姚敏 数字图像处理 第四章 图像增强 ppt课件
合集下载
遥感数字图像处理-第四章_遥感数字图像增强处理课件
学习交流PPT
9
二、辐射增强
点运算用数学公式表示为:
s T r
r--原始图像f(x,y)的灰度级 s--增强图像g(x,y)的灰度级
T--灰度映射函数
❖ 只作用在单个像素上,输出g(x,y)只与位置 (x,y)处的输入f(x,y)有关。“点到点的处理”
❖ 点运算完全由T决定。根据T的形式,可分为 线性点运算和非线性点运算。
学习交流PPT
3
图像增强不是以图像保真度为原则,而是通过 处理设法有选择地突出便于人或机器分析某些 感兴趣的信息,抑制一些无用的信息,以提高 图像的使用价值,即图像增强处理只是增强了 对某些信息的辨别能力。
学习交流PPT
4
❖增强的实质
增强感兴趣地物与周围地物之间的反差。
学习交流PPT
5
➢图像增强的分类
• 若a2-a1<b2-b1,则影像被拉伸,亮度范围扩大,;
• 若a2-a1>b2-b1,影像被压缩,亮度范围缩小,;
• 对于a2与a1 ,是取在影像亮度值的全部或部分,偏亮或偏暗 处,均可根据对影像显示效果的需要而人为地设定。
学习交流PPT
26
在曝光不足或过度的情况下,图像灰度可能会局限在一个很 小的范围内,这时在显示器上看到的将是一个模糊不清、似乎没 有灰度层次的图像,此时可利用灰度变换对图像每一个像素灰度 作拉伸,可以有效地改善图像视觉效果。
学习交流PPT
24
设图像变换前原图像的灰度范围为的亮度值为: xaa1,a2
设图像变换后的亮度值为: xbb1,b2
则 xb b1 xa aa b2 b1 a2 a1
xb
b2 a2
b1 a1
(xa
a1)b1
第四章-图像增强-4.1-4.2PPT课件
频域:由频率成分构成的空间,在频域空间进行处理。一般在图象的Fourier变 换域上进行处理。 g(x,y)T1{E[H T[f(x,y)]]}
.
2
4.2 空域变换增强
灰度变换:基于点的操作的增强方法。 可分几类: a.将f(·)的每个象素按EH操作直接得到变换g(·)。 b.利用f(·)的直方图进行变换。 c.利用一系列图象间的操作进行变换。 一.象素按EH操作直接得到变换(直接灰度变换) 1.图象求反
.
7
5.灰度切分 与增强对比度相仿,将某个范围灰度值变得比较突出
。如图s1<s<s2灰度级突出,其余灰度值变为某个低灰度。
直接灰度变换也可借助图象位面表示进行。位面:对1 幅用多个比特看作表示其灰度值的图象来源,其中的每一 个比特看作表示一个二值的平面。
.
8
6.非线性灰度变换 (1)对数变换 低灰度区扩展,高灰度区压缩。 (2)指数变换 高灰度区扩展,低灰度区压缩。
c a
f
(x,
y)
b f (x, y)Mf a f (x,y)b 0 f (x,y)a
g(x,y) Mg
d
c
0
a
b
Mf
f(x,y)
.
6
4.动态范围压缩(非线性) 该方法的目标与增强对比度相反。由于原图动态范围太 大,超出某些显示设备的允许动态范围,若直接用原图则 一部分细节会失去,解决办法是对原图进行灰度压缩,采 用压缩方法如下:t=clog(1+|s|),c为尺度比例常数。
均衡化变换公式,令r代表灰度级,P ( r )
为概率密度函数。
r值已归一化,最大灰度值为1。
.
18
直方图均衡化
要找到一种变换 S=T ( r ) 使直方图
.
2
4.2 空域变换增强
灰度变换:基于点的操作的增强方法。 可分几类: a.将f(·)的每个象素按EH操作直接得到变换g(·)。 b.利用f(·)的直方图进行变换。 c.利用一系列图象间的操作进行变换。 一.象素按EH操作直接得到变换(直接灰度变换) 1.图象求反
.
7
5.灰度切分 与增强对比度相仿,将某个范围灰度值变得比较突出
。如图s1<s<s2灰度级突出,其余灰度值变为某个低灰度。
直接灰度变换也可借助图象位面表示进行。位面:对1 幅用多个比特看作表示其灰度值的图象来源,其中的每一 个比特看作表示一个二值的平面。
.
8
6.非线性灰度变换 (1)对数变换 低灰度区扩展,高灰度区压缩。 (2)指数变换 高灰度区扩展,低灰度区压缩。
c a
f
(x,
y)
b f (x, y)Mf a f (x,y)b 0 f (x,y)a
g(x,y) Mg
d
c
0
a
b
Mf
f(x,y)
.
6
4.动态范围压缩(非线性) 该方法的目标与增强对比度相反。由于原图动态范围太 大,超出某些显示设备的允许动态范围,若直接用原图则 一部分细节会失去,解决办法是对原图进行灰度压缩,采 用压缩方法如下:t=clog(1+|s|),c为尺度比例常数。
均衡化变换公式,令r代表灰度级,P ( r )
为概率密度函数。
r值已归一化,最大灰度值为1。
.
18
直方图均衡化
要找到一种变换 S=T ( r ) 使直方图
2012-第4章图像增强(学生课件)
4.2.1 直方图
1.定义:数字图像中各灰度级与其出现的频数间
的统计关系,可表示为:
其中k为图像的第k级灰度值,nk是灰度值为k 的像素个数,n是图像的总像素个数。
直方图提供了原图的灰度值分布情况,也 可以说给出了一幅图所有灰度值的整体描述
Pr(r)
Pr(r)
p (r )
0
1
(b) (a) 图(a)的大多数象素灰度值取在较暗的区域。所以这 幅图像肯定较暗,一般在摄影过程中曝光过强就会造成 这种结果。 图(b)图像的象素灰度值集中在亮区,因此图像的特 性偏亮,曝光太弱,导致这种结果。 图(c)图像的象素灰度值集中在某个较小的范围内, 也就是说图像(c)的灰度集中在某一个小的亮区
k
F、应用以下公式计算映射后的输出图像的灰度级,P为输 出图像灰度级的个数,其中INT为取整符号:
gi INT [( g max g min )C ( f ) g min 0.5]
i 1,, P 1
G、用映射关系修改原始图像的灰度级,从而获得直方图 近似为均匀分布的输出图像。
第四章 图像增强
4.0 概述 4.1 灰度变换 4.2 直方图修正 4.2.4 图像的彩色增强 4.2.5 用算术/逻辑操作增强
4.0 概述
1 图像增强的定义
图像增强是对图像进行加工,以得到对视觉解释来说 视觉效果“更好”、或 “更有用”的图像。 (1)视觉效果更好的例子
4.目的:
(1)改善图像的视觉效果,提高图像的清晰度; (2)将图像转换成一种更适合于人或机器分析处理 的形式。
例
0 0.12 1 0.20 2 0.36 3 0.52
2 g
5
9
9
姚敏 数字图像处理 第四章 图像增强 ppt课件
得到直接差分算子
42
锐化滤波器-梯度算子法
Gx和Gy 用近似值: G x f(x ,y ) f(x 1 ,y 1 ) G yf(x1 ,y)f(x,y1 )
得到Roberts算子
43
锐化滤波器-梯度算子法
Gx和Gy 用近似值:
G x (f((x 1 ,y 1 ) 2f(x 1 ,y)f(x 1 ,y 1 )) (f(x 1 ,y 1 ) 2f(x 1 ,y)f(x 1 ,y 1 ))
39
中值滤波器
效果
40
锐化滤波器-梯度算子法
f(x,y)在(x,y)的梯度
f
G[
f
(x,
y)]
Gx Gy
x f
x
其模值
G M [f(x,y) ] G x 2G y 2 fx2 fy2
近似梯度模值
G M [f(x,y) ]|G x||G y|
41
锐化滤波器-梯度算子法
Gx和Gy 用近似值: G xf(x ,y )f(x 1 ,y ) G yf(x,y)f(x,y1)
要消除这种因动态范围太大而引起的失真,一种 有效的方法是对原图像的动态范围进行压缩,最常用 的是借助对数形式对动态范围进行调整,其数学表达 式如下:
tClo1g(|s|)
10
对数变换
例如,傅里叶谱的范围在[0 R]=[0,1.6×106] ,为 了在一个8位的显示设备上进行显示,并充分利用显
示设备的动态范围,则变换表达式中的C为:
效果
-
=
直方图均衡后
31
图像间运算-图像平均
(2) 图像平均
令 g (x ,y ) f(x ,y ) e (x ,y )
设噪声互不相关,且具有零均值 ,可用图像平均去除噪声
42
锐化滤波器-梯度算子法
Gx和Gy 用近似值: G x f(x ,y ) f(x 1 ,y 1 ) G yf(x1 ,y)f(x,y1 )
得到Roberts算子
43
锐化滤波器-梯度算子法
Gx和Gy 用近似值:
G x (f((x 1 ,y 1 ) 2f(x 1 ,y)f(x 1 ,y 1 )) (f(x 1 ,y 1 ) 2f(x 1 ,y)f(x 1 ,y 1 ))
39
中值滤波器
效果
40
锐化滤波器-梯度算子法
f(x,y)在(x,y)的梯度
f
G[
f
(x,
y)]
Gx Gy
x f
x
其模值
G M [f(x,y) ] G x 2G y 2 fx2 fy2
近似梯度模值
G M [f(x,y) ]|G x||G y|
41
锐化滤波器-梯度算子法
Gx和Gy 用近似值: G xf(x ,y )f(x 1 ,y ) G yf(x,y)f(x,y1)
要消除这种因动态范围太大而引起的失真,一种 有效的方法是对原图像的动态范围进行压缩,最常用 的是借助对数形式对动态范围进行调整,其数学表达 式如下:
tClo1g(|s|)
10
对数变换
例如,傅里叶谱的范围在[0 R]=[0,1.6×106] ,为 了在一个8位的显示设备上进行显示,并充分利用显
示设备的动态范围,则变换表达式中的C为:
效果
-
=
直方图均衡后
31
图像间运算-图像平均
(2) 图像平均
令 g (x ,y ) f(x ,y ) e (x ,y )
设噪声互不相关,且具有零均值 ,可用图像平均去除噪声
最新数字图像处理图像增强ppt课件
4.2.1 灰度级变换的应用
第 四
3.灰度级变换的应用之三
章
灰度级切片
图
像 255
255
增
强 176
214
0
48 134
255
0 48 142 255
4.2.2 获取变换函数的方法
第 四
1.获取变换函数的方法之一
章
固定函数:指数函数、正弦函数、分段直线、
图
对数函数,如显示傅立叶的s=c log(1+|r|)
四
设有1个整数函数I(l),l=0,1, … ,N-1,满足0 ≤I(0) ≤ … ≤I(l)
章 ≤ … ≤I(N-1) ≤M-1 。现要确定能使下式达到最小的I(l)
图
像 增
I(l)
l
ps si pu u j
l 0,1,, N 1
强
i0
j0
如果l=0, 则将其i从0到I(0)的si对应到u0去,如果l≥1, 则将其 i从I(l-1)+1到I(l)的si都对应到ul去。
章
01234567
图
(a) 原始图像直方图
像
0.3
增 强
0.25
0.24
0.2
0.19
0.21
0.11
0.1
0 01234567
(c) 均衡化后的直方图
4.3.1 直方图均衡化
第 小结: 四 章 1) 灰度变换关系
图
灰度变换关系式,通过公式
像
增 强
tk EH sk
k i0
ni n
k i0
0→1
1→3 790
2→5
3,4→ 6 1023
5,6,7 →7 850 985 448
数字图像处理第04章图像增强ppt课件
归一化的直方图(histogram)定义为灰度级出 现的相对频率。即
Pr(k)nk /N
(4.13)
式中,N表示像素的总数;nk表示灰度级为k的
像素的数目。
Slide 25
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.线性变换
灰度g与灰度f之间的关系为
gaba[f a] ba
(1)变换使得图像灰度范围增 大,即对比度增大,图像会变得 清晰;
(2)变换使得图像灰度范围缩 图4.4 线性变换 小,即对比度减小。
Slide 16
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
图4.7 三段线性变换实例
(a)原始图像
(b)增强效果
Slide 21
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3.非线性灰度变换
当用某些非线性函数如对数、指数函数等作为 映射函数时,可实现灰度的非线性变换。
J = imadjust(I,[0.3 0.7],[]); %使用imadjust函数进行灰度的线性变换
figure,imshow(J); figure,imhist(J)
%显示变换后图像的直方图
Slide 17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
【例4.1】采用线性变换进行图像增强。
图像增强PPT课件
0.25
0.21
0.16
0.08
0.06
0.03
0.02*Fra bibliotek由下面公式可以得到s2…..s7
*
均衡化过程
原灰度级
变换函数值
原灰度级分布
原来像素数
新灰度级
新灰度级分布
r0=0
s0=T(r0)=0.19
0
790
r1=1/7
s1=T(r1) =0.44
1/7=0.14
1023
r2=2/7
s2=T(r2) =0.65
*
一、线性变换 对比度:亮度最大值和最小值之比称为亮度对比度 线性变换—>扩展对比度:通过将亮暗差异(即对比度)扩大,把人所关心的部分强调出来。原理是:进行像素点对像素点的灰度级的线性影射。该影射关系通过调整参数,来实现对亮暗差异的扩大。
4.1.1 灰度变换法
*
设原图、处理后的结果图的灰度值分别为[f(i,j)]和[g(i,j)] ; 要求[g(i,j)]和[f(i,j)]均在[0,255]间变化,但是g的表现效果要优于f。 因为f和g的取值范围相同,所以通过 抑制 不重要的部分,来 扩展 所关心部分的对比度。
1.00
81
s0’(790)
790/4096=0.19
s1’(1023)
1023/4096=0.25
s2’(850)
850/4096=0.21
s3’(985)
985/4096=0.24
s4’(448)
448/4096=0.11
*
直方图均衡化结果
图像直方图均衡化
0 rk
*
问题:均衡化后的每个灰度等级的概率密度仍不相等或者说均衡化之后仍然没有均匀,该如何处理?
0.21
0.16
0.08
0.06
0.03
0.02*Fra bibliotek由下面公式可以得到s2…..s7
*
均衡化过程
原灰度级
变换函数值
原灰度级分布
原来像素数
新灰度级
新灰度级分布
r0=0
s0=T(r0)=0.19
0
790
r1=1/7
s1=T(r1) =0.44
1/7=0.14
1023
r2=2/7
s2=T(r2) =0.65
*
一、线性变换 对比度:亮度最大值和最小值之比称为亮度对比度 线性变换—>扩展对比度:通过将亮暗差异(即对比度)扩大,把人所关心的部分强调出来。原理是:进行像素点对像素点的灰度级的线性影射。该影射关系通过调整参数,来实现对亮暗差异的扩大。
4.1.1 灰度变换法
*
设原图、处理后的结果图的灰度值分别为[f(i,j)]和[g(i,j)] ; 要求[g(i,j)]和[f(i,j)]均在[0,255]间变化,但是g的表现效果要优于f。 因为f和g的取值范围相同,所以通过 抑制 不重要的部分,来 扩展 所关心部分的对比度。
1.00
81
s0’(790)
790/4096=0.19
s1’(1023)
1023/4096=0.25
s2’(850)
850/4096=0.21
s3’(985)
985/4096=0.24
s4’(448)
448/4096=0.11
*
直方图均衡化结果
图像直方图均衡化
0 rk
*
问题:均衡化后的每个灰度等级的概率密度仍不相等或者说均衡化之后仍然没有均匀,该如何处理?
数字图像处理 第四章图像增强 ppt课件
图像质量退化的原因
✓ 对比度局部或全部偏低 ✓ 噪声干扰,包括热噪声、量化噪声、椒盐噪声、
背景干扰等 ✓ 清晰度下降,图像模糊
图像增强通过针对性技术,如直方图均衡、平 滑去噪、边缘锐化等对图像的退化加以修正, 已达到改进图像质量的目的。
6
图像增强的主要内容
空间域
✓ 点运算 ✓ 局部运算 图像平滑,图像锐化
11
4.1.2灰度变换
灰度变换:将图像的灰度级映射到另一灰度级。 分类:线性变换,非线性变换 一、线性变换 由于成像时曝光不足或过度,以及成像设备的 非线性或图像记录设备动态范围太窄等因素, 对图像都会产生对比度不足的弊病,使图像中 的细节分辨不清,这时如将图像灰度线性扩展, 常能显著改善图像的主观质量。
[b,Mf ]被压缩
17
二、非线性灰度变换
对数变换 g (i, j) = a+ ln [f(i, j) + 1 ] b ln c
低灰度拉伸,高灰度压缩 指数变换
g (i, j) = b c[f(i,j)-a] 1 使图像高灰度拉伸
对数 变换
指数 变换
18
附:PS相关命令
通过命令“图像曲线”调整灰度
具体实现
实际处理对象
✓ 对理想系统的输入图像f(i,j)和实际获得降质图 像g(i,j)的关系用公式表示为 g(i,j)=e(i,j)f(i,j)
其中e(i,j)为降质函数/系统的灰度失真系数
✓ 采用一幅灰度级为常数C的图像成像,实际输 出为gc(i,j),即gc(i,j)=e(i,j)C,代入前式可得
基本思想是提出希望的局部均值和方差对原图像每个像素分别进行处局部均值平均灰度方差平均对比度局部方差平均对比度局部统计法主要内容图像增强的作用及目的空间域点运算空间域平滑空间域锐化频率域增强彩色增强代数运算空间滤波的概念平滑滤波空间域滤波概念空间域滤波属于局部处理空间域滤波分类空域滤波按不同条件分类空间域滤波线性滤波器定义空间域滤波42空间域平滑图a原图像图b阈值化处理后的图像图c平滑处理后的图像空间域平滑平滑滤波器的用途平滑滤波器的用途一局部平滑法像素灰度像素邻域内各像素的灰度平均值s表示去心邻域常用4邻域8邻域
✓ 对比度局部或全部偏低 ✓ 噪声干扰,包括热噪声、量化噪声、椒盐噪声、
背景干扰等 ✓ 清晰度下降,图像模糊
图像增强通过针对性技术,如直方图均衡、平 滑去噪、边缘锐化等对图像的退化加以修正, 已达到改进图像质量的目的。
6
图像增强的主要内容
空间域
✓ 点运算 ✓ 局部运算 图像平滑,图像锐化
11
4.1.2灰度变换
灰度变换:将图像的灰度级映射到另一灰度级。 分类:线性变换,非线性变换 一、线性变换 由于成像时曝光不足或过度,以及成像设备的 非线性或图像记录设备动态范围太窄等因素, 对图像都会产生对比度不足的弊病,使图像中 的细节分辨不清,这时如将图像灰度线性扩展, 常能显著改善图像的主观质量。
[b,Mf ]被压缩
17
二、非线性灰度变换
对数变换 g (i, j) = a+ ln [f(i, j) + 1 ] b ln c
低灰度拉伸,高灰度压缩 指数变换
g (i, j) = b c[f(i,j)-a] 1 使图像高灰度拉伸
对数 变换
指数 变换
18
附:PS相关命令
通过命令“图像曲线”调整灰度
具体实现
实际处理对象
✓ 对理想系统的输入图像f(i,j)和实际获得降质图 像g(i,j)的关系用公式表示为 g(i,j)=e(i,j)f(i,j)
其中e(i,j)为降质函数/系统的灰度失真系数
✓ 采用一幅灰度级为常数C的图像成像,实际输 出为gc(i,j),即gc(i,j)=e(i,j)C,代入前式可得
基本思想是提出希望的局部均值和方差对原图像每个像素分别进行处局部均值平均灰度方差平均对比度局部方差平均对比度局部统计法主要内容图像增强的作用及目的空间域点运算空间域平滑空间域锐化频率域增强彩色增强代数运算空间滤波的概念平滑滤波空间域滤波概念空间域滤波属于局部处理空间域滤波分类空域滤波按不同条件分类空间域滤波线性滤波器定义空间域滤波42空间域平滑图a原图像图b阈值化处理后的图像图c平滑处理后的图像空间域平滑平滑滤波器的用途平滑滤波器的用途一局部平滑法像素灰度像素邻域内各像素的灰度平均值s表示去心邻域常用4邻域8邻域
第4章 图像增强(08) 数字图像处理课件
c
f (x, y)
a
g
(
x,
y
)
d d
c a
[
f
(
x,
y
)
a
]
c
M
g
d
[
f
(x,
y)
b]
d
M f b
0 f (x, y) a 0 f (x, y) b b f (x, y) M f
(4-16)
Image No
第四章 图像增强
g (x, y) Mg d
c
O
ab
M f f (x , y)
一个重要的变换函数为
r
sT(r) 0
pr()d
(4-6)
ω是积分变量,而
r
0 pr ()d
就是r的累积分布函数。
这里,累积分布函数是r的函数,并且单调地从0增 加到1, 所以这个变换函数满足关于T(r)在0≤r≤1内单值 单调增加。在0≤r≤1内有0≤T(r)≤1的两个条件。
第四章 图像增强
Image No
因为r0=0,经变换得s0=1/7,所以有790个像素取s0这个灰度值。r1 映射到s1=3/7,所以有1023个像素取s1=3/7这一灰度值。依次类推, 有 850 个 像 素 取 s2=5/7这 个 灰 度值 。 但 是, 因 为 r3 和 r4 均 映射 到 s3=6/7这一灰度级,所以有656+329=985个像素取这个值。同样, 有245+122+81=448个像素取s4=1这个新灰度值。用n = 4096来除上 述这些nk值,便可得到新的直方图,如图4-10(c)所示。
3
s3 T (r3 ) Pr (rj ) Pr (r0 ) Pr (r1) Pr (r2 ) Pr (r3 ) 0.81
第4章-图像增强PPT课件
将[2,7]转换到[0,9] g(i,j)=9/5*f(i,j)-18/5
09 060
02 999
00 292
27 074
79 005
0C=926.028975 0
线性动态范围调整效果
2021
25
二、非线性动态范围调整
• 提出非线性动态范围调整, 是因为线性动态范围调整 的分段线性影射不够光滑。
第4章
图像增强
问题的引入
• 看两个图例,分析画面效果不好的原因。
亮暗差别不是很大
2021
2
解决问题的思路
• 提高对比度,增加清晰度
2021
3
4.1 对比度
对比度的概念:
• 对比度:通俗地讲,就是亮暗的对 比程度。
• 对比度通常表现了图像画质的清晰
程度。
2021
4
对比度的计算
• 对比度的计算公式如下:
像处理的一种手段。
• 所谓灰度变换,就是通过一个灰度映射 函数:Gnew=F(Gold),将原灰度直方图改 造成你所希望的直方图。所以,灰度变
换的关键就是灰度映射函数F。
2021
9
•图像灰度变换主要包括: 1.线性对比度展宽 2.动态范围调整 3.直方图均衡化处理 4.伪彩色技术 5.图像反色
2021
( 1 2 3 2 3 2 ) ( 3 2 6 2 5 2 2 2 ) ( 6 2 6 2 3 2 2 2 ) ( 6 2 1 2 6 2 )
( 3 2 2 2 ) ( 2 2 6 2 2 2 ) ( 6 2 2 2 2 2 ) ( 2 2 6 2 ) ] / 4 8
– 直方图均衡化(平滑化)是一种最常用的直方图修正, 它是把给定图像的直方图分布改造成均匀直方图分布。 直方图均衡化导致图像的对比度增加。
图像增强ppt课件
29
5.2 像的空域平滑
一、图像平滑概念
为了抑制噪声改善图像质量所进行的处理称图像 平滑或去噪。
可在空间域和频率域中进行。 目的:
模糊:提取大目标前去除太小的细节 消除噪声
30
邻域运算:
表达式:
g(i, j) (N ( f (i, j))) N 31
(a) 图像一
(b) 3×3模
r5=5/7 245
0.06
0.95 1
r6=6/7 122
0.03
0.98 1
r7=1
81
0.02
1.00 1
s4=1
448 0.11
思考:若在原图像一行上连续8个像素的灰度值分别为:0、1、 2、3、4、5、6、7,则均衡化后,他们的灰度值为多少? 19
原图像的直方图
均衡后图像的直方图
直方图均衡化后的图像每个灰度级的像元频率,理 论上应相等,直方图形态应为理想的直线。实际上均衡 化后的直方图呈现参差不齐的外形,这是由于图像是离 散函数,各灰度级可能的像元个数有限造成的。
内
空间域点局邻运部 域算 运算算直图 图方像 像图锐 平修化 滑正法规 均定 衡化 化
容
图像增强频率域高低低通通通滤滤滤波波波
同高态通滤滤波波增强
假彩色增强
彩色增强伪彩色增强
彩色变换增强
图像的代数运算
2.分段线性变换
为了突出感兴趣目标所在的 灰度区间,相对抑制那些不 感兴趣的灰度区间,可采用 分段线性变换。
设原图像f(x,y)在[0,Mf], 感兴趣目标的灰度范围在
[a,b],欲使其灰度范围拉伸
到[c,d],对应分段线性变换
表达式:
5.2 像的空域平滑
一、图像平滑概念
为了抑制噪声改善图像质量所进行的处理称图像 平滑或去噪。
可在空间域和频率域中进行。 目的:
模糊:提取大目标前去除太小的细节 消除噪声
30
邻域运算:
表达式:
g(i, j) (N ( f (i, j))) N 31
(a) 图像一
(b) 3×3模
r5=5/7 245
0.06
0.95 1
r6=6/7 122
0.03
0.98 1
r7=1
81
0.02
1.00 1
s4=1
448 0.11
思考:若在原图像一行上连续8个像素的灰度值分别为:0、1、 2、3、4、5、6、7,则均衡化后,他们的灰度值为多少? 19
原图像的直方图
均衡后图像的直方图
直方图均衡化后的图像每个灰度级的像元频率,理 论上应相等,直方图形态应为理想的直线。实际上均衡 化后的直方图呈现参差不齐的外形,这是由于图像是离 散函数,各灰度级可能的像元个数有限造成的。
内
空间域点局邻运部 域算 运算算直图 图方像 像图锐 平修化 滑正法规 均定 衡化 化
容
图像增强频率域高低低通通通滤滤滤波波波
同高态通滤滤波波增强
假彩色增强
彩色增强伪彩色增强
彩色变换增强
图像的代数运算
2.分段线性变换
为了突出感兴趣目标所在的 灰度区间,相对抑制那些不 感兴趣的灰度区间,可采用 分段线性变换。
设原图像f(x,y)在[0,Mf], 感兴趣目标的灰度范围在
[a,b],欲使其灰度范围拉伸
到[c,d],对应分段线性变换
表达式:
第四章数字图像处理课件 66页PPT文档
线性平滑滤波 线性低通滤波中最常用的是线性平滑滤波器,它
的所有系数都是正的。对3 3的模板来说,取所有
系数都为1并在算得R后将其除以9再行赋值。这种方
法也常叫邻域平均。
4.3 空域滤波增强
举例:空域低通滤波的模糊效果
(a)
(b)
(c)
(d)
图(a)为一幅原始图(叠加均匀分布随机噪声的8bit图像),图(b),图(c)
举例:邻域平均和中值滤波的比较
(a)
(b)
(c)
(d)
图(a)和(c)分别给出用3 3和5 5模板对同一幅噪 声图进行邻域平均处理得到的结果,而图(b)和(d)分别为用3 3和5 5模板进行中值滤波处理得到的结果。两相比较可 见中值滤波的效果要比邻域平均处理的低通滤波效果好,主 要特点是滤波后图像中的轮廓比较清晰。
pf(fk)nkn k0 ,1 , ,L 1 上式中fk为图像f (x, y)的第k级灰度值,nk是图像f (x, y)中具有灰度值fk的像素的个数,n是图像像素总数。
定义:反映各灰度级出现频数的分布情况,进而反映 图像对比(清晰)度,但不反映各灰度级的空间位置分布。
4.2 空域变换增强
举例
应用:直方图修正 灰度修正(改变像素灰度值)⇔ 改变直方图(修
正)⇔ 灰度非线性变换 方法:直方图均衡化 直方图规定化(匹配)
4.2 空域变换增强
例1:
(a)
4.2 空域变换增强
例2:
(c)
4.2 空域变换增强
(1)直方图均衡化
目的:直方图均衡化是一种借助直方图变换来增强 图像的方法,其基本思想是把原始图的直方图变换为均匀 分布的形式,增加像素灰度值的动态范围,从而达到增强 图像整体对比度(清晰度↑)的效果。
的所有系数都是正的。对3 3的模板来说,取所有
系数都为1并在算得R后将其除以9再行赋值。这种方
法也常叫邻域平均。
4.3 空域滤波增强
举例:空域低通滤波的模糊效果
(a)
(b)
(c)
(d)
图(a)为一幅原始图(叠加均匀分布随机噪声的8bit图像),图(b),图(c)
举例:邻域平均和中值滤波的比较
(a)
(b)
(c)
(d)
图(a)和(c)分别给出用3 3和5 5模板对同一幅噪 声图进行邻域平均处理得到的结果,而图(b)和(d)分别为用3 3和5 5模板进行中值滤波处理得到的结果。两相比较可 见中值滤波的效果要比邻域平均处理的低通滤波效果好,主 要特点是滤波后图像中的轮廓比较清晰。
pf(fk)nkn k0 ,1 , ,L 1 上式中fk为图像f (x, y)的第k级灰度值,nk是图像f (x, y)中具有灰度值fk的像素的个数,n是图像像素总数。
定义:反映各灰度级出现频数的分布情况,进而反映 图像对比(清晰)度,但不反映各灰度级的空间位置分布。
4.2 空域变换增强
举例
应用:直方图修正 灰度修正(改变像素灰度值)⇔ 改变直方图(修
正)⇔ 灰度非线性变换 方法:直方图均衡化 直方图规定化(匹配)
4.2 空域变换增强
例1:
(a)
4.2 空域变换增强
例2:
(c)
4.2 空域变换增强
(1)直方图均衡化
目的:直方图均衡化是一种借助直方图变换来增强 图像的方法,其基本思想是把原始图的直方图变换为均匀 分布的形式,增加像素灰度值的动态范围,从而达到增强 图像整体对比度(清晰度↑)的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5) 新灰度级分布 p t( t0 ) 7/4 9 0 0 0 .1 , 9 9 6 p t( t 1 ) 1/0 4 2 0 0 .2 3 9 p t( t2 ) 8/4 5 0 0 0 .2 , 9 1 6 p t( t 3 ) 9/4 8 0 5 0 .2 9 pt(t4)44/2 809 06 .11
C=256/log(1+1.6*106)
图为增强前后的傅里叶谱
11
直接灰度变换
4、灰度分层
一种方法:是对感兴趣的灰度级以较大的灰
度值t2以显示而对另外的灰度级则以较小的灰度
值t1来显示。
t
t t
2 1
s1 s s2 其它
另一种方法:对感兴趣的灰度级以较大的灰 度值进行显示而其他的灰度级则保持不变。
5
空域处理表示
定义
设f(x,y)是增强前的图像,g(x,y)是增强处理后
的图像, T是定义在(x,y)邻域一种操作,则空间
域处理可表示为 :
g(x,y)T[f(x,y)]
如果T是定义在每个点(x,y)上,则T称为点操作; 如果T是定义在(x,y)的某个邻域上,则T称为模
板操作。
6
空域处理表示
如果用s 和t 分别代表 f 和 g 在(x,y)处的灰
(3)将原始直方图对应映射到规定的直方图
k
l
ps(si ) pu(uj )
i1
j1
k 0,1,,M1 l 0,1,,N1
22
直方图规定化
例
原始图像各灰度级对应的概率分布
灰度级
01 2 3
45
6
7
像素
790 1023 850 656 329 245 122 81
概率
0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02
要消除这种因动态范围太大而引起的失真,一种 有效的方法是对原图像的动态范围进行压缩,最常用 的是借助对数形式对动态范围进行调整,其数学表达 式如下:
tClo1g(|s|)
10
对数变换
例如,傅里叶谱的范围在[0 R]=[0,1.6×106] ,为 了在一个8位的显示设备上进行显示,并充分利用显
示设备的动态范围,则变换表达式中的C为:
t1T(s1) ps(si)0.1 90.2 44 i0
2
t2T(s2) ps(si)0.1 90.2 50.2 1 0.65 i 0
依此类推,即可得到
t3 0.81
t4 0.89 t5 0.95
t6 0.98 t7 1
17
直方图均衡化
例
(2并)取用整式,得tk:inL t [ 1 )t(k0 .5 ]将 t k 扩展到 [0,L1] 范围内
常用的方法:
k0 ,1 ,L 1
直方图均衡化
直方图规定化
14
直方图均衡化
T满足2个条件:
(1)T单值单增函数。
(2)对 0sL1 有 0T(s)L1
则有: sT 1(t)
0tL1
直方图均衡化中T: tk T(sk)ik0nni ik0ps(si)
则: sk T 1 (tk)
0 tk L 1
典型的分段线性变换数学表达式如下:
t1 s s1
t
t2 s2
t1 s1
[s
s1 ]
t1
L L
1 1
t2 s2
[s
s2
]
t2
0 s s1 s1 s s2 s2 s L 1
用分段线性法,将需要的图像细节灰度级拉伸,增强 对比度,不需要的细节灰度级压缩
9
直接灰度变换
3. 对数变换
度值,则空间域处理就表示为: t T(s)
下图是增强对比度的T操作:
7
直接灰度变换
1、图像求反
假设对灰度级范围是[0,L-1]的图像求反, 就是通过变换将[0,L-1]变换到[L-1,0],变 换公式如下:
tL1s
此方法适用于增强嵌入于图像暗色区域 的白色或灰色细节。
8
直接灰度变换
2.线性灰度变换
t0 1 t1 3 t2 5 t3 6
t4 6
t5 7 t6 7 t7 7
(3)将相同值的归并起来,得:
t
' 0
1
t1' 3
t
' 2
5
t
' 3
6
t
' 4
7
18
直方图均衡化
例
(4)变换后5个灰度级的像素数 n 0 ' 7,n 9 1 ' 1 00 ,n 2 ' 2 83 ,n 5 3 ' 9 0,n 8 4 ' 5 448
规定直方图概率分布
灰度级
01 2 3
45
6
7
概率
0.0 0.00 0.00 0.15 0.20 0.30 0.20 0.15
23
直方图规定化
例
直方图规定化步骤: (1)对原始直方图操作: t0 1 n t0 79p t 0 ( s t0 ) 0 .19 t1 3 n t1 10p 2 t( s t1 ) 3 0 .25 t2 5 n t2 85p t 0 ( s t2 ) 0 .21
15
直方图均衡化
例
原始图像各灰度级对应的概率分布
灰度级 像素 概率
01 2 3
45
6
7
790 1023 850 656 329 245 122 81
0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02
16
直方图均衡化
例
图像直方图均衡化过程如下:
(1)得到变换后的值:
0
t0T(s0) ps(si)0.19 i0 1
数字图像处理
Digital Image Processing
E-MAIL:
1
第四章 图像增强
2
4.1 概 述
3
概述
图像增强方法
空域方法 频域方法
效工图
基于像素的点处理
果,像 更以增
“得强
好到的
基于模板的空域滤波 像
” , 更
对 具 体
目 的 是
“应对
有用图
用来像
”说进
的视行
图觉加
4
4.2 空域点处理增强
t
t2 s
s1 s s2 其它
12
直接灰度变换
5、位图切割
设图像中每一个像素由8bit表示,也就是说图像有8 个位面,一般用位面0表示最低位面,位面7表示最高位 面,如图所示。借助图像的位面表示形式可通过对图像 特定位面的操作来达到对图像的增强效果。
13
直方图修正
图像灰度统计直方图:
p(sk)nk/n
19
直方图均衡化
结果
原始直方图
变换函数
直方图均衡化结果
20
直方图均衡化
效果
原 图
均 衡 化 后 效 果 图
21
直方图规定化
2. 直方图规定化
(1)对原始图像的直方图进行均衡化:
k
tk T(sk) ps(si)
k 0 ,1 , ,M 1
i0
(2)同样对规定图像计算能使规定的直方图均衡化:
l
vl Tu(uj) pu(uj) l0 ,1 , ,N 1 j0
C=256/log(1+1.6*106)
图为增强前后的傅里叶谱
11
直接灰度变换
4、灰度分层
一种方法:是对感兴趣的灰度级以较大的灰
度值t2以显示而对另外的灰度级则以较小的灰度
值t1来显示。
t
t t
2 1
s1 s s2 其它
另一种方法:对感兴趣的灰度级以较大的灰 度值进行显示而其他的灰度级则保持不变。
5
空域处理表示
定义
设f(x,y)是增强前的图像,g(x,y)是增强处理后
的图像, T是定义在(x,y)邻域一种操作,则空间
域处理可表示为 :
g(x,y)T[f(x,y)]
如果T是定义在每个点(x,y)上,则T称为点操作; 如果T是定义在(x,y)的某个邻域上,则T称为模
板操作。
6
空域处理表示
如果用s 和t 分别代表 f 和 g 在(x,y)处的灰
(3)将原始直方图对应映射到规定的直方图
k
l
ps(si ) pu(uj )
i1
j1
k 0,1,,M1 l 0,1,,N1
22
直方图规定化
例
原始图像各灰度级对应的概率分布
灰度级
01 2 3
45
6
7
像素
790 1023 850 656 329 245 122 81
概率
0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02
要消除这种因动态范围太大而引起的失真,一种 有效的方法是对原图像的动态范围进行压缩,最常用 的是借助对数形式对动态范围进行调整,其数学表达 式如下:
tClo1g(|s|)
10
对数变换
例如,傅里叶谱的范围在[0 R]=[0,1.6×106] ,为 了在一个8位的显示设备上进行显示,并充分利用显
示设备的动态范围,则变换表达式中的C为:
t1T(s1) ps(si)0.1 90.2 44 i0
2
t2T(s2) ps(si)0.1 90.2 50.2 1 0.65 i 0
依此类推,即可得到
t3 0.81
t4 0.89 t5 0.95
t6 0.98 t7 1
17
直方图均衡化
例
(2并)取用整式,得tk:inL t [ 1 )t(k0 .5 ]将 t k 扩展到 [0,L1] 范围内
常用的方法:
k0 ,1 ,L 1
直方图均衡化
直方图规定化
14
直方图均衡化
T满足2个条件:
(1)T单值单增函数。
(2)对 0sL1 有 0T(s)L1
则有: sT 1(t)
0tL1
直方图均衡化中T: tk T(sk)ik0nni ik0ps(si)
则: sk T 1 (tk)
0 tk L 1
典型的分段线性变换数学表达式如下:
t1 s s1
t
t2 s2
t1 s1
[s
s1 ]
t1
L L
1 1
t2 s2
[s
s2
]
t2
0 s s1 s1 s s2 s2 s L 1
用分段线性法,将需要的图像细节灰度级拉伸,增强 对比度,不需要的细节灰度级压缩
9
直接灰度变换
3. 对数变换
度值,则空间域处理就表示为: t T(s)
下图是增强对比度的T操作:
7
直接灰度变换
1、图像求反
假设对灰度级范围是[0,L-1]的图像求反, 就是通过变换将[0,L-1]变换到[L-1,0],变 换公式如下:
tL1s
此方法适用于增强嵌入于图像暗色区域 的白色或灰色细节。
8
直接灰度变换
2.线性灰度变换
t0 1 t1 3 t2 5 t3 6
t4 6
t5 7 t6 7 t7 7
(3)将相同值的归并起来,得:
t
' 0
1
t1' 3
t
' 2
5
t
' 3
6
t
' 4
7
18
直方图均衡化
例
(4)变换后5个灰度级的像素数 n 0 ' 7,n 9 1 ' 1 00 ,n 2 ' 2 83 ,n 5 3 ' 9 0,n 8 4 ' 5 448
规定直方图概率分布
灰度级
01 2 3
45
6
7
概率
0.0 0.00 0.00 0.15 0.20 0.30 0.20 0.15
23
直方图规定化
例
直方图规定化步骤: (1)对原始直方图操作: t0 1 n t0 79p t 0 ( s t0 ) 0 .19 t1 3 n t1 10p 2 t( s t1 ) 3 0 .25 t2 5 n t2 85p t 0 ( s t2 ) 0 .21
15
直方图均衡化
例
原始图像各灰度级对应的概率分布
灰度级 像素 概率
01 2 3
45
6
7
790 1023 850 656 329 245 122 81
0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02
16
直方图均衡化
例
图像直方图均衡化过程如下:
(1)得到变换后的值:
0
t0T(s0) ps(si)0.19 i0 1
数字图像处理
Digital Image Processing
E-MAIL:
1
第四章 图像增强
2
4.1 概 述
3
概述
图像增强方法
空域方法 频域方法
效工图
基于像素的点处理
果,像 更以增
“得强
好到的
基于模板的空域滤波 像
” , 更
对 具 体
目 的 是
“应对
有用图
用来像
”说进
的视行
图觉加
4
4.2 空域点处理增强
t
t2 s
s1 s s2 其它
12
直接灰度变换
5、位图切割
设图像中每一个像素由8bit表示,也就是说图像有8 个位面,一般用位面0表示最低位面,位面7表示最高位 面,如图所示。借助图像的位面表示形式可通过对图像 特定位面的操作来达到对图像的增强效果。
13
直方图修正
图像灰度统计直方图:
p(sk)nk/n
19
直方图均衡化
结果
原始直方图
变换函数
直方图均衡化结果
20
直方图均衡化
效果
原 图
均 衡 化 后 效 果 图
21
直方图规定化
2. 直方图规定化
(1)对原始图像的直方图进行均衡化:
k
tk T(sk) ps(si)
k 0 ,1 , ,M 1
i0
(2)同样对规定图像计算能使规定的直方图均衡化:
l
vl Tu(uj) pu(uj) l0 ,1 , ,N 1 j0