概率论与数理统计试卷及答案(1)
(完整word版)概率论与数理统计期末试卷及答案
一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。
概率论与数理统计模拟试卷和答案
北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。
[A] P (A)=1-P (B ) [B] P (A │B)=0 [C] P (A │B )=1[D] P (A B )=02、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。
[A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A │B )=P (B )[D] P (A │B )=P(A )3、若A 、B 相互独立,则下列式子成立的为( )。
[A] )()()(B P A P B A P = [B] 0)(=AB P [C])()(A B P B A P = [D])()(B P B A P =4、下面的函数中,( )可以是离散型随机变量的概率函数。
[A] {}11(0,1,2)!e P k k k ξ-=== [B] {}12(1,2)!e P k k k ξ-=== [C] {}31(0,1,2)2k P k k ξ=== [D] {}41(1,2,3)2k P k k ξ===--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。
概率论与数理统计考试试卷与答案
一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p Y 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。
3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。
8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X Λ是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。
(完整word版)概率论和数理统计考试试题和答案解析.doc
一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
概率论与数理统计期末试卷及答案(最新1)
概率论与数理统计期末试卷一、填空(每小题 分,共 分)1.设是三个随机事件,则至少发生两个可表示为♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉。
2 掷一颗骰子,表示“出现奇数点”,表示“点数不大于 ”,则表示♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉。
3.已知互斥的两个事件满足,则♉♉♉♉♉♉♉♉♉♉♉。
4.设为两个随机事件,,,则♉♉♉♉♉♉♉♉♉♉♉。
5.设是三个随机事件,,,、,则至少发生一个的概率为♉♉♉♉♉♉♉♉♉♉♉。
二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。
每小题 分,共 分) 从装有 只红球, 只白球的袋中任取两球,记“取到 只白球”,则( )。
☎✌✆ 取到 只红球 ☎ ✆ 取到 只白球☎ ✆ 没有取到白球 ☎ ✆ 至少取到 只红球.对掷一枚硬币的试验 “出现正面”称为( )。
☎✌✆ 随机事件 ☎ ✆ 必然事件☎ ✆ 不可能事件 ☎ ✆ 样本空间 设✌、 为随机事件,则( )。
☎✌✆ ✌ ☎ ✆☎ ✆ ✌ ☎ ✆ φ 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是( )。
☎✌✆ 与互斥 ☎ ✆ 与不互斥☎ ✆ ☎ ✆ 设为两随机事件,且,则下列式子正确的是( )。
☎✌✆ ☎ ✆☎ ✆ ☎ ✆ 设相互独立,则( )。
☎✌✆ ☎ ✆☎ ✆ ☎ ✆设是三个随机事件,且有,则( )。
☎✌✆ ☎ ✆ ☎ ✆ ☎ ✆ 进行一系列独立的试验,每次试验成功的概率为☐,则在成功 次之前已经失败 次的概率为( )。
☎✌✆ ☐ ☎ ☐✆ ☎ ✆ ☐ ☎ ☐✆☎ ✆ ☐ ☎ ☐✆ ☎ ✆ ☐ ☎ ☐✆ 设✌、 为两随机事件,且,则下列式子正确的是( )。
☎✌✆ ☎ ✆☎ ✆☎ ✆ 设事件✌与 同时发生时,事件 一定发生,则( )。
☎✌✆ ☎✌ ✆ ☎ ✆ ☎ ✆ ☎✌✆ ☎ ✆ ☎ ✆ ≤ ☎ ✆ ☎✌✆ ☎ ✆ ☎ ✆ ≥ ☎ ✆ ☎✌✆ ☎ ✆ ≤ ☎ ✆三、计算与应用题(每小题 分,共 分) 袋中装有 个白球, 个黑球。
北京航空航天大学大二公共课专业概率论与数理统计试卷及答案 (1)
北京航空航天大学2021 学年概率论与数理统计第一学期期末一、单项选择题〔18分〕1.一种零件的加工由两道相互独立的工序组成,第一道工序的废品率为p ,第二道工序的废品率为q ,则该零件加工的成品率为〔 〕.(A ) 1p q --; (B ) 1pq -; (C ) 1p q pq --+; (D ) (1)(1)p q -+-. 2.设三个寿命分别为,,X Y Z 的元件并联成一个系统,则事件“系统的寿命超过T 〞可表示为〔 〕.(A ) X Y Z T ++>; (B ) XYZ T >; (C ) min{,,}X Y Z T >; (D ) max{,,}X Y Z T >.3.设1()F x 与2()F x 分别为两个随机变量的分布函数,令12()()()F x aF x bF x =+,则以下各组数中能使()F x 为某随机变量的分布函数的有〔 〕.(A )22,33a b ==; (B )32,55a b ==;(C )31,22a b ==; (D )32,45a b ==.4.设随机变量X 的分布律为 {}/15,1,2,3,4,5P X k k k ===。
则{0.5 2.5}P X <<的值是〔 〕. (A ) 6.0 ; (B )4.0; (C )2.0; (D ) 8.0 . 5. 设随机变量X 的分布律为:则(23)D X -+=〔 〕.(A ) 0.21 ; (B ) 3.21 ; (C )0.84 ; (D )3.36. 6. 设n X X X ,,,21 是取自总体X 的样本,则2)(σ=X D 的无偏估计为〔 〕.(A )∑=--n i i X X n 12)(11; (B )∑-=--112)(11n i i X X n ;(C )∑=-n i i X X n 12)(1; (D )∑-=-112)(1n i i X X n .二、填空题〔18分〕1. (),(),()P A p P B q P A B p q ==+=+,则()P A B += 。
概率论与数理统计习题及答案第一章
习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =, 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n +=}.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生;(2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABCABC ABC ABC ; (5) ABC ; (6) ()A BC .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)23A A ; (6)12A A .解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+.(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C).○2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P AB P A P B P AB P AB =-=--+=, 故()()1P A P B +=. 于是()1.P B p =-3. 已知()0.4P A =,()0.3P B =,()0.4P A B =, 求()P AB .解 由公式()()()()P A B P A P B P AB =+-知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB . 解 由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最大值, 最大值是多少? (2) 在什么条件下()P AB 取到最小值, 最小值是多少?解 ()()()()P AB P A P B P A B =+-=1.3()P A B -.(1) 如果A B B =, 即当A B ⊂时, P B A P =)( ()B =0.7, 则()P AB 有最大值是0.6 .(2) 如果)(B A P =1,或者A B S =时, ()P AB 有最小值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为ABC AB ⊂,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0. 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P AB C ==-=.习题1-41. 选择题在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品. (C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为023225C C C ⨯, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率; (3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有29C 种,两个球都是白球的取法有24C 种,一黑一白的取法有1154C C 种,由古典概率的公式知道(1) 两球都是白球的概率是2924C C ;(2)两球中一黑一白的概率是115429C C C ;(3)至少有一个黑球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和小于65;(2) 两数之积小于14;(3) 以上两个条件同时满足;(4) 两数之差的绝对值小于12的概率.解 设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0<X , Y <1}.,(1) P {X +Y <65}=1441172550.68125-⨯⨯=≈;(2) P {XY <14}=11411111ln 40.64444dx x⨯+=+≈⎰;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ⨯+-++-⎰⎰⎰≈0.593. (4) 解 设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|0<x , y <1}, 记A = {(x , y )|(x , y )∈S , |x -y |<12}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-⨯⨯⨯===, 其中 S A , S Ω分别表示A 与Ω的面积.习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件. (D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}. 解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 口袋中有b 个黑球、r 个红球, 从中任取一个, 放回后再放入同颜色的球a 个. 设B i ={第i 次取到黑球}, 求1234()P B B B B .解 用乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b ar a r b r a r b a b r b b +++⋅++⋅+++⋅+=注意, a = 1和a = 0分别对应有放回和无放回抽样.4. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则(0,1,2,3)i B i =表示“恰有i 发击中目标”.i B 为互斥的完备事件组. 于是没有击中目标概率为0()0.60.50.30.09P B =⨯⨯=, 恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =⨯⨯+⨯⨯+⨯⨯=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =⨯⨯+⨯⨯+⨯⨯=,恰有三发击中目标概率为3()0.40.50.70.14P B =⨯⨯=.又已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===⨯+⨯+⨯=∑5. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,i H 表示“取得球来至第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%,22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知,123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=⨯+⨯+⨯=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ⨯===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ⨯===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ⨯===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件. 解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立.(C)()()()P AB P A P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故AB 与,A 与B 及A 与B 也相互独立. 因此本题应选(D). (3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B 一定互斥. (D)()()()()()P A B P A P B P A P B =+-.解 因事件A 与B 独立, 故AB 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明P (B |A )=)(A B P 是事件A 与B 独立的充分必要条件.证 由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独立, 知事件A 与B 也独立, 因此()(),()()P B A P B P B A P B ==,从而()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对立事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独立.3. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+.由题设可知 A , B 和C 两两相互独立,,ABC =∅ 1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅=从而29()3()3[()]16P AB C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4. 某人向同一目标独立重复射击, 每次射击命中目标的概率为p (0<p <1), 求此人第4次射击时恰好第2次命中目标的概率.解 “第4次射击恰好第2次命中” 表示4次射击中第4次命中目标, 前3次射击中有一次命中目标. 由独立重复性知所求概率为1223(1)C p p -.5. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率; (3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==⨯=(2) ()()0.70.20.30.80.38;P AB P AB +=⨯+⨯= (3)()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总 习 题 一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396⨯=⨯.(1) 抽得一件为正品,一件为次品的概率为95559519.10099198⨯+⨯=⨯3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =∅(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221⨯+⨯+⨯=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ⨯====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
考研数学概率论和数理统计第一章测试题(卷)(含答案解析)
考研数学概率论与数理统计第一章测试题(含答案)一、单项选择题(每小题2分,共20分)1.对于任意二事件A 和B ,与B BA不等价...的是()(A)B A (B)A B(C)BA (D)BA 2.设事件A 与事件B 互不相容,则()(A)0)(B A P (B))()()(B P A P AB P (C))(1)(B P A P (D)1)(B AP 3.对于任意二事件A 和B ,则以下选项必然成立的是()(A)若AB ,则B A,一定独立 (B)若AB ,则B A,有可能独立(C)若AB ,则B A,一定独立 (D)若AB,则B A,一定不独立4.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是()(A)A 与B 互不相容(B)A 与B 相容(C))()()(B P A P AB P (D))()(A P B AP 5.设B A,为任意两个事件,且B A ,0)(B P ,则下列选项必然成立的是()(A))|()(B A P A P (B))|()(B A P A P (C))|()(B A P A P (D))|()(B A P A P 6.设B A,为两个随机事件,且0)(B P ,1)|(B A P ,则必有()(A))()(A P B A P (B))()(B P B A P (C))()(A P B A P (D))()(B P B AP 7.已知1)(0B P ,且)|()|(]|)[(2121B A P B A P B A A P ,则下列选项成立的是()(A))|()|(]|)[(2121B A P B A P B A A P (B))()()(2121B A P B A P B A BA P (C))|()|()(2121B A P B A P A A P (D))|()()|()()(2211A B P A P A B P A P B P 8.将一枚硬币独立地掷两次,引进事件:1A {掷第一次出现正面},2A {掷第二次出现正面},3A {正、反面各出现一次},4A {正面出现两次},则事件()(A)321,,A A A 相互独立 (B)432,,A A A 相互独立(C)321,,A A A 两两独立 (D)432,,A A A 两两独立9.某人向同一目标独立重复射击,每次射击命中目标的概率为p (10p ),则此人第4射击恰好第2次命中目标的概率为()(A)2)1(3p p (B)2)1(6p p (C)22)1(3p p (D)22)1(6p p 10.设C B A ,,是三个相互独立的随机事件,且1)()(0C P AC P ,则在下列给定的四对事件中不.相互独立的是()(A)B A与C (B)AC 与C (C)B A与C (D)AB 与C二、填空题(每小题2分,共14分)1.“C B A ,,三个事件中至少有两个发生”,这一事件可以表示为___2.若事件B A ,满足1BP A P ,则A 与B 一定____________3.在区间)1,0(中随机地取两个数,则两数之差的绝对值小于21的概率为4.在一次试验中,事件A 发生的概率为p 。
概率论与数理统计习题1及答案
概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点。
(1) 掷一颗骰子,出现奇数点。
(2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面。
” B =“至少有一次出现正面。
”C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2。
设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生; (7) A ,B ,C 至多有2个发生;(8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC =A B C (6) ABC(7) A BC ∪A B C ∪AB C ∪AB C ∪A BC ∪A B C ∪ABC =ABC =A ∪B ∪C (8) AB ∪BC ∪CA =AB C ∪A B C ∪A BC ∪ABC5.设A ,B 为随机事件,且P (A )=0。
(完整版)《概率论与数理统计》期末考试试题及解答
一、填空题(每小题3分,共15分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发B A ,5.0)()(=+B P A P B A ,生的概率为__________.答案:0.3解:3.0)(=+A B A P 即)(25.0)()()()()()(3.0AB P AB P B P AB P A P A P B A P -=-+-=+=所以1.0)(=AB P.9.0)(1)((=-==AB P AB P B A P 2.设随机变量服从泊松分布,且,则______.X )2(4)1(==≤X P X P ==)3(X P 答案:161-e 解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 知 λλλλλ---=+e e e 22)2(4)1(==≤X P X P即 0122=--λλ 解得,故1=λ161)3(-==e X P 3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率X )2,0(2X Y =)4,0(密度为_________.=)(y fY答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它 解答:设的分布函数为的分布函数为,密度为则Y (),Y F y X ()F x ()X f x2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为,所以,即~(0,2)XU (0X F =()Y X F y F =故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在上函数严格单调,反函数为(0,2)2y x=()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量相互独立,且均服从参数为的指数分布,,则YX,λ2)1(-=>eXP=λ_________,=_________.}1),{min(≤YXP答案:,2λ=-4{min(,)1}1eP X Y≤=-解答:,故2(1)1(1)P X P X e eλ-->=-≤==2λ={min(,)1}1{min(,)1}P X Y P X Y≤=->1(1)(1)P X P Y=->>.41e-=-5.设总体的概率密度为X.⎪⎩⎪⎨⎧<<+=其它,0,1,)1()(xxxfθθ1->θ是来自的样本,则未知参数的极大似然估计量为_________.nXXX,,,21Xθ答案:1111lnniixnθ==-∑解答:似然函数为111(,,;)(1)(1)(,,)nnn i niL x x x x xθθθθθ==+=+∏1ln ln(1)lnniiL n xθθ==++∑1lnln01niid L nxdθθ==++∑@解似然方程得的极大似然估计为θ.1111ln ni i x n θ==-∑二、单项选择题(每小题3分,共15分)1.设为三个事件,且相互独立,则以下结论中不正确的是,,A B C ,A B (A )若,则与也独立.()1P C =AC BC (B )若,则与也独立.()1P C =A C B (C )若,则与也独立.()0P C =A C B (D )若,则与也独立.( )C B ⊂A C 答案:(D ). 解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图可见A 与C 不独立.2.设随机变量的分布函数为,则的值为~(0,1),X N X ()x Φ(||2)P X > (A ). (B ).2[1(2)]-Φ2(2)1Φ- (C ). (D ).( )2(2)-Φ12(2)-Φ 答案:(A )解答: 所以~(0,1)X N (||2)1(||2)1(22)P X P X P X >=-≤=--<≤应选(A ).1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ3.设随机变量和不相关,则下列结论中正确的是X Y (A )与独立. (B ).X Y ()D X Y DX DY -=+ (C ).(D ).( )()D X Y DX DY -=-()D XY DXDY =解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ()+2cov x y D X Y DX DY -=+(,)应选(B ).4.设离散型随机变量和的联合概率分布为X Y (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若独立,则的值为,X Y ,αβ (A ). (A ).21,99αβ==12,99αβ== (C ) (D ).( )11,66αβ==51,1818αβ==解答: 若独立则有,X Y(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+, ∴29α=19β=故应选(A ).5.设总体的数学期望为为来自的样本,则下列结论中X 12,,,,n X X X μ X 正确的是(A )是的无偏估计量.(B )是的极大似然估计量.1X μ1X μ (C )是的相合(一致)估计量. (D )不是的估计量. ( )1X μ1X μ 答案:(A ) 解答:,所以是的无偏估计,应选(A ).1EX μ=1X μ三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设‘任取一产品,经检验认为是合格品’A =‘任取一产品确是合格品’B =则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯=(2) .()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===四、(12分) 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,X求的分布列、分布函数、数学期望和方差.X解:的概率分布为X3323()(()0,1,2,3.55k k kP X k C k -===即01232754368125125125125XP的分布函数为X0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩263,55EX =⨯= .231835525DX =⨯⨯=五、(10分)设二维随机变量在区域 上服从(,)X Y {(,)|0,0,1}D x y x y x y =≥≥+≤均匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概(,)X Y X Z X Y =+率密度.(1)的概率密度为(,)X Y 2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx+∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 或时0z <1z >()0Z f z =时 01z ≤≤00()222zzZ f z dx x z===⎰故的概率密度为Z 2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.的分布函数为Z200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰ 或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相X Y 互独立,且均服从分布. 求(1)命中环形区域2(0,2)N 22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离的数学期望.Z =1){,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰;2221122888211()8r r red ee e ------=-=-⎰ (2)22818x y EZ E edxdyπ+-+∞-∞-∞==⎰⎰22228801184r r rerdrd e r drπθπ--+∞+∞==⎰⎰⎰222888r r r reedr dr +∞---+∞+∞-∞=-+==⎰七、(11分)设某机器生产的零件长度(单位:cm ),今抽取容量为16的2~(,)X N μσ样本,测得样本均值,样本方差. (1)求的置信度为0.95的置信10x =20.16s =μ区间;(2)检验假设(显著性水平为0.05).20:0.1H σ≤ (附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)的置信度为下的置信区间为μ1α- /2/2(((X t n X t n αα--+-0.02510,0.4,16,0.05,(15) 2.132X s n t α=====所以的置信度为0.95的置信区间为(9.7868,10.2132)μ (2)的拒绝域为.20:0.1H σ≤22(1)n αχχ≥- ,221515 1.6240.1S χ==⨯=20.05(15)24.996χ= 因为 ,所以接受.220.052424.996(15)χχ=<=0H 《概率论与数理统计》期末考试试题(A )专业、班级:姓名:学号:一、单项选择题(每题3分 共18分)1.D 2.A 3.B 4.A 5.A 6.B 题 号一二三四五六七八九十十一十二总成绩得 分一、单项选择题(每题3分 共18分)(1).0)(,0)(;;0)(0)();(( ).,0)(=>===A B P A P (D)B A (C)B P A P (B)B A (A)AB P B A 则同时出现是不可能事件与或互不相容互斥与则以下说法正确的是适合、若事件(2)设随机变量X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4则( )。
概率论与数理统计考试试卷(附答案)
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
概率论与数理统计练习题附答案详解
第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。
2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。
3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =;(C )(|)()P A B P B =; (D )(|)()P A B P A =。
4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。
5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容; (C )()()()P AB P A P B =; (D )()()P A B P A -=。
6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P AB P A P B =+; (B )()()()P A B P A P B ≠+; (C )()()()P AB P A P B =; (D )()()()P AB P A P B =。
7、对于任意两个事件A 与B ,()P A B -等于( )(A )()()P A P B - (B )()()()P A P B P AB -+; (C )()()P A P AB -; (D )()()()P A P B P AB +-。
概率论与数理统计试卷及参考答案
概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。
2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。
3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。
4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。
5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。
二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。
做不放回抽取,每次取一只,求第三次才取到次品的概率。
解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。
解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。
《概率论与数理统计》期末试题一答案
1、 设A 与B 为互不相容的两个事件,0)B (P >,则=)|(B A P 0 。
2、 事件A 与B 相互独立,,7.0)(,4.0)(=+=B A P A P 则 =)(B P 0.5 。
3、 设离散型随机变量X 的分布函数为 0 1-<x=)(x F a 11<≤-xa 32- 21<≤x b a + 2≥x且21)2(==X P ,则=a61 =b , 65。
4、 某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。
5、 设随机变量X 与Y 相互独立,X 服从“0-1”分布,4.0=p ;Y 服从2=λ的泊松分布)2(π,则._______24.2____)(_______,4.2____)(=+=+Y X D Y X E6、 已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =-7、 设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。
8、 设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。
(96.1975.0=u )9、 若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。
一、 计算题(每小题10分,共60分)1、 (10分)已知8只晶体管中有2只次品,从其中取两次,每次任取一只,做不放回抽样。
求下列事件的概率:(1)一只是正品,一只是次品;(2)第二次才取得次品;(3)第二次取出的是次品。
概率论与数理统计自测试卷及答案
概率论与数理统计自测试卷一一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A) 11a a b -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭ . 2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】 (A) A 与B 互不相容; (B)()0>A B P ;(C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】(A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为则随机变量()Y X Z ,max =的分布律为【 】 (A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。
《概率论与数理统计》练习题试卷及答案解析
《概率论与数理统计》练习题试卷及答案解析一.单项选择题(每小题2 分,共 20 分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )B A .A 1A 2 B .21A A C .21A A D .21A A 2.则( )DA .121=a B .61=a C .121=a D .41=a 3.设事件A 与B 相互独立,则有( )CA .0)(=AB P B .)()()(B P A P B A P +=C .)()()(B P A P AB P =D .)()(A P A B P =4.设随机变量X 服从正态分布),(2σμN ,则其概率密度函数的最大值为( )D A .0 B .1 C .π21 D .212)2(-πσ5. 设随机变量X 与Y 互相独立, 且X ~),,(211σa N Y ~),,(222σa N 则Y X Z +=仍服从正态分布,且( ) DA . Z ~),(22211σσ+a N B . Z ~),(2121σσa a N +C . Z ~),(222121σσa a N + D . Z ~),(222121σσ++a a N6.设随机变量X 服从[-1,2]上的均匀分布,则X 的概率密度)(x f 为( )AA .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f7.设,21X X ,3X 是总体~X ()2,σμN 的样本,则μ的无偏估计量是( )AA .3212110351X X X ++ B .321316131X X X ++ C .3211274131X X X ++ D .3211513151X X X ++8.某店有7台电视机,其中2台为次品,今从中随机地抽取3台,设X 为其中次品数,则数学期望EX =( )D A .73 B .74 C .75 D .76 9.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )CA .)10(2σμ,N B .)(2σμ,N C .)10(2σμ,N D .)10(2σμ,N 10.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是( )BA. H 1成立,拒绝H 0B. H 0成立,拒绝H 0C. H 1成立,拒绝H 1D. H 0成立,拒绝H 1 二.填空题(每空 2 分,共 20 分)1.连续抛一枚均匀硬币4次,则正面至少出现一次的概率为___________.1615 2.设A ,B 为互不相容的两个随机事件,P (A )=0.3,P (B )=0.4,则)(B A P ⋃)=________.0.73.设随机变量X 的概率密度⎪⎩⎪⎨⎧≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.34.设随机变量X 是服从区间(μ,2)上的均匀分布,且1=EX ,则μ= . 1 5.设X 为连续随机变量,c 为一个常数,则P {X =c }=____________.06.设随机变量X 服从二项分布),(p n B ,且,44.1,4.2==DX EX 则二项分布的参数p = . 0.47.10X =E ,4=DX ,若{}04.010≤≥-c X P ,则常数c = . 108.已知E (X )=1,E (Y )=2,E (XY )=3,则X ,Y 的协方差Cov (X ,Y )=_____________.2 9.设二维随机变量(X,Y)的分布律为则P{XY=0}=___________。
概率论与数理统计试卷及答案
模拟试题一一、填空题〔每空3分,共45分〕1、P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 那么P(A|B ) = P( A ∪B) =2、设事件A 及B 独立,A 及B 都不发生的概率为19,A 发生且B 不发生的概率及B 发生且A 不发生的概率相等,那么A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 那么常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),假设{1}5/9P X ≥=,那么p = ,假设X 及Y 独立,那么Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 及Y 相互独立,那么D(2X-3Y)= , COV(2X-3Y, X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,那么当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,那么θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、计算题〔35分〕1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1〕{|21|2}P X -<;2〕2Y X =的密度函数()Y y ϕ;3〕(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 及Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、〔11分〕设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟试题一一、填空题(每空3分,共45分)1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y, X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立是否相关 3) 计算Z = X + Y 的密度函数()Z z ϕ; 3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
1) 求参数θ的极大似然估计量ˆθ;2)验证估计量ˆθ是否是参数θ的无偏估计量。
三、应用题(20分)1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来,迟到的概率分别是1/4,1/3,1/2。
现此人迟到,试推断他乘哪一种交通工具的可能性最大2.(10分)环境保护条例,在排放的工业废水中,某有害物质不得超过‰,假定有害物质含量X 服从正态分布。
现在取5份水样,测定该有害物质含量,得如下数据:‰,‰,‰,‰,‰能否据此抽样结果说明有害物质含量超过了规定(0.05α=) 附表:模拟试题二一、填空题(45分,每空3分)1.设()0.5,(|)0.6,()0.1,P A P B A P AB === 则()P B = ()P AB = 2.设,,A B C 三事件相互独立,且()()()P A P B P C ==,若37()64P A B C ⋃⋃=,则()P A = 。
3.设一批产品有12件,其中2件次品,10件正品,现从这批产品中任取3件,若用X 表示取出的3件产品中的次品件数,则X 的分布律为 。
4.设连续型随机变量X 的分布函数为 ()arctan(),F x A B x x R =+∈则(,)A B = ,X 的密度函数()x ϕ= 。
5.设随机变量~[2,2]X U -,则随机变量112Y X =+的密度函数()Y y ϕ= 6.设,X Y 的分布律分别为X -1 0 1 Y 0 1 P 1/4 1/2 1/4 P 1/2 1/2且{0}0P X Y +==,则(,)X Y 的联合分布律为 。
和{1}P X Y +==7.设(,)~(0,25;0,36;0.4)X Y N ,则cov(,)X Y = ,1(31)2D X Y -+= 。
8.设1234(,,,)X X X X 是总体(0,4)N 的样本,则当a = ,b = 时,统计量221234(2)(34)X a X X b X X =-+-服从自由度为2的2χ分布。
9.设12(,,,)n X X X 是总体2(,)N a σ的样本,则当常数k = 时,221ˆ()ni i k X X σ==-∑是参数2σ的无偏估计量。
10.设由来自总体2~(,0.9)X N a 容量为9的样本,得样本均值x =5,则参数a 的置信度为的置信区间为 。
二、计算题(27分)1.(15分)设二维随机变量(,)X Y 的联合密度函数为1(),02,02(,)80,x y x y x y ϕ⎧+≤≤≤≤⎪=⎨⎪⎩其它(1) 求X Y 与的边缘密度函数(),()X Y x y ϕϕ; (2) 判断X Y 与是否独立为什么 (3) 求Z X Y =+的密度函数()Z z ϕ。
2.(12分)设总体X 的密度函数为(),()0,x e x x x θθϕθ--⎧≥=⎨<⎩ 其中0θ>是未知参数,12(,,,)n X X X 为总体X 的样本,求(1)参数θ的矩估计量1ˆθ; (2)θ的极大似然估计量2ˆθ。
三、应用题与证明题(28分)1.(12分)已知甲,乙两箱中有同种产品,其中甲箱中有3件正品和3件次品,乙箱中仅有3件正品,从甲箱中任取3件产品放入乙箱后, (1)求从乙箱中任取一件产品为次品的概率;(2)已知从乙箱中取出的一件产品为次品,求从甲箱中取出放入乙箱的3件产品中恰有2件次品的概率。
2.(8分)设某一次考试考生的成绩服从正态分布,从中随机抽取了36位考生的成绩,算得平均成绩66.5x =分,标准差15s =分,问在显著性水平0.05α=下,是否可以认为这次考试全体考生的平均成绩为70分,并给出检验过程。
3.(8分)设0()1P A <<,证明:A B 与相互独立⇔(|)(|)P B A P B A =。
附表:0.950.9750.950.951.65, 1.96,(35) 1.6896,(36) 1.6883,u u t t ==== 0.9750.975(35) 2.0301,(36) 2.0281,t t ==模拟试题三一、填空题(每题3分,共42分)1.设()0.3,()0.8,P A P A B =⋃= 若A B 与互斥,则()P B = ;A B 与独立,则()P B = ;若A B ⊂,则()P AB = 。
2.在电路中电压超过额定值的概率为1p ,在电压超过额定值的情况下,仪器烧坏的概率为2p ,则由于电压超过额定值使仪器烧坏的概率为 ;3.设随机变量X 的密度为34,01()0,x x x ϕ⎧<<=⎨⎩其它,则使{}{}P X a P X a >=<成立的常数a = ;{0.5 1.5}P X <<= ;4.如果(,)X Y 的联合分布律为Y 1 2 3 X1 1/6 1/9 1/182 1/3 α β则,αβ应满足的条件是 01,01,1/3αβαβ≤≤≤≤+= ,若X Y 与独立,α= ,β= ,(31)E X Y +-= 。
5.设~(,)X B n p ,且 2.4, 1.44,EX DX == 则n = ,p = 。
6.设2~(,)X N a σ,则32X Y -=服从的分布为 。
7.测量铝的比重16次,得 2.705,0.029x s ==, 设测量结果服从正态分布2(,)N a σ,参数2,a σ未知,则铝的比重a 的置信度为95%的置信区间为 。
二、(12分)设连续型随机变量X 的密度为:,0()0,0x ce x x x ϕ-⎧>=⎨≤⎩(1)求常数c ; (2)求分布函数()F x ; (3)求21Y X =+的密度()Y y ϕ三、(15分)设二维连续型随机变量(,)X Y 的联合密度为,01,0(,)0,c x y xx y ϕ<<<<⎧=⎨⎩其它(1)求常数c ; (2)求X Y 与的边缘密度(),()X Y x y ϕϕ; (3)问X Y 与是否独立为什么(4)求Z X Y =+的密度()Z z ϕ; (5)求(23)D X Y -。
(2) 参数θ的极大似然估计量2ˆθ;五、(10分)某工厂的车床、钻床、磨床和刨床的台数之比为9:3:2:1,它们在一定时间内需要修理的概率之比为1:2:3:1,当有一台机床需要修理时,求这台机床是车床的概率。
六、(10分)测定某种溶液中的水份,设水份含量的总体服从正态分布2(,)N a σ,得到的10个测定值给出0.452,0.037x s ==,试问可否认为水份含量的方差20.04σ=(0.05α=)22220.9750.9750.950.95(10)20.483,(9)19.023,(10)18.307,(9)16.919,χχχχ====模拟试题四一、填空题(每题3分,共42分)1、 设A 、B 为随机事件,()0.8P B =,()0.2P B A -=,则A 与B 中至少有一个不发生的概率为 ;当A B 与独立时,则(())P B A B ⋃=四、(11分)设总体X 的密度为(1),01()0,x x x θθϕ⎧+<<=⎨⎩其它其中1θ>-是未知参数,1(,,)n X X 是来自总体X 的一个样本,求(1) 参数θ的矩估计量1ˆθ; 附表:22220.050.0250.050.05(10) 3.94,(10) 3.247,(9) 3.325,(9) 2.7,χχχχ====2、 椐以往资料表明,一个三口之家患某种传染病的概率有以下规律:()孩子得病P =,()孩子得病母亲得病P =,()孩子得病母亲及父亲得病P =,那么一个三口之家患这种传染病的概率为 。
3、设离散型随机变量X 的分布律为:,...)2,1,0(!3)(===k k a k X P k,则a =_______=≤)1(X P 。
4、若连续型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<-+-≤=3,133,3arcsin 3,0)(x x x B A x x F则常数=A ,=B ,密度函数=)(x ϕ5、已知连续型随机变量X 的密度函数为2218(),xx f x ex -+-=-∞<<+∞,则=-)14(X E , =2EX 。