数字图像处理PPT课件
合集下载
数字图像处理课件ppt
06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换
数字图像处理ppt课件
between 64 to 128 (using function
imagesc).
>>clims=[64,128]
>>imagesc(a,clims)
f. Make a movie from a 4-D image (load mri, make the movie by immovie, then show movie by function movie).
二、实验内容:
使用Photoshop观察数字图像增强的效果; 练习和掌握图像增强的Matlab编程。。 熟悉下列模块函数
Image enhancement. histeq - Read image file. imadust - Adust imae intensity values or colormap.
imshow - Display image.
subimage - Display multiple images in single figure.
truesize - Adjust display size of image.
warp - Display image as texture-mapped surface.
processing.
f. Compare the qualities of two images and
makes a discussion about them.
g. Add noises, such as gaussian, salt&pepper,
speckle noise into the image respectively.
10)选图像Blood、噪声类型Salt & Pepper、滤波器类型Median、邻域3x3,比较原始图像、
《数字图像处理》课件
数字图像处理的优势及应用前 景
数字图像处理能够提取、增强和分析图像中的信息,具有广泛的应用前景, 包括医学、遥感、安防、影视等领域。
主要应用领域
医学影像
数字图像处理在医学影像诊断中起到了关 键的作用,能够帮助医生更准确地诊断和 治疗疾病。
安防
数字图像处理在视频监控和图像识别中广 泛应用,能够提高安防系统的准确性和效 率。
遥感
遥感图像处理在土地利用、环境保护、气 象预测等方面发挥着重要的作用,能够提 供大量的地理信息。
影视
数字图像处理在电影、动画和游戏等领域 中起到了关键的作用,能够创造出逼真的 视觉效果。
《数字图像处理》PPT课 件
数字图像处理是应用数字计算机来获取、处理和展示图像的技术。它在医学 影像、遥感、安防、影视等领域都有广泛的应用。
背景介绍
随着计算机技术的发展,数字图像处理成为了一门重要的技术和学科,它能 够对图像进行增强、压缩、分割等处理,为人们带来了许多便利。
数字图像处理的定义
数字图像处理是使用计算机算法对数字图像进行各种操作和处理的过程,包 括图像增强、滤波、分割、特征提取等技术。
常见的数字图像处理方法
图像分割
图像压缩
将图像分成多个独立的区域, 用于目标检测和图像分析。
减少图像占用的存储空间, 提高传输速度和存储效率。
图像特征提取
从图像中提取出有用的特征 信息,用于分类和识别。
数字图像处理的未来发展方向
1 人工智能的应用
通过结合人工智能技术,使数字图像处理更加智能化和自动化。
2 虚拟现实与增强现实的结合
将数字图像处理技术与虚拟现实和增强现实相结合,创造出更逼真的虚拟体验。
3 社会影响与挑战随着数字图处理技术的发展,也带来了一些社会影响和挑战,需要加以关注和解决。
数字图像处理课件ppt课件
9
• 1.2.3 数字图像处理的特点 • 1.具有数字信号处理技术共有的特点。如: • (1)处理精度高。 • (2)重现性能好。 • (3)灵活性高。 • 2.数字图像处理后的图像可能是供人观察和评价的,也
可能作为机器视觉的预处理结果。 • 3.数字图像处理技术适用面宽。原始模拟图像可以来自
多种信息源,它们可以是可见光图像,也可以是不可见的 波谱图像、超声波图像或红外图像。
1.3 基本的图像处理系统
• 图像处理系统包括
– 图像处理硬件和图像处理软件。
• 1.3.1 图像处理硬件 • 微机图像处理硬件系统主要
– 由图像输入设备、图像运算处理设备(微计算机)、 图像存储器、图像输出设备等组成。
• 软件系统包括
– 操作系统、控制软件及应用软件等。 13
图1.7 基本的数字图像处理系统
统。
• 3.图像处理开发工具
– (1)VC++面向对象可视化集成工具 – (2)MATLAB的图像处理工具箱 – (3)图像应用软件:Photoshop、CorelDRAW、
ACDSee
22
1.4 数字图像处理的应用与发展趋势
• 1.4.1 数字图像处理的应用 • 1.航天和航空技术方面的应用 • 2.生物医学工程方面的应用 • 3.通信工程方面的应用 • 4.工业自动化和机器人视觉方面的应用 • 5.军事和公安方面的应用 • 6.生活和娱乐方面的应用
– 像素(picture element,简称pixel)
• 一幅图像可以用二维矩阵表示。
4
图1.1 自然景物图像
(a)原图
(b)将原图放大4倍
• 图像的数字化包括两个主要步骤:离散和量化
5
• 1.1.2 图像处理的发展简史 • 数字图像处理首次成功地应用在1964年美国
• 1.2.3 数字图像处理的特点 • 1.具有数字信号处理技术共有的特点。如: • (1)处理精度高。 • (2)重现性能好。 • (3)灵活性高。 • 2.数字图像处理后的图像可能是供人观察和评价的,也
可能作为机器视觉的预处理结果。 • 3.数字图像处理技术适用面宽。原始模拟图像可以来自
多种信息源,它们可以是可见光图像,也可以是不可见的 波谱图像、超声波图像或红外图像。
1.3 基本的图像处理系统
• 图像处理系统包括
– 图像处理硬件和图像处理软件。
• 1.3.1 图像处理硬件 • 微机图像处理硬件系统主要
– 由图像输入设备、图像运算处理设备(微计算机)、 图像存储器、图像输出设备等组成。
• 软件系统包括
– 操作系统、控制软件及应用软件等。 13
图1.7 基本的数字图像处理系统
统。
• 3.图像处理开发工具
– (1)VC++面向对象可视化集成工具 – (2)MATLAB的图像处理工具箱 – (3)图像应用软件:Photoshop、CorelDRAW、
ACDSee
22
1.4 数字图像处理的应用与发展趋势
• 1.4.1 数字图像处理的应用 • 1.航天和航空技术方面的应用 • 2.生物医学工程方面的应用 • 3.通信工程方面的应用 • 4.工业自动化和机器人视觉方面的应用 • 5.军事和公安方面的应用 • 6.生活和娱乐方面的应用
– 像素(picture element,简称pixel)
• 一幅图像可以用二维矩阵表示。
4
图1.1 自然景物图像
(a)原图
(b)将原图放大4倍
• 图像的数字化包括两个主要步骤:离散和量化
5
• 1.1.2 图像处理的发展简史 • 数字图像处理首次成功地应用在1964年美国
数字图像处理ch01(MATLAB)-课件
2024/10/12
第一章 绪论
17
2024/10/12
第一章 绪论
18
2024/10/12
第一章 绪论
19
2024/10/12
第一章 绪论
20
<2>几何处理
放大、缩小、旋转,配准,几何校正,面积、周长计算。
请计算台湾的陆地面积
2024/10/12
第一章 绪论
21
<3>图象复原
由图象的退化模型,求出原始图象
图像处理是指按照一定的目标,用一系列的操 作来“改造”图像的方法.
2024/10/12
第一章 绪论
7
➢图象处理技术的分类(从方法上进行分类)[2]
1.模拟图象处理(光学图像处理等)
用光学、电子等方法对模拟信号组成的图像,用光学器 件、电子器件进行光学变换等处理得到所需结果(哈哈 镜、望远镜,放大镜,电视等).
2024/10/12
第一章 绪论
22
<4>图象重建[3]
[3]此图像来自罗立民,脑成像,
2024/10/12
第一章 绪论
23
/zhlshb/ct/lx.htm
2024/10/12
第一章 绪论
图形用户界面,动画,网页制作等
2024/10/12象处理的基本概念,和基 本问题,以及一些典型的应用。
2024/10/12
第一章 绪论
33
提问
摄像头(机),扫描仪,CT成像装置,其他图象成像装置
2)图象的存储
各种图象存储压缩格式(JPEG,MPEG等),海量图象数据库技术
3)图象的传输
内部传输(DirectMemoryAccess),外部传输(主要是网络)
数字图像处理ppt课件
04
CATALOGUE
特征提取
颜色特征提取
颜色直方图
通过统计图像中不同颜色像素的数量 ,形成颜色直方图作为图像的颜色特 征。该方法简单、有效,适用于不同 光照和视角变化的场景。
颜色矩
利用图像颜色的分布信息,通过计算 一阶矩(均值)、二阶矩(方差)和 三阶矩(偏度)来表示颜色特征。该 方法对颜色突变和噪声不敏感。
数字图像处理 ppt课件
contents
目录
• 数字图像处理简介 • 图像增强 • 图像分割 • 特征提取 • 图像识别 • 数字图像处理的发展趋势与挑战
01
CATALOGUE
数字图像处理简介
数字图像处理定义
01
02
03
数字图像处理
使用计算机对图像进行加 工和分析,以满足各种应 用需求的技术。
纹理特征提取
灰度共生矩阵
通过分析图像中像素灰度值的空间依赖关系,形成共生矩阵,并从中提取出统 计特征,如对比度、能量和相关性等。该方法适用于描述图像的粗糙程度和方 向性。
小波变换
将图像分解成不同频率和方向的小波分量,通过分析小波系数的统计特性来提 取纹理特征。该方法能够有效地表示图像的细节信息和全局结构。
02
CATALOGUE
图像增强
对比度增强
提高图像的明暗对比度,使图像细 节更加清晰可见。
通过调整像素的亮度或对比度,使图 像的明暗区域更加明显,增强图像的 视觉效果。常用的方法包括直方图均 衡化、对比度拉伸等。
锐化处理
突出图像中的边缘和细节,增强图像的清晰度。
通过增强图像中的高频分量,突出显示图像中的边缘和细节,使图像看起来更加 清晰。常用的方法包括拉普拉斯算子、梯度算子等。
数字图像处理技术PPT课件.ppt
数字图像处理技术概述
数字图像处理又称为计算机图像处理,它是指将图像信 号转换成数字信号并利用计算机对其进行处理的过程。
这一过程包括对图像进行增强、除噪、分割、复原、编 码、压缩、提取特征等内容,图像处理技术的产生离不开计 算机的发展、数学的发展以及各个行业的应用需求的增长。 20世纪60年代,图像处理的技术开始得到较为科学的应用, 人们用这种技术进行输出图像的理想化处理。
第一章 图像处理技术概述
4
数字图像处理技术概述 数字图像处理技术特点
1.更好的再现性
数字图像处理与传统的模拟图 像处理相比,不会因为图像处理过 程中的存储、复制或传输等环节引 起图像质量的改变。
3.适用面宽
可以从各个途;径获得数据源, 从显微镜到天文望远镜的图像都可 以进行数字处理。
2.占用的频带更宽
这一点是相对于语言信息而 言的,图像信息比语言信息所占 频带要大好几个数量级,因此图 像信息在实现操作的过程中难度 更大。
4.具有较高的灵活性
只要可以用数学公式和数理 逻辑表达的内容;,几乎都可以用 电子图像来进行表现处理。
第一章 图像处理技术概述
5
过渡页
TRANSITION PAGE
01 图像处理技术概述 0022 图图像像处处理理技技术术发发展展现现状状 03 图像处理技术的利用
之后பைடு நூலகம்年
数字图像处理技术朝着更高深的方向发展,人们开始通过计算 机构建出数字化的人类视觉系统,这项技术被称为图像理解或 计算机视觉。
第二章 图像处理技术发展现状
7
2.2 我国数字图像处理技术的发展
我国在建国之初就展开了计算机技术的研究,而改革开 放以来,我国在计算机数字图像处理技术上的发展进步也是 非常大的,甚至在某些理论研究方面已赶上了世界先进水平。
数字图像处理入门ppt课件
• 关于matlab
– 如何构建一个矩阵?如何取得矩阵中具体一个 元素的值,如何修改一个(块)元素的值?
– 写一个循环程序,遍历整个矩阵,把每个像素 的值做一个变换,如y = 3x+1
– 矩阵的基本运算:加,减,乘,点乘 – 求一个图像的负片,用两种方法(一种是循环
遍历,一种是矩阵运算)实现。
六、图像的基本运算
•减
– C(x,y) = A(x,y) - B(x,y)
• 应用举例
– 显示两幅图像的差异,检测同一场景两幅图像 之间的变化
六、图像的基本运算
• 点乘
– C(x,y) = A(x,y) .* B(x,y)
六、图像的基本运算
•与
– g(x,y) = f(x,y) ∧ h(x,y)
一、数字图像的概念
图像(Image): 视觉景物的某种形式的表示和记录
我们把数字格式存储的图像称为“数字图像”
“数字”
“模拟”
计算机存储的图片 传统光学照片
数码相机拍摄的图像 传统的电视图像
传感器阵列
模拟图像
三步
数字图像
1.采样 空间离坐标(x,y)的离散化, 确定水平和垂直 方向上的像素个数N、M,f(x,y)→f(m,n)
如何获得图像中第m行n列像素的灰度值?如果是彩色 图像呢? – 如何吧真彩色图像转换成灰度图像,然后转换成二值 图像? – 如何得到该图像中灰度值最大(最小)的像素的位置 和取值?如何计算图像的均值? – 什么是灰度图像的直方图?如何计算灰度图像直方图, 如何显示/直方图反映图像的什么性质?
作业2
图像的直方图
21
不同图像的直方图反映图像的不同特点:
对比度低 对比度高
22
– 如何构建一个矩阵?如何取得矩阵中具体一个 元素的值,如何修改一个(块)元素的值?
– 写一个循环程序,遍历整个矩阵,把每个像素 的值做一个变换,如y = 3x+1
– 矩阵的基本运算:加,减,乘,点乘 – 求一个图像的负片,用两种方法(一种是循环
遍历,一种是矩阵运算)实现。
六、图像的基本运算
•减
– C(x,y) = A(x,y) - B(x,y)
• 应用举例
– 显示两幅图像的差异,检测同一场景两幅图像 之间的变化
六、图像的基本运算
• 点乘
– C(x,y) = A(x,y) .* B(x,y)
六、图像的基本运算
•与
– g(x,y) = f(x,y) ∧ h(x,y)
一、数字图像的概念
图像(Image): 视觉景物的某种形式的表示和记录
我们把数字格式存储的图像称为“数字图像”
“数字”
“模拟”
计算机存储的图片 传统光学照片
数码相机拍摄的图像 传统的电视图像
传感器阵列
模拟图像
三步
数字图像
1.采样 空间离坐标(x,y)的离散化, 确定水平和垂直 方向上的像素个数N、M,f(x,y)→f(m,n)
如何获得图像中第m行n列像素的灰度值?如果是彩色 图像呢? – 如何吧真彩色图像转换成灰度图像,然后转换成二值 图像? – 如何得到该图像中灰度值最大(最小)的像素的位置 和取值?如何计算图像的均值? – 什么是灰度图像的直方图?如何计算灰度图像直方图, 如何显示/直方图反映图像的什么性质?
作业2
图像的直方图
21
不同图像的直方图反映图像的不同特点:
对比度低 对比度高
22
数字图像处理与分析基础整理ppt
视频锁相方式,即图像系统分解场同步和行 同步信号。
显示功能:
显示的类型,黑白/伪彩色/真彩色显示 每个象素显示的bit数。 查找表(LUT,look -up table) 重叠显示、动态显示等。
指标3
帧存容量:图像硬件系统内部,图像存储体容 量的大小。
三部分:帧存的数目/单位帧存的点阵数(指图像系 统用来存储一幅图像必需的帧存,其容量大于等于 一幅数字图像的点阵数,小于两幅图像的点阵数, 通常取512512或10241024)/每个象素的字长 (用bit数表示,黑白或伪彩色系统为8bit,真彩色 系统通常为83bit/84bit),新增的通道用于图像 叠加处理。
优于46db
1/50(60)to1/100,000 数位处理AUTO
带稳压直流DC12V±10%
-20℃~+50℃ 自动AUTO 自动AUTO 380公克 60(宽)×50(高)×102(深)
摄像管
摄像机中利用电子束扫描把景物的光学 图像转换成电信号的一种真空电子管。
摄像管类别
氧化铅摄像管
具有良好的光电特性,灵敏度和分辨率高,靶面的 均匀性好。
图像存储
压缩、存储
压缩由系统内置的微处理器来完成。 压缩处理与存储图像所用的时间不可忽略,
因此在使用数码相机时可以明显感到较长的 等待时间。 图像格式的种类繁多,JPEG格式。
存储器
内置存储器
半导体存储器,安装在相机内部,用于临时 存储图像,接口传送。
可移动存储器
CompactFlash卡(CF) SmartMedia卡(SSFDC) ATA Flash
2.2.2图像数字化器的性能
像素大小 图像大小 被测对象的局部特征 线性度 灰度级 噪声
显示功能:
显示的类型,黑白/伪彩色/真彩色显示 每个象素显示的bit数。 查找表(LUT,look -up table) 重叠显示、动态显示等。
指标3
帧存容量:图像硬件系统内部,图像存储体容 量的大小。
三部分:帧存的数目/单位帧存的点阵数(指图像系 统用来存储一幅图像必需的帧存,其容量大于等于 一幅数字图像的点阵数,小于两幅图像的点阵数, 通常取512512或10241024)/每个象素的字长 (用bit数表示,黑白或伪彩色系统为8bit,真彩色 系统通常为83bit/84bit),新增的通道用于图像 叠加处理。
优于46db
1/50(60)to1/100,000 数位处理AUTO
带稳压直流DC12V±10%
-20℃~+50℃ 自动AUTO 自动AUTO 380公克 60(宽)×50(高)×102(深)
摄像管
摄像机中利用电子束扫描把景物的光学 图像转换成电信号的一种真空电子管。
摄像管类别
氧化铅摄像管
具有良好的光电特性,灵敏度和分辨率高,靶面的 均匀性好。
图像存储
压缩、存储
压缩由系统内置的微处理器来完成。 压缩处理与存储图像所用的时间不可忽略,
因此在使用数码相机时可以明显感到较长的 等待时间。 图像格式的种类繁多,JPEG格式。
存储器
内置存储器
半导体存储器,安装在相机内部,用于临时 存储图像,接口传送。
可移动存储器
CompactFlash卡(CF) SmartMedia卡(SSFDC) ATA Flash
2.2.2图像数字化器的性能
像素大小 图像大小 被测对象的局部特征 线性度 灰度级 噪声
《数字图像处理绪论》课件
提取图像中的特征信息, 如边缘、纹理等。
图像数字化的基本原理与方法
数字图像获取
数字相机通过光电传感器将光信 号转换为数字信号,实现图像的 数字化。
图像量化
图像量化是将连续色彩空间离散 化为有限色调的过程,常用于图 像压缩和显示。
图像采样
图像采样是将连续二维空间的图 像转换为离散的像素点,常用于 数字图像处理。
《数字图像处理绪论》 PPT课件
数字图像处理是一门研究图像获取、呈现、分析和处理的学科,本课件将介 绍其背景、概念以及常见应用场景。
数字图像处理的背景与概念
数字图像处理是处理数字图像的技术和方法,它在计算机科景
医学影像
图像处理在医学影像中用于 疾病诊断、手术规划等方面, 提高了医疗效率和准确性。
图像的基本特征提取
1
边缘检测
边缘是图像中亮度变化明显的区域,边缘检测可以找到图像中的边缘。
2
纹理分析
纹理是图像中特定区域的颜色和亮度的统计特征,纹理分析用于图像分类和分割。
3
形状描述
形状描述通过数学方法对图像中的物体形状进行表征和描述。
灰度变换以及直方图均衡化
灰度变换是对图像的灰度级进行调整,直方图均衡化是一种灰度变换方法, 用于增强图像的对比度。
基本的空域滤波算法
1
平滑滤波
平滑滤波器可以减少图像中的噪声,使图像更加清晰。
2
锐化滤波
锐化滤波器可以增强图像中的边缘和细节,使图像更加鲜明。
3
边缘检测滤波
边缘检测滤波器可以提取图像中的边缘信息,用于图像分析和处理。
安全监控
图像处理技术可以用于人脸 识别、行为分析等领域,提 升安全监控的能力。
图像检索
数字图像处理应用实例ppt课件
军事演习
.
5、公安交通
.
5、公安交通
公共安全
.
数字图像处理应用实例 谢谢观看!
.
数字图像处理应用实例
1、医疗诊断 2、航空及遥感 3、工业检测 4、军事应用 5、公安交通
.
ቤተ መጻሕፍቲ ባይዱ
1、医疗诊断
胸部X射线成像 血管造影图像 头部CT图像
.
1、医疗诊断
超声波成像的例子
.
不同角度的胎 儿成像
甲状腺;受损 肌肉层
1、医疗诊断
三维彩色CT技术
多器官伪彩显示
.
1、医疗诊断
(观察角度变化)
.
2、航天及遥感
月球图像
火星图像
.
2、航天及遥感
飓风的多光谱图像
西藏东南山区雷达图像
.
3、工业检测
电路板; 封装丸剂; 瓶装液体;塑料中气泡; 谷物; 目镜搀杂物
.
3、工业检测
公路损害检测
网裂
.
龟裂
4、军事应用
军事侦察、高精度制导
(夜视红外传感;智能火炮/图像制导视频跟踪;毫米波成像)
.
4、军事应用
.
5、公安交通
.
5、公安交通
公共安全
.
数字图像处理应用实例 谢谢观看!
.
数字图像处理应用实例
1、医疗诊断 2、航空及遥感 3、工业检测 4、军事应用 5、公安交通
.
ቤተ መጻሕፍቲ ባይዱ
1、医疗诊断
胸部X射线成像 血管造影图像 头部CT图像
.
1、医疗诊断
超声波成像的例子
.
不同角度的胎 儿成像
甲状腺;受损 肌肉层
1、医疗诊断
三维彩色CT技术
多器官伪彩显示
.
1、医疗诊断
(观察角度变化)
.
2、航天及遥感
月球图像
火星图像
.
2、航天及遥感
飓风的多光谱图像
西藏东南山区雷达图像
.
3、工业检测
电路板; 封装丸剂; 瓶装液体;塑料中气泡; 谷物; 目镜搀杂物
.
3、工业检测
公路损害检测
网裂
.
龟裂
4、军事应用
军事侦察、高精度制导
(夜视红外传感;智能火炮/图像制导视频跟踪;毫米波成像)
.
4、军事应用
数字图像处理 PPT课件
tt p : // ww w. xd u ph .co m
课程教学引导 • 教材选择 • 教学结构及主要重点 • 教学目的
目录
第一章 概 论 第二章 数字图像处理基础 第三章 VC++图像编程基础 第四章 图像增强与平滑 第五章 图像分割与边缘检测 第六章 图像的几何变换 第七章 频域处理 第八章 数学形态学及其应用 第九章 图像特征与理解 第十章 图像编码 第十一章 图像复原
应用实例(续)
无线电波成像 主要用途: ������ 医学(核磁共振成像)
������ 天文观测
应用实例(续)
其它成像模式 ������ 声波成像:
������ 地质勘探、工业、医学 ������ 电子显微镜
应用实例(续)
数字图像处理-绪论
基本概念 应用实例 研究目的 主要研究内容 本课程特点
当造成图像退化(图像品质下降)的原因已知时,
复原技术可以对图像进行校正。图像复原最关键的是对每
种退化都需要有一个合理的模型。
主要研究内容(续)
4、图像分割(Image Segmentation)
主要研究内容(续)
5、图像分析
图像处理应用的目标几乎均涉及到图像分析, 即 对图像中的不同对象进行分割、 特征提取和表示,从
1. 2. 3. 4. 5. 6. 7. 图像获取、表示与表现 ������图像增强 ������图像复原 ������图像分割 图像分析 ������图像重建 ������图像编码压缩 ……
主要研究内容(续)
1. 图像获取、表示和表现
该过程主要是把模拟图像信号转化为计算机所能 接受的数字形式,以及把数字图像显示和表现出来( 如打印)。这一过程主要包括摄取图像、 光电转换及 数字化等几个步骤。
课程教学引导 • 教材选择 • 教学结构及主要重点 • 教学目的
目录
第一章 概 论 第二章 数字图像处理基础 第三章 VC++图像编程基础 第四章 图像增强与平滑 第五章 图像分割与边缘检测 第六章 图像的几何变换 第七章 频域处理 第八章 数学形态学及其应用 第九章 图像特征与理解 第十章 图像编码 第十一章 图像复原
应用实例(续)
无线电波成像 主要用途: ������ 医学(核磁共振成像)
������ 天文观测
应用实例(续)
其它成像模式 ������ 声波成像:
������ 地质勘探、工业、医学 ������ 电子显微镜
应用实例(续)
数字图像处理-绪论
基本概念 应用实例 研究目的 主要研究内容 本课程特点
当造成图像退化(图像品质下降)的原因已知时,
复原技术可以对图像进行校正。图像复原最关键的是对每
种退化都需要有一个合理的模型。
主要研究内容(续)
4、图像分割(Image Segmentation)
主要研究内容(续)
5、图像分析
图像处理应用的目标几乎均涉及到图像分析, 即 对图像中的不同对象进行分割、 特征提取和表示,从
1. 2. 3. 4. 5. 6. 7. 图像获取、表示与表现 ������图像增强 ������图像复原 ������图像分割 图像分析 ������图像重建 ������图像编码压缩 ……
主要研究内容(续)
1. 图像获取、表示和表现
该过程主要是把模拟图像信号转化为计算机所能 接受的数字形式,以及把数字图像显示和表现出来( 如打印)。这一过程主要包括摄取图像、 光电转换及 数字化等几个步骤。
数字图像处理第二章课件ppt课件
f(0,1) f(0,N1)
f(x,y)
f(1,0)
f(1,1)
f(1,N1)
f(M1,0) f(M1,0)
f(M1,N1)
F(x,y)在[0,L-1]有L个灰阶, 通常取L为2的k次幂
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
街区'City-Block'距离L1:
等距为4角星
D 4(p,q)xsyt
棋盘'chessboard'距离L : D 8(p,q)ma x x s,y (t)
等距为矩形
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
对像素p(x,y), q(s,t)和z(v,w), 距离函数D应满足: ① D(p,q)>=0 (D(p,q)=0, iff p=q) ② D(p,q)=D(q,p), and ③ D(p,z)<=D(p,q)+D(q,z)
例如用LM范数表示的通用Minkowski距离:
2.5 Some Basic Relationships Between Pixels 2.5.1 Neighbors of a Pixel
4邻接:
p
8邻接: p
m邻接(混合邻接):邻点q与当前像素(点)p存在4邻接前景邻点;
或
q是p的对角邻点并且p和q没有公共的前景4邻点。
m邻接是8邻接的修订,它消除了应用8邻接可能引起的模糊性 ,如图2.26b(4或8邻接共存)。
数字图像处理课件ppt
几何变换
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 现代的复原方法
– 对非平稳图像(如卡尔曼滤波)、非线性方法(如神经网络)、 信号与噪声的先验知识未知(如盲图像复原)等前提下开展工作。
6.1.1 连续图像退化的数学模型
• 连续图像退化的一般模型如图6.1所示。
f (x, y)
H(x, y)
n (x, y) g (x, y)
• 输入图像f(x, y)经过一个退化系统或退化算子H(x, y)后 产生的退化图像g(x, y)可以表示为:
– 可以用连续数学或离散数学处理。 – 图像复原根据退化的数学模型对退化图像进行处理,其实现可在
空间域卷积或在频域相乘。
图像复原在初级视觉处理中的地位
• 在航空航天、国防公安、生物医学、文物修复等领域具有 广泛的应用。
• 传统的复原方法
– 基于平稳图像、线性空间不变的退化系统、图像和噪声统计特性 的先验知识已知等条件下讨论的
– 图像退化的常见原因 – 图像退化模型 – 图像退化与图像增强的关系 – 线性代数复原 – 非线性复原 – 几何失真校正 – 盲图像复原 – MATLAB图像处理工具箱去模糊函数
教学建议
• 重点了解数字图像复原的基本任务、图像退化的 各种原因、图像复原的常用方法,能够用MATLAB 图像处理工具箱解决简单的图像退化问题。
(6.8a)
he
(
x,
y)
h(
x, 0
y)
0 x C 1且0 y D 1 其他
(6.8b)
• 则输出的降质数字图像为
M 1 N 1
ge (x, y)
fe (m, n)he (x m, y n) (6.9)
m0 n0
二维离散退化模型可以用矩阵形式
• (1)射线辐射、大气湍流等造成的照片畸变。 • (2)A/D过程会损失部分细节,造成图像质量下降。 • (3)镜头聚焦不准产生的散焦模糊。 • (4)成像系统中始终存在的噪声干扰。 • (5)相机与景物之间的相对运动产生的运动模糊。 • (6)底片感光、图像显示时会造成记录显示失真。 • (7)成像系统的像差、非线性畸变、有限带宽。 • (8) 携带遥感仪器的飞机或卫星运动的不稳定,以及地
f (x, y) * h(x, y) n(x, y)
•在频域上可以写成
G(u, v) F(u, v)H (u, v) N(u, v) (6.7)
• G(u, v)、F(u, v)、N(u, v)分别是g(x, y)、f(x, y)、n(x, y)的
傅立叶变换
• H(u, v)是h(x, y)的傅立叶变换,为系统的传递函数。
–
g(x, y)= H[f(x, y)]
(6.1)
• 如果仅考虑加性噪声的影响,则退化图像可表示为:
–
g(x, y)= H [f(x, y)]+n(x, y)
(6.2)
f(x, y)的最佳估计
• 退化的图像是由成像系统的退化加上额外 的系统噪声而形成的。
• 若已知H(x, y)和n(x, y),图像复原是在 退化图像的基础上,作逆运算,得到f(x, y)的一个最佳估计。
球自转等因素引起的照片几何失真。
图像复原(image restoration)的目的和任务
• 目的
– 在研究图像退化原因的基础上,以退化图像为依据,根据一定的 先验知识,建立一个退化模型,然后用相反的运算,以恢复原始 景物图像。
• 图像复原要明确规定质量准则
– 衡量接近原始景物图像的程度。
• 图像复原模型
g(x,
y)
H[
f
(x,
y)]
H
f
(
,
)
(x
,
y
)dd
f (, )H[ (x , y f (, )h(x , y )dd
第6章 图像复原
内容提要:
6.1 图像退化原因与复原技术分类化的数学模型 6.2 逆滤波复原 6.3 约束复原 6.4 非线性复原方法 6.5 盲图像复原 6.6 几何失真校正 6.7 实验:图像复原 本章小结
知识要点
重点了解图像处理的任务、基本的图像处理系统、微机图像处理系 统、数字图像的表示、MATLAB图像处理工具箱的初步使用。
• 先修知识包括:
–线性代数(循环矩阵的表示;矩阵的广义逆等) –信号与线性系统 –数字信号处理(圆周卷积、离散卷积定理等) –随机过程(平稳随机过程等) –优化理论。
• 注意本章与“图像增强”一章的联系与区别。
6.1 图像退化原因与复原技术分类
• 图像在形成、传输和记录过程中,由于受到多方面的影响, 造成图像质量的退化(degradation)。
• h(x,y)称为退化系统的冲激响应函数。
•在图像形成的光学过程中,冲激为一光点。
•又被称为退化系统的点扩展函数PSF。
空间域分析与频率分析
• 退化系统的输出就是输入图像f (x, y)与点扩展函数h(x,
y)的卷积,考虑到噪声的影响,即
g(x, y)
f (, )h(x , y )dd n(x, y) (6.6)
• “最佳估计”而非“真实估计”。
–由于存在可能导致图像复原的病态性。
导致图像复原的病态性的原因
• (1)最佳估计问题不一定有解。
–由于图像复原中可能遇到奇异问题;
• (2)逆问题可能存在多个解。
点扩展函数PSF(Point-spread Function)
• 在退化算子H表示线性和空间不变系统的情况下,输 入图像f(x, y)经退化后的输出为g(x, y):
g=Hf
(6.10)
H0
H1
H
H2
H M -1
H M1 H0 H1
H M -2
H M -2 H M1 H0
H M -3
H1
H
2
6.1.2 离散图像退化的数学模型
• 设f (x, y)大小为A×B,h(x, y)被均匀采样为 C×D大小。
• 为避免交叠误差,采用添零延拓的方法,将它们
扩展成M=A+C-1和N=B+D-1个元素的周期函数。
fe
(x,
y)
f
(x, 0
y)
0 x A 1且0 y B 1 其他
– 对非平稳图像(如卡尔曼滤波)、非线性方法(如神经网络)、 信号与噪声的先验知识未知(如盲图像复原)等前提下开展工作。
6.1.1 连续图像退化的数学模型
• 连续图像退化的一般模型如图6.1所示。
f (x, y)
H(x, y)
n (x, y) g (x, y)
• 输入图像f(x, y)经过一个退化系统或退化算子H(x, y)后 产生的退化图像g(x, y)可以表示为:
– 可以用连续数学或离散数学处理。 – 图像复原根据退化的数学模型对退化图像进行处理,其实现可在
空间域卷积或在频域相乘。
图像复原在初级视觉处理中的地位
• 在航空航天、国防公安、生物医学、文物修复等领域具有 广泛的应用。
• 传统的复原方法
– 基于平稳图像、线性空间不变的退化系统、图像和噪声统计特性 的先验知识已知等条件下讨论的
– 图像退化的常见原因 – 图像退化模型 – 图像退化与图像增强的关系 – 线性代数复原 – 非线性复原 – 几何失真校正 – 盲图像复原 – MATLAB图像处理工具箱去模糊函数
教学建议
• 重点了解数字图像复原的基本任务、图像退化的 各种原因、图像复原的常用方法,能够用MATLAB 图像处理工具箱解决简单的图像退化问题。
(6.8a)
he
(
x,
y)
h(
x, 0
y)
0 x C 1且0 y D 1 其他
(6.8b)
• 则输出的降质数字图像为
M 1 N 1
ge (x, y)
fe (m, n)he (x m, y n) (6.9)
m0 n0
二维离散退化模型可以用矩阵形式
• (1)射线辐射、大气湍流等造成的照片畸变。 • (2)A/D过程会损失部分细节,造成图像质量下降。 • (3)镜头聚焦不准产生的散焦模糊。 • (4)成像系统中始终存在的噪声干扰。 • (5)相机与景物之间的相对运动产生的运动模糊。 • (6)底片感光、图像显示时会造成记录显示失真。 • (7)成像系统的像差、非线性畸变、有限带宽。 • (8) 携带遥感仪器的飞机或卫星运动的不稳定,以及地
f (x, y) * h(x, y) n(x, y)
•在频域上可以写成
G(u, v) F(u, v)H (u, v) N(u, v) (6.7)
• G(u, v)、F(u, v)、N(u, v)分别是g(x, y)、f(x, y)、n(x, y)的
傅立叶变换
• H(u, v)是h(x, y)的傅立叶变换,为系统的传递函数。
–
g(x, y)= H[f(x, y)]
(6.1)
• 如果仅考虑加性噪声的影响,则退化图像可表示为:
–
g(x, y)= H [f(x, y)]+n(x, y)
(6.2)
f(x, y)的最佳估计
• 退化的图像是由成像系统的退化加上额外 的系统噪声而形成的。
• 若已知H(x, y)和n(x, y),图像复原是在 退化图像的基础上,作逆运算,得到f(x, y)的一个最佳估计。
球自转等因素引起的照片几何失真。
图像复原(image restoration)的目的和任务
• 目的
– 在研究图像退化原因的基础上,以退化图像为依据,根据一定的 先验知识,建立一个退化模型,然后用相反的运算,以恢复原始 景物图像。
• 图像复原要明确规定质量准则
– 衡量接近原始景物图像的程度。
• 图像复原模型
g(x,
y)
H[
f
(x,
y)]
H
f
(
,
)
(x
,
y
)dd
f (, )H[ (x , y f (, )h(x , y )dd
第6章 图像复原
内容提要:
6.1 图像退化原因与复原技术分类化的数学模型 6.2 逆滤波复原 6.3 约束复原 6.4 非线性复原方法 6.5 盲图像复原 6.6 几何失真校正 6.7 实验:图像复原 本章小结
知识要点
重点了解图像处理的任务、基本的图像处理系统、微机图像处理系 统、数字图像的表示、MATLAB图像处理工具箱的初步使用。
• 先修知识包括:
–线性代数(循环矩阵的表示;矩阵的广义逆等) –信号与线性系统 –数字信号处理(圆周卷积、离散卷积定理等) –随机过程(平稳随机过程等) –优化理论。
• 注意本章与“图像增强”一章的联系与区别。
6.1 图像退化原因与复原技术分类
• 图像在形成、传输和记录过程中,由于受到多方面的影响, 造成图像质量的退化(degradation)。
• h(x,y)称为退化系统的冲激响应函数。
•在图像形成的光学过程中,冲激为一光点。
•又被称为退化系统的点扩展函数PSF。
空间域分析与频率分析
• 退化系统的输出就是输入图像f (x, y)与点扩展函数h(x,
y)的卷积,考虑到噪声的影响,即
g(x, y)
f (, )h(x , y )dd n(x, y) (6.6)
• “最佳估计”而非“真实估计”。
–由于存在可能导致图像复原的病态性。
导致图像复原的病态性的原因
• (1)最佳估计问题不一定有解。
–由于图像复原中可能遇到奇异问题;
• (2)逆问题可能存在多个解。
点扩展函数PSF(Point-spread Function)
• 在退化算子H表示线性和空间不变系统的情况下,输 入图像f(x, y)经退化后的输出为g(x, y):
g=Hf
(6.10)
H0
H1
H
H2
H M -1
H M1 H0 H1
H M -2
H M -2 H M1 H0
H M -3
H1
H
2
6.1.2 离散图像退化的数学模型
• 设f (x, y)大小为A×B,h(x, y)被均匀采样为 C×D大小。
• 为避免交叠误差,采用添零延拓的方法,将它们
扩展成M=A+C-1和N=B+D-1个元素的周期函数。
fe
(x,
y)
f
(x, 0
y)
0 x A 1且0 y B 1 其他