2015年上海虹口区初三数学二模试卷及答案word版
2015年上海中考数学二模19-23题
2015年宝山嘉定联合模拟考试数学试卷三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x x x x 124122222++---+- ,其中13-=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=+.,0658222y xy x y x ②①21.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB 长为216米,在点B 的拐弯处道路AB 与BC 所夹的B ∠为︒45,在点C 的拐弯处道路AC 与BC 所夹的C ∠的正切值为2(即2tan =∠C ),如图7. (1)求拐弯点B 与C 之间的距离; (2)在改造好的圆形(圆O )绿化地中,这个圆O 过点A 、C ,并与原道路BC 交于点D ,如果点A 是圆弧(优弧)道路DC 的中点,求圆O 的半径长.A .OB C D 图7 图622.(本题满分10分,每小题满分各5分)已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表(1)求这段时间时关于的函数关系式(不需要写出函数的定义域);(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.图8崇明县2014学年第二学期教学质量调研测试卷(2)九年级数学三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩ 21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长; (2)求sin DAE ∠的值.(第21题图)CABED22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.(第22题图))A BDHG FEC(第23题图)2014学年奉贤区调研测试九年级数学三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o )12(45cos 22218-++--+.20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最小整数解......21.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值; (2)求点C 到直线DE 的距离.CBA(第21题图)EDS22.(本题满分10分)某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD中,AB//CD,点E是对角线AC上一点,∠DEC=∠ABC,且CACECD⋅=2.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.B(第23题图)A黄浦区2015年九年级学业考试模拟考数学试卷三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:.20. (本题满分10分)解方程组:21. (本题满分10分,第(1)满分7分,(2)小题满分3分)温度通常有两种表示方法:华氏度(单位:)与摄氏度(单位:).已知华氏度数y与摄氏度数x 之间是一次函数关系.下表列出了部分华氏度与摄氏度之间的对应关系.(1)选用表格中给出的数据,求y 关于x 的函数解析式(不需要写出该函数的定义域); (2)已知某天的最低气温是,求与之对应的华氏度数.)1134811-+-+-2222, 1. x y x y ⎧-=-⎨-=⎩①②FC 5-C22. (本题满分10分,第(1)、(2)小题满分各5分)如图5,在梯形ABCD 中,AD //BC ,AB ⊥BC ,已知AD =2,,梯形ABCD 的面积是9.(1)求AB 的长;(2)求的值.23. (本题满分12分,第(1),(2)小题满分各6分)如图6,在正方形ABCD 中,点E 在对角线AC 上,点F 在边B C 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE =DG . (1)求证:AE =CG ;(2)求证:BE //DF .4cot 3ACB ∠=tan ACD ∠图5图6F2014学年金山区第二学期期中质量检测 初三数学试卷三、(本题共有7题,满分78分) 19.(本题满分10分)化简:(12122+---+x x x x x x )22)1(1-+÷x x x20.(本题满分10分)解方程组⎩⎨⎧=-+-=+-04440122y xy x y x21.(本题满分10分)如图,点P 表示某港口的位置,甲船在港口北偏西30方向距港口50海里的A 处,乙船在港口北偏东45方向距港口60海里的B 处,两船同时出发分别沿AP 、BP 方向匀速驶向港口P ,1小时后乙船在甲船的正东方向处,已知甲船的速度是10海里/时,求乙船的速度.东第21题图22.(本题满分10分)为了解本区初中学生的视力情况,教育局有关部门采用抽样调查的方法,从全区2万名中学生中抽查了部分学生的视力,分成以下四类进行统计注:(4.3—4.5之间表示包括4.3及4.5)根据图表完成下列问题:(1) 填完整表格及补充完整图一;(2) “类型D ”在扇形图(图二)中所占的圆心角是度; (3) 本次调查数据的中位数落在类型内;(4) 视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计人 .AB视力 类型 图二 第22题图23.(本题满分12分)已知:如图,在中ABC Rt ∆中,︒=∠90ACB ,BC AC =,点E 在边AC 上,延长BC 至D点,使CD CE =,延长BE 交AD 于F ,过点C 作CG //BF ,交AD 于点G ,在BE 上取一点H ,使DCG HCE ∠=∠. (1)求证:ACD BCE ∆≅∆; (2) 求证:四边形FHCG 是正方形.G FE D BAC第23题图H静安、青浦区2014学年第二学期教学质量调研九年级数学2015.4三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简:))(111(222x x x x x +---,并求当02133-=x 时的值.20.(本题满分10分)求不等式组⎪⎩⎪⎨⎧+≥++<-12)132(6,34)1(7x x x x 的整数解.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在直角坐标系xOy 中,反比例函数图像与直线2-=x y 相交于横坐标为3的点A . (1)求反比例函数的解析式;(2)如果点B 在直线2-=x y 上,点C 在反比例函数图像上,BC //x 轴,BC = 4,且BC 在点A 上方,求点B 的坐标.22.(本题满分10分)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.23.(本题满分12分,第小题满分6分)如图,在梯形ABCD 中,AB //CD ,AD =BC ,E 是CD 的中点,BE 交AC 于F ,过点F 作FG ∥AB ,交AE 于点G .(1) 求证:AG=BF ;(2) 当CF CA AD ⋅=2时,求证:AC AG AD AB ⋅=⋅.E D CG FAB(第23题图)闵行区2014学年第二学期九年级质量调研考试数学试卷三、解答题:(本大题共7题,满分78分)19.(本题满分10分).20.(本题满分10分)解方程:22212,320.x yx x y y+=⎧⎨-+=⎩21.(本题满分10分,其中每小题各5分)如图,已知在△ABC中,AB AC==,sin B∠=D为边BC的中点.E为边BC延长线上一点,且CE = BC.联结AE,F为线段AE的中点.求:(1)线段DF的长;(2)∠CAE的正切值.AB CD EF(第21题图)22.(本题满分10分,其中每小题各5分)货车在公路A 处加满油后,以每小时60千米的速度匀速行驶,前往与A 处相距360千米的B 处.下表记录的是货车一次加满油后油箱内剩余油量y (升)与行驶时间x (时)之间关系:(范围);(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C 处,C 的前方12千米的D 处有一加油站,那么在D 处至少加多少升油,才能使货车到达B 处卸货后能顺利返回D 处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)23.(本题满分12分,其中每小题各6分)如图,已知在梯形ABCD 中,AD // BC ,∠A = 90º,AB = AD .点E 在边AB 上,且DE ⊥CD ,DF 平分∠EDC ,交BC 于点F ,联结CE 、EF . (1)求证:DE = DC ; (2)如果2BE BF BC =⋅,求证:∠BEF =∠CEF .(第23题图)A BCDEF浦东新区初三教学质量检测数学试卷 (2015.4.21)三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简并求值:12)111(22+-÷-+x x x x ,其中12+=x . 20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧->--≥+,1262,6325x x x x 并写出它的非负整数解.21.(本题满分10分,其中每小题各5分)已知:如图,在△ABC 中,D 是边BC 上一点,以点D 为圆心、CD 为半径作半圆,分别与边AC 、BC 相交于点E 和点F .如果AB =AC =5,cos B =54,AE =1. 求:(1)线段CD 的长度;(2)点A 和点F 之间的距离.C(第21题图)22.(本题满分10分)小张利用休息日进行登山锻炼,从山脚到山顶的路程为12千米.他上午8时从山脚出发,到达山顶后停留了半小时,再原路返回,下午3时30分回到山脚.假设他上山与下山时都是匀速行走,且下山比上山时的速度每小时快1千米,求小张上山时的速度.23.(本题满分12分,其中每小题各6分)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,AF⊥CD,垂足为点F.(1)如果AB=AD,求证:EF∥BD;(2)如果EF∥BD,求证:AB=AD. AB C DEF (第23题图)普陀区2014学年度第二学期初三质量调研数学试卷三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:()121245sin 13210+--︒+--.20.(本题满分10分)解方程组:2230240x y ,x xy y .-=⎧⎨-+-=⎩21.(本题满分10分)已知:如图7,在平面直角坐标系xOy 中,直线1122y x =+与x 轴交于点A ,在第一象限内与反比例函数图像交于点B ,BC 垂直于x 轴,垂足为点C ,且OC =2AO .求(1)点C 的坐标;(2)反比例函数的解析式.图722.(本题满分10分)本市为了给市容营造温馨和谐的夜间景观,准备在一条宽7.4米的道路上空利用轻轨桥墩,安装呈大中小三个同心圆的景观灯带(如图8-1所示). 如图8-2,已知EF 表示路面宽度,轻轨桥墩的下方为等腰梯形ABCD ,且AD ∥EF ,DC AB =,∠=ABC 37°.在轻轨桥墩上设有两处限高标志,分别表示等腰梯形的下底边到路面的距离为2.9米和等腰梯形的上底边到路面的距离为3.8米.大圆直径等于AD ,三圆半径的比等于1∶2∶3.试求这三个圆形灯带的总长为多少米?(结果保留π)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)23.(本题满分12分)如图9,在△ABC 中,点D 、E 分别在边BC 、AC 上,BE 、AD 相交于点G ,EF ∥AD 交BC 于点F ,且2BF BD BC = ,联结FG . (1)求证:FG ∥CE ;(2)设BAD C ∠=∠,求证:四边形AGFE 是菱形.图9CG FEDBADA图图2.93.8B2015年松江区初中毕业生学业模拟考试数学试卷三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:323112---÷-+x x x x )(20.(本题满分10分)解方程组:⎩⎨⎧=--=+0548322y xy x y x21.(本题满分10分)某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问一月份每辆电动车的售价是多少?22.(本题满分10分,每小题各5分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,且CD =24,点M 在⊙O 上,MD 经过圆心O ,联结MB .(1)若BE =8,求⊙O 的半径; (2)若∠DMB=∠D ,求线段OE 的长.23.(本题满分12分,每小题各6分)如图,已知在正方形ABCD 中,点E 在CD 边上,过C 点作AE 的垂线交于点F ,联结DF ,过点D 作DF 的垂线交AF 于点G ,联结BG . (1)求证:△ADG ≌△CDF ;(2)如果E 为CD 的中点,求证:BG ⊥AF .A(第23题图)EGDFB(第22题图)2014学年第二学期徐汇区学习能力诊断卷初三数学试卷(时间100分钟满分150分)2015.4 三.(本大题共7题,19~22每题10分,23、24每题10分,25题14分,满分78分)19.化简并求值:22256()32x x xxx x x-+⋅+--,其中x=.20.解方程组:2222699,440. x xy yx y x y⎧++=⎪⎨--+=⎪⎩21.某公司市场营销部的某营销员的个人月收入与该营销员每月的销售量成一次函数关系,其图像如图所示.根据图像提供的信息,解答下列问题:(1)求营销员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式;(2)若两个月内该营销员的销售量从2万件猛增到5万件,月收入两个月大幅度增长,且连续两个月的月收入的增长率是相同的,试求这个增长率 1.414≈,保留到百分位);AD22.如图,在Rt △ABC 中,∠CAB =90º,sin C=35,AC =6,BD 平分∠CBA 交AC 边于点D . 求:(1)线段AB 的长; (2)tan ∠DBA 的值23.已知:如图,正方形ABCD ,BM 、DN 分别是正方形的两个外角平分线,∠MAN =45°, 将∠MAN 绕着正方形的顶点A 旋转,边AM 、AN 分别交两条角平分线于点M 、N ,联结MN .(1)求证:ABM ADN ∆∆ ;(2)联结BD ,当∠BAM 的度数为多少时,四边形BMND 为矩形,并加以证明.杨浦区2014学年度第二学期初三质量调研数 学 试 卷一、 解答题(第19~22题每题10分,第23~24题每题12分,第25题14分,满分78分) 19.(本题满分10分)计算:0111)2cos30()12-︒+.20.(本题满分10分) 解方程组:223240.xy x xy y =⎧⎨-+-=⎩21. (本题满分10分)如图,在一笔直的海岸线 上有A 、B 两个观察站,A 在B 的正东方向,A 与B 相距2千米。
2015初三二模数学试题参考答案
初三二模数学试题参考答案一.选择题:1-5:BDCAC ,6-10:BDCDA二.填空题:11. 1,-1 ;12. 12 ;13.A. 120°;B. 2.64;14. 3324-.17.解:原式=÷=•=﹣, ……2分解方程x 2﹣4x +3=0得,(x ﹣1)(x ﹣3)=0,x 1=1,x 2=3.……3分 当x =1时,原式无意义; ……4分当x =3时,原式=﹣=﹣51.……5分18.(1)证明:∵DF ∥BE , ∴∠FDO=∠EBO ,∠DFO=∠BEO , ∵O 为AC 的中点, ∴OA=OC , 又∵AE=CF ,∴OA ﹣AE=OC ﹣CF ,即OE=OF , 在△BOE 和△DOF 中,,∴△BOE ≌△DOF (AAS );……3分(2)若OD=AC ,则四边形ABCD 是矩形,理由如下: 证明:∵△BOE ≌△DOF ,∴OB=OD ,∵OD=AC∴OA=OB=OC=OD ,即BD=AC , ∴四边形ABCD 为矩形.……6分≈0.9,sin44°=,,的图象过 y=,的图象上,=,解得y=,+22.(1)2……3分(2)树状图(或列表法)略.共有16种等可能结果,其中两张卡片都是中心对称图形的有4种 P (两张都是中心对称图形)=164=41………8分23.(1)证明:连接OB∵OB =OA ,CE =CB ,∴∠A =∠OBA ,∠CEB =∠又∵CD ⊥OA ,∴∠A +∠AED =∠A +∠CEB =90° ∴∠OBA+∠ABC =90°,∴OB ⊥BC ∴BC 是⊙O 的切线 ………3分 (2)过点C 作CG ⊥BE 于点G , ∵CE =CB ,∴EG =12BE =5 又Rt △ADE ∽Rt △CGE ,∴sin ∠ECG =sin A = 5 13∴CE =EGsin ∠ECG=13,∴CG =CE 2-EG 2=12又CD =15,CE =13,∴DE =2 由Rt △ADE ∽Rt △CGE ,得 ADCG =DEGE∴AD =DE GE·CG =245∴⊙O 的半径为2AD =485……8分24.解:(1)∵y=2x+2, ∴当x=0时,y=2, ∴B(0,2).当y=0时,x=﹣1, ∴A(﹣1,0).∵抛物线y=﹣x 2+bx+c 过点B (0,2),D (3,﹣4), ∴解得:,∴y=﹣x 2+x+2; ……4分(2)E(49,21) ……6分(3)设直线BD 的解析式为y=kx+b ,由题意,得,解得:,∴直线BD 的解析式为:y=﹣2x+2; 设P (b ,﹣b 2+b+2),H (b ,﹣2b+2).如图3,∵四边形BOHP 是平行四边形, ∴BO=PH=2.∵PH=﹣b 2+b+2+2b ﹣2=﹣b 2+3b . ∴2=﹣b 2+3b ∴b 1=1,b 2=2.当b=1时,P (1,2), 当b=2时,P (2,0)∴P 点的坐标为(1,2)或(2,0).……10分 25.解:∵AB=10cm,AC=8cm ,BC=6cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角. (1)BP=2t ,则AP=10﹣2t . ∵PQ∥BC,∴,即,解得t=,∴当t=s 时,PQ∥BC. ……3分(2)如答图1所示,过P 点作PD⊥AC 于点D . ∴PD∥BC,∴,即,解得PD=6﹣t .S=×AQ×PD=×2t×(6﹣t )=﹣t 2+6t=﹣(t ﹣)2+,∴当t=s 时,S 取得最大值,最大值为cm 2.……6分(3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分, 则有S △AQP =S △ABC ,而S △ABC =AC•BC=24,∴此时S △AQP =12.由(2)可知,S △AQP =﹣t 2+6t ,∴﹣t 2+6t=12,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.……9分 (4)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t . 如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC, ∴,即,解得:PD=6﹣t ,AD=8﹣t ,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.由(2)可知,S△AQP=﹣t2+6t∴S菱形AQPQ′=2S△AQP=2×(﹣t2+6t)=2×[﹣×()2+6×]=cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.…12分。
2015虹口二模Word版 上海市虹口区2015届高三二模数学理试题 Word版含答案
2015虹口二模Word版上海市虹口区2015届高三二模数学理试题 Word版含答案虹口区2015年数学学科(理科)高考练卷时间120分钟,满分150分。
2015年4月21日。
一、填空题(本大题满分56分)1.计算:$\frac{1+i}{1+i^2}$ = $\frac{1+i}{1-1}$ = $-i$2.已知函数$f(x)$ = $\begin{cases}2x。
(x\leq 1) \\ x。
(x>1)\end{cases}$,则$f(f(-3))$ = $f(2)$ = 43.函数$f(x)$ = $ln(\frac{1}{x}+1)$,则$f^{-1}(x)$ = $\frac{1}{1+e^{-x}}$4.已知正实数$x,y$满足$x+3y=1$,则$\frac{13x}{xy}$的最小值为$\frac{13}{9}$5.已知复数$z$ = $3sin\theta+icos\theta$,且$z$ = 5,且当$\theta$为钝角时,$tan\theta$ = $-\frac{4}{3}$6.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科学科,3门文科学科)中选择3门学科参加等级考试,XXX同学理科成绩较好,决定至少选择两门理科学科,那么XXX同学的选科方案有20种。
7.设数列$\{a_n\}$前$n$项的和为$S_n$,若$a_1$ = 4,且$a_{n+1}$ = $3S_n$,则$S_n$ = $\frac{4(3^n-1)}{2}$8.在极坐标系中,过点$(2,\frac{\pi}{4})$且与圆$\rho$ = $2cos\theta$相切的直线的方程为$y=x\sqrt{2}$9.若二项式$(x-\frac{3}{2})^6$展开式中含$x^2$项的系数为20,则$\lim_{n\to\infty}\sqrt[n]{2x(1+a+a^2+。
2015年区二模数学答案
3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
2015年上海各区中考数学二模压轴题24、25题图文解析
《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
上海中考数学二模24,25题
上海中考数学⼆模24,25题黄浦2015⼆模24. (本题满分12分,第(1)⼩题满分3分,第(2)⼩题满分4分,第(3)⼩题满分5分)如图7,在平⾯直⾓坐标系xOy 中,已知点A 的坐标为(a ,3)(其中a >4),射线OA 与反⽐例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且AB //x 轴,AC //y 轴.黄浦2015⼆模25. (本题满分14分,第(1)⼩题满分3分,第(2)满分6分,(3)⼩题满分5分)如图8,Rt △ABC 中,90C ?∠=,30A ?∠=,BC =2,CD 是斜边AB 上的⾼,点E 为边AC 上⼀点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.(备⽤图)图8奉贤2015⼆模24.(本题满分12分,第(1)⼩题4分,第(2)⼩题8分)已知:在平⾯直⾓坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上⼀点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.奉贤2015⼆模 25.(本题满分14分,第(1)⼩题4分,第(2)⼩题5分,第(3)⼩题5分)已知:如图,线段AB =8,以A 为圆⼼,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD .(1)若CD=6,求四边形ABCD 的⾯积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及⾃变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB (第25题图)AB(备⽤图)A普陀2015⼆模24.(本题满分12分)如图10,在平⾯直⾓坐标系xOy 中,⼆次函数的图像经过点()1,0A -,()4,0B ,()0,2C .点D 是点C 关于原点的对称点,联结BD ,点E 是x 轴上的⼀个动点,设点E 的坐标为(m , 0),过点E 作x 轴的垂线l 交抛物线于点P .(1)求这个⼆次函数的解析式;(2)当点E 在线段OB 上运动时,直线l 交BD 于点Q .当四边形CDQP 是平⾏四边形时,求m 的值;(3)是否存在点P ,使△BDP 是不以BD 为斜边的直⾓三⾓形,如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.图10备⽤图图10普陀2015⼆模 25.(本题满分14分)如图11-1,已知梯形ABCD 中,AD //BC ,90D ∠=o,5BC =,3CD =,cot 1B =.P 是边BC 上的⼀个动点(不与点B 、点C 重合),过点P 作射线PE ,使射线PE 交射线BA于点E ,BPE CPD ∠=∠.(1)如图11-2,当点E 与点A 重合时,求DPC ∠的正切值;(2)当点E 落在线段AB 上时,设BP x =,BE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)设以BE 长为半径的⊙B 和以AD 为直径的⊙O 相切,求BP 的长.C BDA 图11-1CBDA 图11备⽤图(E )P CBDA 图11-2A CB E OD备⽤图 xyO杨浦2015⼆模24.(本题满分12分,第(1)⼩题4分,第(2)⼩题4分,第(3)⼩题4分,) 已知:在直⾓坐标系中,直线y =x +1与x 轴交与点A ,与y 轴交与点B ,抛物线21()2y x m n =-+的顶点D 在直线AB 上,与y 轴的交点为C 。
上海市虹口区中考二模数学试题及答案
虹口区数学学科中考练习题(满分150分,考试时间100分钟).4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1. 在下列各数中,属于无理数的是A . 53; B . π; C .4; D .3272. 在下列一元二次方程中,没有实数根的是A . 20x x -=; B . 210x -=; C . 2230x x --=; D . 2230x x -+=. 3. 在平面直角坐标系xoy 中,直线2y x =-+经过A .第一、二、三象限 ;B .第一、二、四象限;C .第一、三、四象限 ;D .第二、三、四象限. 4. 某小区20户家庭某月的用电量如下表所示:用电量(度) 120 140 160 180 200 户数 2 3 672则这20 A .180,160;B .160,180;C .160,160;D .180,180.5.已知两圆内切,圆心距为5,其中一个圆的半径长为8 ,那么另一个圆的半径长是 A .3; B .13; C .3或13; D .以上都不对. 6. 在下列命题中,属于假命题...的是 A .对角线相等的梯形是等腰梯形;B .两腰相等的梯形是等腰梯形;C .底角相等的梯形是等腰梯形;D .等腰三角形被平行于底边的直线截成两部分,所截得的四边形是等腰梯形.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:22-= ▲ .8.不等式组240,50.x x +>⎧⎨-<⎩的解集是 ▲ .9.用换元法解分式方程13201x x x x +-+=+时,如果设1x y x+=,那么原方程化为关于y 的整式方程可以是 ▲ .1023x x +=的解是 ▲ . 11. 对于双曲线1k y x-=,若在每个象限内,y 随x 的增大而增大,则k 的取值范围是 ▲ .12.将抛物线23y x =向左平移2个单位,所得抛物线的表达式为 ▲ .13. 在一个不透明的盒子中装有8个白球和若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出1个球,它恰好是白球的概率是23,则该盒中黄球的个数为 ▲ .14.为了解某校九年级学生体能情况,随机抽查了其中的25名学生,测试了1分钟仰卧起坐的次数,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在20~25的频率是 ▲ .15.若正六边形的边长是1,则它的半径是 ▲ .16.在□ABCD 中,已知AC a =,DB b =,则用向量a 、b 表示向量AB 为 ▲ . 17.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′ ,即如图①,∠BAB′ =θ,AB B C AC n AB BC AC ''''===,我们将这种变换记为[θ,n ] .如图②,在△DEF 中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n = ▲ .18.如图,在直角梯形纸片ABCD 中,AD ∥BC ,∠A =90°, ∠C =30°,点F 是CD 边上一点,将纸片沿BF 折叠,点C 落在E 点,使直线BE 经过点D ,若BF=CF=8,则AD 的 长为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:22244(4)2x x x x x-+÷-+,其中5x =20.(本题满分10分)① AB CD 第18题图 3 第14题图 5 12 人数/人 次数/次 (每组含最小值,不含最大值)15 20 25 30 35 A B C B′ 第17题图 C ′ DE E ′F ′ F 图① 图②解方程组: 2223,2 1.x y x x y y +=⎧⎨-+=⎩21.(本题满分10分)如图,在△ABC 中,AB=AC=10,3sin 5ABC ∠=,圆O 经过点B 、C ,圆心O 在△ABC 的内部,且到点A 的距离为2,求圆O 的半径.22.(本题满分10分,第(1)小题4分,第(2)小题6分)某超市进了一批成本为6元/个的文具.调查后发现:这种文具每周的销售量y (个)与销售价x (元/个) 89.51114销售量y (个)220 205 190 160(1)求与之间的函数解析式(不必写出定义域);(2)已知该超市这种文具每周的销售量不少于60个,若该超市某周销售这种文具(不考虑其它因素)的利润为800元,求该周每个文具的销售价.23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,∠BAE =∠DAF . (1)求证:BE = DF ;(2)联结AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,联结EM 、FM .求证:四边形AEMF 是菱形.A B C O 第21题图 A DB E F O CM 第23题图24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知:直线24y x =-+交x 轴于点A ,交y 轴于点B ,点C 为x 轴上一点,AC =1, 且OC <OA .抛物线2 (0)y ax bx c a =++≠经过点A 、B 、C . (1)求该抛物线的表达式;(2)点D 的坐标为(-3,0),点P 为线段AB 上一点,当锐角∠PDO 的正切值为12时,求点P 的坐标;(3)在(2)的条件下,该抛物线上的一点E 在x 轴下方,当△ADE 的面积等于四边形APCE 的面积时,求点E 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在Rt △ABC 中,∠A =90°,AB=6,AC=8,点D 为边BC 的中点,DE ⊥BC 交边AC 于点E ,点P 为射线AB 上一动点,点Q 为边AC 上一动点,且∠PDQ =90°.(1)求ED 、EC 的长;(2)若BP=2,求CQ 的长;(3)记线段PQ 与线段DE 的交点为点F ,若△PDF 为等腰三角形,求BP 的长.ABEC D ABCED第25题图(备用图)-1 O 1 2 -1 12-3 -2 yx -3 3-2 3 4 -4 -4 4虹口区中考数学模拟练习卷答案要点与评分标准.4说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题:(本大题共6题,满分24分)1.B ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C .二、填空题:(本大题共12题,满分48分)7.14; 8. 25x -<<; 9.2230y y +-=; 10.3x =; 11.k <1; 12.23(2)y x =+; 13.4; 14.0.2;15.1; 16.1122a b +; 17.2; 18.3三、解答题:(本大题共7题,满分78分)19.解:原式=2(2)(2)44(2)x x x x x x x+--+÷+………………………………………………(3分)2(2)(2)(2)(2)x x xx x x +-=⋅+- …………………………………………………(2分)12x =- ………………………………………………………………………(2分)当5x ==52…………………………………………………(3分)20.解:由②得:2()1x y -=,∴ 1x y -=或1x y -=- ……………………………………………………(2分)把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,23,1x y x y +=⎧⎨-=-⎩ …………………………………………………(4分)解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩222353x y ⎧=⎪⎪⎨⎪=⎪⎩.……………………………………………(4分)注:用代入消元法解,请参照给分.21.解:过点A 作AD ⊥BC ,垂足为点D …………………………………………………(1分)∵3sin 5ABC ∠=∴4cos 5ABC ∠=………………………………………………(1分) 在Rt △ABD 中,4cos 1085BD AB ABC =⋅∠=⨯=………………………………(1分)3sin 1065AD AB ABC =⋅∠=⨯=…………………………………(1分)∵AB=AC=10 AD ⊥BC ∴BC=2BD=16…………………………………………(1分) ∵AD 垂直平分BC ∴圆心O 在直线AD 上………………………………………(2分) ∴OD=6-2=4 ……………………………………………………………………………(1分)联结BO ,在Rt △OBD 中,2245BO OD BD =+=…………………………(2分)∴圆O 的半径为4522.解:(1)设所求函数解析式为y =kx +b (0k ≠)…………………………………(1分)由题意得:220819011k b k b =+⎧⎨=+⎩解之得:10300k b =-⎧⎨=⎩………………………(2分)∴y 与x 之间的函数解析式为y =-10x +300. ………………………………(1分)(2)由题意得(x -6)(-10x +300)=800 ……………………………………………(2分)整理得,x 2-36x +260=01210,26x x ==…………………………………………………………………(2分)当x =10时,y =200当x =26时,y =40<60 ∴x =26舍去 ……………………………………………(1分)答:该周每个文具销售价为10元. ………………………………………………(1分)23.证明:(1)∵正方形ABCD ,∴AB=AD ,∠B =∠D =90°…………………………(2分)∵∠BAE = ∠DAF∴△ABE ≌△ADF ……………………………………………………………(1分)∴BE = DF ……………………………………………………………………(2分)(2)∵正方形ABCD ,∴∠BAC =∠DAC ………………………………………(1分)∵∠BAE =∠DAF ∴∠EAO =∠FAO ……………………………………(1分)∵△ABE ≌△ADF ∴AE = AF …………………………………………(1分) ∴EO=FO ,AO ⊥EF …………………………………………………………(2分)∵OM = OA ∴ 四边形AEMF 是平行四边形……………………………(1分) ∵AO ⊥EF ∴四边形AEMF 是菱形……………………………………(1分)24.解:(1)易得:A (2,0),B (0,4)∵AC =1且OC <OA ∴点C 在线段OA 上∴C (1,0) …………………………………………………………………(1分)∵A (2,0),B (0,4),C (1,0)在抛物线2(0)y ax bx c a =++≠上,∴42040a b c c a b c ++=⎧⎪=⎨⎪++=⎩ 解得: 264a b c =⎧⎪=-⎨⎪=⎩∴所求抛物线的表达式为2264y x x =-+………………………………(3分)(2)∵锐角∠PDO 的正切值为12, 1tan 2ABO ∠= (ABO ∠为锐角)∴ABO PDA ∠=∠,∵点P 为线段AB 上一点,∴BAO DAP ∠=∠∴△ABO ∽△ADP ……………………………………………………………(1分)∴AP ADAO =, 又AO =2 , AB =5,AD =5 ∴5AP =1分)过点P 作PF AO ⊥于点F ,可证PF ∥BO ,∴AP PFAB BO= 可得:P F=2,即点P 的纵坐标是2.∴可得P (1,2)………………………………………………………………(2分) (3)设点E 的纵坐标为m (m <0), ∴1522ADE S AD m m =⋅=-△∵P (1,2),∴11()(2)22p APCE S AC y m m =⋅+=-四 由ADEAPCE S S =△四得:15(2)22m m -=- ……………………………………(2分)解得:12m =-∴点E 31(,)22-…………………………………………………………………(2分)25.解:(1)在Rt △ABC 中,∠A =90°,AB=6,AC=8 ∴BC=10……………………(1分)点D 为BC 的中点 ∴CD =5 可证△ABC ∽△DEC∴DE EC CD AB BC AC ==, 即56108DE EC ==………………………………(1分)∴154DE =,254CE =……………………………………………………(2分)(2)①当点P 在AB 边上时,在Rt △ABC 中,∠B +∠C =90°,在Rt △EDC 中,∠DEC +∠C =90°, ∴∠DEC=∠B ∵DE ⊥BC ,∠PDQ =90° ∴∠PDQ =∠BDE =90° ∴∠BDP =∠EDQ∴△BPD ∽△EQD ……………………………………………………………(1分)∴EQ DE BP BD =, 即15425EQ =, ∴32EQ = ………………………………………………………………………(2分)∴CQ=EC -EQ 194=……………………………………………………………(1分)②当点P 在AB 的延长线上时,同理可得:32EQ =, ∴CQ=EC +EQ 314=…………………………………………………………(1分)(3)∵线段PQ 与线段DE 的交点为点F ,∴点P 在边AB 上∵△BPD ∽△EQD ∴43BP BD PD EQ ED QD === 若设BP =x ,则34EQ x =,25344CQ x =- …………………………………(1分)可得4cot cot3QPD C∠==∴∠QPD=∠C又可证∠PDE=∠CDQ ∴△PDF∽△CDQ∵△PDF为等腰三角形∴△CDQ为等腰三角形………………………(1分)①当CQ=CD时,可得:253544x-=解得:53x=………………………(1分)②当QC=QD时,过点Q作QM⊥CB于M,∴1522CM CD==,5525248CQ=⨯=∴25325448x-=,解得256x=……………………………………………(1分)③当DC=DQ时,过点D作DN⊥CQ于N,∴4545CN=⨯=,28CQ CN==∴253844x-=,解得73x=-(不合题意,舍去)…………………………(1分)∴综上所述,53BP=或256.。
虹口区2015学年度第一学期期中教学质量监控测试初三数学
虹口区2015学年度第一学期期中教学质量监控测试初三数学2015.11一、选择题1、已知矩形ABCD 与矩形EFGH 是相似形,并且点A 与点E 、点B 与点F 、点C 与点G 、点D 与点H 分别是对应顶点,若AB=2,AD=4,则EF:EH 等于( )A 、1:4B 、4:1C 、1:2D 、2:12、若将mn=pq(m ≠0)变形,则下列式子中,错误的是( )A 、n q p m =B 、q n m p =C 、p n m q =D 、qp n m = 3、如图,在平行四边形ABCD 中,EF//AB 交AD 于点E ,交BD 于点F ,若DE:EA=3:4,CD=7,则EF 的长为( )A 、4B 、3C 、328D 、4214、在△ABC 中,若点D 、E 分别在边AB 、AC 上,则下列条件中,一定能推出DE//BC 的是( )A 、AB AD BC ED = B 、DB AD BC ED = C 、AE EC DB AD = D 、ECDB AE AD = 5、如图,在直角坐标平面xoy 内有一点P (3,4),那么OP 与x 轴正半轴的夹角α的正弦值是( )A 、53B 、54C 、43D 、346、如图,在正方形ABCD 中,如果E 为CD 边的中点,P 是BC 边上的一动点,那么下列条件中,能推出△ABP 与△ECP 相似的是( )A 、BP:BC=1:3B 、BP:BC=1:2C 、BP:BC=2:3D 、 BP:BC=3:425.(本题14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,在Rt ABC ∆中,90ACB ∠=︒,AC =BC =1,E 、F 为边AB 上两动点,且45ECF ∠=︒,过点E 、F 分别作BC 、AC 的垂线相交于点D ,垂足分别为点H 、G . 设A 、E 两点间的距离为x ,B 、F 两点间的距离为y.(1)当y =时,求DG 的长;(2)求y 关于x 的函数关系式,并写出x 的取值范围;(3)分别联结AD 和BD ,若ADF ∆与BDE ∆相似,求x 的值.C A C B A H G EF DC BA。
2015年上海市虹口区中考数学、语文、英语二模试卷及答案
2015年上海市虹口区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)计算(a2)3的结果是()A.a5B.a6C.a8D.3a22.(4分)下列代数式中,+1的一个有理化因式是()A.B.C.+1D.﹣13.(4分)不等式组的解集是()A.x≥﹣B.x<1C.﹣≤x<1D.﹣<x<14.(4分)下列事件中,是确定事件的是()A.上海明天会下雨B.将要过马路时恰好遇到红灯C.有人把石头孵成了小鸭D.冬天,盆里的水结成了冰5.(4分)下列正多边形中,中心角等于内角的是()A.正三角形B.正四边形C.正六边形D.正八边形6.(4分)下列命题中,真命题是()A.有两边和一角对应相等的两个三角形全等B.有两边和第三边上的高对应相等的两个三角形全等C.有两边和其中一边上的高对应相等的两个三角形全等D.有两边和第三边上的中线对应相等的两个三角形全等二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)据报道,截止2015年3月,某市网民规模达5180000人.请将数据5180000用科学记数法表示为.8.(4分)分解因式:2x2﹣8x=.9.(4分)如果关于的方程x2+3x﹣a=0有两个相等的实数根,那么a=.10.(4分)方程的根是.11.(4分)函数y=的定义域是.12.(4分)在反比例函数y=的图象所在的每个象限中,如果函数值y随自变量的x 值增大而增大,那么常数k的取值范围是.13.(4分)为了了解某中学学生的上学方式,从该校全体学生900名中,随机抽查了60名学生,结果显示有15名学生“步行上学”.由此,估计该校全体学生中约有名学生“步行上学”.14.(4分)在Rt△ABC中,∠C=90°,点G是Rt△ABC的重心,如果CG=6,那么斜边AB的长等于.15.(4分)如图,在△ABC中,点E、F分别在边AC、BC上,EF∥AB,CE=AE,若=,=,则=.16.(4分)如图,⊙A、⊙B的半径分别为1cm、2cm,圆心距AB为5cm.将⊙A由图示位置沿直线AB向右平移,当该圆与⊙B内切时,⊙A平移的距离是cm.17.(4分)定义[a,b,c]为函数y=ax2+bx+c的“特征数”.如:函数y=x2+3x﹣2的“特征数”是[1,3,﹣2],函数y=﹣x+4的“特征数”是[0,﹣1,4].如果将“特征数”是[2,0,4]的函数图象向下平移3个单位,得到一个新函数图象,那么这个新函数的解析式是.18.(4分)在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为.三、解答题(本大题共7题,满分78分)19.(10分)先化简,再求值(﹣)÷,其中x=﹣3.20.(10分)解方程组:.21.(12分)如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.22.(12分)某商店试销一种成本为10元的文具.经试销发现,每天销售件数y(件)是每件销售价格x(元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖出40件.(1)试求y关于x的函数解析式(不用写出定义域);(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定为多少元?(不考虑其他因素)23.(6分)如图,四边形ABCD是平行四边形,点E为DC延长线上一点,联结AE,交BC边于点F,联结BE.(1)求证:AB•AD=BF•ED;(2)若CD=CA,且∠DAE=90°,求证:四边形ABEC是菱形.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0)、B(3,0).C(2,3)三点,且与y轴交于点D.(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD、DC,CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD 的面积平分时,求m的值;(3)设点F为该抛物线对称轴上的一点,当以点A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.25.(16分)如图,在Rt △ABC 中,∠ACB=90°.AB=13,CD ∥AB .点E 为射线CD 上一动点(不与点C 重合),联结AE ,交边BC 于点F ,∠BAE 的平分线交BC 于点G .(1)当时CE=3,求S △CEF :S △CAF 的值;(2)设CE=x ,AE=y ,当CG=2GB 时,求y 与x 之间的函数关系式;(3)当AC=5时,联结EG ,若△AEG 为直角三角形,求BG 的长.2015年上海市虹口区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)计算(a2)3的结果是()A.a5B.a6C.a8D.3a2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选:B.【点评】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.(4分)下列代数式中,+1的一个有理化因式是()A.B.C.+1D.﹣1【考点】分母有理化.【分析】根据有理化因式的定义进行求解即可.两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.【解答】解:∵由平方差公式,()()=x﹣1,∴的有理化因式是,故选D.【点评】本题主要考查了对有理化因式的理解,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.3.(4分)不等式组的解集是()A.x≥﹣B.x<1C.﹣≤x<1D.﹣<x<1【考点】解一元一次不等式组.【分析】先解不等式组中的每一个不等式的解集,再利用求不等式组解集的方法得出解集.【解答】解:解不等式①的x≥﹣,解不等式②得x<1,所以不等式的解集是﹣≤x<1.故选:C.【点评】此题考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4.(4分)下列事件中,是确定事件的是()A.上海明天会下雨B.将要过马路时恰好遇到红灯C.有人把石头孵成了小鸭D.冬天,盆里的水结成了冰【考点】随机事件.【分析】利用确定事件包括必然事件和不可能事件.必然事件就是一定发生的事件,即发生的概率是1的事件.不可能事件是指在一定条件下,一定不发生的事件,进而判断得出即可.【解答】解:A,B,D都不一定发生,属于不确定事件.有人把石头孵成了小鸭,是不可能事件.故选:C.【点评】本题考查了随机事件,理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)下列正多边形中,中心角等于内角的是()A.正三角形B.正四边形C.正六边形D.正八边形【考点】正多边形和圆.【分析】设正边形的边数是n,根据内角根据中心角等于内角,就可以得到一个关于n的方程,解方程就可以解得n的值【解答】解:设正边形的边数是n.根据题意得:180﹣=,解得:n=4.故选B.【点评】本题考查了正多边形和圆,考查正多边形的中心角和内角和的知识,正确利用n表示出正多边形的中心角和内角是关键.6.(4分)下列命题中,真命题是()A.有两边和一角对应相等的两个三角形全等B.有两边和第三边上的高对应相等的两个三角形全等C.有两边和其中一边上的高对应相等的两个三角形全等D.有两边和第三边上的中线对应相等的两个三角形全等【考点】命题与定理;全等三角形的判定.【分析】根据三角形全等的判定方法对A、D进行判断;利用三角形高的位置不同可对B、C进行判断.【解答】解:A、有两边和它们的夹角对应相等的两个三角形全等,所以A选项错误;B、有两边和第三边上的高对应相等的两个锐三角形全等,所以B选项错误;C、有两边和其中一边上的高对应相等的两个锐三角形全等,所以C选项错误;D、有两边和第三边上的中线对应相等的两个三角形全等,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)据报道,截止2015年3月,某市网民规模达5180000人.请将数据5180000用科学记数法表示为 5.18×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将5180000用科学记数法表示为5.18×106.故答案为:5.18×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(4分)分解因式:2x2﹣8x=2x(x﹣4).【考点】因式分解-提公因式法.【分析】直接提取公因式2x,进而得出答案.【解答】解:原式=2x(x﹣4).故答案为:2x(x﹣4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.(4分)如果关于的方程x2+3x﹣a=0有两个相等的实数根,那么a=﹣.【考点】根的判别式.【分析】根据方程x2+3x﹣a=0有两个相等的实数根可得△=32﹣4(﹣a)=9+4a=0,求出a 的值即可.【解答】解:∵关于的方程x2+3x﹣a=0有两个相等的实数根,∴△=0,∴32﹣4(﹣a)=9+4a=0,∴a=﹣,故答案为:﹣.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△=0⇔方程有两个相等的实数根,此题难度不大.10.(4分)方程的根是x=1.【考点】无理方程.【分析】把方程两边平方去根号后即可转化成整式方程,解方程即可求得x的值,然后进行检验即可.【解答】解:两边平方得:2﹣x=x2,整理得:x2+x﹣2=0,解得:x=1或﹣2.经检验:x=1是方程的解,x=﹣2不是方程的解.故答案是:x=1.【点评】在解无理方程是最常用的方法是两边平方法及换元法,本题用了平方法.11.(4分)函数y=的定义域是x≥﹣1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.(4分)在反比例函数y=的图象所在的每个象限中,如果函数值y随自变量的x值增大而增大,那么常数k的取值范围是k<.【考点】反比例函数的性质.【分析】先根据函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大列出关于m的不等式,求出m的取值范围即可.【解答】解:∵函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,∴2k﹣3<0,解得k<.故答案为:k<.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.13.(4分)为了了解某中学学生的上学方式,从该校全体学生900名中,随机抽查了60名学生,结果显示有15名学生“步行上学”.由此,估计该校全体学生中约有225名学生“步行上学”.【考点】用样本估计总体.【分析】先通过样本计算“步行上学”的学生所占百分比,然后估计整体中“步行上学”的学生人数.【解答】解:∵从该校全体学生900名中,随机抽查了60名学生,结果显示有15名学生“步行上学”,∴“步行上学”的学生所占百分比为×100%=25%,∴估计该校全体学生中“步行上学”的人数为900×25%=225.故答案为225.【点评】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.14.(4分)在Rt△ABC中,∠C=90°,点G是Rt△ABC的重心,如果CG=6,那么斜边AB的长等于18.【考点】三角形的重心.【专题】计算题.【分析】CD为斜边上的中线,如图,根据重心的性质得到DG=CG=3,则CD=9,然后根据直角三角形斜边上的中线性质即可得到AB的长.【解答】解:CD为斜边上的中线,如图,∵点G是Rt△ABC的重心,∴CG:GD=2:1,∴DG=CG=×6=3,∴CD=3+6=9,∴AB=2CD=18.故答案为18.【点评】本题考查了三角形重心:三角形的重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了直角三角形斜边上的中线性质.15.(4分)如图,在△ABC中,点E、F分别在边AC、BC上,EF∥AB,CE=AE,若=,=,则=﹣.【考点】*平面向量.【分析】由=,=,利用三角形法则,即可求得,然后由EF∥AB,可证得△CEF∽△CAB,再利用相似三角形的对应边成比例,即可求得答案.【解答】解:∵=,=,∴=﹣=﹣,∵EF∥AB,∴△CEF∽△CAB,∴,∵CE=AE,∴==﹣.故答案为:﹣.【点评】此题考查了平面向量的知识以及相似三角形的判定与性质.注意掌握三角形法则的应用.16.(4分)如图,⊙A、⊙B的半径分别为1cm、2cm,圆心距AB为5cm.将⊙A由图示位置沿直线AB向右平移,当该圆与⊙B内切时,⊙A平移的距离是4或6cm.【考点】圆与圆的位置关系;平移的性质.【分析】可根据圆心距与半径之间的数量关系判断⊙A与⊙B的位置关系.【解答】解:当内切时,圆心距为2﹣1=1,当点A在点B的左侧时,移动的距离为5﹣1=4cm;当点A在点B的右侧时,移动的距离为5+1=6cm;所以向右移动4或6cm时两圆内切,故答案为:4或6.【点评】考查了圆与圆的位置关系,解此题的关键是熟练掌握由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P;外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.17.(4分)定义[a,b,c]为函数y=ax2+bx+c的“特征数”.如:函数y=x2+3x﹣2的“特征数”是[1,3,﹣2],函数y=﹣x+4的“特征数”是[0,﹣1,4].如果将“特征数”是[2,0,4]的函数图象向下平移3个单位,得到一个新函数图象,那么这个新函数的解析式是y=2x2+1.【考点】二次函数图象与几何变换.【专题】新定义.【分析】根据“特征数”的定义得到:“特征数”是[2,0,4]的函数的解析式为:y=2x2+4,则该抛物线的顶点坐标是(0,4),根据平移规律得到新函数解析式.【解答】解:依题意得:“特征数”是[2,0,4]的函数解析式为:y=2x2+4,其顶点坐标是(0,4),向下平移3个单位后得到的顶点坐标是(0,1),所以新函数的解析式为:y=2x2+1.故答案是:y=2x2+1.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.18.(4分)在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为﹣1.【考点】旋转的性质.【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB=2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为﹣1.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.三、解答题(本大题共7题,满分78分)19.(10分)先化简,再求值(﹣)÷,其中x=﹣3.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式=[﹣]•(x﹣3)=•(x﹣3)=,当x=﹣3时,原式===2﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)解方程组:.【考点】高次方程.【分析】把①化为x+3y=1和x+3y=﹣1,再把x+3y=1和x+3y=﹣1分别与x﹣y﹣3=0组成方程组,解出方程组得到答案.【解答】解:,由①得,(x+3y)2=1即x+3y=1,x+3y=﹣1,得到方程组,,分别解这两个方程组,得原方程组的解:,.【点评】本题考查的是二元二次方程组的解法,把二元二次方程通过因式分解化为两个二元一次方程,再把这两个二元一次方程分别与另一个方程组成二元一次方程组,解方程组即可.21.(12分)如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.【考点】垂径定理;解直角三角形.【分析】连接AO,交BC于点E,连接BO,求出=,根据垂径定理得出OA⊥BC,BC=2BE,设AE=x,则BE=3x,OE=5﹣x,根据勾股定理得出方程(3x)2+(5﹣x)2=52,求出方程的解即可.【解答】解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6.【点评】本题考查了圆心角、弧、弦之间的关系,垂径定理,解直角三角形,勾股定理的应用,解此题的关键是构造直角三角形,用了方程思想,难度适中.22.(12分)某商店试销一种成本为10元的文具.经试销发现,每天销售件数y(件)是每件销售价格x(元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖出40件.(1)试求y关于x的函数解析式(不用写出定义域);(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定为多少元?(不考虑其他因素)【考点】一元二次方程的应用;根据实际问题列一次函数关系式.【分析】(1)设出一次函数解析式y=kx+b,用待定系数法建立关于k和b的方程组,解之即可求出所求;(2)按照等量关系“每月获得的利润=(销售价格﹣进价)×销售件数”列出二次函数,并求得最值.【解答】解:(1)由题意,知:当x=15时,y=50;当x=20时,y=40,设所求一次函数解析式为y=kx+b,由题意得:,解得:∴所求的y关于x的函数解析式为y=﹣2x+80.(2)由题意,可得:(x﹣10)(﹣2x+80)=450解得:x=25答:该种文具每件的销售价格应该定为25元.【点评】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.23.(6分)如图,四边形ABCD是平行四边形,点E为DC延长线上一点,联结AE,交BC边于点F,联结BE.(1)求证:AB•AD=BF•ED;(2)若CD=CA,且∠DAE=90°,求证:四边形ABEC是菱形.【考点】相似三角形的判定与性质;平行四边形的性质;菱形的判定.【分析】(1)由四边形ABCD是平行四边形得到∠ABC=∠D,AB∥CD,∠BAF=∠DEA,推出△ABF∽△EDA,于是即可得到结论;(2)根据∠DAE=90°,得到∠AED+∠D=90°,∠EAC+∠DAC=90°,根据CD=CA,推出四边形ABCD是平行四边形,根据平行四边形的性质得到AB∥CD且AB=CD,证出四边形ABEC是平行四边形.由于CE=CA,推出四边形ABEC是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠ABC=∠D,AB∥CD,∴∠BAF=∠DEA,∴△ABF∽△EDA,∴=,∴AB•AD=BF•ED;(2)∵∠DAE=90°,∴∠AED+∠D=90°,∠EAC+∠DAC=90°,∵CD=CA,∴∠DAC=∠D,∴∠AED=EAC,∴CE=CA,∴CE=CD.∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∴AB∥EC且AB=EC,∴四边形ABEC是平行四边形.∵CE=CA,∴四边形ABEC是菱形.【点评】本题考查了平行四边形的判定和性质,相似三角形的判定和性质,菱形的判定,熟记定理是解题的关键.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0)、B(3,0).C(2,3)三点,且与y轴交于点D.(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD、DC,CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD 的面积平分时,求m的值;(3)设点F为该抛物线对称轴上的一点,当以点A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.【考点】二次函数综合题.【分析】(1)抛物线y=ax2+bx+c过点A(﹣1,0)、B(3,0).C(2,3)三点,列方程组可求得.(2)由梯形的面积公式列方程即可求得m的值.(3)由以A、B、C、F为顶点的四边形是梯形,分类讨论当CF∥AB时,点F在线段CD 上,求得F(1,3),当AF∥BC时,直线BC的解析式为;y=﹣3x+9,直线AF的解析式为y=﹣3x﹣3,求得F(1,﹣6),当CA∥BF时,直线AC的解析式为;y=x+1,直线BF 的解析式为;y=x﹣3,求得F(1,﹣2).【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(2,3)三点,∴解得:,∴所求抛物线的表达式为y=﹣x2+2x+3,其对称轴是直线x=1,(2)由题意,得:D(0,3),∵DC ∥AB ,AB=4,CD=3,∵直线y=4x+m 与线段DC 交于点E ,且将四边形ABCD 的面积平分,∴直线y=4x+m 与边AB 相交,设交点为点G ,∴点E 的纵坐标是3,点G 的纵坐标是0,∴可求得E (,3),G (﹣,0),由题意,得:S 四边形ABCD =2S 四边形AGED ,∴AB+CD=2(AG+DE )∴4+2=2(﹣+1+),解得:m=﹣.(3)当CF ∥AB 时,点F 在线段CD 上,∴F (1,3),当AF ∥BC 时,直线BC 的解析式为;y=﹣3x+9,∴直线AF 的解析式为y=﹣3x ﹣3,当x=1时,y=﹣6,∴F (1,﹣6),当CA ∥BF 时,直线AC 的解析式为;y=x+1,∴直线BF 的解析式为;y=x ﹣3,∴当x=1时,y=﹣2,∴F (1,﹣2);综上所述;点F 的坐标:(1,3),(1,﹣2),(1,﹣6).【点评】此题考查了抛物线解析式的确定、梯形的判定、梯形的面积的求法重要知识点,(3)小题中,都用到了分类讨论的数学思想,难点在于考虑问题要全面,做到不重不漏.25.(16分)如图,在Rt △ABC 中,∠ACB=90°.AB=13,CD ∥AB .点E 为射线CD 上一动点(不与点C 重合),联结AE ,交边BC 于点F ,∠BAE 的平分线交BC 于点G .(1)当时CE=3,求S △CEF :S △CAF 的值;(2)设CE=x ,AE=y ,当CG=2GB 时,求y 与x 之间的函数关系式;(3)当AC=5时,联结EG ,若△AEG 为直角三角形,求BG 的长.【考点】相似形综合题.【分析】(1)过点C 作CH ⊥AE 于H ,根据等高的两个三角形面积之比等于底的比,求出EF :AF 即可;(2)延长AG交射线CD于点K,根据相似三角形对应边成比例求出y与x之间的函数关系式;(3)分∠AGE=90°、∠AEG=90°两种情况进行解答,求出BG的长.【解答】解:(1)过点C作CH⊥AE于H,∴==,∵CD∥AB,∴,∵CE=3,AB=13,∴=,∴=.(2)延长AG交射线CD于点K,∵CD∥AB,∴∠EKA=∠KAB,∵AG平分∠BAE,∴∠EAK=∠KAB,∴∠EKA=∠EAK,∴AE=EK,∵CE=x,AE=y,∴CK=CE+EK=CE+AE=x+y,∵CD∥AB,∴=,∵CG=2GB,∴=2,∴,∴y=26﹣x.(3)由题意,得:BC=12,①当∠AGE=90°时,则AG=GK,∵CD∥AB,∴BG=BC=6.②当∠AEG=90°时,则△ACF∽△GEF,∴=,∠CFE=∠AFG,∴△ECF∽△GAF,∴∠ECF=∠FAG,又∵∠FAG=∠GAB,∠ECF=∠B,∴∠B=∠GAB,∴GA=GB,过点G作GN⊥AB于N,∴BN=AB=,∴BG=BN=.【点评】本题考查的是相似三角形的综合应用,灵活运用相似三角形的判定定理和性质定理是解题的关键,本题可以提高学生综合运用知识的能力、逻辑思维能力.虹口区2015年语文学科中考练习题(满分150分,考试时间100分钟)考生注意:1、本试卷共28题。
虹口区2015学年度第二学期初三质量调研数学试卷
第5题图虹口区2015学年度第二学期初三质量调研数学试卷一.选择题:(本大题共6题,每题4分,满分24分) 1.计算3)2(-的结果是( )A .6;B .6-;C .8;D .8-; 2.下列根式中,与3是同类二次根式的是( ) A .6; B .12; C .23; D .18; 3.不等式042≤+x 的解集在数轴上表示正确的是( )A . ;B . ;C . ;D . ;4.李老师对某班学生“你最喜欢的体育项目是什么?”的问题进行了调查,每位同学都选择了其中的一项,现把所得的数据绘制成频数分布直方图(如图).如图中的信息可知,该班学生最喜欢足球的频率是( )A .12;B .3.0;C .4.0;D .40;5.如图所示的尺规作图的痕迹表示的是( )A .尺规作线段的垂直平分线;B .尺规作一条线段等于已知线段;C .尺规作一个角等于已知角;D .尺规作角的平分线; 6.下列命题中,真命题是( )A .四条边相等的四边形是正方形;B .四个角相等的四边形是正方形;C .对角线相等的平行四边形是正方形;D .对角线相等的菱形是正方形; 二.填空题:(本大题共12题,每题4分,满分48分) 7.当1=a 时,3-a 的值为 ;某班学生最喜欢的体育项目的频数分布直方图第4题图第15题图 第18题图 8.方程x x =+32的根是 ;9.若关于x 的方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是 ; 10.试写出一个二元二次方程,使该方程有一个解是⎩⎨⎧=-=21y x ,你写的这个方程是(写出一个符合条件的即可);11.函数121-=x y 的定义域是 ; 12.若),23(1y A -.),52(2y B 是二次函数3)1(2+--=x y 图像上的两点,则1y2y (填“>”或“<”或“=”);13.一个不透明纸箱中装有形状.大小.质地等完全相同的7个小球,分别标有数字1、2、3、4、5、6、7,从中任意摸出一个小球,这个小球上的数字是奇数的概率是 ; 14.已知某班学生理化实验操作测试成绩的统计结果如下表:则这些学生成绩的众数是 分;15.如图,在梯形ABCD ∆中,E .F 分别为腰AD .BC 的中点,若3=DC m ,5=EF m ,则向量=AB (结果用m 表示);16.若两圆的半径分别为cm 1和cm 5,圆心距为cm 4,则这两圆的位置关系是 ; 17.设正n 边形的半径为R ,边心距为r ,如果我们将rR的值称为正n 边形的“接近度”,那么正六边形的“接近度”是 (结果保留根号); 18.已知ABC ∆中,5==AC AB ,6=BC (如图所示),将ABC ∆沿射线BC 方向平移m 个单位得到DEF ∆,顶点A .B .C 分别与D .E .F 对应,若以点A .D .E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是 ;三.解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:4216442+÷-+-x x x x ,其中8=x ;成绩(分)4 5 6 7 8 9 10 人数12269119第21题图20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知一个二次函数的图像经过)10(-,A .)51(,B .)31(--,C 三点. (1)求这个二次函数的解析式;(2)用配方法...把这个函数的解析式化为k m x a y ++=2)(的形式;21.(本题满分10分)如图,在∆ABC 中,CD 是边AB 上的中线,B ∠是锐角,且22sin =B ,21tan =A ,22=BC ,求边AB 的长和CDB ∠cos 的值;22.(本题满分10分)社区敬老院需要600个环保包装盒,原计划由初三(1)班全体同学制作完成。
2015年上海各区中考数学二模压轴题24、25题图文解析
《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
2015上海初三数学二模23题几何证明
2 0 15初三二模几何证明专练长宁 23.(此题满分 12 分)如图,正方形 ABCD 中,点 E、F 分别在边 BC、A DCD 上, AE=AF,AC 和 EF 点 G,使得 AO=OG,联络交于点 O,延伸EG、FG.AC至OFB E C(1)求证 : BE=DF ;G第 23题图(2)求证 :四边形AEGF是菱形 .徐汇 23、已知:如图,正方形 ABCD ,BM 、DN 分别是正方形的两个外角均分线, MAN 45 ,将MAN绕着正方形的极点A旋转,边BAAM 、AN 分别交两条角均分线于点M 、N,联络 MN ;M (1)求证:ABM ∽ADN ;D C (2)联络 BD ,当BAM 的度数为多少时,四边形BMND 为矩形,并加以证明;N虹口金山 23.(此题满分 12 分)DGCF EHA B第23题已知:如图,在中 Rt ABC 中,ACB 90 ,AC BC ,点 E 在边 AC 上,延伸 BC至D点,使CE CD,延伸 BE交 AD于F ,过点C作CG//BF ,交 AD 于点 G ,在 BE 上取一点 H ,使HCE DCG .(1)求证:BCE ACD ;(2)求证:四边形 FHCG 是正方形.静安青浦 23、(此题满分 12 分,每题满分 6 分)如图,在梯形 ABCD 中,AB / /CD,AD BC ,E是CD的中点,BED EC交 AC 于 F,过点 F作FG//AB,交 AE 于点 G;G F(1)求证: AG=BF ;A B (2)当AD2CA CF 时,求证:AB AD AG AC ;宝山嘉定 23.(此题满分 12 分,每题满分各 6 分)如图 8,已知△ABC和△ADE都是等边三角形,点D在边BC上,点E在边 AD的右边,联络 CE .A(1)求证:ACE 60 ;EF(2)在边AB上取一点F,使BF BD,联络 DF 、EF .CB D图 8求证:四边形 CDFE 是等腰梯形.闸北 23.(此题满分 12 分,第( 1)小题 4 分,第( 2)小题 4 分,第( 3)小题 4 分)已知:如图五,在平行四边形ABCD中,点 E、F A(图B D五)E FC分别在 BC、CD上,且 AE=AF,∠ AEC=∠ AFC.(1)求证:四边形 ABCD是菱形;(2)如图六,若 AD=AF,延伸 AE、DC交于点G,求证: AF2=AG·DF.( 3)在第( 2)小题的条件下,连结BD,交 AG于点 H,若 HE=4,EG=12,求 AH的长.A奉贤 23.(此题满分 12 分,每题满分各6分)B DE F已知:如图,在四边形 ABCD中,AB//CCD,点 E 是对角线 AC上一GA点,∠ DEC=∠ABC,且CD2CE CA.E (1)求证:四边形ABCD是平行四边形;(图六)DB C (2)分别过点E、B作AB和AC的平行线交于点F,联络 CF F,(第23题图)若∠ FCE=∠DCE,求证:四边形 EFCD是菱形.普陀 23. (此题满分12 分)如图 9,在△ ABC中,点 D、E 分别在边 BC、AC上,BE、AD订交于点G,EF∥ AD交 BC于点 F,且 BF 2BD BC ,联络FG。
2015年中考数学二模试题附答案
2015年中考数学二模试题(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3(C)030-=()(D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 …………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D) 6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 …………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ . 8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为▲ . 11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ .12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将(第14题图)ABCD(第15题图)A BCEFD(第16题图)B[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-.20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长;(2)求sin DAE ∠的值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?A C FED(第18题图)(第21题图) CAB E D此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.24.(本题满分12分,每小题各6分) 如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)A BDHG FEC(第23题图)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;(2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)BA CB九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a - 15.216. 17.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+………………………………………………………………2分∵6302x tan =-6223=⨯-=………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分) 解方程组:222230x y x xy y -=⎧⎨--=⎩...............(1) (2)解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FA E=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM =又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485PQ x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=A P —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED- 11 - 356x = ……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356. (3)当△PMC 是等腰三角形,存在以下几种情况: 1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x = 若M 在线段PQ 上时,PM+MQ=PQ ∴44855x x x +=- 4013x = ……………………………………………………………………1分 若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -= 8013x = …………………………………………………………………………1分 3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH∵PH ∥BE ∴1AP AH BP CH== ∴110x x =- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014学年虹口区调研测试九年级数学2015.04(满分150分,考试时间100分钟)考生注意:.本试卷含三个大题,共25题;.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要 步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.计算23()a 的结果是( )A .5a ;B .6a ;C .8a ;D .9a .21的一个有理化因式是( )ABC1;D1.3.不等式组21010x x +≥⎧⎨-<⎩的解集是( ) A .12x ≥-;B .1x <;C .112x -≤<;D .112x -<<. 4.下列事件中,是确定事件的是() A .上海明天会下雨;B .将要过马路时恰好遇到红灯; C .有人把石头孵成了小鸭;D .冬天,盆里的水结成了冰.5.下列多边形中,中心角等于内角的是( ) A .正三角形;B .正四边形;C .正六边形;D .正八边形.6.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等;B .有两边和第三边上的高对应相等的两个三角形全等;C .有两边和其中一边上的高对应相等的两个三角形全等;D .有两边和第三边上的中线对应相等的两个三角形全等.二、填空题:(本大题共12题,每题4分,满分48分)7.据报道,截止2015年3月某市网名规模达5180000人.请将数据5180000用科学记数法表示为.8.分解因式:228x x -=.9.如果关于x 的方程230x x a +-=有两个相等的实数根,那么a =.(第15题图) (第16题图) (第18题图)10.方程2x x -=的根是.11.函数1y x =+.12.在反比例函数23k y x-=的图像所在的每个象限中,如果函数值y 随自变量x 的值的增大而增大,那么 常数k 的取值范围是. 13.为了了解某中学学生的上学方式,从该校全体学生900名中,随机抽查了60名学生,结果显示有15名 学生“步行上学”.由此,估计该校全体学生中约有名学生“步行上学”.14.在Rt ABC ∆中,90C ∠=︒,点G 是Rt ABC ∆的重心,如果6CG =,那么斜边AB 的长等于. 15.如图,在ABC ∆中,点E 、F 分别在边AC 、BC 上,EF ∥AB ,12CE AE =,若AC a =, BC b =,则EF =.16.如图,A 、B 的半径分别为1cm 、2cm ,圆心距AB 为5cm .将A 由图示位置沿直线AB 向右平移,当该圆与B 内切时,A 平移的距离是. 17.定义[],,a b c 为函数2y ax bx c =++的“特征数”.如:函数232y x x =+-“特征数”是[]1,3,2-,函数4y x =-+“特征数”是[]0,1,4-.如果将“特征数”是[]2,0,4的函数图像向下平移3个单位,得 到一个新函数图像,那么这个新函数的解析式是.18.在Rt ABC ∆中,90C ∠=︒,2AC BC ==ABC ∆绕点A 顺时针方向旋转60︒到''AB C ∆的位置,联结'C B ,则'C B 的长为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:2211()933x x x x x +-÷-+-,其中33x =.20.(本题满分10分)解方程组:2269130x xy y x y ⎧++=⎪⎨--=⎪⎩①②.(第21题图)21.(本题满分10分)如图,等腰ABC ∆内接于半径为5的O ,AB AC =,1tan 3ABC ∠=. 求BC 的长.22.(本题满分12分,第1小题5分,第2小题5分)某商店试销一种成本为10元的文具.经试销发现,每天销售件数y (件)是每件销售价格x (元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖40件.(1)试求y 关于x 的函数解析式(不用写出定义域);(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定位多少元?(不考虑其他因素)23.(本题满分12分,第1小题6分,第2小题6分)如图,四边形ABCD 是平行四边形,点E 为DC 延长线上一点,联结AE ,交边BC 于点F ,联结BE .(1)求证:AB AD BF ED ⋅=⋅;(2)若CD CA =,且90DAE ∠=︒,求证:四边形ABEC 是菱形.(第24题图)24.(本题满分14分,第1小题4分,第2小题5分,第3小题3分)如图,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -、(3,0)B 、(2,3)C 三点,且与y 轴交于点D .(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD 、DC 、CB ,直线4y x m =+与线段DC 交于点E ,当此直线将四边形ABCD 的面积平分时,求m 的值.(3)设点F 为抛物线对称轴上的一点,当以点A 、B 、C 、F 为顶点的四边形是梯形时,请直接写出所有满足条件的点F 的坐标.25.(本题满分14分,第1小题4分,第2小题5分,第3小题5分)如图,在Rt ABC ∆中,90ACB ∠=︒,13AB =,CD ∥AB .点E 为射线CD 上一动点(不与点C 重合),联结AE ,交边BC 于点F ,BAE ∠的平分线交BC 于点G .(1)当3CE =时,求:CEF CAF S S ∆∆的值;(2)设CE x =,AE y =,当2CG GB =时,求y 与x 之间的函数关系式;(3)当5AC =时,联结EG ,若AEG ∆为直角三角形,求BG 的长.2015年虹口中考数学练习卷参考答案2015.4 一、选择题:(本大题共6题,满分24分)1.B ; 2.D ; 3.C ; 4.C ; 5.B ; 6.D .二、填空题:(本大题共12题,满分48分)7.65.1810⨯;8.2(4)x x -;9.94-;10.1x =;11.1x ≥-;12. 32k <;13.225;14.18;15.1133a b -;16.4或6;17.221y x =+;181.三、解答题:(本大题共7题,满分78分)19.解:原式=2(1)(3)[](3)(3)(3)(3)(3)x x x x x x x x +--⋅-+-+-=2223(3)(3)(3)x x x x x x -++⋅-+- =233x x ++当3x =时,原式2==20.解:由①得:2(3)1x y +=,∴31x y +=或31x y +=-,将它们与方程②分别组成方程组,得: 31,3;x y x y +=⎧⎨-=⎩31,3.x y x y +=-⎧⎨-=⎩分别解这两个方程组,得原方程组的解:1112,21;2x y ⎧=⎪⎪⎨⎪=-⎪⎩222,1.x y =⎧⎨=-⎩21.解:联结AO ,交BC 于点E ,联结BO ,∵AB =AC ,∴AB AC =又∵OA 是半径,∴OA ⊥BC ,2BC BE =在Rt ABE ∆中,∵1tan 3ABC ∠=,∴13AE BE = 设AE x =,则3BE x =,5OE x =-在Rt BEO ∆中,222BE OE OB +=,∴222(3)(5)5x x +-=解得:10x =(舍去),21x =∴33BE x ==,∴26BC BE ==22.解:(1)由题意,知:当15x =时,50y =;当20x =时,40y =设所求一次函数解析式为y kx b =+.由题意得:5015,4020.k b k b =+⎧⎨=+⎩解得:2,80.k b =-⎧⎨=⎩ ∴所求的y 关于x 的函数解析式为280y x =-+.(2)由题意,可得:(10)(280)450x x --+=解得:1225x x ==答:该种文具每件的销售价格应该定为25元.23.证明:(1)法1:∵四边形ABCD 是平行四边形∴ABC D ∠=∠,AB ∥CD ,∴BAF DEA ∠=∠,∴ABF ∆∽EDA ∆,∴AB BF ED AD=, ∴AB AD BF ED ⋅=⋅法2:∵四边形ABCD 是平行四边形∴BC ∥AD ,AB ∥CD ∴EC CF ED AD =,CF EC BF AB =即:EC ED CF AD =,EC AB CF BF= ∴ED AB AD BF=∴AB AD BF ED ⋅=⋅ (2)∵90DAE ∠=∴90AED D ∠+∠=,90EAC DAC ∠+∠=∵CD CA =,∴DAC D ∠=∠∴AED EAC ∠=∠∴CE CA =,∴CE CD =.∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =,∴AB ∥EC 且AB EC =,∴四边形ABEC 是平行四边形.∵CE CA =,∴四边形ABEC 是菱形.24.解:(1)∵抛物线2y ax bx c =++过点(1,0)A -、(3,0)B 、(2,3)C 三点, ∴0,930,42 3.a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩解得:1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴所求抛物线的表达式为223y x x =-++,其对称轴是直线1x =.(2)由题意,得:D (0,3),又可得://DC AB ,4,2AB DC ==,∵直线4y x m =+与线段DC 交于点E ,且将四边形ABCD 的面积平分,∴直线4y x m =+与边AB 相交,该交点记为点G ,∴点E 的纵坐标是3,点G 的纵坐标是0, ∴可求得3(,3)4m E -、(,0)4m G - 由题意,得:2ABCD AGED S S =四边形四边形, ∴可得:2()AB CD AG ED +=+ ∴3422(1)44m m -+=-++ 解得:52m =-. (3)点F 的坐标为(1,2)-或(1,6)-或(1,3)25.解:(1)过点C 作CH AE ⊥于H , ∴1212CEF CAF EF CH S EF S AFAF CH ∆∆⋅==⋅ ∵//CD AB ,∴EF CE AF AB= ∵3,13CE AB ==,∴313EF AF = ∴313CEF CAF S S ∆∆= (2)延长AG 交射线CD 于点K ,∵//CD AB ,∴EKA KAB ∠=∠,∵AG 平分BAE ∠,∴EAK KAB ∠=∠,∴EAK EKA ∠=∠,∴AE EK =∵CE x =,AE y =,∴CK CE EK CE AE x y =+=+=+,∵//CD AB ,∴CK CG AB GB= ∵2CG GB =,∴2CK AB =,∴213x y +=, ∴26y x =-.(3)由题意,得:12BC =,∵90EAG ∠<︒,∴当AEG ∆为直角三角形时,只有以下两种情况:①当90AGE ∠=︒时,可证AG GK =,∵//CD AB ,∴162BG BC ==. ②当90AEG ∠=︒时,可证:ACF ∆∽GEF ∆,∴可证ECF ∆∽GAF ∆,∴ECF FAG ∠=∠又∵FAG GAB ∠=∠,ECF B ∠=∠,∴B GAB ∠=∠,∴GA GB =过点G 作GN AB ⊥于N ,∴11322BN AB ==, ∴131691224BG BN ==.手续,无故不来值班或马虎失职,出现事故,追究责任。