上海初中数学2015二模17、18、23、24、25题汇编
2015年上海市徐汇区中考数学二模试卷及答案解析(pdf版)

•(x2+
),其中 x=
.
20.(10 分)(2015•徐汇区二模)解方程组:
.
21.(10 分)(2015•徐汇区二模)某公司市场营销部的某营销员的个人月收入与该营销员每 月的销售量成一次函数关系,其图象如图所示,根据图象提供的信息,解答下列问题: (1)求营销员的个人月收入 y 元与该营销员每月的销售量 x 万件(x≥0)之间的函数关系式; (2)若两个月内该营销员的销售量从 2 万件猛增到 5 万件,月收入两个月大幅度增长,且 连续两个月的月收入的增长率是相同的,试求这个增长率(保留到百分位).
.
11.(4 分)(2015•徐汇区二模)不等式组
的解是
.
12.(4 分)(2015•徐汇区二模)方程
的解是
.
13.(4 分)(2015•徐汇区二模)某商店运进 120 台空调准备销售,由于开展了促销活动,
每天比原计划多售出 4 台,结果提前 5 天完成销售任务,则原计划每天销售多少台?
若原计划每天销售 x 台,则可得方程
B、相交两圆的交点关于这两个圆的连心线所在直线对称,正确,故本选项错误; C、联结相切两圆圆心的直线必经过切点,正确,故本选项错误; D、内含的两个圆的圆心距大于零,错误,同心圆的圆心距等于 0,故本选项正确. 故选 D. 点评:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断 命题的真假关键是要熟悉课本中的性质定理.
A. 180,160
B. 160,180
C. 160,160
D.180,180
6.(4 分)(2015•徐汇区二模)下列命题中,假命题是( ) A. 没有公共点的两圆叫两圆相离 B. 相交两圆的交点关于这两个圆的连心线所在直线对称 C. 联结相切两圆圆心的直线必经过切点 D.内含的两个圆的圆心距大于零
2015年上海中考各区二模数学试题及答案汇总

BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)
2015年上海中考长宁区初三数学二模试卷及答案.doc

2015 年初三数学教学质量检测试卷(考试时间 100 分钟,满分 150 分)2015.4考生注意 :1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤 .一、单项选择题 :(本大题共 6 题,每题 4 分,满分 24 分)1.将抛物线 y x 2向右平移 3个单位得到的抛物线表达式是 ( )A.y x 3 2 ; B. y x 32; C.y x 23 ; D. y x 23 .2.下列各式中,与3 是同类二次根式的是 ()A.3 1 ; B.6 ;C.9 ;D. 12.3. 一组数据 : 5,7,4,9,7的中位数和众数分别是 ( )A. 4,7 ;B. 7,7 ;C. 4,4 ;D. 4,5 .4. 用换元法解方程 :yy 2 3 5y,那么原方程可化为 ( )3y2 时,如果设 xy 2y 2 3A. 2x25x 2 0 ;B. x25x 1 0 ;ADC. 2x 25x 2 0 ;D. 2x 25x 1 0 .OE5. 在下列图形中,①等边三角形,②正方形,③正五边形,④正六边形.其中既是轴对称图形又是中心对称的图形有 ()A. 1个;B. 2个;C. 3个;D. 4个.B C第6题图6. 如图,在四边形 ABCD 中,∠ ABC=9 0°,对角线 AC 、BD 交于点 O , AO=CO ,∠ AOD =∠ADO , E 是 DC 边的中点 .下列结论中,错误的是 ()1AD ; B. OE11 1 A. OEOB ; C.; OE2OC ; D. OEBC .2 22二、填空题 : (本大题共 12 题,每题 4 分,满分 48 分)17. 计算:9 2 = ▲.初三数学 共 4 页 第1页8. 计算 :m3 n 2=▲.9.方程 2x 3 1 的解是▲.10.若关于 x 的二次方程x2ax a 3 0 有两个相等的实数根,则实数 a =▲.11.从数字 1,2,3,4中,任意取两个数字组成一个两位数,这个数是素数的概率是▲.12. 2015年 1月份,某区体委组织“迎新春长跑活动”,现将报名的男选手分成 : 青年组、中年组、老年组 .各组人数所占比例如图所示,已知青年组 120人,则中年组的人数是▲.青年老年60%20%中年?13.已知b ka ,如果a 2,b 6 ,那么实数 k =▲.第 12题图A 14.已知⊙O1和⊙O2的半径分别是5和 3,若O1O2 =2,则两圆的位置关系是▲.15.已知在离地面 30米的高楼窗台 A 处测得地面花坛中心标志物 C 的俯角为60°,那么这一标志物 C 离此栋楼房的地面距离BC 为▲米.16.已知线段 AB=10 ,P 是线段 AB 的黄金分割点 (AP﹥ PB),则 AP= ▲. C B17.请阅读下列内容 :第 15 题图2我们在平面直角坐标系中画出抛物线y x 2 1和双曲线,如图yyx所示,利用两图像的交点个数和位置来确定方程x2 1 2 有一个正x 实数根,这种方法称为利用函数图像判断方程根的情况.请用图像法判断方程x 3 2 4 2 的根的情况▲ (填写根的个数及正负).x18.如图,△ ABC≌△ DEF (点 A 、 B 分别与点 D、 E 对应), AB=AC=5 ,BC=6,△ ABC 固定不动,△ DEF 运动,并满足点E在BC边从B向 C 移动(点 E 不与 B、 C 重合), DE 始终经过点A,EF 与 AC 边交于点 M,当△ AEM 是等腰三角形时, BE= ▲.O x第17题图DAF三、解答题 : (本大题共7 题,满分78 分)M 19.(本题满分 10 分)BE C 2( m 1.5) 5, 第 18 题图解不等式组5 m m ,并将解集在数轴上表示出来.32初三数学共4页第2页20.(本题满分10 分)先化简,再求代数式的值a 2 2 a:a 2 a 1,其中 a 1 1 a21.(本题满分10 分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回甲地 .设汽车从甲地出发 x( h)时,汽车与甲地的距离为 y( km), y 与 x 的关系如图所示 . 根据图像回答下列问题 :( 1)汽车在乙地卸货停留(h);( 2)求汽车返回甲城时y 与 x 的函数解析式,并写出定义域;( 3)求这辆汽车从甲地出发 4 h 时与甲地的距离.3 1.y(km)120O2 2.5 5x( h )第 21题图22.(本题满分10 分)如图, AD 是等腰△ ABC 底边上的高,且AD=4,sin B4. 若 E 是 AC 边上的点,且满5足 AE:EC=2:3,联结 DE ,求cot ADE 的值. AEB D C第22题图23.(本题满分12 分)如图,正方形 ABCD 中,点 E、F 分别在边BC、CD 上, AE=AF,AC 和 EF 交于点 O,延长 AC 至点 G,使得 AO=OG,联结 EG、 FG . A D( 1)求证 : BE =DF ;( 2)求证 :四边形 AEGF 是菱形 . FOBE CG第23题图初三数学共4页第3页24.(本题满分 12 分)如图,已知抛物线y x2 2tx t 2 2 的顶点A在第四象限,过点 A 作 AB⊥ y 轴于点 B,C 是线段 AB 上一点 (不与 A、B 重合 ),过点 C 作 CD ⊥ x 轴于点 D,并交抛物线于点P.( 1)若点 C 的横坐标为1,且是线段AB 的中点,求点P 的坐标;( 2)若直线 AP 交 y 轴负半轴于点 E,且 AC=CP,求四边形 OEPD 的面积 S 关于 t 的函数解析式,并写出定义域;( 3)在( 2)的条件下,当△ADE 的面积等于2S 时,求 t 的值 .yDOEPBC Ax第24题图25.(本题满分14 分)如图,已知矩形ABCD ,AB =12 cm,AD =10 cm ,⊙ O 与 AD、AB、BC 三边都相切,与DC 交于点 E、 F 。
2015-2018年上海初三数学一模第25题汇编-答案版

2015年初三一模25题汇编题型一:等腰三角形分类讨论 (黄浦2015年初三一模)25. (本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图12,在矩形ABCD 中,86AB BC ==,对角线AC BD 、交于点O ,点E 在AB 延长线上,联结CE ,AF CE ⊥,AF 分别交线段CE 、边BC 、对角线BD 于点F G H 、、(点F 不与点C E 、重合)。
(1)当点F 是线段CE 的中点时,求GF 的长;(2)设BE x OH y ==,,求y 关于x 的函数解析式,并写出它的定义域; (3)当BHG ∆是等腰三角形时,求BE 的长。
【答案】25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) (1)矩形ABCD 中,90ABC ∠=︒, 8,6,10AB BC AC ==∴=AF CE ⊥,且点F 是线段CE 的中点,10,2AE AC BE ∴==∴=1,tan 310,GF CF tan BE Rt CBE ECB BC CE CF Rt CBE ECB ∆∠====∴=∆=∠=中(2)90,,4,.3ABC CBE AGB CGF BAG BCE BG AB BG x BE BC ∠=∠=︒∠=∠∴∆∆∴=∴=矩形ABCD 中,//,AD BC 453,6545109(0).292xBG BH y AD DH y x y x x -∴=∴=+-∴=<<+ (3)1︒当BH BG =时,DH AD =,56y ∴+=,即4510129yx -=+,解得3x =2︒当GH BG =时,AD AH =过点A 作AM DH ⊥,垂足为H 。
Rt CBE ∆中,3cos 5ADB ∠=.532.65y+∴= (1)将451029xy x -=+代入(1) 解得74x =3︒当GH BH =时,DH AH =,∴点H 在AD 垂直平分线上,此时F 点与点C 重合,∴92x =(舍) 综上所述BE 的长是3或74.(普陀2015初三一模)25、如图12、等边AB C ∆,4A B =,点P 是射线AC 上的一个动点。
上海市2015各区初三数学二模考试第18题详细解析

1.黄浦OP r外一点,如图,点为半径的圆是以18.2??r??OPOP OPP在线段,则点上,若满足?OPP是点的反演点,如图,在称点关于圆??O?BO?4ABO?B?90BAB?2A分,圆、,Rt△的半径为中,2,如果点,??OBBAA;别是点、关于圆的反演点,那么的长是2.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC ''',处,A处,点落在点联结绕着点O顺时针旋转,点C落在BC边上的点ABA CC '、在同一直线上,如果点A、C A;那么∠的度数为''CBABAO(第18题图)3.普陀4杨3?BAC tan?,,18. 如图,△中,ABC?90?ABC?4,将三角形绕着点旋转,点落在直线C A4?BC??处,若、、上的点处,点落在点CC BBBAB?恰好在一直线上,则的长为;BAB5.松江A,BC=6cmAB=AC=5cm,△18.如图,在ABC中,如果将D.交AC于点BD 平分∠BDABC,D处,A沿BD翻折,点落在点A′ABD△2.的面积为△那么D A′C_______________cm CBC6.崇明F中,18.如图,在,,点是DCBABC??CA??C?90BCD与点重合,的中点,将沿着直线EF折叠,使点ABC?DABAE ,那么的值于点折痕交于点,交BED sin?ABACFE 18题图)(第.为7.浦东徐汇8闵行9.ABC点D在边BC上,将△C=90o18. 如图,已知在Rt△ABC中,∠,AC=BC=1,CB AC 1与边处,联结AC 1,直线落在点沿直线AD翻折,使点CC 1 BF= ▲的延长线相交于点F.如果∠DAB=∠BAF,那么10.静安、青浦外切、O⊙.18如图,⊙O的半径为1,O的半径为2,O=5,⊙O分别与⊙O12121.半径内切,那么⊙O的取值范围是O与⊙r2OO 虹口11.1A2,. 18在中,,(如图)若将绕点顺时针方向旋转到的位置,.联结,则的长为D BC长宁12.ADEF如图,18.△ABC≌△(点A、、B分别与点D △,BC=6,ABC固定不动,AB=AC=5对应)E,F边从在△DEF运动,并满足点EBCB移动向C M EF DE重合)、不与(点EBC,始终经过点,A BEC是等腰三角形时,△,当MAC与边交于点AEM.BE=13金山A DM ,把矩形中,,.在矩形188AB?6ABCD?AD上的点沿直线翻折,点落在边MNABCDADEB BCN处,若,那么的长等于ENAMAE?2嘉定、宝山14.GDA上,中,,点在边18.在矩形DC15ABCD?ADE,翻折后点落到点联结,△沿直线FADEAEDAE E,如果作,垂足为点,如图5过点GAD?FGF.,那么GD3AD??DE F CB5图解析答案1.黄浦2.奉贤3.普陀4.杨浦5.松江6.崇明7.浦东徐汇89.闵行10.静安、青浦虹口11.12.长宁13.金山嘉定、宝山14.。
2015年上海中考数学二模24题整理

已知B :在平面直角坐标系中,抛物线 y = ax 2 + x 的对称轴为直线 x =2,顶点为 A .(1)求抛物线的表达式及顶点 A 的坐标; A点 P 24 题 y = ( x - m )2 + n 的顶点 D 在直线 AB 上,与 y 轴的交点为 C 。
动点之角度(2015 二模 崇明)24.(本题满分 12 分,每小题各 6 分)如图,已知抛物线 y = ax 2 + bx + c 经过点 A (0, - 4) ,点 B (-2, 0) ,点 C (4, 0) .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点 M 在 y 轴上, ∠OMB + ∠OAB = ∠ACB ,求点 M 的坐标.yy(2015 二模 奉贤)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 8 分)B OC x O C xA(备用图)(2)(第为抛物线对称轴上一点,联结 OA 、OP .x图)①当 OA ⊥OP 时,求 OP 的长;②过点 P 作 OP 的垂线交对称轴右侧的抛物线于点 B ,联结 OB ,当∠OAP =∠OBP 时,求点 B 的坐标.(2015 二模 杨浦)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 4 分,第 (3)小题 4 分,)已知:在直角坐标系中,直线 y =x +1 与 x 轴交与点 A ,与 y 轴交与点 B ,抛物线12(1)若点 C (非顶点)与点 B 重合,求抛物线的表达式;y(2)若抛物线的对称轴在y轴的右侧,且CD⊥AB,求∠CAD的正切值;(3)在第(2)的条件下,在∠ACD的内部作射线CP交抛物线的对称轴于点P,使得∠DCP=∠CAD,求点P的坐标。
动点之相似(2015二模宝山嘉定)24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(图9),双曲线y=k(k≠0)与直线y=x+2都经过点xA(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.y(2015二模金山)24.(本题满分12分)已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;B A 如图,在直角坐标系 xOy 中,抛x 物线 y = ax O 2 - 2ax + c 与 x 轴的正半轴相x 交于点 A 、与 y 轴 (3)直线 y = kx + 2 与 y 轴交于点 N ,与直线 AC 的交点为 M ,当 ∆MNC 与 ∆AOC 相似时,求点 M 的坐标.动点之面积(2015 二模 黄浦)24. (本题满第(1)小题满分 3 分,第(2) 分 12 分,小题满分 4分,第(3)小题满分 5 分)如图 7,在平面直角坐标系xOy 中,已知点 A 的坐标为(a ,3)(其中a >4),射线 OA与反比例函数y = 12 的图像交于点 P ,点 B 、C 分别在函数y = 12 的图像上,且 AB //x 轴,xxAC //y 轴.(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联结 BO ,当 AB = BO 时,求点 A 坐标;(3)联结 BP 、CP ,试猜想:S ∆ABP 的值是否随 a 的变化而变化?如果不变,求出 S ∆ABP 的SS∆ACP∆ACP值;如果变化,请说明理由.(2015 二模 静安青浦)24.(本题满分 12 分,第(1)小题满分 8 分,第(2)小题满分 4 分)PCO 图7的正半轴相交于点 B ,它的对称轴与 x 轴相交于点 C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;如图,已知抛物线 y = x 2 - 2tx + t 2 - 2 的顶点 A 在第四象限,过点 A 作 AB ⊥y 轴于点 B ,A (-1,0),B (4,0 ),C (0,2 ).点D 是点 C 关于原点的对称C 点A ,联结 B D ,点E 是 x 轴上的E (2)如果点 D 在此抛物线上,DF ⊥OA ,垂足为 F ,DF 与线段 AB 相交于点G ,且 S∆ADG : S∆AFG= 3 : 2 ,求点 D 的坐标.y(2015 二模 长宁)24.(本题满分 12 分)BCC 是线段 AB 上一点(不与 A 、B 重合),过点 C 作 CD ⊥x 轴于点 D ,并交抛物线于点 P .(1)若点 C 的横坐标为 1,且是线段 AB 的中点,求点 P 的坐标;(2)若直线 AP 交 y 轴负半轴于点 E ,且 AC =CP ,求四边形 OEPD 的面积 S 关于 t 的函数解析式,并写出定义域;(3)在(2)的条件下,当△ADE 的面积等于 2S 时 ,求 t 的值.y动点之直角、等腰三角形存在性DO x(2015 二模 普陀 ) 如图10,在平面直角坐标系xOy 中,二次函数的图像经过点 PB一个动点,设点 E 的坐标为(m , 0),过点 E 作 x 轴的垂线 l 交抛物线于点 P .第 24 题(1)求这个二次函数的解析式;图(2)当点E 在线段 OB 上运动时,直线 l 交 BD 于点 Q .当四边形CDQP 是平行四边形时,求 m 的值;(3)是否存在点 P ,使△ B DP 是不以 BD 为斜边的直角三角形,如果存在,请直接写出点 P 的坐标;如果不存在,请说明理由.y y(2015二模松江)24.(本题满分12分,每小题各4分)C C如图,二次函数y=-x2+bx的图像与x轴的正半轴交于点A(4,0),过A点的直线与A OB x A O B xy轴的正半轴交于点B,与二次函数的图像交于另一点C,过点C作CH⊥x轴,垂足为H.设二次函数图像的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.(1)求这个二次函数的解析式;(2)如果CE=3BC,求点B的坐标;(3)如果△DHE是以DH为底边的等腰三角形,求点E的坐标.动点之梯形(2015二模徐汇)24.如图,在平面直角坐中,O为坐标原点,开口向上的抛物线与x点A(-1,0)和点B(3,0),D为抛物线的直线AC与抛物线交于点C(5,6).(1)求抛物线的解析式;(2)点E在x轴上,且∆AEC和∆AED相似,求点E的坐标;标系轴交于顶点,(3)若直角坐标平面中的点F和点A、C、D构成求点F的坐标.其他直角梯形,且面积为16,试((2015 二模 闵行)24.(本题满分 12 分,其中每小题各 4 分)如图,已知在平面直角坐标系 xOy 中,抛物线 y = ax 2 - 2ax - 4 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,其中点 A 的坐标为(-3,0).点 D 在线段 AB 上,AD = AC .(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以 DB 为半径的圆 D 与圆 C 外切,求圆 C 的半径;(3)设点 M 在线段 AB 上,点 N 在线段 BC 上.如果线段 MN 被直线 CD 垂直平分,求BN 的值. CN(2015 二模 浦东)24. 本题满分 12 分,其中第(1)小题 3 分,第(2)小题 4 分,第(3)小题 5 分) 已知:如图,直线 y =kx +2 与 x 轴的正半轴相交于点 A(t ,0)、与 y 轴相交于点 B ,抛物线 y = - x 2 + bx + c 经过点 A 和点 B ,点 C 在第三象限内,且 AC ⊥AB ,tan∠ACB = 1 .2(1)当 t =1 时,求抛物线的表达式;(2)试用含 t 的代数式表示点 C 的坐标;(3)如果点 C 在这条抛物线的对称轴上,求 t2020-2-8的值.。
2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
2015年上海各区二模数学卷88页

接填写结果,每题填对得 4 分,否则一律得零分.
1.函数 f ( x) lg( x 3) (x 2) 0 的定义域是
.
x1
2.函数 y log2 (x2 1)的单调递减区间是
.
2
3.已知集合 A x | x 16 0, x R , B x | x 3 a, x R ,若 B A ,则正实数 a 的
取值范围是
将它们充分混合后, 摸得一个白球计 2 分,摸得一个红球记 3 分,摸得一个黄球计 4 分,若
用随机变 量 表示随机摸一个 球的 得分, 则随机 变量 的数学期望 E 的值 是
分.
(文科 ) 一个不透明的袋中装有大小形状质地完全相同的黑球、红球、白球共
意摸出 1 个球,得到黑球的概率是 2 ,则从中任意摸出 2 个球得到至少 5
C.如果直线 l// 平面 且 l // 平面 ,那么 // D.若直线 a 与平面 M 没有公共点,则直线 a //平面 M
16.设实数 a1, a2 ,b1, b2 均不为 0,则“ a1 a2
b1 成立”是“关于 x 的不等式 a1x b1 0 与 b2
a2 x b2 0
的
[答] ( ) . A .充分非必要条件
.
4 . 若 二 次 函 数 y 2x 2 (m 2) x 3m2 1 是 定 义 域 为 R 的 偶 函 数 , 则 函 数
f ( x) xm mx 2( x 1, x R) 的反函数 f 1(x) =
5.已知角 的顶点与平面直角坐标系的原点重合,始边在
P 3a,4 a (a 0, a R) ,则 cos 2 的值是
是
.
二、选择题 (本大题满分 20 分 ) 本大题共有 4 题,每题有且只有一个正确答案,考生应在
上海2015二模试卷含答案(二套)

九年级数学 共5页 第1页2014学年奉贤区调研测试九年级数学 2015.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算中正确的是(▲)A .633a a a =+; B .633a a a =⋅ ; C .033=÷a a ; D .633)(a a =. 2.二元一次方程32=+y x 的解的个数是(▲)A . 1个;B .2个;C .3个;D .无数个. 3.关于反比例函数xy 2=的图像,下列叙述错误的是(▲) A .y 随x 的增大而减小; B .图像位于一、三象限;C .图像是轴对称图形;D .点(-1,-2)在这个图像上.4.一名射击运动员连续打靶8次,命中环数如图所示,这组数据的众数与中位数分别为(▲)A .9与8;B .8与9;C .8与8.5;D .8.5与9.5.相交两圆的圆心距是5,如果其中一个圆的半径是3,那么另外一个圆的半径可以是(▲)A .2;B .5;C .8;D .10. 6.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(▲)A .∠B =45°;B .∠BAC =90°;C .BD =AC ;D .AB =AC .(第4题图)DCB A(第6题图)九年级数学 共5页 第2页二、填空题:(本大题共12题,每题4分,满分48分) 7.用代数式表示:a 的5倍与b 的27的差: ▲ ; 8.分解因式:1522--x x = ▲ ; 9.已知函数3+=x x f )(,那么=-)(2f ▲ ;10.某红外线遥控器发出的红外线波长为0.000 000 94m ,这个数用科学记数法表示为 ▲ ; 11.若关于x 的方程022=--k x x 有两个不相等的实数根,则k 的取值范围为 ▲ ; 12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ▲ ;13.已知函数b x y +-=2,函数值y 随x 的增大而▲ (填“增大”或“减小”); 14.如果正n 边形的中心角是40°,那么n = ▲ ;15.已知△ABC 中,点D 在边BC 上,且BD =2DC .设AB a = ,=,那么AD →等于▲ (结果用、表示);16.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为▲米;17.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于 ▲ ;18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o )12(45cos 22218-++--+.CBOA (第18题图)九年级数学 共5页 第3页20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最.小整数解.....21.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值; (2)求点C 到直线DE 的距离.CB A(第21题图)EDS22.(本题满分10分)某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD中,AB//CD,点E是对角线AC上一点,∠DEC=∠ABC,且CACECD⋅=2.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.D BA九年级数学共5页第4页九年级数学 共5页 第5页24.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A . (1)求抛物线的表达式及顶点A 的坐标; (2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.九年级数学 共5页 第6页25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB (第25题图)AB(备用图)A九年级数学 共5页 第7页奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分) 7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9; 15.32+; 16.50; 17.2或1; 18.20°. 三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分20.(本题满分10分)解:由①得:2x >- .………………………………………………………………………2分 由②得:4x ≤.………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集.………………………………………………………………2分 所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分九年级数学 共5页 第8页∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°,sin ∠D =13,BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°,sin ∠D =31=CD CM ∴CM=35.…………………2分 即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分根据题意,得4%)201(1000251000++=-x x .……………………………………4分 整理,得 0160122=-+x x .……………………………………………1分解得 20,821-==x x .……………………………………………………2分 经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.…………1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形………………………………………………………1分(2)∵EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形∴AB ∥CD AB=CD九年级数学 共5页 第9页∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分 ∴顶点A 的坐标为(2,1). ……………………………………………………………2分(2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中,AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4…………………………………………………………1分 ∴OP=524222=+……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠∴△BPF ∽△POE ,∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a九年级数学 共5页 第10页解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6∴321===CD DH CH …………………………………………………1分 ∵AD=5∴AH=4………………………………………………………………1分∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分 (2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD=x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-=……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -==…………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -=222NF AN AF -= ∴2222)43(5)4()25(x x -=-∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .九年级数学 共5页 第11页崇明县2014学年第二学期教学质量调研测试卷九年级数学(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3 (C)030-=() (D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是……………………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A)(B) (C) (D)6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 ………………………………………………………………………………………( )九年级数学 共5页 第12页(A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =九年级数学 共5页 第13页二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ .8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为 ▲ .11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ . 12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a = ,AD b = ,如果用向量,a b表示向量BC ,那么BC =▲ .15.如图,已知ABC ∆和ADE ∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .(第14题图)AB C D (第15题图)AC EF D (第16题图)B九年级数学 共5页 第14页18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点,AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =.(1)求线段AE 的长; (2)求sin DAE ∠的值.BACFD(第18题图)(第21题图)CABE D九年级数学 共5页 第15页22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H .(1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.(第22题图))A BDHG FEC(第23题图)九年级数学 共5页 第16页24.(本题满分12分,每小题各6分)如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C . (1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)(备用图)九年级数学 共5页 第17页25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)B AC (备用图2)BAC。
2015年上海中考数学二模24,25题

黄浦2015二模24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图7,在平面直角坐标系xOy 中,已知点A 的坐标为(a ,3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且AB //x 轴,AC //y 轴.黄浦2015二模25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.(备用图)图8奉贤2015二模24.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A . (1)求抛物线的表达式及顶点A 的坐标; (2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.奉贤2015二模 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB (第25题图)AB(备用图)A普陀2015二模24.(本题满分12分)如图10,在平面直角坐标系xOy 中,二次函数的图像经过点()1,0A -,()4,0B ,()0,2C .点D 是点C 关于原点的对称点,联结BD ,点E 是x 轴上的一个动点,设点E 的坐标为(m , 0),过点E 作x 轴的垂线l 交抛物线于点P .(1)求这个二次函数的解析式;(2)当点E 在线段OB 上运动时,直线l 交BD 于点Q .当四边形CDQP 是平行四边形时,求m 的值;(3)是否存在点P ,使△BDP 是不以BD 为斜边的直角三角形,如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.图10备用图图10普陀2015二模 25.(本题满分14分)如图11-1,已知梯形ABCD 中,AD //BC ,90D ∠=o,5BC =,3CD =,cot 1B =.P 是边BC 上的一个动点(不与点B 、点C 重合),过点P 作射线PE ,使射线PE 交射线BA于点E ,BPE CPD ∠=∠.(1)如图11-2,当点E 与点A 重合时,求DPC ∠的正切值; (2)当点E 落在线段AB 上时,设BPx =,BE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)设以BE 长为半径的⊙B 和以AD 为直径的⊙O 相切,求BP 的长.C BDA 图11-1CBDA 图11备用图(E )P CBDA 图11-2A CB E OD备用图 xyO杨浦2015二模24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分,) 已知:在直角坐标系中,直线y =x +1与x 轴交与点A ,与y 轴交与点B ,抛物线21()2y x m n =-+的顶点D 在直线AB 上,与y 轴的交点为C 。
2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
上海中考各区二模数学试题及答案汇总

2014学年虹口区调研测试九年级数学。
(满分分,考试时间分钟)考生注意:1.本试卷含三个大题,共题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共题,每题分,满分分).计算的结果是().;.;.; ...下列代数式中,的一个有理化因式是( ).; .;.;...不等式组的解集是( ).; .;.;...下列事件中,是确定事件的是( ).上海明天会下雨;.将要过马路时恰好遇到红灯;.有人把石头孵成了小鸭;.冬天,盆里的水结成了冰..下列多边形中,中心角等于内角的是().正三角形;.正四边形; .正六边形;.正八边形..下列命题中,真命题是().有两边和一角对应相等的两个三角形全等;.有两边和第三边上的高对应相等的两个三角形全等;.有两边和其中一边上的高对应相等的两个三角形全等;.有两边和第三边上的中线对应相等的两个三角形全等.二、填空题:(本大题共题,每题分,满分分).据报道,截止年月某市网名规模达人。
请将数据用科学记数法表示为。
.分解因式:。
.如果关于的方程有两个相等的实数根,那么。
.方程的根是。
初三数学基础考试卷—1—初三数学基础考试卷—2—(第题图) (第题图) (第题图)(第题图).函数的定义域是 。
.在反比例函数的图像所在的每个象限中,如果函数值随自变量的值的增大而增大,那么常数的取值范围是 。
.为了了解某中学学生的上学方式,从该校全体学生名中,随机抽查了名学生,结果显示有名学生“步行上学”.由此,估计该校全体学生中约有 名学生“步行上学"。
.在中,,点是的重心,如果,那么斜边的长等于 。
.如图,在中,点、分别在边、上,∥,,若,,则 。
.如图,、的半径分别为、,圆心距为.将由图示位置沿直线向右平移,当该圆与内切时,平移的距离是 ..定义为函数的“特征数".如:函数“特征数”是,函数“特征数"是.如果将“特征数”是的函数图像向下平移个单位,得到一个新函数图像,那么这个新函数的解析式是 。
2015年二模18题

M FEDCBA第18题图2015年上海各区二模18题专项训练(虹口)18.在Rt ABC ∆中,90C ∠=︒,2AC BC ==(如图),若将ABC ∆绕点A顺时针方向旋转60︒到''AB C ∆的位置,联结'C B ,则'C B 的长为 .(长宁)18.如图,△ABC ≌△DEF (点A 、B 分别与点D 、E 对应),AB =AC =5,BC =6,△ABC 固定不动,△DEF 运动,并满足点E 在BC 边从B 向C 移动(点E 不与B 、C 重合),DE 始终 经过点A ,EF 与AC 边交于点M ,当△AEM 是等腰三角形时,BE = .(静安.青浦)18.如图,⊙O 1的半径为1,⊙O 2的半径为2,O 1O 2=5,⊙O 分别与⊙O 1外切、与⊙O 2内切,那么⊙O 半径r 的取值范围是 .(松江)18.如图,在△ABC 中,AB =AC =5cm ,BC =6cm ,BD 平分∠ABC ,BD 交AC 于点D .如果将△ABD 沿BD 翻折,点A 落在点A ′处,那么△D A ′C 的面积为_______________cm 2.O 1O 2(第18题图)ABCD(第18题图)ACB第18题图(杨浦)18.如图,钝角△ABC 中,tan ∠BAC =34,BC =4,将三角形绕着点A 旋转,点C 落在直线AB 上的点C ,处,点B 落在点B ,处,若C 、B 、B ,恰好在一直线上,则AB 的长为 .(奉贤)18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ;(宝山.嘉定)18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△A D E 沿直线AE翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=, 那么=DE .CBOA(第18题图)ADBCGEF 图5初三数学 本卷共4页 第3页(金山)18.在矩形ABCD 中,6=AB,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于(闵行)18. 如图,已知在Rt △ABC 中,∠C =90º,AC =BC =1,点D在边BC 上,将△ABC 沿直线AD 翻折,使点C 落在点C ’处,联结AC ’,直线AC ’与边CB 的延长线相交于点F .如果∠DAB =∠BAF ,那么BF = .第18题图ACB(浦东新区)18.如图,已知在Rt △ABC 中,D 是斜边AB 的中点,AC =4,BC=2,将△ACD 沿直线CD 折叠,点A 落在点E 处,联结AE ,那么线段AE 的长度等于BC DM NA 第18题图(普陀)18.如图6,在矩形纸片ABCD中,AB<BC,点M、N分别在边AD、BC上,沿直线MN将四边形DMNC翻折,点C恰好与点A重合,如果此时在原图中△CDM与△MNC的面积比是1:3,那么MNDM的值等于;图6D CBA(徐汇)18、如图,已知扇形AOB的半径是6,圆心角为90o,E是半径OA上一点,F是AB上一点,将扇形AOB沿EF对折,使得折叠后的圆弧1A F恰好与半径OB相切于点G,若OE=5,则O到折痕EF 的距离为;初三数学本卷共4页第4页。
上海市闸北区2015年中考数学二模试题

上海市闸北区2015年中考数学二模试题(满分150分,考试时间100分钟)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.-8的立方根是………………………………………………………………( ▲ ) (A )2; (B )-2; (C )±2; (D )2.2.下列属于最简二次根式的是…………………………………………………( ▲ ) (A )22b a +; (B )b1; (C )1.0; (D )18. 3.下列方程中,有实数根的是…………………………………………………( ▲ ) (A )x =-2; (B )x 2+1=0; (C )x+11=1; (D )x 2+x +1=0. 4.在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E .如果DE 过重心G 点,且DE =4,那么BC 的长是………………………………………………( ▲ )(A )5; (B )6; (C )7; (D )8.5.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是…………( ▲ )(A )15元和18元;(B )15元和15元;(C )18元和15元;(D )18元和18元. 6.如图一,某水渠的横断面是等腰梯形,已知其斜坡AD 和BC 的坡度为1︰0.6,现测得放水前的水面宽EF 为1.2米,当水闸放水后,水渠内水面宽GH 为2.1米.求放水后水面上升的高度是 ……………………………………………………………………( ▲ ) (A )0.55; (B )0.8; (C )0.6; (D )0.75.二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直线填入答题纸的相应位置】7.计算:2-2= ▲ .8.用科学记数法表示:3402000= ▲ .(图一)AD BC E F G H9.化简分式:622-+-x x x = ▲ .10.不等式组⎩⎨⎧≥-<-0342x x 的解集是 ▲ .11.方程x +x =0的解是 ▲ . 12.已知反比例函数y =xk(k ≠0)图像过点(-1,-3),在每个象限内,自变量x 的值逐渐增大时,y 的值随着逐渐 ▲ .(填“减小”或“增大”)13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为 ▲ .14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价 ▲ 万元.15.如图二,在正方形ABCD 中,如果AC =32,AB =a ,AC =b ,那么|a -b |= ▲ .16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm ):红:54、44、37、36、35、34; 黄:48、35、38、36、43、40;已知它们的平均高度均是40cm ,请判断哪种颜色的郁金香样本长得整齐? ▲ .(填“红”或“黄”)17.已知⊙O 的直径是10,△ABC 是⊙O 的内接等腰三角形,且底边BC=6,求△ABC 的面积是 ▲ .18.如图三,在Rt△ABC 中,∠ACB =90°,将△ABC沿BD 折叠,点C 恰巧落在边AB 上的C ′处,折痕为BD ,再将其沿DE 折叠,使点A 落在DC ′的延长线上的A ′ 处,若△BED 与△ABC 相似,则相似比ACBD= ▲ . 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:060tan 21+-|cos45°-1|+(-2015)0+213. 20.(本题满分10分)(图二)b r ar AD(图三)ADBCA ′EC ′解方程组:⎪⎩⎪⎨⎧=++=-42042222y xy x y x21.(本题满分10分,第(1)小题4分,第(2)小题6分) 已知:如图四,点E 是矩形ABCD 的边AD 上一 点,BE =AD ,AE =8,现有甲乙二人同时从E 点出发, 分别沿EC 、ED 方向前进,甲的速度是乙的10倍, 甲到达点目的地C 点的同时乙恰巧到达终点D 处.(1)求tan ∠ECD 的值;(2)求线段AB 及BC 的长度.22.(本题满分10分,第(1)小题3分,第(2)小题3分,第(3)小题4分)某公司的物流业务原来由A 运输队承接,已知其收费标准y (元)与运输所跑路程x (公里)之x (公里) 80 120 180 200 … y (元)200300450500…(1)写出y (元)关于x (公里)的函数解析式 ▲ ;(不需写出定义域)(2)由于行业竞争激烈,现B 运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B 运输队每次收费y (元)关于所跑路程x (公里)的函数解析式 ▲ ;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知:如图五,在平行四边形ABCD 中,点E 、F 分别在BC 、CD 上,且AE =AF ,∠AEC=∠AFC. (1)求证:四边形ABCD 是菱形; (2)如图六,若AD =AF ,延长AE 、DC 交于点 G ,求证:AF 2=AG ·DF .(3)在第(2)小题的条件下,连接BD ,交AG 于点H ,若HE =4,EG =12,求AH 的长.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知:如图七,二次函数图像经过点A (-6,0), (图四)A DBCE(图五)A CB D E F (图七)(图六)A CB DE F G① ②B(0,6),对称轴为直线x=-2,顶点为点C,点B关于直线x=-2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图像上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知:如图八,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图九,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B 的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.闸北区初三数学二模考(2015年5月)答案及评分参考(图八)CA(图九)CB AP·(考试时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6 答案BACBAD二、填空题(本大题共12题,每题4分,满分48分)7、41. 8、610402.3⨯. 9、31+x . 10、x ≥3. 11、x =0. 12、减小. 13、61. 14、9.9. 15、3. 16、黄. 17、3或27. 18、32.三、解答题(本大题共12题,满分78分) 19.(本题满分10分)计算:060tan 21+-|cos45°-1|+(-2015)0+213. 解:原式=31122321++--+…………………………………(4分) =31)221(32++---…………………………………(4分) =3122132+++--…………………………………(1分) =222+…………………………………(1分)20.(本题满分10分)解方程组:⎪⎩⎪⎨⎧=++=-42042222y xy x y x 解:由①得:0)2)(2(=-+y x y x ,02=+y x 或02=-y x …………(2分)由②得:4)(2=+y x ,2=+y x 或2-=+y x ……………………(2分) 可得方程组:⎩⎨⎧=+=+202y x y x ⎩⎨⎧-=+=+202y x y x ⎩⎨⎧=+=-202y x y x ⎩⎨⎧-=+=-202y x y x …………(4分) 分别解得:⎩⎨⎧-==2411y x ⎩⎨⎧=-=2422y x ⎪⎪⎩⎪⎪⎨⎧==323433y x ⎪⎪⎩⎪⎪⎨⎧-=-=323444y x …………(2分)∴原方程组的解是⎩⎨⎧-==2411y x ⎩⎨⎧=-=2422y x ⎪⎪⎩⎪⎪⎨⎧==323433y x ⎪⎪⎩⎪⎪⎨⎧-=-=323444y x21.(本题满分10分)解:(1)∵四边形ABCD 是矩形,∴∠D 是直角.…………(1分)① ②根据条件:甲的速度是乙的10倍,可设ED =x ,则EC =10x ,…………(1分) ∴在RT △EDC 中CD =22ED EC = 3x ,…………(1分)∴tan ∠ECD =CD ED =31.…………(1分)(2)∵四边形ABCD 是矩形,∴设ED =x,AB =CD =3x . ∵BE =AD ,AE =8,∴BE =AD =8+x .…………(2分)∵在Rt △ABE 中,AE 2+AB 2=BE 2∴82+(3x )2=(8+x )2,∴x =2,…………(2分) ∴AB =3x =6,BC =AD =8+x =10.…………(2分)22.(本题满分10分)解:(1)y =25x .……………………(3分) (2)y =109x +200.……………………(3分)(3)y A =25×500=1250,………………(1分)y B =109×500+200=650.………………(1分)∵y A >y B ,∴选择B 运输队.……………………(2分)23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠D .…………………(1分)∵∠AEC=∠AFC,∠AEC +∠AE B =∠AFC +∠AF D=0180 ∴∠AE B =∠AF D .…………(1分) 在△AEB 和△AFD 中: ∠B =∠D ∠AE B =∠AF D AE =AF∴△AEB ≌△AFD ,………………(1分) ∴AB =AD ,∴平行四边形ABCD 是菱形.………………(1分) (2)∵△AEB ≌△AFD ,∴∠BAE =∠DAF .∵四边形ABCD 是平行四边形,∴AB ∥DG, ∴∠BAE =∠G , ∴∠G =∠DAF .又∵∠ADF =∠GDA ,∴△GAD ∽△AFD ………………(2分)∴DA ︰DF =DG ︰DA ,∴DA 2=DG ·DF ……………(1分) ∵DG ︰DA =AG ︰FA ,且AD =AF ,∴DG =AG .又∵AD =AF ,∴AF 2=AG ·DF .……………………(1分) (3)在菱形ABCD 中,∵AB ∥DC ,AD ∥BC ,(图五)ADB CE(图五)A CBDEF(图六)ACBDEFGHACBDEF G∴AH ︰HG =BH ︰HD ,………………(1分) BH ︰HD =EH ︰AH ,………………(1分) ∴AH ︰HG =EH ︰AH .………………(1分) ∵HE =4,EG =12,∴AH ︰16=4︰AH ,∴AH =8.………………(1分)24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)∵二次函数图像经过点A (-6,0),B (0, 6),对称轴为直线x =-2,∴二次函数图像经过点(2,0),………………(1分) 设二次函数的解析式为y =a (x -2)(x +6),∴6=a (0-2)(0+6),∴a =-21,………………(1分)∴二次函数的解析式为y =-21(x -2)(x +6),即y =-21∴点C (-2,8)、D (-4,6).………………(2分) (2)如图,AB =62,BC =CD =22,BD =4, ∴222BC CD BD +=∴∠DCB =90°.……(1分)∵直线AB 、CD 的解析式分别为y =x +6、y =x +10,∴AB ∥DC ,∴四边形ABCD 是直角梯形,………………(1分) 若S 梯形ABCD =2S △ADE ,即21×22(22+62)=2×21×22AE , ∴AE =42.………………(2分)(3)如图,由已知条件∠ACP =∠BAC ,CP 与AB 交于点G, 可得GA =GC, A (-6,0),C (-2,8)直线AB 的解析式为y =x +6,G 点坐标为(x , x+6) ∴22)6()6x (+++x =22)2()2(-++x x ,解得x= 38-,经检验是原方程的根且符合题意;∴点G (-38,310),设直线CG 解析式为:b kx y +=∵⎪⎩⎪⎨⎧+-=+-=bk bk 2838310∴⎩⎨⎧==227k b ∴直线CG 的解析式为y =7x +22,…………(2分) (图七)yC B DA O22 -2x(图七)y G C BDAO22 -2 x∵⎪⎩⎪⎨⎧+--=+=6221227x y 2x x y ∴⎩⎨⎧-=-=9016x 11y ⎩⎨⎧=-=82x 22y (不合题意,即为点C ,故舍去) ∴点P 1(-16,-90).又在第(2)小题中,四边形ABCD 是直角梯形,AB ∥DC ,∴∠DCP =∠BAC , ∴点D (-4,6)为所求的点P ,∴点P 2(-4,6).综上所述,符合要求的点为P 1(-16,-90)、P 2(-4,6).………………(2分)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)解:(1)作AH ⊥BC 于点H , ∵AB =AC =6,BC =4,∴BH =2.∵直线CD 与⊙B 相切,∴CD ⊥AB ,………………(2分) ∵∠DBC =∠ACH, ∴cos ∠DBC =cos ∠ACH ∴BD ︰BC =CH ︰CA , ∴BD ︰4=2︰6,∴BD =34.………………(2分) (2)如图,作PK ⊥BC 于点K ,∴PK ∥AH . ∵AH ⊥BC ,AB =AC =6,BC =4,∴BH =2, ∴AH =42.………………(1分) ∵以AC 为直径作⊙P ,∴AP =PC , ∴PK =22,CK =41BC =1,∴BK =3, ∴在Rt △PBK 中,PB =22BK +PK =223)22(+=17,…………(2分)∴当0<x <17-3时,⊙B 与⊙P 外离,当x =17-3时,⊙B 与⊙P 外切, 当17-3<x ≤4时,⊙B 与⊙P 相交.………………(3分) (3)点E 即为BC 边的中点H ,∴PE =3. 设EF 与PB 交于点G ,BG =m ,∴在△PBE 中,PE 2-PG 2=BE 2-BG 2,∴32-(17-m )2=22-m 2,∴m =17176.……(2分) ∵EG 2-BG 2=BE 2,∴EG 2-(17176)2=22, ∴EG =34174,∴EF =34178.………………(2分)(图八)K H CBAP ·(图九)FG ECBAP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015宝山嘉定
17. 我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD 中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是 . 18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=, 那么=DE .
23.(本题满分12分,每小题满分各6分)
如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .
(1)求证:︒=∠60ACE ;
(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .
求证:四边形CDFE 是等腰梯形.
24、已知平面直角坐标系xOy ,双曲线)0(≠=k x
k y 与直线2+=x y 都经过点),2(m A .(1)求k 与m 的值;每小题满分各4分)
(2)此双曲线又经过点)2,(n B ,过点B 的直线BC 与直线2+=x y 平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;
(3)在(2)的条件下,设直线2+=x y 与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.
25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)
在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .
(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;
(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;
(3)若EBM BAE ∠=∠,求斜边AB 的长.
A B D 图4 C A D B C G E F 图5 A B C E D F 图8 A C B (M ) E
D
图10 A C B
M E D 图11。