概率论与数理统计习题

合集下载

概率论与数理统计习题

概率论与数理统计习题

习题一1.01 口袋里装有若干个黑球与若干个白球,每次任取l个球,共抽取两次.设事件A表示第一次取到黑球,事件B表示第二次取到黑球,问:(l)和事件A+B表示什么?(2)积事件AB表示什么?(3)差事件A-B表示什么?(4)对立事件A表示什么?(5)第一次取到白球且第二次取到黑球应如何表示?(6)两次都取到白球应如何表示?(7)两次取到球的颜色不一致应如何表示?(8)两次取到球的颜色一致应如何表示?1.02 甲、乙、丙三门炮各向同一目标发射一发炮弹,设事件A 表示甲炮击中目标,事件B表示乙炮击中目标,事件C表示丙炮击中目标,问:(l)和事件A+B+C表示什么?(2)和事件AB+AC+BC表示什么?(3)积事件A B C表示什么?(4)和事件A+B+C表示什么?(5)恰好有一门炮击中目标应如何表示?(6)恰好有两门炮击中目标应如何表示?(7)三门炮都击中目标应如何表示?(8)目标被击中应如何表示?1.03 随机安排甲、乙、丙三人在一星期内各学习一天,求:(1)恰好有一人在星期一学习的概率;(2)三人学习日期不相重的概率.1.04 箱子里装有4个一级品与6个二级品,任取5个产品,求:(1)其中恰好有2个一级品的概率;(2)其中至多有1个一级品的概率.1.05 某地区一年内刮风的概率为154,下雨的概率为152,既刮风又下雨的概率为101,求: (1)刮风或下雨的概率;(2)既不刮风又不下雨的概率.1.06 盒子里装有5张壹角邮票、3张贰角邮票及2张叁角邮票,任取3张邮票,求:(1)其中恰好有1张壹角邮票、2张贰角邮票的概率;(2)其中恰好有2张壹角邮票、1张叁角邮票的概率;(3)邮票面值总和为伍角的概率;(4)其中至少有2张邮票面值相同的概率.1.07 市场上供应的某种商品只由甲厂与乙厂生产,甲厂占60%,乙厂占40%,甲厂产品的次品率为7%,乙厂产品的次品率为8%.从市场上任买l 件这种商品,求:(1)它是甲厂次品的概率;(2)它是乙厂次品的概率.1.08 某单位同时装有两种报警系统A与B,当报警系统A单独使用时,其有效的概率为0.70,当报警系统B单独使用时,其有效的概率为0.80,在报警系统A有效的条件下,报警系统B有效的概率为0.84.若发生意外时,求:(1)两种报警系统都有效的概率;(2)在报警系统B有效的条件下,报警系统A有效的概率;(3)两种报警系统中至少有一种报警系统有效的概率;(4)两种报警系统都失灵的概率.1.09 口袋里装有6个黑球与3个白球,每次任取1个球,不放回取两次,求:(1)第一次取到黑球且第二次取到白球的概率;(2)两次取到球的颜色一致的概率.1.10 在一批产品中有80%是合格品,验收这批产品时规定,先从中任取1个产品,若它是合格品就放回去,然后再任取l个产品,若仍为合格品,则接收这批产品,否则拒收.求:(1)检验第一个产品为合格品且检验第二个产品为次品的概率;(2)这批产品被拒收的概率.1.11 甲、乙两厂相互独立生产同一种产品,甲厂产品的次品率为0.2,乙厂产品的次品率为0.1.从甲、乙两厂生产的这种产品中各任取l个产品,求:(1)这2个产品中恰好有1个正品的概率;(2)这2个产品中至少有1个正品的概率.1.12 一场排球比赛采用“三局两胜”制,在甲、乙两队对阵中,若甲队在各局取胜与否互不影响,且在每局取胜的概率皆为0.6,求甲队在一场比赛中取胜的概率.1.13 甲、乙、丙三人相互独立向同一目标各射击一次,甲击中目标的概率为O.8,乙击中目标的概率为0.7,丙击中目标的概率为0.6,求目标被击中的概率。

概率论与数理统计练习题,概率论与数理统计试题及答案

概率论与数理统计练习题,概率论与数理统计试题及答案

概率论与数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。

2、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。

3、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。

4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。

5. 设随机变量X 的概率密度是:⎩⎨⎧<<=其他103)(2x x x f ,且{}784.0=≥αX P ,则α=0.6 。

6. 已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (Y )= 3/4 。

7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。

设Z =X -Y +3,则Z ~ N(2, 13) 。

8. 设A ,B 为随机事件,且P (A)=0.7,P (A -B)=0.3,则=⋃)(B A P 0.6 。

9. 设随机变量X ~ N (1, 4),已知Φ(0.5)=0.6915,Φ(1.5)=0.9332,则{}=<2X P 0.6247 。

10. 随机变量X 的概率密度函数1221)(-+-=x xe xf π,则E (X )= 1 。

11. 已知随机向量(X ,Y )的联合密度函数⎩⎨⎧≤≤≤≤=其他,010,20,),(y x xy y x f ,则E (X )= 4/3 。

12. 设A ,B 为随机事件,且P (A)=0.6, P (AB)= P (B A ), 则P (B )= 0.4 。

13. 设随机变量),(~2σμN X ,其密度函数644261)(+--=x x ex f π,则μ= 2 。

概率论与数理统计习题

概率论与数理统计习题

一 、名词解释1、样本空间:随机试验E 的所有可能结果组成的集合,称为E 的样本空间。

2、随机事件:试验E 的样本空间S 的子集,称为E 的随机事件。

3、必然事件:在每次试验中总是发生的事件。

4、不可能事件:在每次试验中都不会发生的事件。

5、概率加法定理:P(A ∪B)=P(A)+P(B)-P(AB)6、概率乘法定理:P(AB)=P(A)P(B │A)7、随机事件的相互独立性:若P(AB)=P(A)P(B)则事件A,B 是相互独立的。

8、实际推断原理:概率很小的事件在一次试验中几乎是不会发生的。

9、条件概率:设A ,B 是两个事件,且P(A)>0,称P(B │A)=()()A P AB P 为在事件A 发生的条件下事件B 发生的条件概率。

10、全概率公式: P(A)=())/(1B B i A P ni i P ∑=11、贝叶斯公式: P(Bi │A)= ()()∑=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ni j A P j P i A P i P B B B B 112、随机变量:设E 是随机试验,它的样本空间是S=﹛e ﹜。

如果对于每一个e ∈S,有一个实数X(e)与之对应,就得到一个定义的S 上的单值实值函数X=X(e),称为随机变量。

13、分布函数:设X 是一个随机变量,χ是任意实数,函数F(χ)=P(X ≤χ)称为X 的分布函数。

14、随机变量的相互独立性:设(χ,у)是二维随机变量 ,如果对于任意实数χ,у,有F(χ,у)=F x (χ)·F y (у)或 f (χ,у)= f x (χ)·f y (у)成立。

则称为X 与Y 相互独立。

15、方差:E ﹛〔X-E(χ)〕2〕16、数学期望:E(χ)= ()dx x xf ⎰∞-+∞(或)= i p i i x ∑+∞=117、简单随机样本:设X 是具有分布函数F 的随机变量,若χ1 , χ2 … , χn 是具有同一分布函数F 的相互独立的随机变量,则称χ1 , χ2 … , χn 为从总体X 得到的容量为n 的简单随机样本。

概率论与数理统计练习题及答案

概率论与数理统计练习题及答案

概率论与数理统计习题一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2<x<4}=___ (A)0.8543 (B)0.1457 (C)0.3541 (D)0.2543 2.设)4,1(~N X ,且6179.0)3.0(=Φ,6915.0)5.0(=Φ,则P{0<x<1.6}=____ (A)0.3094 (B)0.1457 (C)0.3541 (D)0.25433.设随机变量的概率密度21()01qxx f x x -⎧>=⎨≤⎩,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/24.事件A ,B 为对立事件,则_____不成立。

(A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____(A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____A .B A ⊂ B . A B ⊂ C.A B -=Φ D.0)(=-B A P7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的是_____A . 0()1F x ≤≤B .0()1f x ≤≤ C.{}()P X x F x ==D.{}()P Xx f x ==8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____A.4114i i X X ==∑ B.142X X μ+- C.42211()ii K XX σ==-∑D.4211()3i i S X X ==-∑9.设,A B 为两随机事件,且B A ⊂,则下列式子正确的是_____ A .()()P A B P A += B .()()P AB P A =C. ()()|P B A P B = D. ()()()P B A P B P A -=- 10. 设()2~,,X N μσ那么当σ增大时,{}-P X μσ<=A .增大B .减少C .不变D .增减不定11. 设()()()()~,E X-1X 21,X P poission λλ-==⎡⎤⎣⎦分布且则___ A.1 B. 2 C .3 D .0 12.设 ()2~,X Nμσ,其中μ已知,2σ未知,123X , X ,X ,为其样本, 下列各项不是统计量的是____A. 123X X X ++ B. {}123min X ,X ,X C.23i 2i 1X σ=∑ D.1X μ-13.对于事件,A B ,下列命题正确的是_____ A .若,A B 互不相容,则.A 与B 也互不相容B .若,A B 相容,则.A 与B 也相容C.若,A B 互不相容,则.A 与B 也相互独立 D.若A 与B 相互独立, 那么.A 与B 相互独立14.假设随机变量X的分布函数为()F x ,密度函数为()f x .若X与-X有相同的分布函数,则下列各式中正确的是_____A .()F x =()F x -;B .()F x =()F x --;C .()f x =()f x -;D .()f x =()f x --; 15若()~X t n ,那么2~X ____A . (1,)F n ; B.(,1)F n ; C. 2()n χ; D. ()t n .二、填空题(在每个小题填入一个正确答案,填在题末的括号中)1.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.4P X >=2.设有7件产品,其中有1件次品,今从中任取出1件为次品的概率为 3.设AB φ=,()0.3,()0.4,P A P B ==则=⋃)(B A P4.设2~(,)X N μσ~X5 .设A 、B 、C 、是三个随机事件。

概率论与数理统计习题

概率论与数理统计习题

概率论与数理统计(经管类)习题一、单项选择题1.设A ,B 为随机事件,则(A -B )UB 等于 (D ) A .A B .AB C .B A D .A U B 2设A ,B 为随机事件,B ⊂A ,则 (D ) A .P (B -A )=P (B )-P (A ) B .P (B |A )=P (B ) C .P (AB )=P (A ) D .P (A ∪B )=P (A )3.设A 与B 互为对立事件.且P (A )>0,则下列各式中错误的是 (C ) A .P (A ∪B )=1 B .P (A )=1-P (B ) C .P (A ∪B )=P (A )P (B ) D .P (A ∪B )=1-P (AB )4.已知一射手在两次独立射击中至少命中目标一次的概率为0.96,则该射手每次射击的命中率为 (C ) A .0.04 B .0.2 C .0.8 D .0.965.设随机变量X 服从参数为λ的泊松分布,且满足P{X-1}=32P{X=3},则λ= (C ) A .1 B .2 C .3 D .46.设随机变量X~N (2,32),φ(x )为标准正态分布函数,则P{2<X ≤4}= (A ) A .φ(32)-21; B .1-φ(32) C .2φ(32)-1 D .φ(32) 7.设二维随机变量(X ,Y )的分布律为 (A )则P{X+Y ≤1}=A .0.4B .0.3C .0.2D .0.18.设X 为随机变量,E (X )=2, D (X )=5,则E (X+2)2= (D ) A .4 B .9 C .13 D .2l9.设随机变量10021X ,,X X ⋯独立同分布,E (i X )=0,D (i X )=1.i =1,2.…,100, 则由中心极限定理得P {101001≤∑=ii X}近似于 (B )A .0B .φ(1)C .φ(10)D .φ(100)10.n x ,,x x ⋯21是来自正态总体N (μ,σ2)的样本,2s x ,分别为样本均值和样本方差则2)1(σsn - (A )A .x 2(n -1)B .x 2(n ) C .t (n -1) D .t (n ) 二、填空题11.设随机事件A 与B 相互独立,且P (A )=0.4,P (B )=0.5,则,P (AB )= 0.2 12.从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为0.048613.设随机变量x 的分布函数为=X P , x x e x F x }2{000,1)(2≥⎩⎨⎧≤>-=-则4-e 14.设随机变量X ~N (1,1),为使X+C ~N (0,1).则常数C=-1 15.设二维随机变量(X ,Y )的分布律为则P{ Y=2}= 0.516.设随机变量X 的分布律则E (X 2)= 1 。

概率论与数理统计练习题(附答案)

概率论与数理统计练习题(附答案)

练习题[D (X )]21、设随机变量X ~b(10,0.6),那么=;2[E (X)]2、假设随机变量X 的分布未知,但2EX =μ,DX =σ,那么X 落在区间(μ-2σ,μ+2σ)的概率必不小于_________ˆ3、设θˆ(X ,X ......X )是未知参数θ的一个估计量,满足条件_________=θn 12ˆ是θ的无偏估计。

那么称θ4.设X,Y 为随机变量,且D (X +Y )=7,D(X)=4,D(Y)=1,那么相关系数ρXY =5.设随机变量X 1,X 2,,X n相互独立,且X i(i =1,2,1n n,n )都服从区间[0,1]上的均匀分布,那么当n 充分大时,Y n=i =1∑X i近似服从〔写出具体分布与参数〕6.设(X ,Y )服从区域G :x 2+y 2≤R 2上的均匀分布,其概率密度为:⎧C f (x ,y )=⎨⎩02x 2+y 2≤R 2其它,那么C=〔〕;(A)πR ;(B)7.设112πR ;(C);(D)。

2πRπR 2X 1,X 2......X n 为相互独立的随机变量,且E (X )=μ,D (X )=σi i 21n∑X i ,那么DX =〔〕〔i =1,2......n 〕,X =n i =1(A)σ2(B)nn σ(C)2σn(D)22nσ8.设一次试验中事件A 不发生的概率为p,独立重复n 次试验,A 发生了X 次那么正确的选项是:〔〕(A)E (X )=p (1-p );(B)2E (X )=np ;(C)2DX =np (1-p );(D)DX =p -p 。

9.设随机变量X 和Y 不相关,那么以下结论中正确的选项是〔〕A .X 与Y 独立;B.D (X -Y )=DX +DY ;C .D (X -Y )=DX -DY ;D.D (XY )=DXDY .10.任何一个连续型随机变量的概率密度ϕ(x )一定满足()。

A 、0≤ϕ(x )≤1B 、在定义域单调不减C 、⎰+∞-∞ϕ(x )dx=1D 、ϕ(x )>111袋中有m 个红球,n 个白球,任取2球,求〔1〕取得两个同色球的概率;〔2〕至少取得一个白色球的概率12(X ,Y )的联合分布率为:求:〔1〕关于X 的边缘分布律;〔2〕Z =X Y 的分布律及分布函数F Z(z )2Y13有朋自远方来,他乘火车、轮船、汽车、飞X -10110.20.10.120.100.1300.30.1机来的概率分别为0.3、0.2、0.1、0.4。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

概率论与数理统计练习题

概率论与数理统计练习题

概率论与数理统计练习题一、单项选择题1.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为( A )A .2224B .1224C C C .242!A D .2!4!2、抛一枚不均匀硬币,正面朝上的概率为23,将此硬币连抛4次,则恰好3次正面朝上的概率是( C ) A .881B .827C .3281D .343、设()0.5,()0.6,()0.4,()P A P B P B A P AB ===则=( C ) A .0. 3 B .0.6 C .0.4 D .0.84、设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,020,2)(x xx f ,则{}11≤≤-X P =( B )A .0B .0.25C .0.5D .15、已知随机变量X 的概率密度为)(x f X ,令=2Y X ,则Y 的概率)(Y f Y 为( D )A. )2(2y f X -B. )2(y f X -C. )2(21y f X --D. )2(21yf X -6.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( A ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0D .P (A ∪B )=17.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( D ) A .P (A ) B .P (AB ) C .P (A|B )D .18.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=(C ) A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5}D .P{4.5<X<5.5},9.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于(D )A .-1B .21- C .21 D .110.设二维随机变量(X ,Y )的分布律为则P{X=Y}=( A ) A .0.3 B .0.5 C .0.7D .0.811.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( A ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5D .E (X )=2,D (X )=412.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( C ) A .-13 B .15 C .19D .2313.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=(B ) A .6 B .22 C .30D .4614.在假设检验问题中,犯第一类错误的概率α的意义是(C ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率15.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( B ) A .x 2 B .x C .2xD .x21二、填空题16.一口袋装有3只红球,2只黑球,近从中任取2只球,则这2只球恰为一红一黑的 概率是_ 0.6 _17.某射手命中率为23,他独立地向目标设计4次,则至少命中一次的概率为_80/81 _18.抛硬币5次,记其中正面向上的次数为X ,则{}4≤X P =___30/31_. 19. 设X ~N (2,4),则{}=≤2X P ___0.5___.20、设连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<=2,120),1(310,31)(x x x x e x F x记X 的概率密度为f (x ),则当x <0时f (x )=__1/3ex______.21.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=____0.5________. 22.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为___18/25_________.23.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____0.7________.24.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为___0.9_________.25.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=___31/32_________.三、计算题26、甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.27、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律28、设X 的概率密度为⎩⎨⎧≤≤-=其他,011,)(x x x f ,求:(1) X 的分布函数F(x);(2) {}5.0<X P ;(3){}5.0->X P29.设二维随机变量(X ,Y )的分布律为 试问:X 与Y 是否相互独立?为什么?30.假设某校考生数学成绩服从正态分布,随机抽取25位考生的数学成绩,算得平均成绩61=x 分,标准差s=15分.若在显著性水平0.05下是否可以认为全体考生的数学平均成绩为70分?(附:t 0.025(24)=2.0639)四、证明题31、设A,B 为随机事件,且()P B >0.证明:()1()P A B P A B =- 五、综合32、设随机变量X 在区间[2 ,5]上服从均匀分布。

概率论与数理统计练习题(附答案)

概率论与数理统计练习题(附答案)

练习题1、设随机变量)6.0,10(b ~X ,则22[()][(X)]D X E = ; 2、若随机变量X 的分布未知,但2,EX DX μσ==,则X 落在区间(2,2)μσμσ-+内的概率必不小于_________3、设ˆˆ(,......)12X X X n θθ=是未知参数θ的一个估计量,满足条件_________ 则称ˆθθ是的无偏估计。

4. 设X,Y 为随机变量,且D (X +Y )=7, D(X)=4, D(Y)=1,则相关系数XY ρ= 5. 设随机变量12,,,n X X X 相互独立,且(1,2,,)=i X i n 都服从区间[0,1]上的均匀分布,则当n 充分大时,∑==ni i nn X Y 11近似服从(写出具体分布与参数)6.设(,)X Y 服从区域222:G x y R +≤上的均匀分布,其概率密度为:222(,)0Cx y R f x y ⎧+≤=⎨⎩其它,则C=( );(A) 2R π ; (B)21R π; (C) Rπ2; (D) R π21 。

7.设,......12X X X n 为相互独立的随机变量,且2(,())E X D X i iμσ==(1,2......i n =),11nX X i i n ∑==,则DX =( ) (A)2nσ(B)2n σ (C)nσ(D)22n σ8.设一次试验中事件A 不发生的概率为p,独立重复n 次试验,A 发生了X 次则正确的是:( )(A) ()()21p p X E -= ; (B)()E X np = ;(C)(1)DX np p =- ; (D) 2DX p p =-。

9.设随机变量X 和Y 不相关,则下列结论中正确的是( ) A . X 与Y 独立; B. ()D X Y DX DY -=+; C .()D X Y DX DY -=-; D. ()D XY DXDY =. 10. 任何一个连续型随机变量的概率密度)(x ϕ一定满足( )。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P Y 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P Y 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B )=0.6,P (B |A )=0.8,则P (A +B )=__ 0.7 __。

2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。

3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。

4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(−−X X E =1,则=λ___1____。

5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。

6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。

7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。

8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2X -Y +5,则Z ~ N(-2, 25) 。

10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。

1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。

2、设X ∼B (2,p ),Y ∼B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。

3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。

4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

概率论与数理统计练习题

概率论与数理统计练习题

,,n X 是来自正态总体小概率事件在一次试验中绝对不会发生;是正态随机变量的分布函数,则一定有已知随机变量~X U 已知二维随机变量(,X 是来自总体,,n X 是来自于总体知参数,12,,,n x x x 为样本值,求(设纸张重量(以g 记)服从正态分布2的置信水平为已知某炼铁厂的铁水含碳量在正常情况下服从正态分布炉铁水,算得平均含碳量仍为4.55?)0.8B =、3、4、5,从中同时取掷一枚质地均匀的骰子,已知出现的是偶数点,则出现)i X x c ==,则c = 的分布函数为2,0,x x F ≥其它,则概率 ;⎪⎩⎪⎨⎧<0081x,n X 是来自总体的一组,n x 是样本的一组观测值,求(的最大似然估计值。

随机取某种炮弹9发做试验,测得炮口速度的样本标准差。

设炮口速度服从正态分布这种炮口速度的方差σ一种燃料的辛烷等级服从正态分布。

现抽取997.7。

若标准差不变,是否可以认为新油的辛烷平均等级?(显著水平21,,n X X +是取自总体~(1n t n n +)B=}0==;= X是正态总体,,n服从自由度为若一件事的成功率是是标准正态的分布函数,则有若随机变量X与Y相互独立,则随机变量若随机变量X和Y服从正态分布且相互独立X是正态总体,n)求参数θ的矩估计量某工厂生产一批零件,其长度服从正态分布,求总体均值μ的置信水平为某一地区生产的苹果长期以来服从标准差为)B=}1==;= ,,nX是正态总体与B对立,则事件是标准正态的分布函数,则有已知随机变量~X U若随机变量X和Y服从正态分布,X是来自总体,,nX是来自于总体2,,nx x为样本值,求(某机械零件的长度服从正态分布2.4,2.6,2.5某厂生产的某种型号的电池,其寿命(以小时计)长期以来服从方差从它的生产情况来看,问根据这一数据能否推断这批电池的寿命的波动性较以往有显著变化.。

概率论与数理统计习题

概率论与数理统计习题

《概率论与数理统计》试题一1.设事件A 与B 互斥,且1)(0<<B P ,试证明:)(1)()/(B P A P B A P -=. 2.设0>)A (P ,试证明:)()(1)|(A P B P A B P -≥. 3.甲乙2班共有70名同学,其中女同学40名,设甲班有30名同学,而女生15名,求在碰到甲班同学时,正好碰到1名女同学的概率.4.一栋10层的楼房中的一架电梯,在底层登上7位乘客,电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有2位及2位以上乘客在同一层离开的概率.5.设某厂的某种生产设备的寿命X 服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0,00,41)(41x x e x P x ,工厂规定:若出售的设备在一年内损坏,则可予以调换,已知工厂售出1台设备获利100元,调换1台设备厂房需花费300元,求厂方售出1台设备净获利的数学期望.6.设随机变量X 在)2,0(内服从均匀分布,求随机变量2X Y =的分布函数和分布密度.7.假设随机变量X 服从)1,0(上的均匀分布,求证:随机变量2)1ln(x Y --=服从参数为2的指数分布.8.设随机变量X 与Y 相互独立,且分别服从二项分布),p ,m (B ),p ,n (B 求证: )p ,m n (B ~Y X ++. 9.从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间)4.5,4.1(内的概率不小于95.0,问样本容量n 至少应取多大?《概率论与数理统计》试题二1.一个袋中装有12个球,其中4个红球,8个白球,从中不放回地取出3个球,试求取出3个同颜色球的概率.2.某工厂生产的产品共有100个,其中有5个次品,从这批产品中任取一半来检查,求发现次品不多于1个的概率.3.袋中有4个白球,2个红球,从中任取3个球,用ε表示所取3个球中红球的个数,求ε的分布列.4.某工厂有400台同类机器,各台机器发生故障的概率都是02.0,假设各台机器工作是相互独立的,试求机器出故障的台数不少于2的概率.试求X 的分布函数)(x F X .6.设随机变量X 所有可能的取值为n ,,2,1 ,且已知概率),,2,1()(n k ak k X P ===,求常数a 的值.7.设X 与Y 相互独立,且X 与Y 分别服从区间)1,0(),1,1(-的均匀分布,求方程 022=++Y Xt t 无实根的概率.8.设二维随机变量),(Y X 的密度函数为:⎪⎩⎪⎨⎧<<<<+=其它,020,10,3),(2y x xy x y x f , 求)1(<+Y X P .9.设n X X X ,,21是来自于总体X 的容量为n 的样本,试证明样本均值∑==ni i n X n X 11是总体均值)(X E 的一致估计量.《概率论与数理统计》试题三1.在区间)1,0(内任取2个数,求这2个数的乘积小于41的概率. 2.从10,2,1 共10个数中任取7个数,取后放回,每次取一个,求10恰好出现2次的概率.3.设C B A ,,3个事件相互独立,证明B A +与C 相互独立.4.证明事件在1次实验中发生次数的方差不超过41. 5.证明对任意实数c 均有)(])[(2X D c X E ≥-,且等号成立当且仅当)(X E c =.6.在下列两种情形下,求方程012=++Xt t 有实根的概率,其中X 是随机变量.(1)X 服从}{6,,2,1 上的均匀分布.(2)X 服从区间]6,1[上的均匀分布. 7.证明对任意实数c 均有)(])[(2X D c X E ≥-,且等号成立当且仅当)(X E c =.8.已知罐头番茄汁中维生素)(c V C 的含量服从正态分布,按照规定c V 的平均含量不得低于21mg ,现从一批罐头中取17罐,算得c V 含量的平均值23=X ,2298.3=s ,问该批罐头的c V 含量是否合格?9.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-<≤-+=其它,010,101,1)(x x x x x f ,求)(X D .10.车间用一台包装机包装葡萄糖,规定标准为每袋净重5.0kg ,设包装机实际生产的每袋质量服从正态分布,且由长期的经验知其标准差015.0=σkg ,某天开工后,为了检验包装机的工作是否正常,随机抽取了9袋,称得净重为:518.0,512.0,515.0,510.0,511.0,488.0,524.0,506.0,497.0问这天包装机的工作是否正常?)05.0(=α《概率论与数理统计》试题四1.某人从甲地到乙地,乘火车,轮船,飞机的概率分别为4.0,4.0,2.0,乘火车迟到的概率为5.0,乘轮船迟到的概率为2.0,乘飞机不会迟到,问这个人迟到的概率是多少?又如果迟到,问他乘轮船的概率是多少?2.在1~200中随机地取整数,问取到的整数不能被6和8整除的概率是多少?3.一批产品分一,二,三级,其中一级品是二级品的2被,三级品是二级品的一半,从这批产品中随机地取出抽取1个检验质量,用随机变量描述检验的可能结果,写出它的概率分布.4.在区间)1,0(中随机地取出2个数,求2个数之和小于2.1的概率.5.将n 只球(n ~1号)中去,一只盒子装一只球,若一只微2装入与球同号的盒子中称为一个配对,记总的配对数为随机变量X ,求)(X E .6.设随机变量X ,Y 相互独立它们分别服从参数为2和5的指数分布,求YX +的数学期望和方差.7.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其它,00,2cos 21)(πx x x f ,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 8.设随机变量X 的概率密度为)(21)(+∞<<-∞=-x e x P x ,证明:X 与X 不相关.9.设随机变量X 的概率密度为)(21)(+∞<<-∞=-x e x P x ,证明:X 与X 不相关.10.设某次考试的考生成绩服从正态分布,从中随机地抽取36为考生的成绩,算得平均成绩为5.66分,标准差为15分.问在显著性水平05.0下是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.《概率论与数理统计》试题五1.某小组有20名射手,其中一、二、三、四级射手分别为2、6、9、3名.又若选一、二、三、四级射手参加比赛,则在比赛中射中目标的概率分别为0.85、0.64、0.45、0.32,今随机选一人参加比赛,试求该小组在比赛中射中目标的概率.2.袋中有10个黑球,5个白球.现掷一枚均匀的骰子,掷出几点就从袋中取出几个球.若已知取出的球全是白球,求掷出3点的概率.3.设射击中靶的概率为0.45,X 表示首次中靶时的射击次数.(1)求X 的分布律;(2)求P (X 取偶数).4.设随机变量[]1,0~U X ,求X Y ln 2-=的概率密度.5.某电子元件的寿命(单位:小时)是以()⎪⎩⎪⎨⎧>≤=10010010002x x x x f 为密度函数的连续型随机变量.求5个同类型的元件在使用的前 150 小时内恰有 2 个需要更换的概率.6.将n 个人的帽子混放,然后每人任取一顶帽子,以X 记配对个数,求EX .7.设随机变量X 服从⎪⎭⎫ ⎝⎛-21,21上的均匀分布, ()⎩⎨⎧≤>==.0,0,0,ln x x x x g y , 求()X g Y =的数学期望和方差.8.在总体()25.0,2N 中随机抽取容量为9的样本,求样本均值X 落在1.5到2.5之间的概率.9.设总体X 的分布律为 P {X=x }= ,2,1,)1(1=--x p p x ,(),,,21n X X X 是来自X 的样本,试求:(1)p 的矩估计量;(2)p 的极大似然估计量.10.设21,X X 是来自总体N (1,μ)的样本,证明以下统计量均是μ的无偏估计,并指出选择哪一个统计量作为μ的估计量最好.2113132X X +=∧μ ,2124341X X +=∧μ ,2132121X X +=∧μ《概率论与数理统计》试题六1.设随机变量X ,Y 独立,其密度函数分别为1,01,0(),()0,0,y X Y x e y f x f y -≤≤⎧⎧>==⎨⎨≤⎩⎩其他y 0, 求Z=2X+Y 的概率密度函数.2.已知 X 在[0,2]上服从均匀分布,求3X Y =的概率密度.3.设X ~()9,108N ,(1)求()6.1171.101<<X P ;(2)求a ,使()90.0=<a X P ;(3)求a ,使()01.0=>-a a X P .4.设()1021,...,,X X X 为总体X 的一个样本,X ~()23.0,0N ,求⎭⎬⎫⎩⎨⎧>∑=44.11012i i X P . 5.某保险公司规定,如果在一年内顾客的投保事件A 发生,该公司就赔偿顾客a 元,若1年内事件A 发生的概率为p ,为使公司收益的期望值等于a 的10%,问该公司应要求顾客交多少保险费?6.盒中有4只次品和6只正品,在其中取两次,每次取一只不放回,求:(1)恰有一只次品的概率;(2)至少有一只次品的概率;(3)全为正品的概率.7.已知()Y X ,在区域(){}20,10,≤≤≤≤=y x y x D 上服从均匀分布,试计算概率{}1≥+Y X P ,{}Y X P <2.8.设总体X ~()2,σμN ,123,,X X X 为总体的一个样本,试证明:11231315102X X X μ∧=++,21231153412X X X μ∧=++,3123111362X X X μ∧=++ 都是μ的无偏估计量,并分析哪一个最好.。

概率论及数理统计练习题(含答案)

概率论及数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判定正误(1)必然事件在一次实验中必然发生,小概率事件在一次实验中必然不发生。

(B )(2)事件的发生与否取决于它所包括的全数样本点是不是同时显现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)假设()0,P A = 那么A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个小孩的家庭小孩的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),那么P{}1=3两个女孩。

(B )(8)假设P(A)P(B)≤,那么⊂A B 。

(B ) (9)n 个事件假设知足,,()()()i j i j i j P A A P A P A ∀=,那么n 个事件彼此独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件知足P(AB)=0,那么©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,那么P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,那么其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)假设A, B 为两随机事件,且B A ⊂,那么以下式子正确的选项是(A)A. P(A ∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,那么()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 知足P(B|A)=1, 那么(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂(7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 那么(D)A. 事件A, B 互不相容B. 事件A 和B 相互对立C. 事件A, B 互不独立 D . 事件A, B 相互独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率别离是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

《概率论与数理统计》习题

《概率论与数理统计》习题

第一章 概率论的基本概念1. 设C B A ,,为三个随机事件,用C B A ,,的运算表示下列事件: (1)、C B A ,,都发生;(2)、B A ,发生, C 不发生; (3)、C B A ,,都不发生;(4)、B A ,中至少有一个发生而C 不发生; (5)、C B A ,,中至少有一个发生; (6)、C B A ,,中至多有一个发生; (7)、C B A ,,中至多有两个发生; (8)、C B A ,,中恰有两个发生。

解:(1)、 ABC ;(2)、 C AB 或C AB -;(3)、⎺C B A ;(4)、 C B A )(⋃或C B A -⋃; (5)、 C B A ⋃⋃;(6)、⎺⋃⋃或⋃⋃⋃; (7)、 C B A ⋃⋃或ABC -Ω; (8)、 BC A C B A C AB ⋃⋃. 2. 设C B A ,,为三个随机事件, 已知:3.0)(=A P ,8.0)(=B P ,6.0)(=C P ,2.0)(=AB P ,0)(=AC P ,6.0)(=BC P 。

试求)(B A P ⋃,)(B A P ,)(C B A P ⋃⋃。

解:9.02.08.03.0)()()()(=-+=-+=⋃AC P B P A P B A P ; 1.0023.0)()()(=-=-=AB P A P B A P ;06.002.06.08.03.0)()()()()()()(=+---++=+--++=⋃⋃ABC P AC P AB P C P B P A P C B A P 注: 因为AC ABC ⊂,所以0)()(0=≤≤AC P ABC P ,即0)(=ABC P 。

3. 将一颗骰子投掷两次, 依次记录所得点数, 试求: (1)、两次点数相同的概率;(2)、两次点数之差的绝对值为1的概率; (3)、两次点数的乘积小于等于12的概率。

解:(1)、用A 表示“两次投掷点数相同”, 则:A ={(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}。

《概率论与数理统计》练习题试卷及答案解析

《概率论与数理统计》练习题试卷及答案解析

《概率论与数理统计》练习题试卷及答案解析一.单项选择题(每小题2 分,共 20 分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )B A .A 1A 2 B .21A A C .21A A D .21A A 2.则( )DA .121=a B .61=a C .121=a D .41=a 3.设事件A 与B 相互独立,则有( )CA .0)(=AB P B .)()()(B P A P B A P +=C .)()()(B P A P AB P =D .)()(A P A B P =4.设随机变量X 服从正态分布),(2σμN ,则其概率密度函数的最大值为( )D A .0 B .1 C .π21 D .212)2(-πσ5. 设随机变量X 与Y 互相独立, 且X ~),,(211σa N Y ~),,(222σa N 则Y X Z +=仍服从正态分布,且( ) DA . Z ~),(22211σσ+a N B . Z ~),(2121σσa a N +C . Z ~),(222121σσa a N + D . Z ~),(222121σσ++a a N6.设随机变量X 服从[-1,2]上的均匀分布,则X 的概率密度)(x f 为( )AA .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f7.设,21X X ,3X 是总体~X ()2,σμN 的样本,则μ的无偏估计量是( )AA .3212110351X X X ++ B .321316131X X X ++ C .3211274131X X X ++ D .3211513151X X X ++8.某店有7台电视机,其中2台为次品,今从中随机地抽取3台,设X 为其中次品数,则数学期望EX =( )D A .73 B .74 C .75 D .76 9.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )CA .)10(2σμ,N B .)(2σμ,N C .)10(2σμ,N D .)10(2σμ,N 10.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是( )BA. H 1成立,拒绝H 0B. H 0成立,拒绝H 0C. H 1成立,拒绝H 1D. H 0成立,拒绝H 1 二.填空题(每空 2 分,共 20 分)1.连续抛一枚均匀硬币4次,则正面至少出现一次的概率为___________.1615 2.设A ,B 为互不相容的两个随机事件,P (A )=0.3,P (B )=0.4,则)(B A P ⋃)=________.0.73.设随机变量X 的概率密度⎪⎩⎪⎨⎧≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.34.设随机变量X 是服从区间(μ,2)上的均匀分布,且1=EX ,则μ= . 1 5.设X 为连续随机变量,c 为一个常数,则P {X =c }=____________.06.设随机变量X 服从二项分布),(p n B ,且,44.1,4.2==DX EX 则二项分布的参数p = . 0.47.10X =E ,4=DX ,若{}04.010≤≥-c X P ,则常数c = . 108.已知E (X )=1,E (Y )=2,E (XY )=3,则X ,Y 的协方差Cov (X ,Y )=_____________.2 9.设二维随机变量(X,Y)的分布律为则P{XY=0}=___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、设有3个罐子,1号罐有2红1黑共3个球,2号罐有3红1黑共4个球,3号罐有2红2黑共4个球。

(1)、现任取一球,问取到红球的概率为多少? (2)、若任取一球,结果是红球,问该红球取自1号罐的概率? 设A :一号罐子,B :二号罐子,C :三好罐子,D :取到红球 (1)P (D )=P(D/A)P(A)+P(D/B)P(B)+P(D/C)P(C) =1/3*(2/3+3/4+1/2)=23/24 (2)P(A/D)=P(D/A)P(A) ÷P(D) =3/4*1/3÷23/24=6/232、设有8支枪,其中5支经过试射校正,3支没有校正. 一射手用校正过的枪射击时命中率为0.8;用未校正的枪射击时命中率为0.3. (1)、现任取一支进行射击,问命中目标的概率为多少? (2)、任取一支进行射击,结果命中目标,问这支枪是校正过的概率是多少? 设A 使用矫正过的枪B 使用没矫正过的枪C 命中目标 (1) P(C)=P(C/A)P(A)+P(C/B)P(B)[=C15÷C18*0.8+C13÷C18*0.3] =1/2+9/80 =49/80(2)P(A/C)=P(C/A)P(A) ÷P(C)=1/2÷49/80=40/493、两批相同的产品各有12件和10件,每批产品中有一件废品。

现任意从第一批中抽出一件混入第二批中,然后再从第二批中抽出一件。

求: (1)、从第二批中抽出的是废品的概率; (2)、已知从第二批中抽出的是废品,则从第一批中抽出的也是废品的概率。

设A 第一批取出为正品,B 第一批取出为废品,C 第二批取出为废品 (1) P(C)=P(C/A)P(A)+P(C/B)P(B)=1/12+1/66=13/132(2)P(B/C)=P(C/B)P(B) ÷P(C)=1/66÷13/132=2/134、有两个盒子,第一个装有2个红球1个黑球,第二个装有2个红球2个黑球。

现在从两个盒子中各取一球,再在这两球中任取一个。

(1)求最后取出的是红球的概率;(2)上述过程重复10次,记X 表示最后取到的红球个数,求)(2X E . (1)P=2/3*2/4+(2/3*2/4+1/3*2/4)*1/2=1/3+1/4=7/12(2)22)()()(x E x D x E +=6/35)(==np x E 72/175)1()(=-=p np x D 24/875)(2=∴x E 5、设有三个盒子,第一个装有4个红球1个黑球,第二个装有3个红球2个黑球,第三个装有2个红球3个黑球。

现任选一个盒子,从中任取3球。

(1)、求取出的3个球中有2个红球的概率; (2)、记X 表示取到的红球个数,求)(2X E 。

设3个球中有2个红球的概率为P(A)则由全概率公式得:P(A)=1/3*C24÷C35+1/3*(C23*C12÷C35)+1/3*C13÷C35 =1/3*(3/5+3/5+3/10)=1/2 (2)X 的可能取值为0,1,2,3 P(X=0)=1/3*C33÷C35=1/30P(X=1)=1/3*C13÷C35+1/3*(C23*C12÷C35=3/10 P(X=2)=P(A)=1/2P(X=3)=1/3*C34÷C35+1/3*C33÷C35=1/66/12/13210/330/110p x 5/19)(2=x E1、已知随机变量X 的概率密度为⎪⎩⎪⎨⎧<<--=其它,,011,11)(2x x C x f 求:(1)、常数C;(2)、X 的分布函数; (3)、X 的数学期望和方差。

(1)由11112=-⎰-x c dx知112102=-⎰x dxc得2/C(arcsinX\10)=1π/C=1 C=π(2)F(X)= 0 1-≤x⎪⎭⎫⎝⎛+2arcsin 1ππx 11<<x - 1 1≥x(3)011)(112=-=⎰-dx x xx E πdx x x x x E ⎰--=1122211)(4、已知X 的概率密度为⎪⎩⎪⎨⎧>=-其它,00,)(2x e x f xα.求:(1)常数α; (2)数学期望)(X E ; (3)}32{≤<X P ; (4)X Y -=1的概率密度.(3)2311232232)()23(21)32(-------=--=I -==≤⎰ee e e e dx e x p x x<(4)2)(21)1(1)1()1(21102----=-=-≤-=-≥=≤-⎰y yx e y fY dx e y x Y y x Y y x Y5、设随机变量)3,0(~U X , 求2X Y =的概率密度)(y f Y 。

Fx (x )=1/3 x 属于(0,3)0 其他yy fY dx y fY y61)(31)(0==⎰6、设随机变量)2,0(~U X , 求X Y ln =的概率密度)(y f Y 。

Fx (x )=1/2 x 属于(0,2) 0 其他2)(21)()(0ye ye y fY dx e x p y fY y==≤=⎰7、设⎩⎨⎧>=-其它,00,)(~x e x f X x ,求Xe =Y 的密度函数。

dx e y e p y FY yxx⎰-=≤=ln 0)()( Fy (y )= 112>y y= 0 其他8、设),(~b a U X ,求Xe =Y 的密度函数。

ya b y fY dx ab y e p y FY yax 1)1()(1)()(ln -=-=≤=⎰求: (1)、在表中空白处填上X 和Y 的边缘概率分布; (2)、|}||{|Y X P >;(3)、讨论X 和Y 的相关性,独立性。

(2) |}||{|Y X P > =P(X=1,Y=0)+P(X=-1,Y=0)=1/4+1/4=1/2 (3)由于P(X=-1)*P(Y=-1)不等于P(X=-1,Y=-1)则x 与y 不相互独立 2、下表列出了二维随机变量(X,Y )的概率分布:求: (1)、在表中空白处填上X 和Y 的边缘概率分布; (2)、}1|{|=+Y X P ;(3)、讨论X 和Y 的相关性,独立性。

(2)P (\X+Y\=1)=P(X=0,Y=1)+P(X=1,Y=0)=1/8+1/8=1/4(3)由于P(X=-1)*P(Y=-1)不等于P(X=-1,Y=-1)则x 与y 不相互独立 (1) 求X ,Y 的边缘分布律; (2) 讨论X 与Y 的独立性; (3) 求)(X D ,)(Y D ,),cov(Y X .(1)4.06.010y x 1.04.0215.00p y(2)由于P(X=0)*P(Y=0)不等于P(X=0,Y=0)则x 与y 不相互独立 (4) 求X ,Y 的边缘分布率; (5) 讨论X 与Y 的独立性; (6) 求)(X D ,)(Y D ,),cov(Y X .(1) 25.025.0325.01P X 25.0425.025.03225.01P Y(2)由于P(X=1)*P(Y=1)不等于P(X=1,Y=1)则x 与y 不相互独立(3)4154915.0)(2=++=x E 47432121)(=++=x E 16111649415)(=-=x D43041649141)(2=+++=y E 410)(=y E 45425215)(=-=y D并计算)(X D ,)(Y D .4/34/121P X 4/34/121P YE(x)=7/4 E(x2)=13/4D(x)=13/4-49/16=3/16 E(y)7/4E(Y2)=13/4 D(x)=13/4-49/16=3/16 (1) 求X ,Y 的边缘分布律; (2) 讨论X 与Y 的独立性; (3) 求)(X D ,)(Y D ,XY ρ(1)834132831py212121p x(2)由于P(X=1)*P(Y=1)不等于P(X=1,Y=1)则x 与y 不相互独立(3)25221)(2=+=x E 23121)(=+=x E []414925)()()(2=-=-=x E x E x D838827183)(2=++=y E 2892183)(=++=y E[]434838)()()(2=-=-=y E y E y D 7、已知二维随机变量(X,Y )的概率密度为⎩⎨⎧≤≤≤≤=其它,010,10,),(y x cxy y x f ,求:(1)、常数c ;(2)}{Y X P ≥:(3)X 和Y 的协方差.(1)41110=⇒=⎰⎰c ydy xdx c(2)dxx ydy xdx y x p x⎰⎰⎰==≥1030124)((3)944),(102102==⎰⎰dy y dx x y x E 322)(102==⎰dx x x E 同理可得E (y )=2/3 09494)()()(),cov(=-=-=y E x E xy E y x8、已知二维随机变量(X,Y )的概率密度为⎩⎨⎧≤≤≤=其它,010,),(y x Axy y x f ,求:(1)、常数A ;(2)}1{≥+Y X P :(3)X 和Y 的协方差.(1)3111021=⇒=⇒=⎰⎰⎰A dy y A dx Aydy y(2)}1{≥+Y X P =⎰⎰⎰-=-=12111212813)2(33yydy y y dx ydy1、某厂生产的一批产品分为一级品、二级品和不合格品,其中不合格品率为20%,一级品和二级品各占一半。

若生产一件不合格品要亏损2元,一级品获利10元,二级品获利6元,求一件产品的平均利润。

解平均利润为10*0.4+6*0.4-2*0.2=62、某车间生产的圆盘,其直径服从(a ,b )内的均匀分布。

试求圆盘的平均直径。

a b x f -=1)( 平均直径2)(2)(22b a a b a b dx a b x x E b a +=--=-=⎰ 3、检验员逐个检查某种产品,每次花10秒检查一个,但也可能有的产品需要重复检查一次再用去10秒。

假定每个产品需要重复检查的概率为0.5,求在8小时内检查的产品多于1936件的概率。

(441936,8621.0)09.1(==Φ)设x 表示1936件需要检的个数()5.0,1936~2b x 设A 为8小时内检验 {}{}14.0)09.1(9443600*8)1010*1936()(=-==+=φ<<x p x p A p 4、一生产线生产的产品成箱包装,每箱的重量是随机的,且服从同一分布。

相关文档
最新文档