线性代数 第二章 小结
线性代数二,三章小结复习 演示文稿
A2 ⋱
A1− 1 =
A2− 1 ⋱
A1 A2 ⋱ An = A1 A2 ⋯ An
A = A A4 1 A 0 1 A= ⇒ −1 A−1 0 1 A3 A4 A = −1 −1 −1 1 −A4 A3 A A4
n
λ 2n
⋱
; n λn ;λ λ ⋯ λ 1 2 1 λn
1
λ2
⋱
6.对称(反对称)矩阵定义及性质; 对称(反对称)矩阵定义及性质; 对称 7.分块对角及分块三角矩阵: .分块对角及分块三角矩阵:
A1 A2 A1 B 1 = B1 .
5.) ≠ r(A) ⇒无 解 1)非 次 齐 : 穷 解 ɶ) ⇒有 r(A)<n ⇒无 多 r 解 r(A)= (A 一 n r(A)= ⇒唯 解 穷 解 r(A)<n ⇒无 多 2 齐 : ) 次 n 一 解 r(A)= ⇒唯 零 cor1 m<n ⇒无 多 ; : ) 穷 解 2)An; A= ⇒无 多 ; 当 0 穷 解
3.等价的定义及充要条件; .等价的定义及充要条件; 等价类, 等价类,等价的性质 4.秩的定义及性质: .秩的定义及性质: 秩:线性方程组保留方程组 的个数; 的个数; 矩阵中最高阶非零子式的阶数; 矩阵中最高阶非零子式的阶数; 将矩阵化阶梯型后的阶梯 秩的应用: 秩的应用: 判断线性方程组有无解, 判断线性方程组有无解, 及有多少解
A = A A 1 4 A A A= 1 2 ⇒ −1 A−1 −A−1A A−1 1 2 4 0 A A = 1 4 −1 A 0 4
线性代数第二章
定义2: 两个矩阵的行数相等、列数也相等时, 就称它们是同型矩阵,如果 A (aij ) 与 B (bij )是同型矩阵,并且它们的对应 元素相等,即
aij bij (i 1,2,, m; j 1,2,, n)
则称矩阵 A 与矩阵 B相等,记作 A B。 称元素都是零的矩阵为零矩阵,记作 O 。
A
a21
am1
a22
am2
a2n
amn
,以
aij
为
第 i 行 j 列元素的矩阵可简记作 (aij ) 或
(aij )mn ,m n矩阵 A 也记为 Amn 。
元素为实数的矩阵称为实矩阵,元素为复数的矩阵 成为复矩阵。我们主要是讨论实矩阵。
注意:矩阵与行列式的区别。
(2) A A
第三节 逆矩阵
一、定义
定义1: 对于 n 阶矩阵 A ,如果存在一个 n 阶
矩阵 B ,使得
AB BA E
则称矩阵 A 是可逆的,并把矩阵 B 称为
A的逆矩阵,记作 A1 。
注意: (1) 如果矩阵 A 是可逆的,那么 A 的
逆矩阵一定是唯一的。
(2) 如果 A 是 B 的逆矩阵,则 B是 A的逆矩阵。
第二节 矩阵的运算
一、矩阵的加、减法 1、定义
定义1: 设有两个 m n矩阵 A (aij ) 和 B (bij ) ,
规定 A 和 B 的和为
a11 b11 a12 b12 a1n b1n
a21 b21 a22 b22 a2n b2n
例1:
已知
A
0 1
1 1
自考复习专题:线性代数第2章
第二部分矩阵本章概述矩阵是线性代数的重要内容,也是研究线性方程组和其它各章的主要工具。
主要讨论矩阵的各种运算的概念和性质。
在自学考试中,所占比例是各章之最。
按考试大纲的规定,第二章占26分左右。
而由于第三,四,五,六各章的讨论中都必须以矩阵作为主要工具,故加上试题中必须应用矩阵运算解决的题目的比例就要占到50分以上了。
以改版后的三次考试为例,看下表按考试大纲所占分数07.4 07.7 07.10 直接考矩阵这一章的26分左右31分34分38分加上其它章中必须用矩阵运算的所占分数51分53分67分由此矩阵这一章的重要性可见一般。
2.1 线性方程组和矩阵的定义2.1.1 线性方程组n元线性方程组的一般形式为特别若,称这样的方程组为齐次方程组。
称数表为该线性方程组的系数矩阵;称数表为该线性方程组的增广矩阵。
事实上,给定了线性方程组,就惟一地确定了它的增广矩阵;反过来,只要给定一个m×(n+1)阶矩阵,就能惟一地确定一个以它为增广矩阵的n个未知数,m个方程的线性方程组。
例1 写出下面线性方程组的系数矩阵和增广矩阵【答疑编号12020101】例2 写出以下面矩阵为增广矩阵的线性方程组【答疑编号12020102】2.1.2 矩阵的概念一、矩阵的定义定义2.1.1 我们称由mn个数排成的m行n列的数表为m×n阶矩阵,也可记为为矩阵A第i行,第j列的元素。
注意:矩阵和行列式的区别。
二、几类特殊的矩阵1.所有元素都为零的矩阵称为零矩阵,记为O。
例如都是零矩阵。
2.若A的行数m=1,则称为行矩阵,也称为n维行向量。
若A的列数n=1,则称为列矩阵,也称为m维列向量。
3.若矩阵A的行数=列数=n,则称矩阵A为n阶方阵,或简称A为n阶阵。
如n个未知数,n个方程的线性方程组的系数矩阵。
4.称n阶方阵为n阶对角阵。
特别若上述对角阵中,,称矩阵为数量矩阵,如果其中λ=1,上述数量阵为,称为n阶单位阵。
5.上(下)三角阵称形如的矩阵为上(下)三角矩阵。
线性代数各章要点整理
第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
《线性代数》第二章矩阵及其运算精选习题及解答
An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠
,
故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠
,
根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E
.
解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算
同济第五版线性代数 课后题解析第二章
第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0; 解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫⎝⎛-=θθθθc o s s in s in c o s A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=21010366121⎪⎪⎭⎫⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-. 证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330. 20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1). 22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C , 所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D , 所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--853*******B . 于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A . (2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.。
线性代数B(部分)第二部分小结
T T T T T T T
6、填空、选择题 例12 设矩阵 a1+b1 a1+b2 L a1+bn a +b a +b L a +b 2 2 2 n 2 1 A= , M M O M an +b1 an +b2 L an +bn 则|A|= 解 . 由于
1 1 -1 −1 4). A = ; 5).(λ A) = A . A λ
-1
例10 若|A|≠0, 试证 ①|A*|=|A|n-1; ②(A*)-1=(A-1)* ③(A*)T=(AT)*; ④ (A*)*=|A|n-2A; ⑤ (kA)*=kn-1A*. 解 ①|A*|= ||A|A-1|= |A|n|A-1|= |A|n-1. ②(A*)-1= (|A|A-1 )-1= |A|-1(A-1)-1=|A-1| (A-1)-1= (A-1)*. ③(A*)T= (|A|A-1)T= |A|(A-1)T= |AT|(AT)-1= (AT)*. ④ (A*)*= |A*|(A*)-1= |A|n-1( |A|A-1)-1= |A|n-2A. ⑤ (kA)*= |kA|(kA)-1=kn|A|k-1A-1= kn-1 |A|A-1.
3、解矩阵方程 例7 设矩阵A、B满足A*BA=2BA-8E,其中 1 A= −2 , 1 求B. 解 由|A|≠0,所以A可逆,由A*BA=2BA-8E,左乘A , 右乘A-1得-2 B-2 AB=- =-8E,即(A+E)B=4E,故 - =- 1 −1 2 2 2 −1 = 4 −1 = −4 . −1 B=4( A+E) = 4 2 1 2 2
线性代数知识点总结第二章doc资料
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==L L 排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a LL M M M L称为m 行n 列矩阵。
简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭L L L L L L L,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。
说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。
扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。
记作:A n 。
行(列)矩阵:只有一行(列)的矩阵。
也称行(列)向量。
同型矩阵:两矩阵的行数相等,列数也相等。
相等矩阵:AB 同型,且对应元素相等。
记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。
单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。
第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++ ⎪+=⎪⎪+++⎝⎭L L L L L LL说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。
(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭L L L L L L L设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。
线性代数重点知识总结
说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。
2.知识点会了不一定做的对题,所以还要有相应的练习题。
3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。
第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。
线性代数第二章答案解析
第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A 2=0, 则A =0;解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k kk k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A-=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得(A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案) 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021010*********0021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则⎪⎭⎫ ⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。
线性代数 第二章总结
第二章 矩阵及其运算矩阵是线性代数主要研究对象,是求解线性方程组的一个有力工具,它在自然科学、工程技术及经济问题等各个领域中都有广泛的应用。
本章的教学基本要求:理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,了解求逆矩阵的伴随矩阵法;熟练掌握利用逆矩阵求解矩阵方程的方法;了解单位矩阵、对角矩阵、对称矩阵及其性质;了解分块矩阵及其运算。
本章的重点及难点:矩阵的各种运算及其运算规律,尤其矩阵的乘法;逆矩阵存在的条件,利用伴随矩阵法会求逆矩阵,主要是二阶和特殊的三阶矩阵的逆矩阵;用逆矩阵求解矩阵方程。
§ 1 矩阵的概念一、内容提要1.矩阵定义 由n m ⨯个数排成的m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a a a a a a a a 212222111211称为一个m ×n 矩阵,其中ij a 表示位于数表中第i 行第j 列的数(m i ,,2,1 =;n j ,2,1=)。
ij a 又称为矩阵的元素。
规定,1×1矩阵 a a =)(。
矩阵也可表示为)(ij a 或n m ij a ⨯)( 。
如果不需要表示出矩阵的元素,通常用大写英文字母表示矩阵,如:A ,B ,...,或n m A ⨯,n m B ⨯,...。
元素都是实数的矩阵称为实矩阵;有复数元素的矩阵称为复矩阵。
若两个矩阵的行数、列数分别相等,则称它们是同型矩阵。
矩阵A =()n m ij a ⨯,B =()n m ij b ⨯是同型矩阵。
若它们的对应元素相等,即ij ij b a = ()n j m i 2,1;2,1== 那么称矩阵A 与矩阵B 相等,记作:A = B 。
2.特殊矩阵零矩阵 所有元素都为零的矩阵称为零矩阵。
如一个n m ⨯的零矩阵为nm ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛000000000记为0n m ⨯。
在不会引起混淆的情形下,也可记为0。
线性代数知识点总结
大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变;转置行列式T D D = ②行列式中某两行列互换,行列式变号;推论:若行列式中某两行列对应元素相等,则行列式等于零; ③常数k 乘以行列式的某一行列,等于k 乘以此行列式; 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零; ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零; 克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,;;化为三角形行列式 ⑤上下三角形行列式:行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵 矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TT T B A B A +=+)( TTkA kA =)( TTTA B AB =)(反序定理 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的;矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵; 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A A 可逆5、1*-=n AA 6、()()A AA A1*11*==--A 可逆 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组;希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P 向量组的秩:极大无关组定义P188定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出;秩:极大无关组中所含的向量个数;定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r;现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r T n T T<⇒)....(21ααα线性无关充要n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关;定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关;极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的; 齐次线性方程组I 解的结构:解为...,21ααI 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数; 非齐次线性方程组II 解的结构:解为...,21μμ II 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解; 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解;第四章 向量空间向量的内积 实向量定义:α,β=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ; ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量; |A|=n λλλ...**21注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值 则1-A --------λ1 则m A --------mλ 则kA --------λk若2A =A 则-----------λ=0或1 若2A =I 则-----------λ=-1或1 若k A =O 则----------λ=0 迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281 相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BPP =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212- --C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P 6、若A~B,则它们有相同的特征值; 特征值相同的矩阵不一定相似 7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩 例子:B AP P =-1则1100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1 A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ 注:三角形矩阵、数量矩阵I λ的特征值为主对角线;约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵;定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1;第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型; 标准型:形如 的二次型,称为标准型; 规范型:形如 的二次型,称为规范型; 线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B;合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
线性代数第二章 矩阵代数 S2矩阵的代数运算
(1) h( A) f ( A) g( A), s( A) f ( A)g( A).
(2) f ( A)g( A) g( A) f ( A).
24
4、n阶矩阵乘积的行列式
方阵对应着行列式,于是有如下定理:
定理:若 A,B是n阶方阵,则 |AB| = |A| |B|.
(此定理可以推广到有限个同阶矩阵的情况)
或 Al .
la11
lA
Al
la21
la12
la22
la1n
la2n
.
lam1 lam1 lamn
特别的,lE 称为数量矩阵.
6
2、线性运算的运算性质
矩阵的加(减)法和数乘统称为矩阵的线性 运算,这些运算都归结为数(元)的加法与乘法.
运算性质
设A, B为同型矩阵,l, m为数,则 ➢ l(A + B) = l A + l B ➢ (l + m)A = l A+ m A ➢ l (m A) = (lm) A
0 bn2
bnn
29
a11 a12 a21 a22
A 0 an1 an2 E B 1 0
0 1
a1n c11 c12
c1n
a2n
c21
Cc22
c2n
ann cn1 cn2
cnn
0 00
0
0 00
0
00
1 0 0
0
AC
E 0
再利用拉普拉斯定 理按后n行展开
E (1)[(n1)(n2) 2n](12 n) C
(2) 由AB=O不能得出A、B至少有一个零矩阵.
如前面的A, B矩阵
A 1 1 ≠O, B 1 1 ≠ O,
线性代数知识点总结
线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。
线性代数各章知识点荟萃
线性代数各章知识点荟萃线性代数各章知识点荟萃线性代数之所以难复习,是因为线性代数这门学科不仅知识点多、概念多、定理多、符号多、运算规律多,而且各章节的内容也是相互纵横交错的,知识点之间的联系非常紧密。
因此,在复习线性代数的时候应该将重点放在对基本概念的理解上,做到掌握基本定理的条件、结论及其应用、各种运算规律及基本题型的计算方法等。
多注重知识点之间的衔接与转换,注重理解,多思考多总结,使知识成网状,努力提高自己综合分析问题的能力。
为了让大家在复习中能将线性代数提高到一个新的层次,在此分析一下历年考研重点及其复习思路,以使大家做到有的放矢决胜千里!考研线性代数总共涉及到六章的内容,接下来我们针对各章节进行考点的总结,并给出复习重难点。
第一章行列式本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。
数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的'计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研真题中可以找到有关抽象型行列式的计算问题。
因此,在复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算。
另外还要会综合后面的知识会计算简单的抽象行列式的值。
第二章矩阵本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要掌握的。
除了这些就是矩阵的基本运算,可以将矩阵的运算分为两个层次:1、矩阵的符号运算2、具体矩阵的数值运算矩阵的符号运算就是利用相关矩阵的性质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。
第三章向量本章的重点有:1、向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。
线性代数知识点总结第二章
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==L L 排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a LL M M M L称为m 行n 列矩阵。
简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭L L L L L L L,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。
说明 元素就是实数的矩阵称为实矩阵,元素就是复数的矩阵称为复矩阵。
扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。
记作:A n 。
行(列)矩阵:只有一行(列)的矩阵。
也称行(列)向量。
同型矩阵:两矩阵的行数相等,列数也相等。
相等矩阵:AB 同型,且对应元素相等。
记作:A =B 零矩阵:元素都就是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都就是零。
单位阵:主对角线上元素都就是1,其它元素都就是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式就是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅就是一个数表,它的行数与列数可以不同。
第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的与记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭L L L L L LL说明 只有当两个矩阵就是同型矩阵时,才能进行加法运算。
(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭L L L L L L L设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。
线性代数各章知识点概述
线性代数辅导东南大学数学系2006年11月目录第一部分行列式第二部分矩阵的运算第三部分矩阵的初等变换和矩阵的秩第四部分向量组的线性相关性和向量组的秩第五部分线性方程组第六部分相似矩阵和矩阵的特征值、特征向量第七部分实对称矩阵和二次型第八部分空间解析几何第一部分 行列式一.定义1.定义 设()ijn nA a ⨯=,则121212(,)12,(1)n n ni i i i i ni i i i A a a a τ=-∑是!n 项代数和;不同行,不同列;正、负号。
【例1】32241342a a a a 是不是4阶行列式中展开式中的项,正、负号是什么?不是【例2】512312123122x x x x x x中34,x x 的系数。
345,10x x -2.注:(1). 对角线法则一般地不再成立。
举例。
(2). 记住上、下三角阵的行列式。
二.性质1. 性质(1) 行列式的基本性质; (2) 按行(列)展开; (3) 乘法定理。
2. 需记住的结果:(1) Vandermonde 行列式;(2) 分块上、下三角阵的行列式。
3. 例:【例3】已知()3312A ααα⨯=,()33122323232B αααααα⨯=+-+,2A =,求B 。
1232312321327277714B A αααααααααααα=+-+=+-=-==【例4】已知120200561,350350461A B ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
求31A B -。
4. 注:(1) 矩阵的加法、数乘之后的行列式; (2) 容易出现的错误:1103272537212--r r ;*0*07/2,7253722112r r r r --; (3) 分块矩阵的行列式.三.计算1. 典型方法:(1) 化成低阶行列式; (2) 化成三角形行列式。
2. 注:很少直接用定义计算;应先化简,后计算。
3. 例【例5】13141516;【例6】2013312102312314-; 【例7】12341111111111111111λλλλ++++,1234,,,λλλλ均不为零;【例8】111222a a nnn a+++;【例9】123112211132345122341n n n n n n n n n n------;【例10】n a b b c a b D c ca=;第二部分 矩阵的运算一.矩阵的乘法1. 运算规律【例1】1221230101⎛⎫-⎛⎫⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,()312012⎛⎫ ⎪ ⎪ ⎪⎝⎭,()312102⎛⎫⎪ ⎪ ⎪⎝⎭, ()312102n⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
线性代数(第二章)
α s = (a s1 , a s 2 , L, a sn )
要求 x1 , x 2 ,L , x s 使得
β = x1α 1 + x 2α 2 + L x sα s
β 能否由α 1 , α 2 , L, α s 线性表示 有三种情况: (1) 不能 (2) 唯一 (3) 无穷
定义2.6 设 α 1 , α 2 ,L, α s 是一组维数相同的向量. 定义 如果有不全为零的数 k1 , k 2 , L, k s使得 则称向量组α 1 , α 2 ,L, α s线性相关. 线性相关
设 A 是一个s × n 矩阵:
a11 a 21 A= M a s1 a12 a 22 M as2 L a12 L a2n M Lቤተ መጻሕፍቲ ባይዱa sn
α 1 = (a11 , a12 ,L, a1n ) α 2 = (a 21 , a 22 ,L, a 2 n )
例2.6 设
α 1 = (1,1,4,2), α 2 = (1,−1,−2,4), α 3 = (0,2,6,−2) α 4 = (3,1,−3,−4) β = (2,1,8,9)
将 β 表成 α 1 , α 2 , α 3 , α 4 的线性组合.
设
β = (b1 , b2 ,L, bn ) α 1 = (a11 , a12 ,L, a1n ) α 2 = (a 21 , a 22 ,L, a 2 n )
例2.8 设
α 1 = (1,2,−3,1), α 2 = (2,3,−1,2), α 3 = (3,1,−2,−2)
问α 1 , α 2 , α 3是否线性相关.
例2.9 设
α 1 = (1,1,4,2), α 2 = (1,−1,−2,4), α 3 = (0,2,6,−2) α 4 = (3,1,−3,−4)
线性代数总结归纳
第一章行列式1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。
答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。
2.《线性代数》的前导课程。
答:初等代数。
3.《线性代数》的后继课程。
答:高等代数,线性规划,运筹学,经济学等。
4.如何学习《线性代数》?答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。
在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。
在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。
第一章行列式5.什么是一个n阶全排列?【知识点】:n阶全排列。
答:由n个数1,2,… ,n 组成的一个有序数组。
6.什么是标准排列?【知识点】:n阶全排列。
答:按数字由小到大的自然顺序排列的n阶排列123…n。
7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。
答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。
例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。
数4与5,数1与2不构成逆序。
8.什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。
答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。
例如:上问中的排列45312的逆序数为8。
9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。
答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。
例如:排列45312为偶排列。
10.对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响。
答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。
线性代数各章要点整理
第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
6
五、矩阵的秩 矩阵的秩
1、 求法 1) 定义法(秩等于矩阵不为0子式的最高阶数); 2) 初等行变换法。 i) 化三角形法; ii) 降阶法。 基本求法
2、 常用结论 设 A是一个 m× n 矩阵,若 Er Q 1) R( A) = r ⇔有可逆矩阵 P , 使 PAQ = 0 2) R( A) = R(PA)= R( AQ) = R(PAQ) 3) 4)
... ... ... a
a a ... 1
1 a = [(n-1)a+1] a ... a
1 1 a ... a
1 a 1 ... a
... ... ... ... ...
1 a a ... 1
17
1 1 1 ... 1 a 1 a ... a
= [(n-1)a+1] a
a 1 ... a
... ... ... ... ... a a a ... 1 1 1 1 ...
16
例10 A是n阶方阵,
1 a A= a ... a
a a ... a 1 a ... a a 1 ... a , ... ... ... ... a a a 1
R(A)=n-1,求a.
a a 1 | A|= ... ... a a
解: 1
a a ... a
线性代数
主讲教师: 主讲教师 彭红军
1
第二章
一、矩阵的运算 条 件 加法 数量乘法 乘法 转置 同型 无
小结
运 算 律 A + B = (aij (bij ) p×n
A = (aij )m×p
C = AB = (cij )m×n
cij = ∑aikbkj
k =1 p
kA= kA= (kaij )m×n
AT = (a ji )n×m
2
分块矩阵以上运算类似。
运算律 (交换律、结合律、分配律) 、 、 的运算律 1) A+ B kA AB 同数的运算律。 一般 AB ≠ BA , AB = AC ⇒ B = C 2)
AB = 0 ⇒ A = 0 , B = 0
15
= 4( A , A , A + A , B2, A ) = 4(2 +1) =12 1 2 3 1 3
1 2 3 4 例9 1) A = 3 4 5 6, 求 R( A), 5 6 7 8 1 2 3 4 0 − 2 − 4 − 6 初等变换 A →
| 4A, 3 + A, 2 + A3 | = 4 | A,A3 + A,A2 + A3 | 1 1 1 A 1 A
c2 − c1 4 A, 3, 2 + A3 c3 − c2 4 A, 3, 2 A A 1 A 1 A
= −4 A, 2, 3 = −16 A 1 A
11
例4
x 1 x D4 = n
AB = A B
AT = A
A =A
−1 −1
3
T −1
二、方阵的行列式
1、行列式的性质 行列式的计算: i) 化三角形法; 2、 3、 行列式的展开定理 ii) 降阶法。
4
三、逆矩阵 1、 可逆的充分必要条件: a) A ≠ 0 b) A可化成一系列初等方阵的乘积。
A = P LP P m 2 1
转 置 取 逆
T
取行列式
A+ B ( A + B)T = AT + BT
kA
AB
二次 运算
(kA) ( AB)T
T
= kA
=A
(A )
= BT AT
(kA) (k ≠ 0) −1 ( AB) = B−1A−1
−1
1 −1 =k A
kA = k n A
T T
(A ) = A (A ) = (A )
−1 −1 −1 T
(2)
4 A * −1 3 1 =4 A = AA = 2 A - 1 * - 1 1 - 1 5 −1 (3A) = A- 2A - A = A 3 3 4
5 1 = 3 A
3
(3)
A+ B =2 1, A+ 2 , A = 4 A , A+ 2, A A 2 B23 B 3 1 2
n+1
n
2 N n−2
=L L
= n(n −1)L3(−1) (−1) L(−1)
n+1 n
3+1
1 2
(n−1)n 2
= n(n −1)L3(−1) (−1) L(−1) (−1)2 = (−1)
n−1 n−2 2
n!
13
都是n阶方阵 例6 设A、B都是 阶方阵,则 都是 阶方阵,
e
(a) (b) (c) (d ) (e)
−1
2 2、可逆判别与求法
1 * A 1) A可逆 ⇔ A ≠ 0 , A = A
2) AB = E( BA = E ), 则 A可逆,且 B = A−1
行 3) 初等行变换法 ( AME) → EM A−1
(
)
5
四、矩阵的数值特征 方阵的行列式 已知结论 1、上(下)三角行列式值等于对角线元素乘积; 2、 2 奇数阶反对称行列式为0;
2)
0 1 1 B = 1 0 1,求 R(BA) 1 1 0 ∴ R(BA) = R( A) = 2 Q B可 , 逆
0
0
0 0 R(A)=2
3)
A R A = R( A) + R(B) = 2 + 3 = 5 B 求 R B
2 2 2
且 例7 设A为 m× n 矩阵,且B是 n× m 矩阵, m>n. 试证明AB 不可逆. 证明: 证明: R(AB) ≤R(A)≤ n < m |AB|=0, AB不可逆.
14
例8
设 , B都 3 方 , 果 A = 2, B =1 A 是阶 阵 如 ,
−1 * * -1
(1)计算 (4A) , A (2)计算A- ) ( 3A (3) 设A = ( A , A2, A3 ), B = ( A , B2, A3 ), 计算A+ B 1 1 n−1 1 −1 1 3 1 * ∗ −1 −1 A =A 解 (1) A = AA (4A) = A = ( )
计算下列行列式
2 O O x n −1 x
按第一列展开
x 2 = x(−1)
1+1
1
x O 2 n+1 x + (−1) n O n −1 O O x x n −1
12
= x + (−1) n!
n
n+1
1
1 = n(−1)
n+1
例5
Dn = n
2 N
2 N n −1
1
按第一列展开
= n(n −1)(−1) (−1)
9
c1 +.... + cn
n(n +1) 2 3 2 0 −1 0 0 2 −2 ..... ..... ..... 0 0 0 0 0 0 ..... n − 2 n −1 n
..... 0 0 0 ..... 0 0 0 ..... ..... ..... ..... ..... n − 2 − (n − 2) 0 ..... 0 n −1 − (n −1)
n(n +1) n−1 n−1 1 (−1) (n −1)!= (−1) = (n +1)! 2 2
10
例3
A是三阶方阵,A = A,A2,A3),A |= 4, (1 |
计算| 3A − A3,A3 + A,A2 + A3 | 1 1
A A 解: | 3A − A3, 1 + A3, 3 + A2 | c1 + c2 1
1
1− a
= [(n-1)a+1]
1− a O
1− a n−1 1 =[(n-1)a+1](1-a) ,秩(A)=n-1,a ≠ 1 故a = , . 1− n
18
作业
P141 自测题
19
解:
由 AB = A + 2B得, ,
例2
计算n阶行列式
1 1 0
2 −1 2
3 0
..... n − 2 ..... 0 0
n −1 0 0
n 0 0 ...... 0 − (n −1)
− 2 .....
..... ..... ...... ..... ..... ...... 0 0 0 ...... n − 2 − (n − 2) 0 0 0 ...... 0 (n −1)
AB= BA时 成 , 立 ( A+ B) = A + 2AB + B 当 n A− B = − B − A A− B = (−1) B − A n A =1⇒ − A = −1 − A = −1A = (−1) A A2 − B2 = ( A+ B)( A− B) 当 = BA时 成 AB , 立 AB = BA Q AB = A ⋅ B = B ⋅ A = BA
0 0
R( AB) ≤ m [R( A), R(B)] in
R( Am×n Bn×l ) ≥ R( A) + R(B) − n
7
例1
设矩阵A,B 满足
AB = A + 2B,求B,其中 ,
4 2 3 1 1 0 A= = −1 2 3
2 2 3 (A - 2E)B = A,B = (A - 2E) -1 A A - 2E = 1 −1 0 −1 2 1 3 − 8 − 6 1 − 4 − 3 1 − 5 − 3, B = 2 − 9 − 6 -1 (A - 2E) = − 2 12 9 −1 6 4 8