=CD2.又∵CD=2,∴CE=23 3.∴BE=BC-EC=43 3.23.(1)证明:如图,连接AC.∵四边形ABCD为菱形,∠BAD=120°,∴AB=BC=CD=DA,∴∠BAC=∠DAC=60°,∴△ABC 和△ADC都是等边三角形,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴AB =AC .∴△ABE ≌△ACF . ∴BE =CF .(2)解:四边形AECF 的面积不变. 由(1)知△ABE ≌△ACF , 则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC . 如图,过点A 作AM ⊥BC 于点M ,则BM =MC =2, ∴AM =AB 2-BM 2=42-22=2 3.∴S △ABC =12BC ·AM =12×4×23=4 3.故S 四边形AECF =4 3. 24.解:(1)如图①.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点, ∴∠P AE =∠P AB =20°,AE =AB. ∵四边形ABCD 是正方形, ∴AE =AB =AD ,∠BAD =90°.∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠P AE =130°. ∴∠ADF =180°-130°2=25°. (3)EF 2+FD 2=2AB 2.证明如下:如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF =BF ,AE =AB =AD ,易得∠ABF =∠AEF =∠ADF .∵∠BAD =90°, ∴∠ABF +∠FBD +∠ADB =90°. ∴∠ADF +∠ADB +∠F BD =90°.∴∠BFD =90°.在Rt △BFD 中,由勾股定理得BF 2+FD 2=BD 2. 在Rt △ABD 中,由勾股定理得BD 2=AB 2+AD 2=2AB 2, ∴EF 2+FD 2=2AB 2.第二章达标测试卷一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的是()A.x2+3x+y=0 B.x2+1x+5=0 C.2x2+13=x+12D.x+y+1=02.一元二次方程x2-2x-3=0配方后可变形为()A.(x-1)2=2 B.(x-1)2=4 C.(x-1)2=1 D.(x-1)2=7 3.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为() A.1 B.-1 C.2 D.-24.根据下面表格中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是() A.1<x<1.33 B.1.33<x<1.34C.1.34<x<1.35 D.1.35<x<1.365.下列一元二次方程中,没有..实数根的是()A.x2+2x-3=0 B.x2+x+14=0C.x2+2x+1=0 D.-x2+3=06.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1 400B.200+200(1+x)+200(1+x)2=1 400C.200(1+x)2=1 400D.200(1+x)+200(1+x)2=1 4007.x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于-1,x2大于3 B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于38.已知x1,x2是一元二次方程3x2=6-2x的两根,则x1-x1x2+x2的值是()A.-43 B.83C.-83 D.439.若关于x的一元二次方程kx2+2(k-1)x+k-1=0有实数根,则k的取值范围是()A.k<1 B.k≤1 C.k<1且k≠0 D.k≤1且k≠010.已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长是()A.5 B.7 C.5或7 D.10二、填空题(每题3分,共30分)11.把一元二次方程(x-3)2=4化为一般形式是____________,其中二次项为________,一次项系数为________.12.若关于x的方程(a-2)x a2-2+2x=0是一元二次方程,则a=________.13.方程(x+3)2=x+3的解是______________.14.若一元二次方程ax2-bx-2 019=1有一根为x=-1,则a+b=________.15.已知方程x2+mx+3=0的一个根是x=1,则它的另一个根是________,m =________.16.当k=________时,关于x的一元二次方程(k+1)x2+2x-1=0没有实数根(写出一个你喜欢的k的值).17.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程:________________.18.若正数a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是________.19.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长是________.20.如图,在一条矩形床单的四周绣上宽度相等的花边,剩下部分的面积为1.6 m2.已知床单的长是2 m,宽是1.4 m,则花边的宽度为________.三、解答题(21题12分,22题8分,其余每题10分,共60分) 21.用适当的方法解下列方程:(1)(6x-1)2=25;(2)x2-2x=2x-1;(3)x2-2x=2;(4)x(x-7)=8(7-x).22.已知关于x的方程(k-1)x2-(k-1)x+14=0有两个相等的实数根.(1)求k的值;(2)求此时该方程的根.23.已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根.(2)当t为何值时,方程的两个根互为相反数?请说明理由.24.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率.(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年六月份的快递投递任务?如果不能,请问至少需要增加几名业务员?25.某小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.该小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:(2)如果该小商品市场希望通过销售这批羽毛球拍获利9 200元,那么十月份的销售单价应是多少元?26.请阅读下列材料.问题:已知方程x 2+x -1=0,求一个一元二次方程,使它的根分别是已知方程的根的2倍.解:设所求方程的根为y ,则y =2x ,所以x =y2. 把x =y 2代入已知方程,得⎝ ⎛⎭⎪⎫y 22+y2-1=0.化简,得y 2+2y -4=0. 故所求方程为y 2+2y -4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式). (1)已知方程x 2+x -2=0,求一个一元二次方程,使它的根分别是已知方程的根的相反数;(2)已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程的根的倒数.答案一、1.C 2.B 3.A 4.C 5.C 6.B 7.A 8.D 9.D 10.B 二、11.x 2-6x +5=0;x 2;-6 12.-2 13.x 1=-3,x 2=-2 14.2 020 15.x =3;-4 16.-3(答案不唯一) 17.x 2-9x +6=0(答案不唯一) 18.5 19.4+22 20.0.2 m三、21.解:(1)两边开平方,得6x -1=±5,即6x -1=5或6x -1=-5. ∴x 1=1,x 2=-23. (2)移项,得x 2-4x =-1. 配方,得x 2-4x +4=-1+4, 即(x -2)2=3.两边开平方,得x -2=±3, 即x -2=3或x -2=- 3. ∴x 1=2+3,x 2=2- 3.(3)将原方程化为一般形式,得x 2-2x -2=0. ∵b 2-4ac =(-2)2-4×1×(-2)=10, ∴x =2±102×1. ∴x 1=2+102,x 2=2-102. (4)移项,得x (x -7)+8(x -7)=0.变形,得(x -7)(x +8)=0. ∴x -7=0或x +8=0. ∴x 1=7,x 2=-8.22.解:(1)∵关于x 的方程(k -1)x 2-(k -1)x +14=0有两个相等的实数根,∴Δ=b 2-4ac =[-(k -1)]2-4·(k -1)·14=0, 即(k -1)2-(k -1)=0. 解得k =2或k =1.∵原方程是一元二次方程,∴k -1≠0,即k ≠1,则k =2. (2)当k =2时,原方程为x 2-x +14=0,解得x 1=x 2=12.23.(1)证明:∵Δ=b2-4ac=[-(t-1)]2-4(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)解:设此一元二次方程的两个根是x1,x2.由题意得x1=-x2,即x1+x2=0.利用根与系数的关系可得x1+x2=t-1=0,∴t=1.24.解:(1)设该快递公司投递总件数的月平均增长率为x.根据题意,得10(1+x)2=12.1,解得x1=0.1=10%,x2=-2.1(不合题意,舍去).答:该快递公司投递总件数的月平均增长率为10%.(2)今年六月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递快递0.6万件,∴21名快递投递业务员每月最多能完成的快递投递任务是0.6×21=12.6(万件).∵12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年六月份的快递投递任务.∵(13.31-12.6)÷0.6=111 60,∴至少需要增加2名业务员.25.解:(1)100-x;200+2x;400-2x(2)根据题意,得100×200+(100-x)(200+2x)+50(400-2x)-60×800=9 200.解得x1=20,x2=-70(舍去).当x=20时,100-x=80>60,符合题意.答:十月份的销售单价应是80元.26.解:(1)设所求方程的根为z,则z=-x,∴x=-z.把x=-z代入已知方程,得z2-z-2=0,故所求方程为z2-z-2=0.(2)设所求方程的根为t,则t=1x(x≠0),于是x=1t(t≠0).把x=1t代入方程ax2+bx+c=0,得a ⎝ ⎛⎭⎪⎫1t 2+b ·1t +c =0. 去分母,得a +bt +ct 2=0.若c =0,则有ax 2+bx =0,于是方程ax 2+bx +c =0有一个根为0,不符合题意,∴c ≠0.故所求方程为ct 2+bt +a =0(c ≠0).第二章达标测试卷一、选择题(每题3分,共30分)1.下列等式中是关于x 的一元二次方程的是( )A .3(x +1)2=2(x +1)B .1x 2+1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-12.一元二次方程x 2-6x +5=0配方后可化为( )A .(x -3)2=-14B .(x +3)2=-14C .(x -3)2=4D .(x +3)2=143.关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根,则实数m 的取值范围是( )A .m ≥0B .m >0C .m ≥0且m ≠1D .m >0且m ≠14.已知关于x 的一元二次方程x 2+mx -8=0的一个实数根为2,则另一个实数根及m 的值分别为( )A .4,-2B .-4,-2C .4,2D .-4,25.已知x 为实数,且满足(x 2+3x )2+2(x 2+3x )-3=0,那么x 2+3x 的值为( )A .1B .-3或1C .3D .-1或36.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( )A .7队B .6队C .5队D .4队7.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-18.已知x =2是关于x 的方程x 2-2mx +3m =0的一个根,并且等腰三角形ABC的腰长和底边长恰好是这个方程的两个根,则△ABC 的周长为( )A.10 B.14 C.10或14 D.8或109.若关于x的方程2x2+mx+n=0的两个根是-2和1,则nm的值为() A.-8 B.8 C.16 D.-1610.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△AB C沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于()A.0.5 cmB.1 cmC.1.5 cmD.2 cm二、填空题(每题3分,共24分)11.一元二次方程x(x-7)=0的解是________.12.若关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a=________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k=________.14.某市加大了对雾霾的治理力度,2017年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x,根据题意可列方程为________________________.15.关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.16.已知线段AB的长为2,以AB为边在AB的下方作正方形ABCD,取AB边上一点E(不与点A,B重合),以AE为边在AB的上方作正方形AENM.过点E作EF⊥CD,垂足为点F,如图.若正方形AENM与四边形EFCB的面积相等,则AE的长为________.17.已知(2a+2b+1)(2a+2b-1)=19,则a+b=________.18.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(19题12分,20~23题每题8分,24题10分,25题12分,共66分)19.用适当的方法解下列方程.(1)x2-x-1=0; (2)3x(x-2)=x-2;(3)x2-22x+1=0; (4)(x+8)(x+1)=-12.20.已知关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.21.解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为x1=2,x2=5.请利用这种方法求方程(2x+5)2-4(2x+5)+3=0的解.22.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.一个矩形周长为56 cm.(1)当矩形的面积为180 cm2时,长和宽分别为多少?(2)这个矩形的面积能为200 cm2吗?请说明理由.24.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A出发沿AB边向点B以1 cm/s的速度移动,点Q从点B出发沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8 cm2?(2)出发几秒后,线段PQ的长为4 2 cm?(3)△PBQ的面积能否为10 cm2若能,求出时间;若不能,请说明理由.25.某中学九年级准备组织学生去方特梦幻王国进行春游活动.方特梦幻王国给出了学生团体门票的优惠价格:如果学生人数不超过30名,那么门票为每张240元;如果人数超过了30名,则每超过1名,每张门票就降低2元,但每张门票最低不能少于200元.(1)若一班共有40名学生参加了春游活动,则需要交门票费多少元?(2)若二班共有52名学生参加了春游活动,则需要交门票费多少元?(3)若三班交了门票费9 450元,请问该班参加春游的学生有多少名?答案一、1.A2.C3.C4.D5.A6.C7.D8.B9.C10.B点拨:设AC交A′B′于H.∵∠DAC=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1,即AA′=1 cm.故选B.二、11.x1=0,x2=712.-113.2点拨:∵x2-6x+k=0的两根分别为x1,x2,∴x1+x2=6,x1x2=k.∴1x1+1x2=x1+x2x1x2=6k=3.解得k=2.经检验,k=2满足题意.14.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元,∴100(1+x)+100(1+x)2=260.15.1点拨:由方程x2-4x+3=0,得(x-1)(x-3)=0,∴x-1=0或x-3=0.解得x1=1,x2=3.当x=1时,分式方程1x-1=2x+a无意义;当x=3时,13-1=23+a,解得a=1.经检验,a=1是方程13-1=23+a的解.16.5-1点拨:本题主要考查了根据几何图形列一元二次方程,解题的关键是根据已知条件和图形找出等量关系,列出方程.17.±5 点拨:设t =2(a +b ),则原方程可化为(t +1)(t -1)=19,整理,得t 2=20,解得t =±25,则a +b =t 2=± 5.技巧点拨:换元法的一般步骤是:(1)设新元,即根据问题的特点或关系,引进适当的辅助元作为新元;(2)换元,用新元去代替原问题中的代数式或旧元;(3)求解新元,将解出的新元代回所设的换元式,求解原问题的未知元.18.6 点拨:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm.又∵AP =2t cm ,∴S 1=12AP ·BD =12×2t ×82=8t(cm 2),PD =(82-2t )cm.易知PE =AP =2t cm ,∴S 2=PD ·PE =(82-2t )·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t )·2t .解得t 1=0(舍去),t 2=6.三、19.解:(1)(公式法)a =1,b =-1,c =-1,∴b 2-4ac =(-1)2-4×1×(-1)=5.∴x =-b ±b 2-4ac 2a=1±52, 即原方程的根为x 1=1+52,x 2=1-52.(2)(因式分解法)移项,得3x (x -2)-(x -2)=0,即(3x -1)(x -2)=0,∴x 1=13,x 2=2.(3)(配方法)配方,得(x -2)2=1,∴x -2=±1,∴x 1=2+1,x 2=2-1.(4)(因式分解法)原方程可化为x 2+9x +20=0,即(x +4)(x +5)=0,解得x1=-4,x2=-5.20.解:(1)∵关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根,∴m-2≠0且Δ=(2m)2-4(m-2)(m+3)=-4(m-6)>0,解得m<6且m≠2.∴m的取值范围是m<6且m≠2.(2)在m<6且m≠2的范围内,最大整数为5.此时,方程化为3x2+10x+8=0,解得x1=-2,x2=-4 3.21.解:设2x+5=y,则原方程可化为y2-4y+3=0,所以(y-1)(y-3)=0,解得y1=1,y2=3.当y=1时,即2x+5=1,解得x=-2;当y=3时,即2x+5=3,解得x=-1,所以原方程的解为x1=-2,x2=-1.22.解:(1)由题意得Δ=9-4(m-1)≥0,∴m≤13 4.(2)由根与系数的关系得x1+x2=-3,x1x2=m-1.∵2(x1+x2)+x1x2+10=0,∴-6+(m-1)+10=0,∴m=-3,∵m≤134,∴m的值为-3.23.解:(1)设矩形的长为x cm,则宽为(28-x)cm,由题意列方程,得x(28-x)=180,整理,得x2-28x+180=0,解得x1=10(舍去),x2=18.答:矩形的长为18 cm,宽为10 cm.(2)不能.理由如下:设矩形的长为y cm,则宽为(28-y) cm,由题意列方程,得y(28-y)=200,整理,得y2-28y+200=0,则Δ=(-28)2-4×200=784-800=-16<0.∴该方程无实数解.故这个矩形的面积不能为200 cm2.24.解:(1)设t s后,△PBQ的面积为8 cm2,则PB=(6-t)cm,BQ=2t cm,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴2 s或4 s后,△PBQ的面积为8 cm2.(2)设出发x s后,PQ=4 2 cm,由题意,得(6-x)2+(2x)2=(42)2,解得x1=25,x2=2,故出发25s或2 s后,线段PQ的长为4 2 cm.(3)不能.理由:设经过y s,△PBQ的面积等于10 cm2,则12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴该方程无实数解.∴△PBQ的面积不能为10 cm2.25.解:(1)240-(40-30)×2=220(元),220×40=8 800(元).答:若一班共有40名学生参加了春游活动,则需要交门票费8 800元.(2)240-(52-30)×2=196(元),∵196<200,∴每张门票200元.200×52=10 400(元).答:若二班共有52名学生参加了春游活动,则需要交门票费10 400元.(3)∵9 450不是200的整数倍,且240×30=7 200(元)<9 450元,∴每张门票的价格高于200元且低于240元.设三班参加春游的学生有x名,则每张门票的价格为[240-2(x-30)]元,根据题意,得[240-2(x-30)]x=9 450,整理,得x2-150x+4 725=0,解得x1=45,x2=105,∵240-2(x-30)>200,∴x<50.∴x=45.答:若三班交了门票费9 450元,则该班参加春游的学生有45名.第三章达标测试卷一、选择题(每题3分,共30分)1.从-5,0,4,π,3.5这五个数中随机抽取一个,则抽到无理数的概率是()A.15B.25C.35D.452.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B.13C.23D.13.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.12B.13C.14D.164.在元旦游园晚会上有一个闯关活动:将5张分别画有正方形、圆、平行四边形、等边三角形、菱形的卡片任意摆放(卡片大小、质地、颜色完全相同),将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关.那么一次过关的概率是()A.15B.25C.35D.455.在一个不透明的盒中有20个除颜色外均相同的球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计盒中红球的个数为()A.4个B.6个C.8个D.12个6.某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是() A.移植10棵幼树,结果一定是“9棵幼树成活”B.移植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.移植10n棵幼树,恰好有“n棵幼树不成活”D.移植n棵幼树,当n越来越大时,幼树成活的频率会越来越稳定于0.9 7.用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()。
最新北师大版九年级数学上册期末测试卷(及参考答案)
最新北师大版九年级数学上册期末测试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥33.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩4.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29 D .195.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C.20°D.15°8.一次函数y=ax+b和反比例函数ya bx-=在同一直角坐标系中的大致图象是()A.B.C.D.9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A为60︒角与直尺交点,3AB=,则光盘的直径是()A.3 B.33C.6D.6310.如图,在矩形ABCD中,AB=10,4=AD,点E从点D向C以每秒1个单位长度的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD 的直线MN也从点C向点D以每秒2个单位长度的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.103B.4 C.143D.163二、填空题(本大题共6小题,每小题3分,共18分)1.计算:18322-+=____________.2.分解因式:34x x -=________.3.若n 边形的内角和是它的外角和的2倍,则n =__________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC是等腰三角形时,求k的值3.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C,若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为多少;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、A6、B7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、02、x (x +2)(x ﹣2).3、64、72°5、x=26、8﹣2π三、解答题(本大题共6小题,共72分)1、x=12、(1)详见解析(2)k 4=或k 5=3、(1)y=﹣x 2+2x+3(2,32)(3)当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为7584、(1)略;(2)5、(1)享受9折优惠的概率为14;(2)顾客享受8折优惠的概率为16. 6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
北师大版九年级上册数学期末考试试卷含答案解析
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件()A .垂直B .相等C .垂直且相等D .不再需要条件2.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为()A .32B .2C .52D .33.下列方程中,是关于x 的一元二次方程的是A .()()12132+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 4.已知点()12,A y -、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是A .9%B ..5%C .9.5%D .10%6.二次三项式243x x -+配方的结果是()A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-7.函数x ky =的图象经过(1,-1),则函数2-=kx y 的图象是2222-2-2-2-2O OOOy y y y xxxxA .B .C .D.8.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动A .变短B .变长C .不变D.无法确定9.如图,点A 在双曲线=6上,且OA =4,过A 作AC ⊥轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .47B .5C .27D .2210.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.二、填空题11.反比例函数2k y x+=的图象在一、三象限,则k 应满足_________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12倍,边长应缩小到原来的____倍.13.已知一元二次方程22(1)7340a x ax a a -+++-=有一个根为0,则a 的值为_______.14.已知534a b c ==,则232a b c a b c++=++_______15.如图,已知点A 在反比例函数(0)ky x x=<的图象上,AC y ⊥轴于点C ,点B 在x 轴的负半轴上,若2ABC S = ,则k 的值为_________.16.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=_____.17.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题18.解方程(1);(2).19.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .B(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.21.已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.如图,已知A (−4,n ),B (2,−4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式kx +b −mx<0的解集(请直接写出答案).25.在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =kx(k ≠0,x >0)图象交于点A(1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x(k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C 的坐标;(2)求△OCD 的面积.26.(12分)如图,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.CE FA B(1)当ECF△的面积与四边形EABF的面积相等时,求CE的长;(2)当ECF△的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得EFP△为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案1.B【解析】试题分析:如图:∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.故选B.考点:中点四边形.2.A【解析】试题分析:由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程即可得到答案.设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,,∴Rt△EFC中,FC=5-3=2,EC=4-X,∴,解得,故选A.考点:本题考查的是图形折叠的性质及勾股定理点评:熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.3.A【解析】试题分析:A、由原方程得到3x2+4x+1=0,符合一元二次方程的定义,故本选项正确;B、该方程中分母中含有未知数.不属于整式方程,故本选项错误;C、当a=0时.该方程不是一元二次方程.故本选项错误;D、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;故选A.考点:一元二次方程定义4.D【分析】分别把各点坐标代入反比例函数y=4x,求出y1,y2,y3的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4x的图象上,∴y1=-2,y2=-4,y3=4 3,∵-4<-2<4 3,∴y2<y1<y3.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.D【解析】试题分析:设平均每次降价的百分数是x,依题意得100(1-x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.考点:一元二次方程的应用6.B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.7.A【解析】试题分析:∵函数xky=的图象经过(1,-1),∴k=-1,∴函数2-=kxy的解析式为:y=-x-2,函数y=-x-2的图像过二、四象限过(0,-2),(-2,0)点,故选A考点:1.反比例函数图像2.一次函数8.C【解析】试题分析:∵E,F分别是AM,MR的中点,∴EF=12AR.∵R是定点,∴AR的定长.∴无论M运动到哪个位置EF的长不变.故选C.考点:1.动点问题;2.三角形中位线定理.9.C【解析】试题分析:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:ab=6,a2+b2=16,解得a+b=27,即△ABC的周长=OC+AC=27.故选C考点:反比例函数图象上点的坐标特征10.2 3【解析】试题分析::∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD=4,DB=2,∴AD:AB=DE:BC=2:3.则的值为2 3.考点:相似三角形的判定与性质.11.k>-2【解析】试题分析:反比例函数:当时,图象在第一、三象限;当时,图象在第二、四象限.由题意得,考点:本题主要考查了反比例函数的性质点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12.2【解析】试题分析::∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的2倍.考点:相似三角形的性质13.-4【解析】【分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-4=0,可得a2+3a-4=0,解得a=-4或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-4,故答案为-4.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.14.15 26【解析】试题分析:设=k ,则a=5k ,b=3k ,c=4k ,25641532153826a b c k k k a b c k k k ++++==++++考点:比例的性质15.-4【分析】连结OA ,由AC ⊥y 轴,可得AC ∥x 轴,可知S △ACB =S △ACO =2,可得=4k ,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA ,∵AC ⊥y 轴,∴AC ∥x 轴,∴S △ACB =S △ACO =2,∴1=22k ,∴=4k ,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k 的几何意义.16.2.【分析】首先证△ACD ∽△CBD ,然后根据相似三角形的对应边成比例求出CD 的长.【详解】解:Rt △ACB 中,∠ACB=90°,CD ⊥AB ;∴∠ACD=∠B=90°﹣∠A ;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.故答案为:2【点睛】本题考查相似三角形的判定与性质.17.0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩,∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.18.(1)1x =2x =.(2)【详解】试题分析:(1)用公式法(2)用分解因式法试题解析:(1)因为(()245248∆=--⨯-⨯=,所以x =即1x =2x =.(2)移项得,分解因式得,解得考点:解一元二次方程19.(1)见解析;(2)DE=10m【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB BC DE EF =.计算可得DE试题解析:(1)如图:连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF.53,.6AB BC DE EF DE ∴=∴= ∴DE=10(m )考点:平行投影20.(1)BD=CD .(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.【解析】试题分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF=CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.试题解析:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定2.全等三角形的判定与性质.21.(1)列表见解析;(2)不公平,理由见解析.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】(1)列表如下:a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499> 即此游戏不公平.22.证明见解析.【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23.每张贺年卡应降价0.1元.【分析】设每张贺年卡应降价x 元,等量关系为:(原来每张贺年卡盈利-降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【详解】设每张贺年卡应降价x 元,根据题意得:(0.3-x )(500+1000.1x )=120,整理,得:21002030x x +-=,解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价0.1元.24.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【分析】(1)先把B 点坐标代入代入m y x =求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx +b −m x <0可得kx +b <m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.25.(1)y =6x ,点C (6,1);(2)1434.【分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得,k =6,∴反比例函数y =6x ,当x =12时,y =12,∴点D (12,12)代入直线l 2:y =﹣2x +b 得,b =13,∴直线l 2:y =﹣2x +13,由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩,∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1).(2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13)∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143131312222224=⨯⨯-⨯⨯⨯=答:△OCD 的面积为1434.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26.(1)CE =22;(2)CE 的长为724;(3)在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF =3760或EF =49120【解析】试题分析:(1)因为EF ∥AB ,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P 点可能的位置,再找到相似三角形,依据相似三角形的性质解答.试题解析:(1)∵△ECF 的面积与四边形EABF 的面积相等∴S △ECF :S △ACB =1:2又∵EF ∥AB ∴△ECF ∽△ACB.,21)(2==∆∆CA CE S S ACB ECF 且AC =4∴CE =22;(2)设CE 的长为x∵△ECF ∽△ACB ∴CB CF CA CE =∴CF=x 43.由△ECF 的周长与四边形EABF 的周长相等,得EFx x x EF x +-++-=++)433(5)4(43解得724=x ∴CE 的长为724;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF =90°,EP =EF图1A B由AB =5,BC =3,AC =4,得∠C =90°∴Rt △ACB 斜边AB 上高CD =512设EP =EF =x ,由△ECF ∽△ACB ,得CD EP CD AB EF -=,即5125125xx -=,解得3760=x ,即EF =3760,当∠EFP´=90°,EF =FP´时,同理可得EF =3760.②如图2,假设∠EPF =90°,PE =PF 时,点P 到EF 的距离为EF 21。
北师大版九年级上册数学期末考试试卷附答案详解
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是()A .B .C .D .2.如图,Rt △ABC 中,∠C=90°,AB=2,BC=1,则sinA 等于()A .2BC .12D 3.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC=D .AB ACBP CB=4.如果两个相似三角形的相似比是1:4,那么这两个相似三角形的周长比是()A .2:1B .1:16C .1:4D .1:25.要使菱形ABCD 成为正方形,需要添加的条件是()A .AB=CDB .AD=BCC .AB=BCD .AC=BD 6.已知点A (3,a )与点B (5,b )都在反比例函数y=﹣2x的图象上,则a 与b 之间的关系是()A .a >bB .a <bC .a≥bD .a=b7.某池塘中放养了鲫鱼1000条,鲮鱼若干条,在几次随机捕捞中,共抓到鲫鱼200条,鲮鱼400条,估计池塘中原来放养了鲮鱼()A .500条B .1000条C .2000条D .3000条8.一元二次方程x 2﹣2x+3=0根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断9.已知反比例函数ky x=的图象经过点(﹣1,5),则此反比例函数的图象位于()A .第一、二象限B .第二、三象限C .第二、四象限D .第一、三象限10.如图,一次函数1(0)y kx b k =+≠的图象与反比例函数2my x=(m 为常数且0m ≠)的图象都经过()()1,2,2,1A B --,结合图象,则不等式mkx b x+>的解集是()A .1x <-B .10x -<<C .1x <-或02x <<D .10x -<<或2x >二、填空题11.方程22x x =的根是________.12.如图,已知DE ∥BC ,AE=3,AC=5,AB=6,则AD=_____.13.如图,过反比例函数y=6x(x >0)图象上的一点A ,作x 轴的垂线,垂足为B 点,连接OA ,则S △AOB =_____14.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC=8,BD=6,则菱形ABCD 的高DH=_____.15.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.16.已知矩形的长是3,宽是2,另一个矩形的周长和面积分别是已知矩形周长和面积的2倍,那么新矩形的长是_____.三、解答题17.计算:2sin30°+4cos30°·tan60°-cos245°18.由于提倡环保节能,自行车已成为市民日常出行的主要工具之一,据某自行车经销店4至6月份统计,某品牌自行车4月份销售200辆,6月份销售338辆,求该品牌自行车销售量的月平均增长率.19.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的格点上.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1:2;(2)连接(1)中的BB′,CC′,求四边形BB′C′C的周长.(结果保留根号)20.如图,某幢大楼顶部有广告牌CD,小宇身高MA为1.89米,他站在立在离大楼45米的A 处测得大楼顶端点D的仰角为30°;接着他向大楼前进15米,站在点B处测得广告牌顶端点C 的仰角为45°.(1)求这幢大楼的高DH ;(2)求这块广告牌CD 的高度.(.732,计算结果保留一位小数)21.在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,篮球1个,若从中任意摸出一个球,摸到球是红球的概率为12.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.22.某超市服装专柜在销售中发现:某男装上衣的进价为每件30元,当售价为每件50元时,每周可卖出200件,现需降价处理,经过市场调查,发现每降价1元,每周可多卖出20件.(1)为占有更大的市场份额,当降价为多少元时,每周盈利为4420元?(2)当降价为多少元时,每周盈利额最大?最大盈利多少元?23.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.24.如图,以△ABC 的各边,在边BC 的同侧分别作三个正方形ABDI ,BCFE ,ACHG .(1)求证:△BDE ≌△BAC ;(2)求证:四边形ADEG 是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC 满足条件_____________________时,四边形ADEG 是矩形.②当△ABC 满足条件_____________________时,四边形ADEG 是正方形?25.如图,直线y=﹣23x+c 与x 轴交于点A (3,0),与y 轴交于点B ,抛物线y=﹣43x 2+bx+c 经过点A ,B ,M (m ,0)为x 轴上一动点,点M 在线段OA 上运动且不与O ,A 重合,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .(1)求点B 的坐标和抛物线的解析式;(2)在运动过程中,若点P 为线段MN 的中点,求m 的值;(3)在运动过程中,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;参考答案1.D【详解】试题分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.因此,A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选D.考点:简单几何体的三视图.2.C【解析】【分析】结合图形运用三角函数定义求解.【详解】∵AB=2、BC=1,∴sinA=1=2 BC AB,故选C.【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.4.C【分析】直接根据相似三角形周长的比等于相似比即可得出结论.【详解】∵两个相似三角形的相似比是1:4,∴这两个相似三角形的周长比是1:4.故选C.【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应周长的比等于相似比是解答此题的关键.5.D【分析】根据有一个角是直角的菱形是正方形即可解答.【详解】如图,∵四边形ABCD是菱形,∴要使菱形ABCD成为一个正方形,需要添加一个条件,这个条件可以是:∠ABC=90°或AC=BD.故选D.【点睛】本题考查了正方形的判定,解答此题的关键是熟练掌握正方形的判定定理,正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用①或②进行判定.6.B【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵点A(3,a)与点B(5,b)都在反比例函数y=﹣2x的图象上,∴每个象限内y随x的增大而增大,则a<b.故选B.【点睛】此题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题关键.7.C【分析】先根据题意可得到鲫鱼与鲮鱼之比为1:2,再根据鲫鱼的总条数计算出鲮鱼的条数即可.【详解】由题意得:鲫鱼与鲮鱼之比为:200:400=1:2,∵鲫鱼1000条,∴鲮鱼条数是:1000×2=2000.故答案选:C.【点睛】本题主要考查了用样本估计总体,关键是知道样本的鲫鱼与鲮鱼之比就是池塘内鲫鱼与鲮鱼之比.8.C【分析】直接利用根的判别式进而判断,即可得出答案.【详解】∵a=1,b=﹣2,c=3,∴b2﹣4ac=4=4﹣4×1×3=﹣8<0,∴此方程没有实数根.故选C.【点睛】此题主要考查了根的判别式,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.C 【分析】把点(-1,5)代入反比例函数ky x=得到关于k 的一元一次方程,解之,即可得到反比例函数的解析式,根据反比例函数的图象和性质,即可得到答案.【详解】解:把点(﹣1,5)代入反比例函数ky x=得:1k-=5,解得:k =﹣5,即反比例函数的解析式为:y =5x-,此反比例函数的图象位于第二、第四象限,故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的图象,反比例函数的性质,正确掌握代入法,反比例函数的图象和性质是解题的关键.10.C 【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式mkx b x+>的解集.【详解】解:由函数图象可知,当一次函数()10y kx b k =+≠的图象在反比例函数2my x=(m 为常数且0m ≠)的图象上方时,x 的取值范围是:1x <-或02x <<,∴不等式mkx b x+>的解集是1x <-或02x <<.故选C .【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.11.x 1=0,x 2=2【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12.3.6.【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.相似三角形的判定推出【详解】解:∵DE ∥BC ,∴AE ADAC AB=,∴356AD =,解得:AD =3.6,故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,能根据平行线得出比例式是解此题的关键.13.3【分析】设A (x ,6x ),则有OB=x ,AB=6x,根据三角形面积公式可得答案.【详解】设A (x ,6x )则有,OB=x ,AB=6x∴S△AOB =162xx⨯⨯=3,故答案为:3,【点睛】本题考查反比例函数系数k的几何意义,记住:反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.14.4.8.【详解】试题分析:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt△AOB中,由勾股定理可得AB=5,∵DH⊥AB,∴菱形ABCD的面积=12AC•BD=AB•DH,即12×6×8=5•DH,解得DH=4.8.考点:菱形的性质.15.8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.16.【分析】设新矩形的长为x,则新矩形的宽为(10-x),根据新矩形的面积为12,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】设新矩形的长为x,则新矩形的宽为(10﹣x),根据题意得:x(10﹣x)=2×3×2,整理得:x2﹣10x+12=0,解得:x1=5x2∵x≥10﹣x,∴x≥5,∴故答案为:【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.132【解析】分析:将sin30°=12,详解:原式=2×12+2=1+6-12=132点睛:考查了特殊角的三角函数值,解答本题的关键是掌握一些特殊角的三角函数值,请牢记以下特殊三角函数值:18.月平均增长率为30%.【分析】设该品牌自行车销售量的月平均增长率为x ,根据4月、6月份的销售量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设该品牌自行车销售量的月平均增长率为x ,根据题意得:200(1+x )2=338,解得:x 1=0.3=30%,x 2=﹣2.3(不合题意,舍去).答:该品牌自行车销售量的月平均增长率为30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.(1)见解析;(2)【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用勾股定理得出各线段长,进而得出答案.【详解】(1)如图所示:△A′B′C′,即为所求;(2)四边形BB′C′C 的周长为:.【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.20.(1)楼高DH 为27.9米;(2)广告牌CD 的高度为4.0米.【解析】【分析】在Rt △DME 与Rt △CNE ;应利用ME-NE=AB=15构造方程关系式,进而可解即可求出答案.【详解】解:(1)在Rt △DME 中,ME=AH=45;由tan 30°=DE ME ,得DE=45×3≈15×1.732=25.98;又因为EH=MA=1.89,故大楼DH=DE+EH=25.98+1.89=27.87≈27.9.(2)在Rt △CNE 中,NE=45-15=30,由tan 45°=CE NE,得CE=NE=30,因而广告牌CD=CE-DE=30-25.98≈4.0.答:楼高DH 为27.9米,广告牌CD 的高度为4.0米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(1)袋中黄球的个数1个;(2)两次摸到球的颜色是红色与黄色这种组合的概率为1 3 .【分析】(1)首先设袋中的黄球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;(2)首先画树状图,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.【详解】(1)设袋中的黄球个数为x个,∴21= 212x++,解得:x=1,经检验,x=1是原方程的解,∴袋中黄球的个数1个;(2)画树状图得:,∴一共有12种情况,两次摸到球的颜色是红色与黄色这种组合的有4种,∴两次摸到球的颜色是红色与黄色这种组合的概率为:4 12 =13【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.22.(1)当降价为7元时,每周盈利为4420元;(2)当降价为5元时,每周盈利额最大,最大盈利4500元.【分析】(1)设降价为x元,根据“总利润=每件利润×销售量”列出关于x的方程,解之得出x的值,再根据要占有更大的市场份额,即销量尽可能的大取舍即可得;(2)设每周盈利为y,根据以上所列相等关系列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得.【详解】(1)设降价为x元,根据题意,可得:(50﹣x ﹣30)(200+20x )=4420,整理,得:x 2﹣10x+21=0,解得:x 1=3,x 2=7,因为要占有更大的市场份额,即销量尽可能的大,所以x=7,答:当降价为7元时,每周盈利为4420元;(2)设每周盈利为y ,则y=(50﹣x ﹣30)(200+20x )=﹣20x 2+200x+4000=﹣20(x ﹣5)2+4500,所以当x=5时,y 取得最大值,最大值为4500,答:当降价为5元时,每周盈利额最大,最大盈利4500元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.23.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x 的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b,解得b=﹣3,∴一次函数的解析式为:y=x﹣3;(2)∵令x=0,则y=﹣3,∴D(0,﹣3),即DO=3.解方程4x=x﹣3,得x=﹣1,∴B(﹣1,﹣4),∴S△AOB =S△AOD+S△BOD=12×3×4+12×3×1=152;(3)∵A(4,1),B(﹣1,﹣4),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.24.(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC【分析】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:AC=.【详解】(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∵BD BADBE ABCBE BC=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BAC(SAS);(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD.又∵四边形ACHG是正方形,∴AC=AG,∴AC=,∴当∠BAC=135°且AC=时,四边形ADEG是正方形.【点睛】本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.25.(1)B(0,2),抛物线解析式为y=﹣43x2+103x+2;(2)m的值为1 2;(3)当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5.0)或(118,0).【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点,可得到关于m 的方程,可求得m的值.(3)由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值,从而得到点M的坐标.【详解】(1)∵y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣43x2+bx+c经过点A,B,∴12302b cc-++=⎧⎨=⎩,解得1032bc⎧=⎪⎨⎪=⎩,∴抛物线解析式为y=﹣43x2+103x+2;(2)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∵P为线段MN的中点时,∴有2(﹣23m+2)=﹣43m2+103m+2,解得m=3(三点重合,舍去)或m=1 2.故m的值为1 2.(3)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∴PM=﹣23m+2,AM=3﹣m,PN=﹣43m2+103m+2﹣(﹣23m+2)=﹣43m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣43m2+103m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m ,BC=﹣43m 2+103m+2﹣2=﹣43m 2+103m ,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC ,∴Rt △NCB ∽Rt △BOA ,∴NC CB =OB OA,∴2π=2410333m m -+,解得m=0(舍去)或m=118,∴M (118,0);综上可知,当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0).【点睛】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中得到m 的方程是解题的关键,在(3)中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
最新北师大版九年级数学上册期末考试题含答案
最新北师大版九年级数学上册期末考试题含答案一.选择题(每题3分;共30分)1.在△ABC 中;∠C =90°;sinA =45;则tanB =( ) A .43 B .34 C .35 D .452.二次函数y =x 2的图象向左平移2个单位;得到新的图象的二次函数表达式是( ).A .22y x =+B .2(2)y x =+C .2(2)y x =-D .22y x =- 3.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交;则当0x < 时;该交点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是2,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子 ( ) A.1颗 B.2颗 C.3颗 D.4颗 5.抛物线221y x x =++的顶点坐标是( )A. (0,-1)B. (-1,1)C. (-1,0)D.(1,0) 6.如图;⊙O 的直径AB 的长为10;弦AC 长为6; ∠ACB 的平分线交⊙O 于D ;则CD 长为( ) A. 7 B. 72 C. 82 D. 9第6题图7. 抛物线c bx ax y ++=2图像如图所示;则一次函数24b ac bx y +--=与反比例函数 a b c y x++=在同一坐标系内的图像大致为( ).x x x x x第7题图8.如图;⊙O 的半径为2;点A 的坐标为(2;32);直线AB 为⊙O 的切线;B 为切点.则B 点的坐标为( ).A . ⎪⎪⎭⎫ ⎝⎛-5823, B . ()13,- C . ⎪⎭⎫⎝⎛-5954, D . ()31,-第8题图9.如图;边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''';则它们的公共部分的面积等于( ). A .313- B .314- C .12 D .3310.如图;已知梯形ABCO 的底边AO 在x 轴上;BC∥AO ;AB ⊥AO ;过点C 的双曲线ky x= 交OB 于D ;且OD :DB=1 :2;若△OBC 的面积等于3;则k 的值 等于 ( )A . 2B . 34C . 245D .无法确定二、填空题(每题3分;共24分) 11.函数31x y x -=+的自变量x 的取值范围是___________. 12.已知实数y x y x x y x +=-++则满足,033,2的最大值为 .13.若一个圆锥的侧面积是18π;侧面展开图是半圆;则该圆锥的底面圆半径是___________.14.如图;ABC ∆内接于O ;90,B AB BC ∠==;D 是O 上与点B 关于圆心O 成中心对称的点;P 是 BC 边上一点;连结AD DC AP 、、.已知8AB =;2CP =;Q 是线段AP 上一动点;连结BQ 并延长交 四边形ABCD 的一边于点R ;且满足AP BR =;则BQQR的值为_______________. xy O1 1BAA BC DB 'D 'C '第9题图O ABCDxy第10题图第14题图15.有一个正十二面体;12个面上分别写有1~12这12个整数;投掷这个正十二面体一次;向上一面的数字是3的倍数或4的倍数的概率是 . 16.如图;矩形ABCD 中;3AB =cm ;6AD =cm ;点E 为AB 边上的任意一点;四边形EFGB 也是矩形;且2EF BE =;则AFC S =△ 2cm .17. 如图;直角梯形ABCD 中;AD ∥BC ;AB ⊥BC ;AD = 2;将腰CD 以D 为中心逆时针旋转90°至DE ;连接AE 、CE ;△ADE 的面积为3;则BC 的长为 .18. 如图;扇形OAB ;∠AOB=90︒;⊙P 与OA 、OB 分别相切于点F 、E ;并且与弧AB 切于点C ;则扇形OAB 的面积与⊙P 的面积比是 .三、解答题:(46分) 19.(1)计算(3分):.118122sin 60tan 602(2)解方程(3分):222(1)160x x x x +++-=.ADCEF GB第16题图第15题图第17题图第18题图20.(6分)西安市某中学数学兴趣小组在开展“保护环境;爱护树木”的活动中;利用课外时间测量一棵古树的高;由于树的周围有水池;同学们在低于树基3.3米的一平坝内(如图11).测得树顶A的仰角∠ACB=60°;沿直线BC后退6米到点D;又测得树顶A的仰角∠ADB=45°.若测角仪DE高1.3米;求这棵树的高AM.(结果保留两位小数;3≈1.732)21. (9分) 如图;已知△ABC中;AB=BC;以AB为直径的⊙O交AC于点D;过D作DE⊥BC;垂足为E;连结OE;CD=3;∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB;OE的长;D O CA B E第20题图第21题图2l DEDE =4的切线;∴∠CG =tan 30DG=DE 3DE =。
最新北师大版九年级数学上册期末试卷及答案【完美版】
最新北师大版九年级数学上册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >22.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩4.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,46.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.149.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A .45°B .50°C .55°D .60°二、填空题(本大题共6小题,每小题3分,共18分)1.81的算术平方根是____________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.函数2y x =-中,自变量x 的取值范围是__________.4.如图,901,2,AB CD BCD AB BC CD E ∠=︒===,,为AD 上的中点,则BE =__________.5.如图,直线l 为y=3x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x 轴于点A 3;……,按此作法进行下去,则点A n 的坐标为__________.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.3.如图,在矩形ABCD 中,AB =8cm ,BC =16cm ,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、D5、B6、D7、B8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(y﹣1)2(x﹣1)2.3、2x≥45、2n﹣1,06、5三、解答题(本大题共6小题,共72分)1、32x=-.2、(1) y=2x+1;(2)不在;(3)0.25.3、(1)8;(2)6;(3),40cm,80cm2.4、(1)二次函数的表达式为:213222y x x=--;(2)4;(3)2或2911.5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)120件;(2)150元.。
最新北师大版九年级上册数学全册单元试卷(含期末试卷)
第一章达标测试卷一、选择题(每题3分,共30分)1.下列说法中,错误的是( )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形2.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为( )A. 3 cm B.2 cm C.2 3 cm D.4 cm(第2题)3.下列给出的条件中,不能判断一个四边形是矩形的是( )A.一组对边平行且相等,有一个内角是直角B.有三个角是直角C.两条对角线把四边形分成两对全等的等腰三角形D.一组对边平行,另一组对边相等,且两条对角线相等4.如图,在边长为1的正方形网格中,格点四边形ABCD是菱形,则此四边形的周长等于 ( )A .6B .12C .413D .24(第4题)5.如图,EF 过矩形ABCD 对角线的交点O ,分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 的面积的( )A.15B.14C.13D.310(第5题)6.如图,在△ABC 中,AB =AC ,四边形ADEF 为菱形,S △ABC =83,则S 菱形ADEF 等于( )A .4B .4 6C .4 3D .28(第6题)7.在四边形ABCD 中,点O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠BAD =∠BCDC .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC8.若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( )A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形9.在矩形纸片ABCD中,AD=4 cm,AB=10 cm,按如图所示的方式折叠,使点B与点D重合,折痕为EF,则DE长为( )A.4.8 cm B.5 cm C.5.8 cm D.6 cm(第9题)10.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S=2S△ABE.其中正确的个数为( )△CEFA.2 B.3 C.4 D.5(第10题)二、填空题(每题3分,共24分)11.在Rt△ABC中,如果斜边上的中线CD=4 cm,那么斜边AB=________.12.已知菱形的两条对角线长分别为2 cm,3 cm,则它的周长是________.13.如图,一活动菱形衣架中,菱形的边长均为16 cm,若墙上钉子间的距离AB =BC=16 cm,则∠1=________.(第13题)14.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.15.如图,菱形ABCD的顶点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.(第15题)16.如图,在正方形ABCD的外侧作等边三角形ADE,则∠BED=________.(第16题)17.如图,用两张对边平行的纸条交叉重叠放在一起,则四边形ABCD为________形;两张纸条互相垂直时,四边形ABCD为________形;若两张纸条的宽度相同,则四边形ABCD为________形.(第17题)18.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD 于点E,则DE=________.(第18题)三、解答题(19,20题每题8分,21,22题每题9分,23,24题每题10分,25题12分,共66分)19.如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长和是86 cm,对角线长是13 cm,那么矩形ABCD的周长是多少?(第19题)20.如图,在矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为点E,F.求证:BE=CF.(第20题)21.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.(第21题)22.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB,EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.(第22题)23.如图,在等腰三角形ABC中,AB=AC,AH⊥BC于点H,点E是AH上一点,延长AH至点F,使FH=EH,连接BE,CE,BF,CF.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.(第23题)24.如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索:过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下面的框中补全他的证明思路.由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形.要证▱MNQP是菱形,只要证NM=NQ.由已知条件________,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MGE≌△QFH.易证________,________,故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,________,即可得证.(第24题)25.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD 的中点G,连接EG,CG,如图①,易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想;(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.(第25题)答案一、1.D 2.D 3.D 4.C 5.B 6.C 7.C 8.D9.C 点拨:设DE=x cm,则BE=DE=x cm,AE=AB-BE=(10-x)cm,在R t△ADE中,DE2=AE2+AD2,即x2=(10-x)2+16.解得x=5.8.故选C. 10.C二、11.8 cm 12.213 cm 13.120°14.2 cm; 3 cm215.(4,4) 16.45°17.平行四边;矩;菱18.2-1三、19.解:∵△AOB,△BOC,△COD,△AOD的周长和为86 cm,且AC=BD=13 cm,∴AB+BC+CD+DA=86-2(AC+BD)=86-4×13=34(cm),即矩形ABCD的周长是34 cm.20.证明:∵四边形ABCD为矩形,∴OA=OC,OB=OD,AC=BD.∴BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∵∠BOE=∠COF,∴△BOE≌△COF.∴BE=CF.21.(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AB=CD.又∵E在AB的延长线上,且BE=AB,∴BE∥CD,BE=CD.∴四边形BECD是平行四边形.∴BD=EC.(2)解:∵四边形BECD是平行四边形,∴BD∥CE.∴∠ABO=∠E=50°.又∵四边形ABCD是菱形,∴AC⊥BD.∴∠BAO=90°-∠ABO=40°. 22.(1)证明:∵四边形ABCD是正方形,∴∠ADC=∠BCD=90°,AD=BC.∵△CDE是等边三角形,∴∠CDE=∠DCE=60°,DE=CE.∵∠ADC=∠BCD=90°,∠CDE=∠DCE=60°,∴∠ADE=∠BCE=30°.在△ADE和△BCE中,∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE. (2)解:∵△ADE≌△BCE,∴AE=BE.∴∠BAE=∠ABE.∵∠BAE+∠DAE=90°,∠ABE+∠AFB=90°,∠BAE=∠ABE,∴∠DAE=∠AFB.∵∠ADE=30°,∴∠DAE=75°.∴∠AFB=75°.23.证明:(1)∵AB=AC,AH⊥BC,∴BH=CH.∵FH=EH,∴四边形EBFC是平行四边形.又∵EF⊥BC,∴四边形EBFC 是菱形.(2)如图,∵四边形EBFC 是菱形, ∴∠2=∠3=12∠ECF .∵AB =AC ,AH ⊥BC , ∴∠4=12∠BAC .∵∠BAC =∠ECF ,∴∠4=∠3. ∵∠4+∠1+∠2=90°,∴∠3+∠1+∠2=90°,即AC ⊥CF .(第23题)24.(1)证明:∵EH 平分∠BEF ,∴∠FEH =12∠BEF .∵FH 平分∠DFE ,∴∠EFH =12∠DFE .∵AB ∥CD ,∴∠BEF +∠DFE=180°.∴∠FEH +∠EFH =12(∠BEF +∠DFE )=12×180°=90°.∴∠EHF =180°-(∠FEH +∠EFH )=180°-90°=90°. 同理可证∠EGF =90°. ∵EG 平分∠AEF , ∴∠GEF =12∠AEF .∵∠FEH =12∠BEF ,∠AEF +∠BEF =180°,∴∠GEF+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH 25.解:(1)EG=CG,EG⊥CG.(2)EG=CG,EG⊥CG.证明如下:延长FE交DC的延长线于点M,连接MG,如图所示.(第25题)∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,BC=EM,∠EMC=90°.易知,∠ABD=45°,∴∠EBF=45°.又∵∠BEF=90°,∴△BEF为等腰直角三角形.∴BE=EF,∠F=45°.∴EF=CM.∵∠EMC=90°,FG=DG,∴MG=12FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM. 又∵FG=DG,∴∠CMG =12∠EMC =45°,∴∠F =∠CMG . 在△GFE 和△GMC 中,FG =MG ∠F =∠GMC ,EF =CM , ∴△GFE ≌△GMC .∴EG =CG ,∠FGE =∠MGC . ∵MF =MD ,FG =DG ,∴MG ⊥FD ,∴∠FGE +∠EGM =90°, ∴∠MGC +∠EGM =90°, 即∠EGC =90°. ∴EG ⊥CG .第二章达标测试卷一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的是( )A .x 2+3x +y =0B .x 2+1x+5=0C.2x 2+13=x +12D .x +y +1=02.一元二次方程x 2-2x -3=0配方后可变形为( )A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=73.下列方程采用配方法求解较简便的是( )A .3x 2+x -1=0B .4x 2-4x -5=0C .x 2-7x =0D .(x -3)2=4x 24.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( ).A .1B .-1C .2D .-25.下列一元二次方程中,没有实数根的是( )A .x 2+2x -3=0B .x 2+x +14=0C .x 2+2x +1=0D .-x 2+3=06.x 1,x 2是一元二次方程3(x -1)2=15的两个解,且x 1<x 2,下列说法正确的是( )A .x 1小于-1,x 2大于3B .x 1小于-2,x 2大于3C .x 1,x 2在-1和3之间D .x 1,x 2都小于37.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为x ,则可列方程为( ) A .200+200(1+x )2=1 400 B .200+200(1+x )+200(1+x )2=1 400 C .200(1+x )2=1 400D .200(1+x )+200(1+x )2=1 4008.已知x 1,x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( )A .-43 B.83 C .-83 D.439.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长是( )A .5B .7C .5或7D .1010.如图,在一次函数y =-x +6的图象上取一点P ,作PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,且矩形PBOA 的面积为5,则在x 轴上方满足上述条件的点P 共有( )(第10题)A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.把一元二次方程(x-3)2=4化为一般形式是__________,其中二次项为________,一次项系数为________,常数项为________.12.方程(x+3)2=x+3的解是__________.13.若一元二次方程ax2-bx-2 017=0有一根为x=-1,则a+b=________.14.当k=________时,关于x的一元二次方程(k+1)x2+2x-1=0有两个不相等的实数根(写出一个你喜欢的k的值).15.已知方程x2+mx+3=0的一个根是x=1,则它的另一个根是________,m =________.16.已知如图所示的图形的面积为24,根据图中条件,可列出方程:______________.(第16题)17.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,则x2+3x=________.18.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程:________________.三、解答题(26题10分,其余每题8分,共66分)19.用适当的方法解下列方程:(1)(6x-1)2=25;(2)x2-2x=2x-1;(3)x 2-2x =2;(4)x (x -7)=8(7-x ).20.先化简,再求值:(x -1)÷⎝⎛⎭⎪⎫2x +1-1,其中x 为方程x 2+3x +2=0的根.21.如图,在一张矩形的床单四周绣上宽度相等的花边,剩下部分的面积为1.6 m 2.已知床单的长是2 m ,宽是1.4 m ,求花边的宽度.(第21题)22.泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.鑫都小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:(2)销售单价应是多少元?23.某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响.博物馆既要考虑文物的修缮和保存费用问题,还要保证一定的门票收入,因此博物馆通过门票价格的浮动来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系,在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?(第23题)24.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年六月份的快递投递任务?如果不能,请问至少需要增加几名业务员?25.已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x.2(1)求k的取值范围.(2)是否存在实数k,使此方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.26.请阅读下列材料.问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程的根的2倍.解:设所求方程的根为y,则y=2x,所以x=y 2 .把x=y2代入已知方程,得⎝⎛⎭⎪⎫y22+y2-1=0.化简,得y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式).(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程的根的相反数;(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程的根的倒数.答案一、1.C 2.B 3.B 4.A 5.C 6.A7.B 8.D 9.B10.C 点拨:根据题意,可设点P的坐标为(x,-x+6).∵点P在x轴上方,∴y>0,即-x+6>0,x<6.∵矩形PBOA的面积为5,∴|x|(-x+6)=5,即x(-x+6)=5或-x(-x+6)=5.解得x1=1,x2=5,x3=3+14,x4=3-14.∵3+14>6,不合题意,舍去,∴符合要求的点P共有3个.二、11.x2-6x+5=0;x2;-6;512.x1=-3,x2=-2 13.2 01714.0(答案不唯一) 15.x=3;-416.(x+1)2=25(答案不唯一) 17.118.x2-9x+6=0(答案不唯一)三、19.解:(1)两边开平方,得6x-1=±5,即6x-1=5或6x-1=-5.∴x1=1,x2=-2 3 .(2)移项,得x2-4x=-1.配方,得x2-4x+4=-1+4,即(x-2)2=3.两边开平方,得x-2=±3,即x-2=3或x-2=- 3. ∴x1=2+3,x2=2- 3.(3)将原方程化为一般形式,得x 2-2x -2=0.∴b 2-4ac =(-2)2-4×1×(-2)=10. ∴x =2±10,即x 1=2+102,x 2=2-102.(4)移项,得x (x -7)+8(x -7)=0.变形,得(x -7)(x +8)=0.∴x -7=0或x +8=0. ∴x 1=7,x 2=-8.20.解:原式=(x -1)÷2-x -1x +1=(x -1)÷1-x=(x -1)·x +11-x=-x -1.解方程x 2+3x +2=0,得x =-1或x =-2.当x =-1时,(x -1)÷(2x +1-1)无意义,所以x =-1舍去;当x =-2时,原式=-(-2)-1=2-1=1.21.解:设花边的宽度为x m ,依题意,得(2-2x )(1.4-2x )=1.6,解得x 1=1.5(不合题意,舍去),x 2=0.2.答:花边的宽度为0.2 m.22.解:(1)100-x ;200+2x ;400-2x(2)根据题意,得100×200+(100-x )(200+2x )+50(400-2x )-60×800=9 200.解这个方程,得x 1=20,x 2=-70(舍去).当x =20时,100-x =80>60,符合题意.答:十月份的销售单价应是80元.23.解:设每周参加人数与票价之间的一次函数表达式为y=kx+b(x>0).由题意,得k+b=7 000,15k+b=解得k=-500,b=所以y=-500x+12 000(x>0).根据题意,得xy=40 000,即x(-500x+12 000)=40 000.整理得x2-24x+80=0,解得x1=20,x2=4.当x=20时,y=2 000;当x=4时,y=10 000.因为要控制参观人数,所以取x=20,y=2 000.答:每周应限定参观人数是2 000人,门票价格应是20元.24.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意,得10(1+x)2=12.1,解得x1=0.1=10%,x=-2.1(不合题意,舍去).2答:该快递公司投递总件数的月平均增长率为10%.(2)今年六月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递快递0.6万件,∴21名快递投递业务员每月最多能完成的快递投递任务是0.6×21=12.6(万件).∵12.6<13.31,∴该公司现有的快递投递业务员不能完成今年六月份的快递投递任务.由于(13.31-12.6)÷0.6=11160,因此至少需要增加2名业务员.25.解:(1)根据题意,得b2-4ac=(2k-3)2-4(k-1)·(k+1)=4k2-12k+9-4k2+4=-12k+13>0,∴k<13 12 .又∵k-1≠0,∴k≠1.∴k<1312且k≠1.(2)不存在.理由如下:假设存在,∵方程的两个实数根互为相反数,∴x1+x2=-2k-3k-1=0,则k=32.∵32>1312,∴当k=32时,此方程没有实数根.∴不存在实数k,使此方程的两实数根互为相反数.26.解:(1)设所求方程的根为z,则z=-x,∴x=-z.把x=-z代入已知方程,得z2-z-2=0,故所求方程为z2-z-2=0.(2)设所求方程的根为t,则t=1x(x≠0),于是x=1t(t≠0).把x=1t代入方程ax2+bx+c=0,去分母,得a+bt+ct2=0.若c=0,则有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意,∴c≠0.故所求方程为ct2+bt+a=0(c≠0).第三章达标测试卷一、选择题(每题3分,共30分)1.下列说法中,错误的是( )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形2.如图,矩形ABCD的对角线AC=8 c m,∠AOD=120°,则AB的长为( )A. 3 c m B.2 c m C.2 3 c m D.4 c m(第2题)3.下列给出的条件中,不能判断一个四边形是矩形的是( )A.一组对边平行且相等,有一个内角是直角B.有三个角是直角C.两条对角线把四边形分成两对全等的等腰三角形D.一组对边平行,另一组对边相等,且两条对角线相等4.如图,在边长为1的正方形网格中,格点四边形ABCD是菱形,则此四边形的周长等于( )A.6 B.12 C.413 D.24(第4题)5.如图,EF 过矩形ABCD 对角线的交点O ,分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 的面积的( ) A.15B.14C.13D.310(第5题)6.如图,在△ABC 中,AB =AC ,四边形ADEF 为菱形,S △ABC =83,则S 菱形ADEF等于( )A .4B .4 6C .4 3D .28(第6题)7.在四边形ABCD 中,点O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB ∥CD ,AB =CD B .AD ∥BC ,∠BAD =∠BCD C .AO =BO =CO =DO ,AC ⊥BD D .AO =CO ,BO =DO ,AB =BC8.若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A .菱形B .对角线互相垂直的四边形C .矩形D.对角线相等的四边形9.在矩形纸片ABCD中,AD=4 c m,AB=10 c m,按如图所示的方式折叠,使点B与点D重合,折痕为EF,则DE长为( )A.4.8 c m B.5 c m C.5.8 c m D.6 c m(第9题)10.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S=2S△ABE.其中正确的个数为( )△CEFA.2 B.3 C.4 D.5(第10题)二、填空题(每题3分,共24分)11.在Rt△ABC中,如果斜边上的中线CD=4 c m,那么斜边AB=________.12.已知菱形的两条对角线长分别为2 c m,3 c m,则它的周长是________.13.如图,一活动菱形衣架中,菱形的边长均为16 c m,若墙上钉子间的距离AB =BC=16 c m,则∠1=________.(第13题)14.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 c m,则其对角线长为________,矩形的面积为________.15.如图,菱形ABCD的顶点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.(第15题)16.如图,在正方形ABCD的外侧作等边三角形ADE,则∠BED=________.(第16题)17.如图,用两张对边平行的纸条交叉重叠放在一起,则四边形ABCD为________形;两张纸条互相垂直时,四边形ABCD为________形;若两张纸条的宽度相同,则四边形ABCD为________形.(第17题)18.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD 于点E,则DE=________.(第18题)三、解答题(19,20题每题8分,21,22题每题9分,23,24题每题10分,25题12分,共66分)19.如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长和是86 c m,对角线长是13 c m,那么矩形ABCD的周长是多少?(第19题)20.如图,在矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为点E,F.求证:BE=CF.(第20题)21.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.(第21题)22.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB,EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.(第22题)23.如图,在等腰三角形ABC中,AB=AC,AH⊥BC于点H,点E是AH上一点,延长AH至点F,使FH=EH,连接BE,CE,BF,CF.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.(第23题)24.如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索:过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下面的框中补全他的证明思路.由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形.要证▱MNQP是菱形,只要证NM=NQ.由已知条件________,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MGE≌△QFH.易证________,________,故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,________,即可得证.(第24题)25.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD 的中点G,连接EG,CG,如图①,易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想;(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.(第25题)答案一、1.B 2.B 3.A 4.D 5.C 6.D 7.C 8.D 9.C10.B 点拨:列表可得总共有16种可能的结果,每种结果出现的可能性相同.其中,落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的结果有7种,分别为(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2),所以落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是716.故选B. 二、11.4712.(答案不唯一)抽纸牌13.16 14.小刚 15.20 16.1217.16 18.12三、19.解:画树状图如图所示.(第19题)由图可知,小明任意拿出1件上衣和1条裤子,共有6种等可能的结果,其中上衣和裤子都是蓝色的结果有2种,所以小明穿的上衣和裤子恰好都是蓝色的概率为26=13. 20.解:(1)粉笔盒里装有四支粉笔,其中黄粉笔有两支,所以第一次拿到黄粉笔的概率为24=12. (2) 画树状图如图所示.(第20题)由树状图可知,共有12种等可能的结果,两次都拿到黄粉笔的结果有2种,所以其概率为2=1. 21.解:(1)P(得到负数)=13. (2)列表如下:由表可知共有9种等可能的结果,两人得到的数相同的结果有3种,故P(两人“英雄所见略同”)=39=13. 22.解:(1)三类垃圾随机投入三类垃圾箱的树状图如图所示,由树状图可知,垃圾投放正确的概率为39=13.(第22题)(2)估计“厨余垃圾”投放正确的概率为400400+100+100=23. 23.解:(1)画树状图如图所示.(第23题)则(m ,n )所有可能的结果为(2,1),(2,-3),(2,-4),(1,2),(1,-3),(1,-4),(-3,2),(-3,1),(-3,-4),(-4,2),(-4,1),(-4,-3).(2)∵所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的有(-3,-4),(-4,-3),∴所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的概率为212=16. 24.解:(1)0.6 (2)0.6;0.4(3)黑色:20×0.4=8(个),白色:20×0.6=12(个).(4)(答案不唯一)受到以上解题思路的启发,可以从口袋里摸出一些白球(不妨设有m 个)做上记号,放回袋中,将球搅匀后,从口袋里再次摸出一些白球,若这次摸出的白球有a 个,其中带有记号的白球有b 个,则估计口袋里白球数量为m ÷b a =ma b(个).重复这个过程,求多次估计的白球数量的平均数,能使白球的数量估计得更准确.第四章达标测试卷一、选择题(每题3分,共30分)1.如图,已知l 1∥l 2∥l 3,若AB =1,BC =2,DE =1.5,则EF 的长为( )A .1.5B .2C .2.5D .32.下列说法正确的是( )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似3.如图,在△ABC 中,DE ∥BC ,AD DB =13,则DE BC等于( ) A.12 B.13 C.14 D.154.如图,四边形ABCD 与四边形AEFG 是位似图形,且AC ∶AF =2∶3,则下列结论不正确的是( )A .四边形ABCD 与四边形AEFG 是相似图形B .AD 与AE 的比是2∶3C .四边形ABCD 与四边形AEFG 的周长比是2∶3D .四边形ABCD 与四边形AEFG 的面积比是4∶95.已知△ABC 如图所示,则下面4个三角形中与△ABC 相似的是( )6.如图,已知点C ,D 都是线段AB 的黄金分割点,如果CD =4,那么AB 的长度是( )A .25-2B .6-2 5C .8+4 5D .2+ 57.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB =3∶5,那么CF ∶CB 等于( )A .5∶8B .3∶8C .3∶5D .2∶58.如图,AB 是斜靠在墙上的一个梯子,梯脚B 距墙1.4 m ,梯子上点D 距墙1.2m ,BD 长0.5 m ,则梯子的长为( )A .3.5 mB .3.85 mC .4 mD .4.2 m9.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC=12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △DOE S △ADE =13.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个10.如图,在△ABC 中,AB =AC =18,BC =12,正方形DEFG 的顶点E ,F 在△ABC 内,顶点D ,G 分别在AB ,AC 上,AD =AG ,DG =6,则点F 到BC 的距离为( )A .1B .2C .122-6D .62-6二、填空题(每题3分,共24分)11.如图,线段AB BC =,那么AC BC 等于________.12.相邻两边长的比值是黄金比的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20 cm ,那么与其相邻的一条边的长等于__________.13.若△ABC ∽△A ′B ′C ′,且对应中线之比为1∶2,则△ABC 与△A ′B ′C ′的面积之比为________.14.如图,在△ABC中,AB>AC,点D在AB上(点D与A,B不重合),若再增加一个条件就能使△ACD∽△ABC,则这个条件是________________(写出一个条件即可).15.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3,4,x,那么x的值为________.16.如图,在平面直角坐标系中有两个点A(4,0),B(0,2),如果点C在x轴上(点C与点A不重合),当点C的坐标为__________________时,使得由点B,O,C组成的三角形与△AOB相似(不包括全等).17.为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一组标杆、皮尺,设计了如图所示的测量方案.已知测量同学的眼睛A、标杆顶端F与树的顶端E在同一条直线上,此同学的眼睛距地面1.6 m,标杆长为3.3 m,且BC =1 m,CD=4 m,则ED=________.18.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE 的长是________.三、解答题(19,20题每题8分,21,22题每题9分,23,24题每题10分,25题12分,共66分)19.如图,已知∠ADC=∠BAC,BC=16 cm,AC=12 cm,求DC的长.20.如图,已知在▱ABCD中,AE∶EB=1∶2.(1)求△AEF与△CDF的周长之比;(2)如果S△AEF=6 cm2,求S△CDF的值.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC绕点A顺时针旋转90°后得到的△AB1C1;(2)在网格内以原点O为位似中心,画出将△AB1C1三条边放大为原来的2倍后的△A2B2C2.(3)△ABC与△A2B2C2的面积比为________.22.如图,在矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.23.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶端A 在同一直线上.已知DE =0.5 m ,EF =0.25 m ,目测点D 到地面的距离DG =1.5 m ,到旗杆的水平距离DC =20 m ,求旗杆的高度.24.如图,有一块面积等于1 200 cm 2的三角形铁片ABC ,已知底边与底边BC上的高的和为100 cm(底边BC 大于底边上的高),要把它加工成一块正方形铁片,使正方形的一边EF 在边BC 上,顶点D ,G 分别在边AB ,AC 上,求加工成的正方形铁片DEFG 的边长.25.如图①,在等边三角形ABC 中,线段AD 为其内角平分线,过点D 的直线B 1C 1⊥AC 于点C 1,交AB 的延长线于点B 1.(1)请你探究:AC AB =CD DB ,AC 1AB 1=C 1D DB 1是否都成立? (2)请你继续探究:若△ABC 为任意三角形,线段AD 为其内角平分线,请问AC AB=CD DB仍然成立吗?并说明理由. (3)如图②,在Rt △ABC 中,∠ACB =90°,AC =8,AB =403,E 为AB 上一点且AE =5,CE 交其内角平分线AD 于点F ,试求DF AF 的值.答案一、1.D 点拨:已知l 1∥l 2∥l 3,根据平行线分线段成比例,得EF DE =BCAB ,所以EF =3.2.C 3.C 4.B 5.A 6.C 7.A 8.A9.C 点拨:由中线BE ,CD 知,DE 为△ABC 的中位线,所以DE =12BC ,DE∥BC ,所以DE BC =12,①正确;由DE ∥BC 易得△DOE ∽△COB ,则S △DOE S △COB =DEBC 2=14,②错误;由DE ∥BC 易得AD AB =DE BC ,DE BC =OE OB ,所以AD AB =OEOB,③正确;由DE ∥BC 易知△ADE ∽△ABC ,则S △ADE S △ABC =DE BC 2=14,设△DOE 的边DE 上的高为h ,则△BOC 的边BC 上的高为2h ,△ABC 的边BC 上的高为6h ,则S △COBS △ABC=2h 6h =13,所以S △DOE S △ABC =112,所以S △DOE S △ADE =13,④正确.故选C. 10.D 点拨:过点A 作AM ⊥BC 于点M ,交DG 于点N ,延长GF 交BC 于点H ,易证△ADG ∽△ABC ,∴∠ADG =∠B.∴DG ∥BC.∴AN ⊥DG.∵四边形DEFG 是正方形,∴FG ⊥DG.∴FH ⊥BC.∵AB =AC =18,BC =12,∴BM =12BC =6.由勾股定理可得AM =122.∴AN AM =DG BC ,即AN 122=612.∴AN =62.∴MN =AM -AN =62.∴FH =MN -GF =62-6. 二、11. 12.(105-10) cm13.1∶414.∠ACD =∠ABC (答案不唯一)15.5或7 点拨:当6,8均为直角边时,x =5;当8为斜边时,x =7. 16.(-1,0)或(1,0)17.10.1 m18.3510三、19.解:∵∠ADC=∠BAC,∠C=∠C,∴△ADC∽△BAC.∴ACBC=DCAC.∵BC=16 cm,AC=12 cm,∴DC=12×1216=9(cm).20.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,DC∥AB.∴∠CAB=∠DCA,∠DEA=∠CDE.∴△AEF∽△CDF.∵AE∶EB=1∶2,∴AE∶AB=AE∶CD=1∶3.∴△AEF与△CDF的周长之比为1∶3.(2)∵△AEF∽△CDF,AE∶CD=1∶3,∴S△AEF∶S△CDF=1∶9.∵S△AEF=6 cm2,∴S△CDF=54 cm2.21.解:(1)如图,△AB1C1即为所求.(2)如图,△A2B2C2即为所求.(3)1∶422.解:(1)△ABE∽△DFA.理由如下:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°.∴∠DAE=∠AEB.①又∵DF⊥AE,∴∠DFA=∠B=90°.②由①②知△DFA∽△ABE. (2)根据题意,得AE=10,由(1)可知DF AB=AD AE,∴DF=7.2.23.解:∵∠DEF=∠DCA,∠EDF=∠CDA,∴△DEF∽△DCA.∴DEDC=EFCA.∵DE=0.5 m,EF=0.25 m,DC=20 m,∴0.520=0.25CA.∴AC=10 m.又∵CB=DG=1.5 m,∴AB=AC+CB=10+1.5=11.5(m).答:旗杆的高度为11.5 m.24.解:作AM⊥BC于M,交DG于N,如图所示,由题易知AN⊥DG.设BC=a cm,BC边上的高为b cm,DG=DE=x cm,根据题意,得a+b=100,12ab=1 200,解得a=60,b=40,或a=40,b=60(不合题意,舍去),∴BC=60 cm,AM=40 cm.由题意知DG∥BC,∴∠ADG=∠B,∠AGD=∠C.∴△ADG∽△ABC.∴ANAM=DGBC,即40-x40=x60.解得x =24,即加工成的正方形铁片DEFG 的边长为24 cm .25.解:(1)两个等式都成立.理由如下:∵△ABC 为等边三角形,AD 为角平分线,∴AD 垂直平分BC ,∠CAD =∠BAD =30°,AB =AC.∴DB =CD. ∴AC AB =CD DB. ∵B 1C 1⊥AC ,∠C 1AB 1=60°, ∴∠B 1=30°.∴AB 1=2AC 1.∵∠DAB 1=30°=∠B 1,∴DA =DB 1. 又∵∠C 1AD =30°,∠AC 1D =90°, ∴DA =2C 1D. ∴DB 1=2C 1D.∴AC 1AB 1=C 1DDB 1. (2)结论仍然成立.理由如下:如图①,△ABC 为任意三角形,过B 点作BE ∥AC ,交AD 的延长线于点E ,∴∠E =∠CAD.又∵∠CAD =∠BAD ,∴∠E =∠BAD.∴BE =AB.由作图易证△EBD ∽△ACD ,∴AC EB =CDDB .又∵BE =AB ,∴对任意三角形,结论AC AB =CDDB仍然成立.①②(第25题)(3)如图②,连接ED.∵AD 为△ABC 的内角平分线,∴CD DB =AC AB =8403=35.∴BD BC =58. 而BE AB =403-540=58.∴BD BC =BE AB. 又∵∠B =∠B ,∴△BDE ∽△BCA. ∴∠BDE =∠BCA.∴DE ∥AC. ∴∠FDE =∠CAF ,∠FED =∠ACF. ∴△DEF ∽△ACF.∴DF AF =DE AC . 由(2)知AE =DE ,∴DF AF =DE AC =AE AC =58. 第五章达标测试卷一、选择题(每题3分,共30分)1.如图是某学校操场上单杠(实线部分)在地面上的影子(虚线部分),根据图中所示,可判断形成该影子的光线为( ) A .太阳光线 B .灯光光线C .太阳光线或灯光光线D .该影子实际不可能存在2.在一个晴朗的上午,小明拿的一块正方形木板在地面上形成的投影中,不可能是()3.如图所示的几何体的左视图是()。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.若反比例函数12my x-=的图象位于第一、三象限,则m 的取值范围是()A .m <0B .m >0C .m <12D .m >122.如图是某个几何体的展开图,则把该几何体平放在平面上时,其俯视图为()A .B .C .D .3.如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标()A .(﹣1,﹣1)B .(﹣43,﹣1)C .(﹣1,﹣43)D .(﹣2,﹣1)4.已知关于x 的一元二次方程224x m x +=有两个不相等的实数根,则m 的取值范围是A .m≥2B .m<2C .m≥0D .m<05.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上.若AB =6,BC =9,则BF 的长为()A .4B .C .4.5D .56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是()A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=8.如图,在矩形ABCD 中,AB =4,BC =3,点E 为AB 上一点,连接DE ,将△ADE 沿DE 折叠,点A 落在A '处,连接A C ',若F ,G 分别为A C ',BC 的中点,则FG 的最小值为()A .2BCD .19.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为()A .20B .24C .28D .3010.某数学兴趣小组来到城关区时代广场,设计用手电来测量广场附近某大厦CD 的高度,如图,点P 处放一水平的平面镜.光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,测得AB =1.5米,BP =2米,PD =52米,那么该大厦的高度约为()A .39米B .30米C .24米D .15米11.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .412.计算2cos 30°的值为()A .1B 3C 2D .12二、填空题13.已知一元二次方程()222340m x x m --+-=的一个根为0,则m =________.14.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4,那么sinA=___.15.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.16.如图,矩形OABC 的顶点A ,C 分别在坐标轴上,A (8,0),D (5,7),点P 是边AB 或边OA 上的一点,连接CP ,DP ,当△CDP 为等腰三角形时,点P 的坐标为_____.17.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题18.解方程:()32142x x x +=+19.如图,在四边形ABCD 中,AB ∥CD ,连接BD ,点E 在BD 上,连接CE ,若∠1=∠2,AB=ED .(1)求证:BD=CD .(2)若∠A=150°,∠BDC=2∠1,求∠DBC 的度数.20.如图,在平行四边形ABCD 中,AC ⊥DE ,AE=AD ,AE 交BC 于O .(1)求证:∠BCA=∠EAC ;(2)若CE=3,AC=4,求 COE 的周长.21.某兴趣小组开展课外活动.如图,小明从点M 出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米.(1)请在图中画出光源O点的位置,并画出O到MN的垂线段OH(不写画法);(2)若小明身高1.5m,求OH的长.22.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低1万元时,平均每周能多售出2辆.该4S店要想平均每周的销售利润为96万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?23.如图,△ABC是等边三角形,点D在AC上,连接BD并延长,与∠ACF的角平分线交于点E.(1)求证:△ABD∽△CED;(2)若AB=8,AD=2CD,求CE的长.24.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.25.某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y(千米/小时)与时间x(小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x≥时,求出风速y(千米/小时)与时间x(小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.26.如图,一次函数y=kx+b(k≠0)与反比例函数y=ax(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是以AO为直角边的直角三角形,直接写出所有可能的E点坐标.27.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.参考答案1.C【分析】根据反比例函数图象位于第一、三象限,可得1-2m>0,解不等式即可求解.【详解】解:∵反比例函数12myx-=的图象位于第一、三象限,∴1-2m>0,∴m<1 2 .故选C.【点睛】本题主要考查反比例函数图象性质,解决本题的关键是要熟练掌握反比例函数图象的性质.2.B【分析】先根据几何体的展开图,判断所围成的几何体的形状,然后利用三视图的概念求解.【详解】解:因为几何体的展开图为一个扇形和一个圆形,故这个几何体是圆锥,故选:B.【点睛】此题主要考查了展开图折叠成几何体以及三视图问题,熟悉圆锥的展开图特点是解答此题的关键.3.B【分析】根据关于以原点为位似中心的对应点的坐标的关系,把A 点的横纵坐标都乘以13-即可.【详解】解:∵以点O 为位似中心,位似比为13,而A (4,3),∴A 点的对应点C 的坐标为(43-,﹣1).故选:B .【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .4.B【分析】根据根的判别式,可知Δ>0,据此即可求出m 的取值范围.【详解】解:∵关于x 的一元二次方程224x m x +=有两个不相等的实数根,∴2420x x m -+=Δ=()24420m --⨯>,解得:m<2,故选:B 5.A【分析】先求出BC′,再由图形折叠特性知,C′F =CF =BC ﹣BF =9﹣BF ,在Rt △C′BF 中,运用勾股定理BF 2+BC′2=C′F 2求解.【详解】解:∵点C′是AB 边的中点,AB =6,∴BC′=3,由图形折叠特性知,C′F =CF =BC ﹣BF =9﹣BF ,在Rt △C′BF 中,BF 2+BC′2=C′F 2,∴BF 2+9=(9﹣BF )2,解得,BF =4,故选:A .【点睛】本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.6.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7.D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程得:2250025001250019100x x ++++()()=.故选D .【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.8.D【分析】由勾股定理和折叠的性质可求5BD =,3AD A D '==,由三角形的三边关系,A B BD A D >'-',则当点A '在DB 上时,A B '有最小值为2BD A D '-=,由三角形的中位线定理可求解.【详解】解:如图,连接A B ',BD ,4AB =Q ,3AD BC ==,5BD ∴===,将ADE ∆沿DE 折叠,3AD A D '∴==,在△A DB '中,A B BD A D >'-',∴当点A '在DB 上时,A B '有最小值为2BD A D '-=,F ,G 分别为A C ',BC 的中点,12FG A B '∴=,FG ∴的最小值为1,故选:D .9.D【分析】直接由概率公式求解即可.【详解】根据题意得9n=30%,解得:n=30,经检验:n=30符合题意,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选:D .10.A【分析】同学和大厦均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【详解】解:∵AB ⊥BD ,CD ⊥BD ,∴∠ABP=∠CDP ,∵∠APB=∠CPD ,∴△ABP ∽△PDC ,∴CD PDAB BP=,∴CD =PDBP ×AB =522×1.5=39米;那么该大厦的高度是39米.故选:A .11.A【分析】连接OA 、OB ,延长AB ,交x 轴于D ,如图,利用三角形面积公式得到S △OAB =S △ABC ,再根据反比例函数的比例系数k 的几何意义得到S △OAD =3,S △OBD =2,即可求得S △OAB =S △OAD -S △OBD =1.【详解】连结OA 、OB ,延长AB ,交x 轴于D ,如图,∵AB ∥y 轴,∴AD ⊥x 轴,OC ∥AB ,∴S △OAB=S △ABC ,而S △OAD=12×6=3,S △OBD=12×4=2,∴S △OAB=S △OAD ﹣S △OBD=1,∴S △ABC=1,故选:A .12.B【分析】直接利用特殊角的三角函数值进行计算即可得出答案.【详解】解:2cos30°,=2×32,3故选B .13.-2【分析】把x=0代入已知方程,列出关于m 的新方程,通过解新方程可以求得m 的值.【详解】解:根据题意将x=0代入原方程得:m 2-4=0,解得:m=2或m=-2,又∵m-2≠0,即m≠2,∴m=-2,故答案为:-2.14.35【详解】解:由题意知∠C=90°,BC=3,AC=4,根据勾股定理得,AB=5,因此可得:sinA=35BC AB .故答案为:3.515.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC∴=ADE ABC∴ 21()4ADE ABC S DE S BC ∴==△△,即4ABC ADES S =△△又12ADE S = 1422ABC S ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.16.(8,3)或(52,0)【分析】分两种情形分别讨论即可解决问题;【详解】解:∵四边形OABC 是矩形,A (8,0),D (5,7),∴B (8,7),OA =BC =8,OC =AB =7,∴CD =5,BD =3,∵点P 是边AB 或边OA 上的一点,∴当点P 在AB 边时,CD =DP =5,∴BP4,∴PA =AB ﹣BP =3,∴P (8,3).当点P 在边OA 上时,只有PC =PD ,此时P 在CD 的垂直平分线上,∴P (52,0).综上所述,满足条件的点P 坐标为(8,3)或(52,0).故答案为(8,3)或(52,0).17.60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∵OA=OC ,∴∠OCA=x ,∵OA=OB ,∴∠OBA=x+y ,∵OC=OB ,∴∠OBC=x+30°,∵30ACB ∠=︒,∴∠CAB+∠OBA+∠OBC=150°,∴y+x+y+x+30°=150°,∴2(x+y)=120°,∵∠AOB=180°-2∠OBA=180°-2(x+y),∴∠AOB=180°-120°=60°,故答案为:60.18.123x =,212x =-【分析】先把方程化为:3(21)2(21)0x x x +-+=,再利用因式分解法解方程即可得到答案.【详解】解:方程整理得:3(21)2(21)0x x x +-+=,分解因式得:(32)(21)0x x -+=,可得320x -=或210x +=,解得:123x =,212x =-.19.(1)见解析(2)80°【分析】(1)根据平行线的性质可得ABD EDC ∠=∠,依据全等三角形的判定和性质即可证明;(2)根据全等三角形的性质可得150DEC A ∠=∠=︒,21∠=∠,再由各角之间的数量关系得出210∠=︒,利用等边对等角及三角形内角和定理即可得出结果.(1)证明:∵AB CD ∥,∴ABD EDC ∠=∠,在ABD 和EDC 中,12ABD EDC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABD EDC ≌,∴DB CD =;(2)∵ABD EDC ≌,∴150DEC A ∠=∠=︒,21∠=∠,∵21BDC ∠=∠,∴22BDC ∠=∠,∵222230BDC ∠+∠=∠+∠=︒,∴210∠=︒,∴20BDC ∠=︒,∵BD CD =,∴()()11180180208022DBC DCB BDC ∠=∠=︒-∠=⨯︒-︒=︒.20.(1)证明见解析(2)8【分析】(1)先根据平行四边形的性质证明∠DAC=∠BCA ,再由三线合一定理证明EAC DAC ∠=∠,即可证明∠BCA=∠EAC ;(2)先根据等角对等边证明OA=OC ,再由勾股定理求出AE 的长,最后证明△COE 的周长=AE+CE 即可得到答案.(1)解:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴∠DAC=∠BCA ,∵AE=AD ,AC ⊥ED ,∴EAC DAC ∠=∠,∴∠BCA=∠EAC ;(2)解:∵∠BCA=∠EAC ,∴OA=OC ,∵AC ⊥DE ,即∠ACE=90°,∴在Rt △ACE 中,由勾股定理得:5AE ==,∴△COE 的周长=CE+OC+OE=OA+OE+CE=AE+CE=8.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,勾股定理,熟知等腰三角形的性质与判定条件是解题的关键.21.(1)见解析;(2)4m【分析】(1)作射线MA 和GC 交于O ,过O 作OH ⊥MN ,垂足为H ;(2)证明△CDG ∽△OHG 和△ABM ∽△OHM ,列比例式,可得OH 的长.【详解】解:(1)如图所示:(2)由题意得:BM=BD=2×1.5=3,∵CD∥OH,∴△CDG∽△OHG,∴CD DG OH GH=,∵AB=CD=1.5,∴1.5 1.21.2OH DH=+①,∵AB∥OH,∴△ABM∽△OHM,AB BMOH MH=,∴1.536OH DH=+②,由①②得:OH=4,则OH的长为4m.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了构建相似三角形,利用相似三角形的性质计算相应线段的长.22.21万元【分析】销售利润=一辆汽车的利润×销售汽车数量,一辆汽车的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每辆的盈利×销售的件数=96万元,即可列方程求解.【详解】解:设每辆汽车的定价应为x元,(x-15)[8+2(25-x)]=96解得x1=21,x2=23,为使成本尽可能的低,则x=21.答:每辆汽车的定价应为21万元.【点睛】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的件数=96万元是解决问题的关键.23.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=【点睛】此题考查了相似三角形的判定与性质,涉及了等边三角形的性质,角平分线的性质,熟练掌握相关基本性质是解题的关键.24.(1)证明见解析(2)35【分析】(1)由矩形的性质得出∠FAB=∠ABE=90°,AF ∥BE ,证出四边形ABEF 是矩形,再证明AB=BE,即可得出四边形ABEF是正方形;(2)由正方形的性质得出BP=PF,BA⊥AD,∠PAF=45°,得出AB∥PH,求出DH=AD-AH=5,在Rt△PHD中,由三角函数即可得出结果.【详解】(1)证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形;(2)解:过点P作PH⊥AD于H,如图所示:∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°,∴AB∥PH,∵AB=6,∴AH=PH=3,∵AD=8,∴DH=AD﹣AH=8﹣3=5,在Rt△PHD中,∠PHD=90°.∴tan∠ADP=PHHD=35.25.(1)32,10;(2)640yx;(3)共有59.5小时【分析】(1)由速度=增加幅度×时间可得4时风速为8千米/时,10时达到最高风速,为32千米/时,与x轴平行的一段风速不变,最高风速维持时间为20-10=10小时;(2)设k y x=,将(20,32)代入,利用待定系数法即可求解;(3)由于4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,所以4.5时风速为10千米/时,再将y=10代入(2)中所求函数解析式,求出x 的值,再减去4.5,即可求解.【详解】解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =,解得:640k =.所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =.(3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =,得64010x=,解得64x =,64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.26.(1)y=6x ,y=43-x+6;(2)92;(3)(316-,2)或(416,2).【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A 的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB 的解析式,进而求出AG ,用三角形的面积公式即可得出结论.(3)分情形分别讨论求解即可解决问题;【详解】解:(1)∵点B (3,2)在反比例函数y=a x的图象上,∴a=3×2=6,∴反比例函数的表达式为y=6x,∵点A 的纵坐标为4,∵点A 在反比例函数y=6x 图象上,∴A (32,4),∴32342k b k b +=⎧⎪⎨+=⎪⎩,∴436k b ⎧=-⎪⎨⎪=⎩,∴一次函数的表达式为y=-43x+6;(2)如图1,过点A 作AF ⊥x 轴于F 交OB 于G,∵B (3,2),∴直线OB 的解析式为y=23x ,∴G (32,1),A (32,4),∴AG=4-1=3,∴S △AOB =S △AOG +S △ABG =12×3×3=92.(3)①当∠AOE=90°时,∵直线AC 的解析式为y=83x ,∴直线OE 的解析式为y=83-x ,当y=2时,x=-316,∴E (-316,2);②当∠OAE=90°时,可得直线AE 的解析式为y=-83x+7316,当y=2时,x=416,∴E (416,2).综上所述,满足条件的E 的坐标为(-316,2)或(416,2).【点睛】此题主要考查了反比例函数综合题、待定系数法,三角形的面积公式,直角三角形的判定和性质,解本题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.27.(1)AF =AE ;(2)AF =kAE ,证明见解析;(3)EG 2【分析】(1)证明△EAB ≌△FAD (AAS ),由全等三角形的性质得出AF =AE ;(2)证明△ABE ∽△ADF ,由相似三角形的性质得出AB AE AD AF=,则可得出结论;(3)①如图1,当点F 在DA 上时,证得△GDF ∽△GBA ,得出12DF G GA BA F ==,求出AG=3.由△ABE ∽△ADF 可得出12AB A AF AD E ==,求出AE 2.则可得出答案;②如图2,当点F 在DC 的延长线上时,同理可求出EG 的长.【详解】解:(1)AE =AF .∵AD =AB ,四边形ABCD 矩形,∴四边形ABCD 是正方形,∴∠BAD =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB =∠FAD ,∴△EAB ≌△FAD (AAS ),∴AF =AE ;故答案为:AF =AE .(2)AF =kAE .证明:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =∠ADF =90°,∴∠FAD+∠FAB =90°,∵AF ⊥AE ,∴∠EAF=90°,∴∠EAB+∠FAB=90°,∴∠EAB=∠FAD,∵∠ABE+∠ABC=180°,∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,∴∠ABE=∠ADF.∴△ABE∽△ADF,∴AB AE AD AF=,∵AD=kAB,∴1 ABAD k=,∴1 AEAF k=,∴AF=kAE.(3)解:①如图1,当点F在DA上时,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AD=2AB=4,∴AB=2,∴CD=2,∵CF=1,∴DF=CD﹣CF=2﹣1=1.在Rt△ADF中,∠ADF=90°,∴AF=∵DF∥AB,∴∠GDF=∠GBA,∠GFD=∠GAB,∴△GDF ∽△GBA ,∴12DFG GA BA F==∵AF =GF+AG ,∴AG =233AF =∵△ABE ∽△ADF ,∴2142ABA A D EAF ===,∴AE =1122AF =在Rt △EAG 中,∠EAG =90°,∴EG ==,②如图2,当点F 在DC 的延长线上时,DF =CD+CF =2+1=3,在Rt △ADF 中,∠ADF =90°,∴AF 5==.∵DF ∥AB ,∵∠GAB =∠GFD ,∠GBA =∠GDF ,∴△AGB ∽△FGD ,∴23ABA FG FD G ==,∵GF+AG =AF =5,∴AG =2,∵△ABE ∽△ADF ,∴2142ABA A D EAF ===,∴1155222 AE AF==⨯=,在Rt△EAG中,∠EAG=90°,∴EG2=.综上所述,EG2.。
最新北师大版九年级数学上册单元测试题全套与答案
最新北师大版九年级数学上册单元测试题全套及答案( 最新北师大版,2017 年秋配套试题)第一章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题 3 分,共30 分)1.菱形的对称轴的条数为( )A.1 B.2 C.3 D.42.下列说法中,正确的是( )A.相等的角一定是对顶角 B .四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分 D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0) ,B(0 ,2) ,C(3,0) ,D(0,-2) ,则四边形ABCD是( )A.矩形 B .菱形 C .正方形 D .平行四边形4.下列命题是假命题的是( )A.四个角相等的四边形是矩形 B .对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD中,AB=6 cm,BC=8 cm,现将其沿AE对折,使得点 B 落在边AD上的点B1 处,折痕与边BC交于点E,则CE的长为( )A.6 cm B .4 cm C .2 cm D .1 cm6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( A )A. 245B.125C .5D .4, 第6 题图) , 第7 题图)7.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为( )A.90° B .60° C .45° D .30°8.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是( )A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形9.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为 2 的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( )A. 5B. 136C .1 D.56, 第9 题图) ,第10 题图)110.如图,在矩形ABCD中,点E,F 分别在边AB,BC上,且AE=AB,将矩形沿直线EF 折叠,点 B3恰好落在AD边上的点P 处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )A.①② B .②③ C .①③ D .①④3分,共18 分)二、填空题(每小题11.已知菱形的两条对角线长分别为 2 cm,3 cm,则它的面积是___cm2.12.如图,已知点P 是正方形ABCD对角线BD上一点,且BP=BC,则∠A CP的度数是___度.13.如图所示,将△ABC绕A C的中点O顺时针旋转180°得到△CDA,添加一个条件__ __ ,使四边形ABCD为矩形., 第12题图) , 第13题图) , 第14题图), 第15题图)14.已知矩形ABCD,AB=3 cm,AD=4 cm,过对角线BD的中点O作BD的垂直平分线EF,分别交A D,BC于点E,F,则AE的长为_ cm.15.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交C B和AD的延长线于点E,F,AE=3,则四边形AECF的周长为____.16.矩形OABC在平面直角坐标系中的位置如图所示,点 B 的坐标为(3 ,4) ,D是OA的中点,点 E 在AB上,当△CDE的周长最小时,则点 E 的坐标为__(_)_ .三、解答题(共72 分)17.(10 分) 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?18.(10 分) 如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作?ABDE,连接A D,EC.(1) 求证:△ADC≌△ECD;(2) 若BD=CD,求证:四边形ADCE是矩形.19.(10 分) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接C E.(1) 求证:BD=EC;(2) 若∠E=50°,求∠BAO的大小.20.(10 分) 如图,已知在?ABCD中,点E,F 分别是边AB,CD的中点,BD是对角线,AG∥BD交CB的延长线于点G.(1) 求证:△ADE≌△CBF;(2) 若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.21.(10 分) 如图,已知菱形ABCD,AB=AC,点E,F 分别是BC,AD的中点,连接A E,CF.(1) 求证:四边形AECF是矩形;(2) 若AB=8,求菱形的面积.22.(10 分) 如图,在正方形ABCD中,点E,F 分别在边AB,BC上,∠ADE=∠CDF.(1) 求证:AE=CF;(2) 连接D B交EF 于点O,延长OB至G,使OG=OD,连接E G,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD中,点M,N分别是AD,BC的中点,点P,Q分别是BM,DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么特殊四边形?请说明理由.第二章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题 3 分,共30 分)1.下列方程中,关于x 的一元二次方程是( )A.3( x+1) 2=2( x+1) B. 1 12+-2=0-2=0 x xC.ax2+bx+c=0 D .x2+2x=x2-12.方程(x -2)(x +3) =0 的解是( )A.x=2 B.x=-3 C.x1=-2,x2=3 D.x1=2,x2=-32 3.若x=-2 是关于x 的一元二次方程x+322ax-a =0 的一个根,则 a 的值为( )A.-1 或4 B .-1 或-4 C .1 或-4 D .1 或44.用配方法解一元二次方程x2-2x-3=0 时,方程变形正确的是( )A.( x-1) 2 =2 B .( x-1) 2 =4 C .( x-1) 2 =1 D .( x-1) 2 =75.下列一元二次方程中,没有实数根的是( )2 2 2 2A.x +2x+1=0 B .x +x+2=0 C .x -1=0 D .x -2x-1=06.解方程(x +1)(x +3) =5 较为合适的方法是( )A.直接开平方法 B .配方法C.公式法或配方法 D .分解因式法2 27.已知一元二次方程x -2x-1=0 的两个根分别是x1,x2,则x1 -x1+x2 的值为( )A.-1 B .0 C .2 D .38.关于x 的方程x2-ax+2a=0 的两根的平方和是5,则 a 的值是( )A.-1 或5 B .1 C .5 D .-19.某县政府2015 年投资0.5 亿元用于保障性住房建设,计划到2017 年投资保障性住房建设的资金为0.98 亿元,如果从2015 年到2017 年投资此项目资金的年增长率相同,那么年增长率是( ) A.30% B.40% C.50% D.10%10.有一块长32 cm,宽24 cm的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A.2 cm B .3 cm C .4 cm D .5 cm二、填空题( 每小题 3 分,共18 分)211.一元二次方程2x +6x=9 的二次项系数、一次项系数、常数项和为___.212.方程(x +2) =x+2 的解是____.2 213.若代数式4x -2x-5 与2x +1 的值互为相反数,则x 的值是__.14.写一个你喜欢的实数k 的值__ _ ,使关于x 的一元二次方程( k+1) x2+2x-1=0 有两个不相等的实数根.15.某制药厂两年前生产 1 吨某种药品的成本是100 万元,随着生产技术的进步,现在生产 1 吨这种药品的成本为81 万元.则这种药品的成本的年平均下降率为___.2 216.设m,n 分别为一元二次方程x +2x-2018=0 的两个实数根,则m+3m+n=__.三、解答题( 共72 分) 17.(12 分) 解方程:2(1) x +4x-1=0; (2)x 2+3x+2=0;2(3)3 x -7x+4=0.18.(10 分) 如图,已知A,B,C是数轴上异于原点O的三个点,且点O为AB的中点,点 B 为AC的中点.若点B对应的数是x,点C对应的数是x2-3x,求x 的值.52 219.(8 分) 一元二次方程x -2x-=0 的某个根,也是一元二次方程x -(k +2)x +4 94=0 的根,求k的值.20.(10 分) 某种商品的标价为400 元/ 件,经过两次降价后的要价为324 元/ 件,并且两次降价的百分率相同.(1) 求该种商品每次降价的百分率;(2) 若该种商品进价为300 元/ 件,两次降价共售出此种商品100 件,为使两次降价销售的总利润不少于3 210 元.问第一次降价后至少要售出该种商品多少件?21.(10 分) 小林准备进行如下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1) 要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?2(2) 小峰对小林说:“这两个正方形的面积之和不可能等于48 cm,”他的说法对吗?请说明理由.22.(10 分) 某市电解金属锰厂从今年元月起安装了回收净化设备( 安装时间不计) ,这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x 月的利润的月平均值W(万元) 满足W=10 x +90. 请问多少个月后的利润和为1620 万元?23.(12 分) 为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000 元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1) 筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的 3 倍,问最多用多少资金购买书桌、书架等设施?(2) 经初步统计,有200 户居民自愿参与集资,那么平均每户需集资150 元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000 元.经筹委会进一步宣传,自愿参与的户数在200 户的基础上增加了a%(其中a>0) .则每户平均集资的资金在150 元的基础上减少了值. 109a%,求a的第三章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题 3 分,共30 分)1.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化.3 个事件的概率分别记为P(A) ,P(B) ,P(C),则P(A) ,P(B) ,P(C) 的大小关系正确的是( )A.P( C) <P( A)=P( B) B.P( C) <P( A) <P( B)C.P( C) <P( B)<P( A) D .P( A) <P( B) <P( C)2.从-5,0,4,π,3.5 这五个数中,随机抽取一个,则抽到无理数的概率是( )A. 1525B.35C.45D.3.如图,在2× 2 的正方形网格中有9 个格点,已经取定点 A 和B,在余下的7 个点中任取一点C,使△ABC为直角三角形的概率是( )A. 12B.25C. 37D.474.袋子里有 4 个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于 6 的概率是( )A. 12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11 的概率为( )A. 118B.136C.112D.1156.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A. 14B.34C.13D.12, 第6 题图) , 第7 题图) 7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A. 1925B.1025C.625D.5258.有三张正面分别写有数字-1,1,2 的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为 a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为 b 的值,则点(a ,b) 在第二象限的概率是( )A. 16B.13C.12D.239.从长为10 cm,7 cm,5 cm,3 cm的四条线段中任选三条能够组成三角形的概率是( )A. 14B.13C.12D.3410.如图,在平面直角坐标系中,点A1,A2 在x 轴上,点B1,B2 在y 轴上,其坐标分别为A1(1 ,0) ,A2 (2 ,0) ,B1(0 ,1) ,B2(0 ,2) ,分别以A1,A2,B1,B2 其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )A. 34B.13C.23D.12二、填空题( 每小题 3 分,共18 分)11.一个布袋中装有 3 个红球和 4 个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为___.12.在一个不透明的袋子中有10 个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.13.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是___.14.一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__.15.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__.16.已知一包糖果共有五种颜色( 糖果仅有颜色差别) ,如图是这包糖果颜色分布百分比的统计图.在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是__.三、解答题( 共72 分)17.(10 分) 小明有 2 件上衣,分别为红色和蓝色,有 3 条裤子,其中 2 条为蓝色、 1 条为棕色.小明任意拿出 1 件上衣和 1 条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第三象限的概率.(1)列表:20.(10分)分别把带有指针的圆形转盘A,B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10 分) 某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放( 发放的食品价格一样) .食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1) 按约定,“小李同学在该天早餐得到两个油饼”是________事件;( 可能,必然,不可能)(2) 请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.22.(10 分) 某景区7 月1 日~7 月7 日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件的概率:(1) 随机选择一天,恰好天气预报是晴;(2) 随机选择连续的两天,恰好天气预报都是晴.23.(12 分) 有四张正面分别标有数字2,1,-3,-4 的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1) 请画出树状图并写出(m,n) 所有可能的结果;(2) 求所选出的m,n 能使一次函数y=mx+n 的图象经过第二、三、四象限的概率.( 1) ①画树状图得:WORD文档第四章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题3分,共30 分)1.下列说法正确的是( )A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似 D .矩形都相似2.已知△ABC∽△DEF,相似比为3∶1,且△ABC的周长为18,则△DEF的周长为( )A.2 B.3 C.6 D.543.如图,已知BC∥DE,则下列说法不正确的是( C )A.两个三角形是位似图形 B .点A是两个三角形的位似中心C.AE∶AD是相似比 D .点B与点E,点C与点D是对应位似点4.如图,身高为 1.6 m的小红想测量学校旗杆的高度,当她站在 C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0 m,BC=8.0 m,则旗杆的高度是( C )A.6.4 m B .7.0 m C .8.0 m D .9.0 m, 第3题图) , 第4题图) , 第5题图), 第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点 E 在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于( B )A.60 m B .40 m C .30 m D .20 m6.如图,矩形ABCD的面积是72,AE =A.24 B .18 C .12 D .9 12DC,BF=12AD,那么矩形EBFG的面积是( B )7.如图,点A,B,C,D的坐标分别是(1 ,7) ,(1 ,1) ,(4 ,1) ,(6 ,1) ,以点C,D,E 为顶点的三角形与△ABC相似,则点 E 的坐标不可能是( B )A.(6 ,0) B .(6 ,3) C .(6 ,5) D .(4 ,2),第7题图) , 第8题图) , 第9题图), 第10题图)8.如图,在△ABC中,中线BE,CD相交于点O,连接D E,下列结论:①D E=BC1;②2S△DOE=S△COB12;③A D=ABO E;OB④S 1△ODE=. 其中正确的个数有( B ) S 3△ADCA.1 个 B .2 个 C .3 个 D .4 个9.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接B D.下列结论错误的是( C )A.∠C=2∠A B .BD平分∠ABCC.S△BCD=S△BOD D .点D为线段AC的黄金分割点10.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P 为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P 的个数是( C )A.1 个 B .2 个 C .3 个 D .4 个二、填空题(每小题3分,共18 分)11.若xy=m 4=(y ≠n) ,则n 5x-m 4=__ __.y-n 512.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x的值是__16__.13.如图,在△ABC中,点P 是AC上一点,连接B P.要使△ABP∽△ACB,则必须有∠ABP=__∠C__或∠APB=__∠ABC__或A B AC=__ __.AP AB,第12题图) , 第13题图) , 第14题图) , 第15题图)1214.如图,在矩形ABCD中,AB=2,BC=3,点E 是AD的中点,CF⊥BE于点F,则CF=__ __.5 15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50 米有一根电线杆,小丽站在离南岸边15 米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5 __米.16.如图,以点O为位似中心,将△ABC缩小后得△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积之比为__1∶9__.三、解答题(共72 分)17.(10 分) 如图,点D是△ABC的边AC上的一点,连接B D,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴A B=ACA D,∵AB=6,AD=4,∴ACAB=2AB 36==9,则CD=AC-AD=9-4=5AD 418.(10 分) 一个钢筋三角架三边长分别是20 厘米、50 厘米、60 厘米,现在再做一个与其相似的钢筋三角架,而只有长为30 厘米和50 厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料) 作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.两种截法:①30 厘米与60 厘米的两根钢筋为对应边,把50 厘米的钢筋按10 厘米与25 厘米两部分截,则有1020=2550=30 1=,从而两个三角形相似;②30 厘米与50 厘米的两根钢筋为对应边,把50 厘米的钢筋60 2截出12 厘米和36 厘米两部分,则有20 50==12 3060 5=,从而两个三角形相似36 319.(10 分) 如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2) ,B( -3,4) ,C(-2,6) .(1) 画出△ABC绕点 A 顺时针旋转90°后得到的△A1B1C1;(2) 在网格内以原点O为位似中心,画出将△A1B1C1 三条边放大为原来的 2 倍后的△A2B2C2.20.(10 分) 如图,矩形ABCD为台球桌面.AD=260 cm,AB=130 cm. 球目前在 E 点位置,AE=60 cm. 如果小丁瞄准了BC边上的点 F 将球打进去,经过反弹后,球刚好弹到D点位置.(1) 求证:△BEF∽△CDF;(2) 求CF的长.( 1) ∵FG⊥BC,∠EFG=∠D FG,∴∠BFE=∠CFD,又∵∠B=∠C=90°,∴△BEF∽△CDF( 2) 设CF=x,则BF=260-x,∵AB=130,AE=60,BE=70,由( 1) 得,△BEF∽△CDF,∴BE BF=,CD CF即70=130260-x,∴x=169,即CF=169 cmx21.(10 分) 如图,在△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.∵AD是中线,∴BD=CD,又CD2 =BE·BA,∴BD2=BE·BA,即2 =BE·BA,∴BD2=BE·BA,即B E BD=,又∠B=∠B,∴△BED∽△BDA,BD AB∴E D =AD B D,∴ED·AB=AD·BDAB22.(10 分) 如图,在平行四边形ABCD中,过点 A 作AE⊥BC,垂足为点E,连接D E,点 F 为线段D E 上一点,且∠AFE=∠B.(1) 求证:△ADF∽△DEC;(2) 若AB=8,AD=6 3,AF=4 3,求AE的长.( 1) ∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD +∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC ( 2) ∵四边形ABCD是平行四边形,∴CD=AB=8. 由( 1)知△ADF∽△DEC,∴A D AF=,∴DE=DE CDA D·CD=AF63×8=12. 在Rt △ADE中,由勾股定理得AE4 3=DE2-AD2=122-(6 3)2=623.(12 分) 将一副三角尺如图①摆放( 在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°) ,点D为A B的中点,DE交AC于点P,DF经过点 C.(1) 求∠ADE的度数;(2) 如图②,将△DEF绕点D顺时针方向旋转角α(0 °<α<60°) ,此时的等腰直角三角尺记为△DE′F′,PMDE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出CN反之,请说明理由.P M的值;CN( 1) 由题意知,CD是Rt△ABC斜边AB上的中线,∴AD=BD=CD,∵在△BCD中,BD=CD且∠B=60°,∴△BCD是等边三角形,∴∠BCD=∠BDC=60°,∴∠ADE=180°-∠BDC-∠EDF=180°-60°-90°=30°( 2) P M的值不会随着α的变化而变化,理由如下:∵△APD的外角∠MPD=∠A+∠A DE=30°+30°CN=60°,∴∠MPD=∠B CD=60°,∵在△MPD和△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,∴△PM MPD∽△NCD,=CN P D PD ,∵∠ACB=90°,∠BCD=60°,∴∠PCD=30°. 在Rt△PCD中,∠PCD=30°,∴CD CD=1=33,∴3P M=CNP D=CD33第五章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题 3 分,共30 分)1.将一包卷筒卫生纸按如图所示的方式摆放在桌面上,它的俯视图是( D ) 2.如图是由 4 个相同的正方体组成的几何体,则这个几何体的俯视图是( A )3.如图是一个几何体的实物图,则其主视图是( C )4.如图是一支架( 一种小零件) ,支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( A )5.木棒的长为 1.2 m,则它的正投影的长一定( D )A.大于 1.2 m B.小于 1.2 m C.等于 1.2 m D.小于或等于 1.2 m6.下列四个几何体中,俯视图为四边形的是( D )7.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( A )8.小琳过14 周岁生日,父母为她预定的生日蛋糕如图所示,当投影线由生日蛋糕的前方射到后方时,它的正投影应该是( B )9.有两个完全相同的长方体,按如图所示方式摆放,其主视图是( C )10.如图,小轩同学在晚上由路灯AC走向路灯BD,当他走到点P 时,发现他身后影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现他身前影子的顶部刚好接触到路灯BD的底部,已知小轩同学的身高是 1.5 m,两个路灯的高度都是9 m,则两路灯这间的距离是( D ) A.24 m B .25 m C .28 m D .30 m二、填空题( 每小题 3 分,共18 分)11.太阳光形成的投影是__平行投影__,电动车灯所发出的光线形成的投影是__中心投影__.12.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__①②③__.( 填编号)13.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由__6 或7 或8__个小正方体搭成的., 第13 题图) , 第15 题图) , 第16题图)14.小刚和小明在太阳光下行走,小刚身高 1.5 m,他的影长为 2.0 m,小刚比小明矮9 cm,此刻小明的影长是__2.12_m__.15.一个长方体的主视图和左视图如图( 单位:cm) ,则其俯视图的面积是__6_cm2__.16.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=2 3米,窗户的下沿到教室地面的距离BC=1 米( 点M,N,C 在同一直线上) ,则窗户的高AB为__2 米__.三、解答题( 共72 分)17.(10 分) 根据下列主视图和俯视图,指出其对应的物体.a—D,b—A,c—B,d—C18.(10 分) 如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你画出它从正面和从左面看得到的平面图形.19.(10 分) 小亮在某一时刻测得小树高为 1.5 m,其影长为 1.2 m,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为 6.4 m,墙上影长为 2 m,那么这棵大树高为多少米?x-6.4 设大树影长为x 米,大树高为y 米,则2 =1.21.5,解得x=8. ∵y 1.5=8 1.2∴y=10,答:这棵大树高为10 米20.(10 分) 在长、宽都为 4 m,高为 3 m的房间的正中央的天花板上悬挂一只白炽灯泡,为了集中光线,加上了灯罩,如图所示,已知灯罩深8cm,灯泡离地面 2 m,为了使光线恰好照在墙脚,问灯罩的直径应为多少?( 结果精确到0.01 米)如图,由题意知,DE为地面上墙脚的对角线连线.过点 A 作AM⊥DE交DE于点M,交BC于点N.∵DE∥BC,∴△ABC∽△ADE,∴A N=AMB C 4 2×0.08. ∵AN=0.08 ,AM=2,DE=4 2,∴BC=DE 2≈0.23m21.(10 分) 如图,某居民小区内A,B 两楼之间的距离MN=30 m,两楼的高度都是20 m,A楼在B 楼正南,B 楼窗户朝南. B 楼内一楼住户的窗台离小区地面的距离DN=2 m,窗户高CD=1.8 m.当正午时刻太阳光线与地面成30°角时,A 楼的影子是否影响 B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.( 参考数据:2=1.414 ,3=1.732 ,5=2.236)如图,设光线FE 影响到B楼的 E 处,作GE⊥FM于点G,EG=MN=30,∠FEG=30°,FG=10 3,MG=FM-GF=20-10 3≈ 2.68. 又DN=2,CD=1.8 ,∴DE=2.68 -2=0.68<1.8. ∴A楼的影子影响到 B 楼一楼采光,挡住该住户窗户0.68 m22.(10 分) 如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积.( 结果保留根号)根据该密封纸盒的三视图知道它是一个六棱柱.∵其高为12 cm,底面边长为 5 cm,∴其侧面积为26×5×12=360( cm) ,密封纸盒的上、下底面的面积和为:12×5×3 12×5×=75 3( cm),∴其表面积为2 22( 75 3+360) cm23.(12 分) 如图,王乐同学在晚上由路灯 A 走向路灯B,当他行到P 处时发现,他在路灯 B 下的影长为2 m,且恰好位于路灯 A 的正下方,接着他又走了 6.5 m到Q处,此时他在路灯 A 下的影子恰好位于路灯B 的正下方( 已知王乐身高 1.8 m,路灯 B 高9 m) .(1) 标出王乐站在P 处时,在路灯 B 下的影子;(2) 计算王乐站在Q处时,在路灯 A 下的影长;(3) 计算路灯A的高度.EP CP ( 1) 线段C P 为王乐在路灯 B 下的影子.( 2) 由题意得Rt△CEP∽Rt △CBD.∴=,∴BD CD 1.39=2,解得QD=1.5 m.所以王乐站在Q处时,在路灯 A 下的影长为 1.5 m ( 3) 路灯A 的高度为12 2+6.5 +QDm第六章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题 3 分,共30 分)1.反比例函数的图象经过点(-2,3) ,则此函数的图象也经过点(A )A.(2 ,-3) B.( -3,-3) C.(2 ,3) D.( -4,6)2.如图,是我们学过的反比例函数的图象,它的函数表达式可能是( B )4A.y=x2 B .y=xC.y=-3x1D .y=x233.为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m) 一定的污水处理池,池的底面积S(m2) 与其深度h( m) 满足关系式:V=Sh(V≠0) ,则S 关于h 的函数图象大致是( C )4.反比例函数y=k 3的图象经过点( -2,) ,则它的图象位于( B ) x 2A.第一、三象限 B .第二、四象限C.第一、二象限 D .第三、四象限5.若在同一直角坐标系中,直线y=k1x 与双曲线y=A.k1+k2 >0 B .k1+k2<0C.k1k2>0 D .k1k2<0 k2x有两个交点,则有( C )6.反比例函数y=2x的图象上有两个点为(x1,y1) ,(x 2,y2) ,且x1<x2,则下列关系成立的是( D )A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定7.在反比例函数y=4x的图象上,阴影部分的面积不等于 4 的是( B )k8.如图,菱形OABC的顶点C的坐标为(3 ,4) ,顶点 A 在x 轴的正半轴上.反比例函数y=(x>0) 的x图象经过顶点B,则k 的值为( D )A.12 B .20 C .24 D .32, 第8 题图) , 第9 题图) , 第10 题图)9.如图,函数y=-x 与函数y=-4x的图象相交于A,B两点,过A,B两点分别作y 轴的垂线,垂足分别为点C,D,则四边形ACBD的面积为( D ) A.2 B .4 C .6 D .810.反比例函数y=m的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y 随x 的增大而x增大;③若A( -1,h) ,B(2 ,k) 在图象上,则h<k;④若P(x ,y) 在图象上,则P′( -x,-y) 也在图象上.其中正确的是( C )A.①② B .②③ C .③④ D .①④二、填空题( 每小题 3 分,共18 分)11.反比例函数y=kx的图象经过点(1 ,-2) ,则k 的值为__-2 __.k12.已知正比例函数y=-2x 与反比例函数y=的图象的一个交点坐标为( -1,2) ,则另一个交点的x坐标为__( 1,-2)__ .k13.已知反比例函数y=(k ≠0) 的图象经过点(3 ,-1) ,则当1<y<3 时,自变量x 的取值范围是__x-3<x<-1__.。
北师大版初中九年级数学上册单元测试题【含答案】-全册
北师大版初中九年级数学上册单元测试题第一章 证明(Ⅱ) 班级 姓名 学号 成绩一、判断题(每小题2分,共10分)下列各题正确的在括号内画“√”,错误的在括号内画“×”.1、两个全等三角形的对应边的比值为1 . ( )2、两个等腰三角形一定是全等的三角形. ( )3、等腰三角形的两条中线一定相等. ( )4、两个三角形若两角相等,则两角所对的边也相等. ( )5、在一个直角三角形中,若一边等于另一边的一半,那么,一个锐角一定等于30°.( )二、选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )A 、∠A=∠DB 、∠C=∠FC 、∠B=∠ED 、∠C=∠D2、下列命题中是假命题的是( )A 、两条中线相等的三角形是等腰三角形B 、两条高相等的三角形是等腰三角形C 、两个内角不相等的三角形不是等腰三角形D 、三角形的一个外角的平分线平行于这个三角形的一边,则这个三角形是等腰三角形3、如图(一),已知AB=AC ,BE=CE ,D 是AE 上的一点,则下列结论不一定成立的是( )A 、∠1=∠2B 、AD=DEC 、BD=CD D 、∠BDE=∠CDE4、如图(二),已知AC 和BD 相交于O 点,AD ∥BC ,AD=BC ,过O (一) 任作一条直线分别交AD 、BC 于点E 、F ,则下列结论:①OA=OC②OE=OF ③AE=CF ④OB=OD ,其中成立的个数是( )A 、1B 、2C 、3D 、45、若等腰三角形的周长是18,一条边的长是5,则其他两边的长是( ) (二)A 、5,8B 、6.5,6.5C 、5,8或6.5,6.5D 、8,6.56、下列长度的线段中,能构成直角三角形的一组是( )A 、543,, ;B 、6, 7, 8;C 、12, 25, 27;D 、245232,,7、如图(三),AC=AD BC=BD ,则下列结果正确的是( ) (三)A 、∠ABC=∠CAB B 、OA=OBC 、∠ACD=∠BDCD 、AB ⊥CD8、如图(四),△ABC 中,∠A=30°,∠C=90°AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是( )A 、AD=DB B 、DE=DCC 、BC=AED 、AD=BC (四)9、如图(五),在梯形ABCD 中,∠C=90°,M 是BC 的中点,DM 平分∠ADC ,∠CMD=35°,则∠MAB 是( )A 、35°B 、55°C 、70°D 、20°A B10、如图(六),在Rt △ABC 中,AD 平分∠BAC ,AC=BC , (五)∠C=Rt ∠,那么,DCAC 的值为( ) A 、112∶)(- B 、()112∶+ C 、12∶ D 、 12∶ (六)三、填空题,(每空2分,共20分)1、如图(七),AD=BC ,AC=BD AC 与BD 相交于O 点,则图中全等三角形共有 对. (七)2、如图(八),在△ABC 和△DEF 中,∠A=∠D ,AC=DF ,若根据“ASA ”说明△ABC ≌△DEF ,则应添加条件 = . (八) 或 ∥ .3、一个等腰三角形的底角为15°,腰长为4cm ,那么,该三角形的面积等于 .4、等腰三角形一腰上的高与底边的夹角等于45°,则这个三角形的顶角等于 .5、命题“如果三角形的一个内角是钝角,则其余两个内角一定是锐角”的逆命题是 .6、用反证法证明:“任意三角形中不能有两个内角是钝角”的第一步:假设 .7、如图(九),一个正方体的棱长为2cm ,一只蚂蚁欲从A 点处沿正方体侧面到B 点处吃食物,那么它需要爬行的最短路径的长是 .8、在Rt △ABC 中,∠ACB=90°,AB=8cm , BC 的垂直平分线DE 交AB (九) 于D ,则CD= .9、如图(十)的(1)中,ABCD 是一张正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在(2)中EF 上,折痕交AE 于点G ,那么∠ADG= .四、作图题(保留作图的痕迹,写出作法)(共6分) (十)如图(十一),在∠AOB 内,求作点P ,使P 点到OA ,OB 的 距离相等,并且P 点到M ,N 的距离也相等.(十一)五、解答题(5分)如图(十二),一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.(十二)六、证明题(第1,第2两小题各6分,第3小题8分,第4小题9分)1、已知:如图(十三),AB∥CD,F是AC的中点,求证:F是DE中点.(十三)2、已知:如图(十四),AB=AD, CB=CD,E,F分别是AB,AD的中点.求证:CE=CF .(十四)3、如图(十五),△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:(1)AD⊥EF ;(2)当有一点G从点D向A运动时,DE⊥AB于E,DF⊥AC于F,此时上面结论是否成立?(十五)4、如图(十六),△ABC、△DEC均为等边三角形,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM为等边三角形.(十六)九年级 数学 第二章 一元二次方程班级 姓名 学号 成绩一、填空题(每小题2分,共36分)1.一元二次方程)3(532-=x x 的二次项系数是 ,一次项系数是 , 常数项是 .2.当m 时, 012)1(2=+++-m mx x m 是一元二次方程.3.方程022=-x x 的根是 ,方程036)5(2=--x 的根是 . 4.方程)32(5)32(2-=-x x 的两根为==21,x x .5.a 是实数,且0|82|42=--+-a a a ,则a 的值是 .6.已知322--x x 与7+x 的值相等,则x 的值是 . 7.(1)22___)(96+=++x x x ,(2)222)2(4___p x p x -=+-. 8.如果-1是方程0422=-+bx x 的一个根,则方程的另一个根是 ,b 是 .9.若1x 、2x 为方程0652=-+x x 的两根,则21x x +的值是,21x x 的值是.10.用22cm 长的铁丝,折成一个面积为228cm 的矩形,这个矩形的长是__ __.11.甲、乙两人同时从A 地出发,骑自行车去B 地,已知甲比乙每小时多走3千米,结果比乙早到0.5小时,若A 、B 两地相距30千米,则乙每小时 千米. 二、选择题(每小题3分,共18分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、已知关于的方程,(1)ax 2+bx+c=0;(2)x 2-4x=8+x 2;(3)1+(x-1)(x+1)=0;(4)(k 2+1)x 2 + kx + 1= 0中,一元二次方程的个数为( )个A 、1B 、2C 、3D 、42、如果01)3(2=+-+mx x m 是一元二次方程,则 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且3、已知方程()031222=+--m x m x 的两个根是互为相反数,则m 的值是 ( )A 、1±=mB 、1-=mC 、1=mD 、0=m4、将方程0982=++x x 左边变成完全平方式后,方程是( )A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x 5、如果022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 ( )A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 ( )A 、 5%B 、 10%C 、15%D 、 20%三、按指定的方法解方程(每小题3分,共12分)1.02522=-+)(x (直接开平方法) 2. 0542=-+x x (配方法)3.025)2(10)2(2=++-+x x (因式分解法) 4. 03722=+-x x (公式法)四、适当的方法解方程(每小题4分,共8分)1.036252=-x 2. 0)4()52(22=+--x x五、完成下列各题(每小题5分,共15分)1、已知函数222a ax x y --=,当1=x 时,0=y , 求a 的值.2、若分式1|3|432----x x x 的值为零,求x 的值.3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根. (1)若方程只有一个实根,求出这个根; (2)若方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值.六、应用问题(第1小题5分,第2小题6分,共11分)1、请求解我国古算经《九章算术》中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?(1丈=10尺)2、某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.九年级 数学 第三章 证明(Ⅲ)班级 姓名 学号 成绩一、选择题(每题4分,共40答案的番号填在括号内. 1、如图1中,O 为对角线AC 、BD 则图中共有相等的角( )A 、4对B 、5对C 、6对D 、8对 2、如图2,已知E 、F 的中点, 连接AE 、CF 所形成的四边形AECF 的面 的面积的比为( )A 、1:1B 、1:2C 、1:3D 、1:43、过四边形ABCD 的顶点A 、B 、C 、D 作BD 、AC 的平行线围成四边形EFGH,若EFGH 是菱形,则四边形ABCD 一定是( ) A 、平行四边形 B 、菱形C 、矩形D 、对角线相等的四边形4、在菱形ABCD 中,,,CD AF BC AE ⊥⊥ 且E 、F 分别是BC 、CD 的中点, 那么=∠EAF ( )A 、075B 、055C 、450D 、0605、矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是( )A 、56B 、55C 、54D 、356、矩形的内角平分线能够组成一个( )A 、矩形B 、菱形C 、正方形D 、平行四边形7、以正方形ABCD 的一组邻边AD 、CD 向形外作等边三角形ADE 、CDF ,则下列结论中错误的是( )A 、BD 平分EBF ∠B 、030=∠DEFC 、BD EF ⊥ D 、045=∠BFD8、已知正方形ABCD 的边长是10cm ,APQ ∆是等边三角形,点P 在BC 上,点Q 在CD 上,则BP 的边长是( )A 、55cmB 、3320cm C 、)31020(-cm D 、)31020(+cm 9、若两个三角形的两条中位线对应相等且两条中位线与一对应边的夹角相等,则这两个三角形的关系是( )A 、全等B 、周长相等C 、不全等D 、不确定10、正方形具有而菱形不具有的性质是( )A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角 二、填空题(每空1分,共11分)1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰与上底相等且等于下底的一半,则该梯形的腰与下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 .4、在ABC ∆中,D 为AB 的中点,E 为AC 上一点,AC CE 31=,BE 、CD 交于点O ,cm BE 5=,则=OE .5、顺次连接任意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片ABCD 沿对角线AC 对折后,AD 与BC 交于点E ,则DE 的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:3,则菱形较小的内角的度数为 .9、正方形的一条对角线和一边所成的角是 度.10、已知四边形ABCD 是菱形,AEF ∆是正三角形,E 、F 分别在BC 、CD 上,且CD EF =,则=∠BAD .三、解答题(第1、2小题各10分,第3、4小题各5分,共30分)1、如图3,AB//CD ,090=∠ACB ,E 是ABCE=CD ,DE 和AC 相交于点F.求证:(1)AC DE ⊥; (2)ACE ACD ∠=∠.2、如图4,ABCD 为平行四边形,DFEC 和BCGH 为正方形.求证:EG AC ⊥.3、证明:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.图54、从菱形钝角的顶点向对边作垂线,且垂线平分对边,求菱形各角的度数?四、(第1、2小题各6分,第3小题7分,共19分)1、如图5,正方形纸片ABCD 的边BC 上有一点E ,AE=8cm ,若把纸片对折,使点A 与点E 重合,则纸片折痕的长是多少?2、如图6,在矩形ABCD 中,E 是BC 上一点且AE=AD ,又AE DF ⊥于点F ,证明:EC=EF.3、如图7,已知P 是矩形ABCD 的内的一点.求证:2222PD PB PC PA +=+.九年级 数学 半期检测题(总分120分,100分钟完卷) 班级 姓名 学号 成绩一、选择题(每小题3分,共36案的番号填在括号内.1、下列数据为长度的三条线段可以构成直角三角形的是((A )3、5、6 (B )2、3、4(C ) 6、7、9 (D )9、12、15 2、如图(一):AB=AC ,D 、E 、F 分别是三边中点,则图中全等三角形共有( )(A ) 5对 (B ) 6对 (C ) 7对 (D ) 8对 3、△ABC 中,∠A=150º,AB=10,AC=18,则△ABC (A )45 (B )90 (C )180 (D )不能确定4、已知△ABC 中,∠C=90º,∠A=30º,BD 平分∠B 交AC 于点D ,则点D ( )(A )是AC 的中点 (B )在AB 的垂直平分线上(C )在AB 的中点 (D )不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值是( )(A )1 (B ) -1 (C ) 1或-1 (D )21 6、方程x x 52=的根是( )(A )5=x (B )0=x (C ) 5,021==x x (D ) 0,521=-=x x7、用配方法将二次三项式9642-+x x 变形,结果为( )(A )100)2(2++x (B )100)2(2--x (C )100)2(2-+x (D ) 100)2(2+-x8、两个连续奇数的乘积是483,则这两个奇数分别是( )(A ) 19和21 (B ) 21和23 (C ) 23和25 (D ) 20和229、根据下列条件,能判定一个四边形是平行四边形的是( )(A )两条对角线相等 (B )一组对边平行,另一组对边相等(C )一组对角相等,一组邻角互补 (D )一组对角互补,一组对边相等10、能判定一个四边形是矩形的条件是( )(A )对角线相等 (B )对角线互相平分且相等(C )一组对边平行且对角线相等 (D )一组对边相等且有一个角是直角11、如果一个四边形要成为一个正方形,那么要增加的条件是( )(A )对角线互相垂直且平分 (B )对角互补(C )对角线互相垂直、平分且相等 (D )对角线相等12、矩形的四个内角平分线围成的四边形( )(A )一定是正方形 (B )是矩形 (C )菱形 (D )只能是平行四边形 二、填空题(每空2分,共38分)1、直角三角形两直角边分别是5cm 和12cm ,则斜边长是 ,斜边上的高 是 cm.2、命题“对顶角相等”的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△ABC 中,AB=AC ,∠BAC=120AD ⊥AC ,DC=8,则BD= .5、已知:如图(三),△ABC 中,AB=AC ,∠A=40º,AB 的中垂线交AC 于点D ,交AB 于点E ,则∠C= ,∠DBC= . (二)6、若关于x 的方程42322-=+x x kx 是一元二次方程,则k 的取值范围是 . (三)7、关于x 的方程124322+-=-a ax x x ,若常数项为0,则a = .8、如果m x x ++32是一个完全平方式,则m = .9、已知9)2(222=++y x ,则=+22y x . 10、方程012=--x x 的根是 .11、已知04322=--y xy x ,则yx 的值是 . 12、如图(四),平行四边形ABCD 中,AD=6cm ,AB=9cm,AE 平分∠DAB ,则CE= cm. (四)13、已知矩形ABCD 的周长是24 cm,点M 是CD 中点,∠AMB=90°,则AB= cm, AD= cm.14、已知菱形周长为52,一条对角线长是24,则这个菱形的面积是 .15、等腰梯形上底长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是 .三、解方程(每小题4分,共16分)1、0862=--x x (用配方法).2、23142-=--x x x (用公式法).3、04)5(=+-x x x (用因式分解法).4、02)12(2=++-x x .四、解答题(每小题5分,共15分)1、为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2002年我省退耕还林1600亩,计划2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?2、学校准备在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较合适?3、如图(五),ΔABC 中,AB=20,AC=12,AD 是中线,且AD=8,求BC 的长.五、证明(计算)(每小题5分,共15分)1、已知:如图(六),点C 、D 在BE 上,BC=DE ,AB ∥EF ,AD ∥CF.求证:AD=CF.(六)2、如图(七),正方形ABCD 中,E 为CD 上一点,F 为BC 延长线上一点,CE=CF.(1)求证:△BCE ≌△DCF ;(2)若∠BEC=600,求∠EFD 的度数.(七)3、已知:如图(八),在直角梯形ABCD 中,AB ∥CD ,AD ⊥CD,AB=BC, 又AE ⊥BC 于E.求证:CD=CE.(八)A B C D E F九年级数学第四章视图与投影一、选择题(每小题4分,共32分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内.1、一个几何体的主视图和左视图都是相同的长方形,府视图为圆,则这个几何体为()A、圆柱B、圆锥C、圆台D、球2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A、先变长,后变短B、先变短,后变长C、方向改变,长短不变D、以上都不正确3、在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是()A、20米B、16米C、18米D、15米4、下列说法正确的是()A、物体在阳光下的投影只与物体的高度有关B、小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C、物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D、物体在阳光照射下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个6、如图1是空心圆柱体在指定方向上的视图,正确的是()图17、如图2所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积为()图 2A、0.36πm2B、0.81πm2C、2πm2D、3.24πm28、如图(三)是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后顺序进行排列正确的是()(三)A、(1)(2)(3)(4)B、(4)(3)(1)(2)C、(4)(3)(2)(1)D、(2)(3)(4)(1)二、填空题(每小题3分,共21分)1、主视图、左视图、府视图都相同的几何体为(写出两个).2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为米.5、如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影 .三、解答题(本题7个小题,共47分)1、某糖果厂为儿童设计一种新型的装糖果的不倒翁(如图4所示)请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.图 64、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.图 75、如图8为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况,(1)当太阳光与水平线的夹角为30°角时,求甲楼的影3 1.73);(2)若要甲楼的影子刚好不落在乙楼的子在乙楼上有多高(精确到0.1m,墙上,此时太阳与水平线的夹角为多少度?图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子[如图(9)所示],已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值)图 97、一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为0.3m,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD=1.0m,又测地面部分的影长BC=3.0m,你能根据上述数据帮他测出旗杆的高度吗?图 10九年级 数学 第五章 反比例函数一、填空题(每小题3分,共30分)1、近视眼镜的度数y (度)与镜片焦距x 成反比例.已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是 .2、如果反比例函数xk y =的图象过点(2,-3),那么k = . 3、已知y 与x 成反比例,并且当x=2时,y=-1,则当y=3时,x 的值是 .4、已知y 与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y 的值是 .5、若点A (6,y 1)和B (5,y 2)在反比例函数xy 4-=的图象上,则y 1与y 2的大小关系是 . 6、已知函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 . 7、若函数12)1(---=m m x m y 是反比例函数,则m 的值是 .8、直线y=-5x+b 与双曲线x y 2-=相交于 点P (-2,m ),则b= .9、如图1,点A 在反比例函数图象上,过点A 作AB 垂直于x 轴,垂足为B ,若S △AOB =2,则这个反比例函数的解析式为. 图 110、如图2,函数y=-kx(k≠0)与xy 4-=的图 象交于点A 、B ,过点A 作AC 垂直于y 轴,垂足为C ,则△BOC 的面积为 . 图 2二、选择题(每小题3分,共30分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、如果反比例函数的图象经过点P (-2,-1),那么这个反比例函数的表达式为( )A 、x y 21=B 、x y 21-=C 、xy 2= D 、x y 2-= 2、已知y 与x 成反比例,当x=3时,y=4,那么当y=3时,x 的值等于( )A 、4B 、-4C 、3D 、-33、若点A (-1,y 1),B(2,y 2),C (3,y 3)都在反比例函数xy 5=的图象上,则下列关系式正确的是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是( )A 、m <0B 、m >0C 、m <5D 、m >55、已知反比例函数的图象经过点(1,2),则它的图象也一定经过( )A 、(-1,-2)B 、(-1,2)C 、(1,-2)D 、(-2,1)6、若一次函数b kx y +=与反比例函数xk y =的图象都经过点(-2,1),则b 的值是( )A 、3B 、-3C 、5D 、-5 7、若直线y=k 1x(k 1≠0)和双曲线xk y 2=(k 2≠0)在同一坐标系内的图象无交点,则k 1、k 2的关系是( )A 、k 1与k 2异号B 、k 1与k 2同号C 、k 1与k 2互为倒数D 、k 1与k 2的值相等 8、已知点A 是反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内,则这个反比例函数的表达式为( )A 、x y 12=B 、x y 12-=C 、x y 121=D 、xy 121-= 9、如果点P 为反比例函数xy 6=的图像上的一点,PQ 垂直于x 轴,垂足为Q ,那么△POQ 的面积为( )A 、12B 、6C 、3D 、1.5 10、已知反比例函数xky =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过( )A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限三、解答题(本题6个小题,共40分)1、(6分)已知矩形的面积为6,求它的长y 与宽x 之间的函数关系式,并在直角坐标系中作出这个函数的图象.2、(6分)一定质量的氧气,它的密度ρ(kg/m 3)是它的体积v (m 3)的反比例函数,当v =10m 3时,ρ=1.43kg/m 3. (1)求ρ与v 的函数关系式;(2)求当v =2m 3时,氧气的密度ρ.3、(7分)某蓄水池的排水管每时排水8m 3,6小时(h )可将满水池全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q (m 3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q之间的关系式(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?4、(7分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(2)猜测并确定y与x之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?5、(7分)如图3,点A是双曲线xky =与直线y=-x-(k+1)在第二象限内的交点, AB⊥x 轴于B ,且S△ABO =23. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC 的面积.图 36、(7分)已知反比例函数xky 2=和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+1,b+k )两点.(1)求反比例函数的解析式;(2)如图4,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.图 4九年级 数学 第六章 频率与概率一、选择题(每小题4分,共40分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、一个事件发生的概率不可能是( ) A 、0 B 、1 C 、21 D 、23 2、下列说法正确的是( )A 、投掷一枚图钉,钉尖朝上、朝下的概率一样B 、统一发票有“中奖”和“不中奖”两种情形,所以中奖的概率是21C 、投掷一枚均匀的硬币,正面朝上的概率是21 D 、投掷一枚均匀的骰子,每一种点数出现的概率都是61,所以每投6次,一定会出现一次“1点”.3、关于频率和概率的关系,下列说法正确的是( ) A 、频率等于概率B 、当实验次数很大时,频率稳定在概率附近C 、当实验次数很大时,概率稳定在频率附近D 、实验得到的频率与概率不可能相等4、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是( )A 、38%B 、60%C 、约63%D 、无法确定 5、随机掷一枚均匀的硬币两次,两次都是正面的概率是( ) A 、21 B 、31 C 、41D 、无法确定 6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球.由此估计口袋中大约有多少个白球( )A 、10个B 、20个C 、30个D 、无法确定7、某商场举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是( ) A 、100001 B 、1000050 C 、10000100 D 、100001518、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是( ) A 、21 B 、31 C 、41 D 、61 9、某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A 、至少有两名学生生日相同B 、不可能有两名学生生日相同C 、可能有两名学生生日相同,但可能性不大D 、可能有两名学生生日相同,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001到10000,则某人偶然遇到一辆自行车,其牌照编号大于9000的概率是( )A 、101 B 、109 C 、1001 D 、1009 二、填空题(每小题3分,共24分)1、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 .2、某电视台综艺节目组接到热线电话3000个.现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率是 .3、袋中装有一个红球和一个黄球,它们除了颜色外都相同.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是 .4、小明和小华在玩纸牌游戏,有两组牌,每组各有2张,分别都是1、2,每人每次从每组牌中抽出一张,两张牌的和为3的概率为 .5、一个口袋中有15个黑球和若干个白球,从口袋中一次摸出10个球,求出黑球数与10的比值,不断重复上述过程,总共摸了10次,黑球数与10的比值的平均数为1/5,因此可估计口袋中大约有 个白球.6、转盘甲被分成完全相等的三个扇形,颜色分别是红、蓝、绿,转盘乙被分成完全相等的两个扇形,颜色分别是红、蓝,任意转动这两个转盘,一个转盘转出蓝色,一个转盘转出红色(即配成紫色)的概率是 .7、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.小亮忘了密码的前面两个数字,他随意按下前两个数字,则他一次就能打开锁的概率是 .8、某市民政部门今年元宵节期间举行了“即开式社会福利彩票”销售活动,设置彩票3000是 .三、解答题(本题有5个小题,共36分)1、(7分)有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?。
最新北师大版九年级数学上册单元测试题及答案全册
最新北师大版九年级数学上册单元测试题及答案全册含期末试题时间:60分钟分值:100分一、选择题(每小题4分,共32分)1.(2016·益阳)下列判断错误的是(D)A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形解析:两条对角线垂直且平分的四边形是菱形,故D错.2.如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为(C) A.20B.18C.16D.15解析:在菱形ABCD中,∵∠BAD=120°,∴∠B=60°,∴AB=AC=4,∴菱形ABCD 的周长=4AB=4×4=16.故选C.第2题图第3题图3.如图,在Rt△ABC中,∠C=90°,AB=5 cm,D为AB的中点,则CD等于(B) A.2 cm B.2.5 cmC.3 cm D.4 cm解析:∵直角三角形斜边上的中线等于斜边的一半,∴CD=12AB=2.5 cm.故选B.4.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(C)A.1 B.2C.4-2 2 D.32-4解析:由∠BAE=22.5°,∠ADB=45°,易知△ADE是等腰三角形,△BEF是等腰直角三角形,所以DE=AD=4,BE=42-4,设EF=x,则2x2=(42-4)2,解得x=4-22,故选C.5.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于(B) A.90°B.100°C.130°D.180°6.(2016·无锡模拟)正方形具有而菱形不一定具有的性质是(B)A.对角线互相垂直B.对角线相等C.对角线相互平分D.对角相等解析:菱形和正方形的对角线都互相垂直,A错误;菱形的对角线不一定相等,正方形的对角线一定相等,B正确;菱形和正方形的对线都互相平分,对角都相等,C、D错误,故选B.7.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于(B)A.144°B.126°C.108°D.72°解析:由题意知∠D′=∠D=90°,因为矩形的对边平行,所以AD∥BC,所以∠DMN =∠MNF,又因为∠DMN+∠NMD′=180°-∠AMD′=144°,所以∠MNF+∠NMD′=144°,根据四边形的内角和等于360°,所以∠NFD′=360°-144°-90°=126°.8.如图所示,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,DE∶AD=3∶5,则下列结论①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=210 cm.正确的有(C)A.1个B.2个C.3个D.4个解析:因为菱形的周长为20 cm,所以边长是5 cm,由DE∶AD=3∶5,得DE=3 cm,利用勾股定理可求AE=4 cm,所以BE=1 cm,易求菱形的面积为15 cm2.在Rt△DBE中,利用勾股定理可得BD=10 cm,所以①②③正确.二、填空题(每小题4分,共24分)9.如图,矩形ABCD的周长为20 cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于点E,F,连接CE,则△CDE的周长为10 cm.解析:∵EF⊥AC,在矩形ABCD中,AO=OC,∴AE=EC.∴C△CDE=CD+ED+EC=CD+ED+AE=CD+AD=12×20=10(cm).第9题图第10题图10.如图,矩形ABCD的两条对角线AC,BD相交于点O,已知∠AOB=60°,AC+AB =15,则对角线AC=__10__.解析:在矩形ABCD中,OB=OC,所以,∠OBC=∠OCB,∵∠AOB=60°,∴在△OBC中,∠OCB=12×∠AOB=12×60°=30°,∴AB=12AC,∵AC+AB=15,∴AC+12AC=15,解得AC=10.11.如图,在四边形ABCD中,∠A=∠B,AB∥DC,AD=BC=CD,点E为AB上一点,连接CE.请添加一个你认为合适的条件:∠CEB=∠B(或AE=AD等,答案不唯一),使四边形AECD 为菱形.解析:以∠CEB =∠B 为例进行说明:∵∠CEB =∠B ,∴BC =CE =AD ;∵∠A =∠B ,∴∠A =∠CEB =∠B ;∴CE 平行且等于AD ,即四边形AECD 是平行四边形;又∵AD =DC ,∴平行四边形AECD 是菱形.12.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D ,B 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为7.解析:∵四边形ABCD 是正方形,∴AB =AD ,∠ABC =∠BAD =90°,∵∠BAF +∠ABF =∠BAF +∠DAE ,∴∠ABF =∠DAE ,在△AFB 和△DEA 中,∠ABF =∠DAE ,∠AFB =∠AED ,AB =AD ,∴△AFB ≌△DEA ,∴AF =DE =4,BF =AE =3,∴EF =AF +AE =4+3=7.13.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是15°或75°. 解析:如图1,当点E 在正方形ABCD 外时,在△ADE 中,AD =DE ,∠ADE =90°+60°=150°,所以∠AED =12(180°-150°)=15°;如图2,当点E 在正方形ABCD 内时,在△ADE 中,AD =DE ,∠ADE =90°-60°=30°,所以∠AED =12(180°-30°)=75°.图1图214.如图,E ,F 分别是正方形ABCD 的边CD ,AD 上的点,且CE =DF ,AE ,BF 相交于点O ,下列结论:①AE =BF ;②AE ⊥BF ;③AO =OE ; ④S △AOB =S 四边形DEOF .其中正确结论的序号是①②④.解析:∵四边形ABCD为正方形,∴AD=DC. 又∵CE=DF,∴AF=DE.又∵AB=AD,∠BAF=∠ADE=90°,∴△ABF≌△DAE.∴AE=BF,即①正确.∵△ABF≌△DAE,∴∠ABF=∠DAE.又∵∠ABF+∠AFB=90°,∴∠DAE+∠AFB=90°,∴∠AOF=90°.∴AE⊥BF,即②正确.∵△ABF≌△DAE,∴S△ABF =S△DAE.∴S△ABF -S△AOF=S△DAE-S△AOF,即S△AOB =S四边形DEOF,即④正确.三、解答题(共44分)15.(10分) 如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O 点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.16.(10分)如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)当点C运动到什么位置时,四边形CEDF是正方形?并给出证明.解:(1)∵CD⊥AB,AD=BD,∴AC=BC.∴CD平分∠ACB.∵DE⊥AC,DF⊥BC,∴DE=DF.又∵CD=CD,∴Rt△ECD≌Rt△FCD,∴CE=CF;(2)当CD=12AB时,四边形CEDF为正方形.理由:∵CD=12AB,AD=BD,∴∠ACB=90°.又∵DE⊥AC,DF⊥BC,∴四边形CEDF为矩形.又∵由(1)得DE=DF,∴四边形CEDF为正方形.17.(12分)(2015·巴中)如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD,BC分别交于点M和点N.(1)请你判断OM与ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.解:(1)OM =ON .理由如下: ∵四边形ABCD 是菱形, ∴OA =OC ,AD ∥BC . ∴∠MAO =∠NCO . 在△AOM 和△CON 中,⎩⎨⎧∠MOA =∠NOC ,AO =CO ,∠MAO =∠NCO ,∴△AOM ≌△CON (ASA).∴OM =ON ;(2)∵四边形ABCD 是菱形, ∴AC ⊥BD , ∵DE ∥AC .∴DE ⊥BD , ∴∠BDE =90°.在菱形ABCD 中,BC =CD =AB =AD =6. ∵AC ∥DE ,AD ∥CE , ∴四边形ACED 是平行四边形, ∴CE =AD =6,DE =AC =8, ∴BE =6+6=12.在Rt △BDE 中,BD =BE 2-DE 2=122-82=45, ∴△BDE 的周长为8+12+45=20+4 5.18.(12分) 如图所示,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,AN 是△ABC 外角∠CAM 的平分线, CE ⊥AN 于点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?给出证明.证明:(1)在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC.∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE.∴∠DAE=∠DAC+∠CAE=12×180°=90°.又AD⊥BC,CE⊥AN,∴四边形ADCE为矩形;(2)当△ABC为直角三角形时,四边形ADCE是正方形.理由:∵△ABC为直角三角形,且AB=AC,∴△ABC为等腰直角三角形.又∵AD⊥BC,∠B=∠BCA=45°,∴AD为BC边上的中线,∴AD=BD=DC,即AD=DC,∴矩形ADCE是正方形.时间:60分钟分值:100分一、选择题(每小题4分,共32分)1.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为(C)A.2B.3C.4 D.8解析:由题意,把2代入原方程得:22-6×2+c=0,解得c=8,把c=8代入方程得x2-6x+8=0,解得x1=2,x2=4.2.方程(x-2)2=9的解是(A)A.x1=5,x2=-1 B.x1=-5,x2=1C.x1=11,x2=-7 D.x1=-11,x2=7解析:开方,得x-2=±3,解得x1=5,x2=-1.故选A.3.关于x的一元二次方程(m+1)xm2+1+4x+2=0的解为(C)A.x1=1,x2=-1 B.x1=x2=1C.x1=x2=-1 D.无解解析:根据题意得m2+1=2,∴m=±1,又m=-1不符合题意,∴m=1,把m=1代入原方程得2x2+4x+2=0,解得x1=x2=-1.故选C.4.若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,则b+c的值是(A)A.-10B.10C.-6D.-1解析:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,∴根据根与系数的关系,可得-2+4=-b,-2×4=c,解得b=-2,c=-8,∴b+c=-10.故选A.5.用配方法解方程x2-2x-5=0时,原方程应变形为(B)A.(x+1)2=6 B.(x-1)2=6C.(x+2)2=9 D.(x-2)2=9解析:∵x2-2x-5=0,∴x2-2x=5,则x2-2x+1=5+1,∴(x-1)2=6.故选B.6.如图,在长70 m,宽40 m的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的18,则路宽x应满足的方程是(B)A.(40-x)(70-x)=350 B.(40-2x)(70-3x)=2 450 C.(40-2x)(70-3x)=350 D.(40-x)(70-x)=2 450 解析:设路宽为x,则(40-2x)(70-3x)=(1-18)×70×40,即(40-2x )(70-3x )=2 450.7.(2015·成都)关于x 的一元二次方程kx 2+2x +1=0有两个不相等的实数根,则k 的取值范围是(D)A .k >-1B .k ≥-1C .k ≠0D .k <1且k ≠08.目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是(B)A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=389解析:由于每半年发放的资助金额的平均增长率为x ,则去年下半年发放的资助金额为389(1+x )元,今年上半年发放的资助金额为389(1+x )2元,根据相等关系“今年上半年发放了438元”,可建立一元二次方程389(1+x )2=438,故选B.二、填空题(每小题4分,共24分) 9.方程x 2-3x +1=0的解是x =3±52.解析:这里a =1,b =-3,c =1,∵b 2-4ac =5>0, ∴x =3±52.10.(2016·遵义)已知方程x 2-2x -1=0的两根分别是x 1,x 2 ,则1x 1+1x 2=-2.解析:∵x 1,x 2是x 2-2x -1=0的两根,∴x 1+x 2=2,x 1x 2=-1, ∴1x 1+1x 2=x 1+x 2x 1x 2=2-1=-2.11.关于x 的方程mx 2+mx +1=0有两个相等的实数根,那么m =__4__.解析:∵关于x 的方程mx 2+mx +1=0有两个相等的实数根,∴Δ=b 2-4ac =0,即m 2-4×m ×1=0,解这个方程得m =0或m =4, 又∵二次项的系数不能为0,∴m =4.12.在实数范围内定义运算“☆”,其规则为:a ☆b =a 2-b 2,则方程(4☆3)☆x =13的解为x =±6.解析:其规则为:a ☆b =a 2-b 2,所以方程(4☆3)☆x =13整理可得:(42-32)☆x =13,7☆x =13,49-x 2=13,x 2=36,∴x =±6.13.方程x 2-9x +18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为__15__.解析:解方程x 2-9x +18=0得x 1=3,x 2=6,当等腰三角形的三边是3,3,6时,因为3+3=6,不符合三角形的三边关系定理,所以此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,所以周长是3+6+6=15.14.若两个不等实数m ,n 满足条件:m 2-2m -1=0,n 2-2n -1=0,则m 2+n 2的值是__6__.解析:∵m 2-2m -1=0,n 2-2n -1=0,m ≠n ,∴m ,n 是x 2-2x -1=0的两根,由根与系数关系得⎩⎨⎧m +n =2,mn =-1,m 2+n 2=(m +n )2-2mn =22-2×(-1)=6. 三、解答题(共44分)15.(10分) 解方程:(1)x 2+3=3(x +1); (2)x 2-6x +3=0.解:(1)∵x 2+3=3(x +1),∴x 2+3=3x +3, ∴x 2-3x =0,∴x (x -3)=0,∴x 1=0,x 2=3; (2)解法一:(公式法)这里a =1,b =-6, c =3,∵b 2-4ac =(-6)2-4×1×3=24>0, ∴x =-b ±b 2-4ac 2a =6±262=3±6, ∴x 1=3-6,x 2=3+ 6.解法二:(配方法)原方程化为x 2-6x =-3 两边都加上(-3)2,得x 2-6x +(-3)2=-3-(-3)2, 即(x -3)2=6, 开平方得x -3=±6, 即x -3=-6或x -3=6, 所以x 1=3-6,x 2=3+ 6.16.(10分)已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a ,b ,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2-2b+(a-c)=0,∴a+c-2b+a-c=0,∴a-b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形时,(a+c)x2+2bx+(a-c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=-1.17.(12分)(2015·长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=-2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6(万件)<13.31(万件),∴该公司现有的21名快递投递业务员不能完成6月份的快递投递任务.∴需要增加业务员(13.31-12.6)÷0.6=11160≈2(人).答:该公司现有的21名快递投递业务员不能完成6月份的快递投递任务,至少需要增加2名业务员.18.(12分) 学校为了美化校园环境,在一块长40 m,宽20 m的长方形空地上计划新建一块长9 m,宽7 m的长方形花圃.(1)请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建长方形花圃的面积多1 m2,给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃面积能否增加2 m2?如果能,请求出长方形花圃的长和宽,如果不能,请说明理由.解:(1)学校计划新建成的花圃的面积是7×9=63(m2),比它多1 m2的长方形花圃的面积是64 m2,因此可设计以下方案:方案一:长和宽都是8 m;方案二:长为10 m,宽是6.4 m;方案三:长为20 m,宽为3.2 m.(此题方案很多,但要注意空地的大小实际)(2)假设在计划新建的长方形花圃周长不变的情况下长方形花圃的面积能增加2 m2,计划新建的长方形花圃的周长为2×(9+7)=32(m),设面积增加后的长方形花圃的长为x m,则宽是(32-2x)÷2=(16-x) m,依题意得x(16-x)=65.整理得x2-16x+65=0.∵Δ=(-16)2-4×65=-4<0.∴方程没有实数根.即在计划新建的长方形花圃周长不变的情况下长方形花圃的面积不能增加2 m2.时间:60分钟分值:100分一、选择题(每小题5分,共40分)1.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(C)A.12B.14C.16D.112解析:画树状图:∵共有12种等可能的结果,两次都摸到白球的情况有2种,∴两次都摸到白球的概率是2 12=16.故选C.2.浩南从m个苹果和6个雪梨中任选1个,若选中雪梨的概率是12,则m的值是(C) A.18B.12C.6D.3解析:由题意得6m+6=12,解得m=6.3.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于(C)A.316B.38C.58D.1316解析:列表如下:10种,则P=1016=58.故选C.4.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是(B)A.13B.23C.14D.15解析:列表得:所有等可能的情况有12种,其中和为奇数的情况有8种,故所求概率为812=23,故选B.5.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么四名运动员在比赛过程中的接棒顺序有(D)A.3种B.4种C.6种D.12种解析:画树状图得:故接棒顺序有12种.6.(2015·荆门)在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记为第一次传球),则经过三次传球后,球仍回到甲手中的概率是(B)A.12B.14C.38D.58解析:根据下面的树状图可得:三次传球后共有8种等可能的结果,回到甲手中的结果有2种,所以球仍回到甲手中的概率为28,即14.7.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是(C)A.14B.12C.34D.56解析:列表表示所有可能的结果如下,可知共有16种等可能的结果,其中12种结果为偶数,所以P(积为偶数)=1216=34,即乙获胜的概率为3 4.8.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是(D)A.34B.13C.23D.12解析:分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形的所有情况有:△A1OB2,△A1OB1,△A2OB1,△A2OB2共4种情况,其中是等腰三角形的是△A1OB1和△A2OB2两种情况,∴所作三角形是等腰三角形的概率=24=12.二、填空题(每小题5分,共30分)9. (2016·台州)不透明袋子中有1个红球,2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是4 9.解析:画树状图如下:由树状图得共有9种可能结果,其中两次摸出的球都是黄球的结果数为4,所以两次摸出的球都是黄球的概率为4 9.10.某电视台举办的青年街舞大赛中,得奖选手由观众发短信投票产生,并对发短信者进行抽奖活动.一万条短信为一个开奖组,设一等奖1名,二等奖3名,三等奖6名.李晓宇同学发了一条短信,那么他获奖的概率是11 000.解析:李晓宇同学获奖的概率是1+3+610 000=11 000.11.“校园手机”现象受到社会普遍关注.某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了如图扇形统计图.从调查的学生中随机抽取一名,恰好是持“无所谓”态度的学生的概率是0.09.解析:持“无所谓”态度的学生在总体所占的百分比为1-56%-35%=9%.故随机抽取一名,恰好是持“无所谓”态度的学生的概率是9%=0.09.12.某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A,B,C三个队和县区学校的D,E,F,G,H五个队.如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都是县区学校队的概率是3 8.解析:画树状图得:∵共有16种等可能的结果,首场比赛出场的两个队都是县区学校队的有6种情况,∴首场比赛出场的两个队都是县区学校队的概率是616=38.13.六一期间,小洁的妈妈经营的玩具店购进了一箱除颜色外都相同的散装塑料球共1 000个,小洁将纸箱里的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是200个.解析:设红球的个数为x,∵红球的频率在0.2附近波动,∴摸出红球的概率为0.2,即x1 000=0.2,解得x=200.所以可以估计红球的个数为200个.14.对于四边形ABCD,现从以下四个关系式①AB=CD,②AD=BC,③AB∥CD,④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是1 3.解析:列表:共有12种情况,4种情况,所以能够得出这个四边形ABCD是平行四边形的概率是1 3.三、解答题(共30分)15.(14分)有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3 cm,7 cm,9 cm;乙盒子中装有4张卡片,卡片上分别写着2 cm,4 cm,6 cm,8 cm;盒子外有一张写着5 cm的卡片,所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.解:(1)画树状图如下图:三条线段所有的情况共有12种.其中有4,3,5;4,7,5;6,3,5;6,7,5;6,9,5;8,7,5;8,9,5共7种情况能组成三角形,其概率为712.(2)因为只有3,4,5能组成直角三角形,所以能组成直角三角形的概率为112.16.(16分)(2015·陕西)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛,九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)解:(1)所求概率P=36=12.(2)游戏公平.理由如下:∴P (小亮胜)=936=14,P (小丽胜)=936=14. ∴该游戏是公平的.时间:60分钟 分值:100分一、选择题(每小题4分,共32分) 1.已知a 2=b 3=c4≠0,则a +b c 的值为(B) A.45 B .54 C .2D .12解析:设a 2=b 3=c 4=k ,则a =2k ,b =3k ,c =4k ,代入可得值为54.2.线段AB =10,点C 是AB 上靠近点B 的黄金分割点,则AC 的值为(B) A .0.618 B .6.18 C .3.82D .6.18或3.82解析:因为点C 是AB 上靠近点B 的黄金分割点,所以AC =10×5-12=55-5≈6.18.故选 B.3.(2016·武威)如果两个相似三角形的面积比是1∶4,那么它们的周长比是(D) A .1∶16 B .1∶4 C .1∶6D .1∶24.如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.4 m ,梯上点D 距墙1.2 m ,BD 长0.5 m ,且△ADE ∽△ABC .则梯子的长为(A)A.3.5 m B.3 mC.4 m D.4.2 m解析:∵△ADE∽△ABC,∴AD∶AB=DE∶BC,即(AB-0.5)∶AB=1.2∶1.4,所以AB=3.5(m).故梯子AB的长为3.5 m.故选A.5.在△ABC与△A′B′C′中,有下列条件:①ABA′B′=BCB′C′;②BCB′C′=ACA′C′;③∠A=∠A′;④∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有(C)A.1组B.2组C.3组D.4组解析:共有3组,其组合分别是①和②:三边成比例的两个三角形相似;②和④:两边成比例且夹角相等的两个三角形相似;③和④:两角分别相等的两个三角形相似.故选C.6.如图,AB∥CD,AE∥FD,AE,FD分别交BC于点G,H,则图中共有相似三角形(C)A.4对B.5对C.6对D.7对解析:题图中具备“有两角分别相等的三角形”条件的共有4个,它们两两相似,共有6对.第6题图第7题图7.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD,AC于点E,F,则BFEF的值是(C)A.2-1 B.2+2 C.2+1 D. 2解析:如图,作FG ⊥AB 于点G ,∵∠DAB =90°,∴AE ∥FG , ∴BF EF =BG GA ,∵AC ⊥BC ,∴∠ACB =90°, 又∵BE 是∠ABC 的平分线, ∴FG =FC ,在Rt △BGF 和Rt △BCF 中, ⎩⎨⎧BF =BF ,CF =GF ,∴Rt △BGF ≌Rt △BCF (HL), ∴CB =GB ,∵AC =BC , ∴∠CBA =45°,∴AB =2BC , ∴BF EF =BG GA =BC 2BC -BC =12-1=2+1.故选C. 8. (2015·武汉)如图,在直角坐标系中,有两点A (6,3),B (6,0).以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD .则点C 的坐标为(A)A .(2,1)B .(2,0)C .(3,3)D .(3,1)解析:∵A (6,3),B (6,0), ∴AB ⊥x 轴,OB =6,AB =3. ∵△OCD ∽△OAB ,且相似比为13,∴CD ⊥x 轴,CD AB =OD OB =13,即CD 3=OD 6=13,解得CD =1,OD =2, ∴点C 的坐标为(2,1).二、填空题(每小题4分,共24分)9.若线段a ,b ,c ,d 成比例,其中a =3 cm ,b =6 cm ,c =2 cm ,则d =__4__ cm. 解析:根据比例线段的定义可知:3∶6=2∶d ,即d =4(cm).10.如图,锐角三角形ABC 的边AB ,AC 上的高线EC ,BF 相交于点D ,请写出图中的两对相似三角形:△BDE ∽△CDF ,△ABF ∽△ACE .(用相似符号连接)解析:由于∠CEA =∠BF A =90°,∠EDB =∠FDC ,所以 △BDE ∽△CDF ;由于∠CEA =∠BF A =90°,∠A =∠A ,所以△ABF ∽△ACE .第10题图第11题图11.如图,△ABC 中,DE ∥BC ,DE 分别交边AB ,AC 于D ,E 两点,若AD ∶AB =1∶3,则△ADE 与△ABC 的面积比为1∶9.解析:由DE ∥BC 可得∠ADE =∠ABC ,∠AED =∠ACB ,所以△ADE ∽△ABC ,根据相似三角形的面积比等于相似比的平方,所以△ADE 与△ABC 的面积比为(AD ∶AB )2=(1∶3)2=1∶9.12.(2015·沈阳)如图,△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49,则AB ∶DE =2∶3.解析:∵△ABC 与△DEF 位似,位似中心为点O , ∴△ABC ∽△DEF .∴△ABC 的面积∶△DEF 的面积=(AB DE )2=49. ∴AB ∶DE =2∶3.第12题图第13题图13.如图,在长为8 cm,宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是8_cm2.解析:依题意,原矩形的面积等于8×4=32(cm2),留下的矩形长刚好是原矩形的宽,即两个矩形的相似比等于4∶8,此时,要求阴影部分的面积,利用相似多边形的面积比等于相似比的平方求得.设图中阴影部分的面积为x cm2,因为两个矩形相似,所以x32=⎝⎛⎭⎪⎫482,解得x=8.14.如图,AB∥GH∥DC,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH 的长为1.2.解析:方法1:∵AB∥GH,∴△CGH∽△CAB.∴GHAB=CHCB,即GH2=CHCB.①∵GH∥CD,∴△BGH∽△BDC.∴GHCD=BHBC,即GH3=BHBC.②∴①+②,得GH2+GH3=1,解得GH=1.2;方法2:∵AB∥CD,∴△ABG∽△CDG.∴BGDG=ABCD=23.∴BGBG+GD=22+3=25.∵GH∥CD,∴△BGH∽△BDC.∴GHCD=BGBD=25,即GH3=25.∴GH=1.2.三、解答题(共44分)15.(12分)(2015·陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长,当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)解:由题意,得∠CAD=∠MND=90°,∠CDA=∠MDN,∴△CAD∽△MND.∴CAMN=ADND,即1.6MN=1×0.8(5+1)×0.8,∴MN=9.6(米).又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EBF∽△MNF.∴EBMN=BFNF,即EB9.6=2×0.8(2+9)×0.8,∴EB≈1.75(米).答:小军的身高约为1.75米.16.(16分) (2016·武威)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B.射线AG分别交线段DE,BC于点F,G,且ADAC=DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC=12,求AFFG的值(1)证明:∵∠AED =∠B ,∠DAE =∠CAB , ∴△ADE ∽△ACB . ∴∠ADE =∠C . 又∵AD AC =DF CG , ∴△ADF ∽△ACG . (2)解:∵△ADF ∽△ACG . ∴AD AC =AF AG =12. ∴AFFG=1. 17.(16分)已知在△ABC 中,∠ABC =90°,AB =3,BC =4.点Q 是线段AC 上的一个动点,过点Q 作AC 的垂线交线段AB (如图1)或线段AB 的延长线(如图2)于点P .(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ; (2)当△PQB 为等腰三角形时,求AP 的长.图1 图2 证明:(1)∵PQ ⊥AC , ∴∠AQP =90°=∠ABC .∵∠A =∠A ,∴△AQP ∽△ABC ;(2)当点P 在线段AB 上时,显然∠APQ <90°, 所以∠BPQ >90°,∴当△PQB 为等腰三角形时必为PQ =PB ,设PQ =PB =x ,则P A =3-x . 在Rt △ABC 中,AC =AB 2+BC 2=5,由(1)知△AQP ∽△ABC , ∴AP AC =PQ BC , ∴AP ·BC =AC ·PQ , ∴(3-x )·4=x ·5,解得x =43,∴AP =3-x =53;当点P 在线段AB 延长线上时,显然∠ABQ ≤90°,所以∠QBP ≥90°,∴当△PQB为等腰三角形时必为BQ=BP,∴∠P=∠PQB,∵∠P+∠A=∠PQB+∠AQB=90°,∴∠A=∠AQB,∴AB=BQ=BP,∴AP=2AB=6.综上所述,当△PQB为等腰三角形时,AP的长为53或6.时间:60分钟分值:100分一、选择题(每小题4分,共32分)1.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是(D)A.正方形B.长方形C.线段D.梯形解析:在同一时刻,平行物体的投影仍旧平行.所以正方形纸板在投影面上形成的投影不可能是梯形.故选D.2.(2015·攀枝花)如图所示的几何体为圆台,其俯视图正确的是(C)3.一个几何体的三视图如图,那么这个几何体是(D)解析:由俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体.4.如图所示的是三通管的立体图,则这个几何体的俯视图是(A)解析:∵从上面看三通管时,只看到一个长方形和一个圆,所以这个几何体的俯视图是A,故选A.5.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下(D)A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长解析:在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.6.(2016·聊城)若干个大小相同的小正方体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是(C)主视图俯视图解析:由主视图可以判断出小正方体组合体最高2层,而选项C中的左视图反映的是正方体组合体有3层,所以它不可能是这个几何体的左视图,故选C.7.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2 m,桌面离地面1 m.若灯泡离地面3 m,则地面上阴影部分的面积为(B)A.0.36π m2B.0.81π m2C.2π m2D.3.24π m2解析:设阴影部分的直径是x m,则1.2∶x=2∶3,解得x=1.8,所以地面上阴影部分的面积为:S=πr2=0.81π(m2).8.(2015·菏泽)如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体(D)A.主视图改变,左视图改变。
最新北师大版九年级数学上册期末试卷及完整答案
最新北师大版九年级数学上册期末试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是( )A .12-B .12C .2D .2-2.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元5.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠36.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤8.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.81的算术平方根是____________.2.因式分解2-+=_______.x x2423.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是__________.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿△为直角三角形时,BE的长为________. AE折叠,使点B落在点B'处,当CEB'5.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,已知Rt△ABC中,∠B=90°,∠A=60°,3+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.3.如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.某商场准备购进A ,B 两种书包,每个A 种书包比B 种书包的进价少20元,用700元购进A 种书包的个数是用450元购进B 种书包个数的2倍,A 种书包每个标价是90元,B 种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、B5、B6、B7、A8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、22(1)x -.3、k <44、3或32.5、406 三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x =-2、(1)证明见解析;(2)-2.3、(1)抛物线的解析式21722y x x =-++;(2)PD PA +;(3)点Q 的坐标:1(0,2Q 、2(0,2Q .4、(1)略;(2)略.5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
最新北师大版九年级数学上册期末试卷及答案【新版】
最新北师大版九年级数学上册期末试卷及答案【新版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是()A.2 B.12C.12-D.-22.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.47B.37C.34D.133.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是() A.平均数B.中位数C.众数D.方差5.实数a在数轴上的对应点的位置如图所示.若实数b满足a b a-<<,则b的值可以是()A.2 B.-1 C.-2 D.-36.用配方法解方程2x2x10--=时,配方后所得的方程为()A.2x10+=()B.2x10-=()C.2x12+=()D.2x12-=()7.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A .15°B .30°C .45°D .60°8.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,ABC 中,ACB 90∠=,A 30∠=,AB 16=,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC(或边CB)于点Q ,设AP x =,APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.分解因式:a2﹣4b2=_______.3.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD =3,则S△AOC=__________.6.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数kyx=(k是常数,k≠0)的图象经过点M,交AC于点N,则MN的长度是__________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知a 、b 、c 满足2225(32)0a b c -+-+-=(1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D, (1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.如图,已知反比例函数y =kx的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ). (1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、B6、D7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)12、(a+2b)(a﹣2b)3、增大.4、10.5、5.6、5三、解答题(本大题共6小题,共72分)x=1、42、(1)a=,b=5,c=;(2)能;.3、(1)略(2-14、(1)-1;(2)7.5;(3)x>1或﹣4<x<0.5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P 126==.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。
最新北师大版九年级数学上册期末考试卷(及答案)
最新北师大版九年级数学上册期末考试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D 10二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a ⋅=______________.2.因式分解:a 3-ab 2=____________.3.若n 边形的内角和是它的外角和的2倍,则n =__________.4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:3x x +﹣1x =12.先化简,再求值:2211(1)m m m m +--÷,其中3.3.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC ≌△DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.4.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.5.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、C5、A6、B7、B8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、a52、a(a+b)(a﹣b)3、64、5、5.6、2.5×10-6三、解答题(本大题共6小题,共72分)1、分式方程的解为x=﹣34.23、(1)略;(2)37°4、(1)略;(2)1;(3)略.5、(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
最新北师大版九年级数学上册期末试卷及参考答案
最新北师大版九年级数学上册期末试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( ) A .3B .13C .13-D .3-2.多项式2mx m -与多项式221x x -+的公因式是( ) A .1x -B .1x +C .21x -D .()21x -3.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两不相等实数根 B .有两相等实数根 C .无实数根D .不能确定4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .±1C .1D .1-6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x +=C .()136x x -=D .()136x x +=7.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .8.如图,在ABC 中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C 重合),连结AM 交DE 于点N ,则( )A .AD ANAN AEB .BD MNMN CEC .DN NEBM MCD .DN NEMC BM9.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()13022020304x x --=⨯⨯C .13022020304x x +⨯=⨯⨯D .()()33022020304x x --=⨯⨯10.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连结OE.若ABC 60∠=,BAC 80∠=,则1∠的度数为( )A .50B .40C .30D .20二、填空题(本大题共6小题,每小题3分,共18分)116 __________.2.因式分解:a 3﹣2a 2b+ab 2=_______.3.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=___________°(点A ,B ,P 是网格线交点).5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF的最小值是__________.6.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.3.如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.4.如图,在平面直角坐标系中,直线l1:y=﹣12x与反比例函数y=kx的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣12x>kx的解集;(3)将直线l1:y=﹣12x沿y向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、C5、D6、A7、A8、C9、D 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、a (a ﹣b )2.3、-154、45.5、36、16三、解答题(本大题共6小题,共72分)1、x=12、(1)k >34;(23、(1)略;(2)略.4、(1)y=8x ;(2)y=﹣12x+152;5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.。
最新北师大版九年级数学上册期末考试(及参考答案)
最新北师大版九年级数学上册期末考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是()A.13-B.13C.3-D.32.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)4.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或35.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.36.若221m m+=,则2483m m+-的值是()A.4 B.3 C.2 D.17.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A .1B .2C .3D .49.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°10.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D 10二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.分解因式:a 3-a =___________3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将DAE 绕点D 逆时针旋转90°,得到DCM .若AE=1,则FM 的长为__________.6.如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数(0)k y x x=>的图象恰好经过点C ,则k 的值为__________.三、解答题(本大题共6小题,共72分)1.解方程:13122x x x -=---2.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值3.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、A6、D7、C8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、(1)(1)a a a -+3、x ≥-3且x ≠24、8.5、2.56、16三、解答题(本大题共6小题,共72分)1、3x =.2、(1)详见解析(2)k 4=或k 5=3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112),P 2(352,2),P 3,2),P 412). 4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h 的学生人数约为720.6、(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.。
最新北师大版九年级数学上册期末试卷及参考答案
最新北师大版九年级数学上册期末试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.下列各数:-2,0,13,0.020020002…,π( )A .4B .3C .2D .15.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 ( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A. B.C. D.8.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A.2B.2 C.22D.39.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°二、填空题(本大题共6小题,每小题3分,共18分)1.方程3122x x x =++的解是___________. 2.分解因式:2242a a ++=___________.3.若式子x 1x +有意义,则x 的取值范围是_______. 4.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为_________cm .5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.(1)计算:1862(2)解方程:2533322x x x x --+=--2.先化简,再求值:2231422a a aa a a-÷--+-,其中a与2,3构成ABC∆的三边,且a为整数.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、C6、D7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、322、22(1)a +3、x 1≥-且x 0≠4、6.5、x=26、 1三、解答题(本大题共6小题,共72分)1、(1)2)4x =.2、13、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x ﹣2;(2)6;(3)x <﹣4或0<x <2.4、(1)略;(2)78°.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)超市B型画笔单价为5元;(2)4.5,120410,20x xyx x⎧=⎨+>⎩,其中x是正整数;(3)小刚能购买65支B型画笔.。
最新北师大版九年级数学上册期末考试【及参考答案】
最新北师大版九年级数学上册期末考试【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .302.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD •AC D . AD AB AB BC= 9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____. 2.因式分解:3269a a a -+=_________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图,矩形ABCD 中,4BC =,2CD =,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为__________.(结果保留)π6.如图,在平面直角坐标系中,已知点A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a 的最大值是__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、B5、B6、B7、A8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2、2(3)a a -3、24、8.5、π.6、6三、解答题(本大题共6小题,共72分)1、x=12、(1)证明见解析(2)1或23、(1)反比例函数的表达式为8y x-=;(2)ABO ∆的面积为15.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)50;(2)16;(3)56(4)见解析6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E 图2ABGP北师大版九年级数学第一学期学生学习评价检测试卷第一章 证明(二)班级 姓名 学号 评价等级一、选择题1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带( )去配. (A ) ① (B ) ② (C ) ③ (D ) ①和②2.如图2,P 在AB 上,AE =AG ,BE =BG ,则图中全等三角形的对数有( ) (A )1 (B )2 (C )3 (D )43.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) (A )形状相同 (B ) 周长相等 (C ) 面积相等 (D ) 全等4.等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于( ) (A )30° (B )60° (C )30°或150° (D )60°或120° 5.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,最长边AB 的长是( ) (A )5cm(B )6cm (C )5cm(D )8cm6.如图3,P 是∠BAC 的平分线AP 上一点,PE ⊥AB 于E ,PF ⊥AC 于F , 下列结论中不正确的是( )(A )PE PF = (B )AE AF = (C )△APE ≌△APF (D )AP PE PF =+7.一个三角形的两边长为4和5,要使三角形为直角三角形,则第三边的长为( ) (A )3 (B )41 (C )3或31 (D )3或418.如图4,已知MB =ND ,∠MBA =∠NDC ,下列哪个条件不能判定△ABM ≌△CDN ( ) (A )∠M =∠N (B )AB =CD (C )AM =CN (D )AM ∥CN 9.下列命题中真命题是( )(A )两边分别对应相等且有一角为30º的两个等腰三角形全等 (B )两边和其中一边的对角分别对应相等的两个三角形全等A PCBEF 图3图4(C )两个锐角分别对应相等的两个直角三角形全等 (D )两角和一边分别对应相等的两个三角形全等10.有一块边长为24米的正方形绿地,如图5所示,在绿地旁边B 处 有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树 立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的“▇” 填上适当的数字是( ). (A )23米(B )24米 (C )25米(D )26米二、填空题11.等腰三角形的一个底角是50°,则其顶角为 .12.在△ABC 中,已知∠A =80°,则∠B 、∠C 的角平分线相交所成的钝角为 . 13.边长为2cm 的等边三角形的面积为 cm214.如图6, △ABC 中, ∠C =90°,AB 的垂直平分线DE 交BC 于D ,若∠CAD =20°,则 ∠B = .15.如图7,有一腰长为5cm ,底边长为4cm 的等腰三角形纸片,沿着底边上的中线将纸片剪开, 得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有 ____ 个不同的四边形.三、解答题16.如图8,△ABC ,AB =AC ,点M、N分别在BC 所在直线上,且AM =AN 。
求证:BM =CNCAEBD图6图7BC M NA图817.已知,如图9,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接D E F ,,,得到DEF △为等边三角形. 求证:(1)AEF CDE △≌△;(2)ABC △为等边三角形.18.如图10,在△AFD 和△CEB 中,点A 、E 、F 、C 在同一条直线上,有下面四个结断:①AD =CB ;②AE =CF ;③∠B =∠D ;④AD ∥BC .请用其中三个作为条件,余下的一个作为结论编一道数学题,并证明结论成立.19.求证:有两条高相等的三角形是等腰三角形(先画出图,再写出已知、求证和证明)图9E C A BE F D 图1020.如图11,090AOB ∠=,OM 平分AOB ∠,将直角三角板直角的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.北师大版九年级数学第一学期学生学习评价检测试卷第二章 一元二次方程班级 姓名 学号 评价等级一、选择题1.下列方程中是一元二次方程的是( )(A )012=+x (B )12=+x y (C )012=+x (D )112=+x x2.已知关于x 的一元二次方程x 2-kx -4=0的一个根为2,则另一根是( ) (A )4 (B )1 (C )2 (D )-2 3.将方程x 2+4x +1=0配方后,原方程变形为( )(A )(x +2)2=3 (B )(x +4)2=3 (C )(x +2)2 = -3 (D )(x +2)2=-5 4.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) (A )x 2+130x -1400=0 (B )x 2+65x -350=0 (C )x 2-130x -1400=0 (D )x 2-65x -350=0图115.若一元二次方程02=++c bx ax 的有一个根为一1,则( )(A )0=++c b a (B )0=+-c b a (C )1=++c b a (D )1=+-c b a 6.己知等腰直角三角形斜边上的高为方程0432=--x x 的根,那么这个直角三角形斜边的边长为( )(A )2 (B )8 (C )2或8 (D )无法确定 7.某城市2007年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2009年底增加到363公顷。
设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( ) (A )363)1(300=+x (B )363)1(3002=+x (C )363)21(300=+x (D )300)1(3632=-x8.从一块正方形的木板上锯掉一块2cm 宽的长方形木条,剩下部分的面积是48c m 2,那么原正方形木板的面积是( ).(A )8 cm 2 (B )8cm 2和6 cm 2 (C )64cm 2 (D )36cm 29.在关于x 的方程02=++n mx x 的两个根中,有一个根为0,另一个根不为0,那么m ,n 应满足( )(A )0,0==n m (B )0,0≠≠n m (C )0,0≠=n m (D )0,0=≠n m 10.设(x + y )(x + 2 + y ) —15 = 0,则x + y 的值为( )(A )— 5 或 3 (B )—3 或 5 (C ) 3 (D ) 5二、填空题11.如果关于x 的方程05)2(2=+-+x m mx 是一元二次方程,那么m _____. 12.如果x =1是方程032=+-x ax 的根,那么a = .13.若方程01272=+-x x 的两根恰好是某直角三角形的两直角边,则这个直角三角形的斜边长是 .14.两个数的积为12,和为7,设其中一个数为x ,则依题意可列方程 15.关于x 的二次三项式c bx ax ++2,满足下表中的对应关系:则一元二次方程02=++c bx ax 的两个整数根分别是 .三、解答题16.解方程(1)9)1(42=-x (2)01582=++x x(3) 0110252=++x x (4)0132=+-x x18.某食品商店用3000元购进一批盒装饼干,以每盒比进价多5元的价格出售,在销售过程中,有5盒饼干因过期而无法出售,其余的全部卖完赚了450元.问这家食品商店每盒饼干的进价是多少元?19.某超市销售一批羽绒服,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,超市决定适当降。
.如果每件羽绒服降价1元,平均每天可多售出2件。
如果超市平均每天要盈利1200元,每件羽绒服应降价多少元?北师大版九年级数学第一学期学生学习评价检测试卷第三章证明(三)班级姓名学号评价等级一、选择题1.对角线互相垂直平分的四边形是()(A)平行四边形、菱形(B)矩形、菱形(C)矩形、正方形(D)菱形、正方形2.顺次连结任意四边形各边中点所得到的四边形一定是()(A)平行四边形(B)矩形(C)菱形(D)正方形3.下列四边形中,两条对角线一定不相等的是()(A)正方形(B)矩形(C)等腰梯形(D)直角梯形4.正方形具有而菱形不一定具有的性质是()(A)对角线相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)四条边相等5.菱形的两条对角线长分别为6cm、8cm,则它的面积为()2cm.(A)6 (B)12 (C)24 (D)486.如图1,在□ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F的值为()(A)110°(B)30°(C)50°(D)70°7.如图2,在平行四边形ABCD中,∠ABD=90°,若AB=3,BC=5,则平行四边形ABCD的面积为()(A)6 (B)10 (C)12 (D)158.如图3,把菱形ABCD沿着对角线AC的方向移动到菱形A′B′C′D′的位置,它们的重叠部分(图中阴影部分)的面积是菱形ABCD的面积的12.若AC菱形移动的距离AA′是()(A)12(B)2(C)1 (D1图99.如图4,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠B =60º,BC =3,△ABE 的周长为6,则等腰梯形的周长是( )(A )8 (B )10 (C )12 (D )1610.如图5,在矩形ABCD 中,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( ) (A )线段EF 的长逐渐增大(B)线段EF 的长逐渐减少 (C )线段EF 的长不变 (D )线段EF 的长不能确定二、填空题11.如图6, //AB DC , 要使四边形ABCD 是平行四边形,还需补充 一个条件是 .12.已知菱形的两条对角线长分别为8cm 、10cm ,则它的边长为 cm .13.在直线l 上依次摆放着七个正方形(如图7所示)。
已知斜放置的三个正方形的面积分别是1. 2. 3,正放置的四个正方形的面积依次是S 1. S 2. S 3. S 4,则S 1+S 2+S 3+S 4=_______.14.如图8,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是15.如图9,等边△ABC 中,D 、E 、F 分别是AB 、BC 、CA 边上的中点,那么图中有_________个等边三角形,有_________个菱形.三、解答题16.如图10,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:∠BAE =∠DCF 。