2017-2018学年最新北京市东城区中考数学第二次模拟试题及答案解析
北京市东城区2017-2018年中考一模(5月)数学试卷(WORD版,含答案)
北京市东城区2017-2018年中考⼀模(5⽉)数学试卷(WORD版,含答案)北京市东城区2018年中考⼀模(5⽉)数学试卷⼀、选择题(本题共16分,每⼩题2分)下⾯各题均有四个选项,其中只有⼀个..是符合题意的1.如图,若数轴上的点A ,B 分别与实数-1,1对应,⽤圆规在数轴上画点C ,则与点C 对应的实数是A . 2B . 3C . 4D . 52. 当函数()212y x =--的函数值y 随着x 的增⼤⽽减⼩时,x 的取值范围是 A .x >0 B .x <1 C .1x > D .x 为任意实数3.若实数a ,b 满⾜a b >,则与实数a ,b 对应的点在数轴上的位置可以是4.如图,O 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的⾯积是 A .π B .3π2C .2πD .3π1题 4题5.点A (4,3)经过某种图形变化后得到点B (-3,4),这种图形变化可以是 A .关于x 轴对称 B .关于y 轴对称C .绕原点逆时针旋转90°D .绕原点顺时针旋转90°6.甲、⼄两位同学做中国结,已知甲每⼩时⽐⼄少做6个,甲做30个所⽤的时间与⼄做45个所⽤的时间相同,求甲每⼩时做中国结的个数. 如果设甲每⼩时做x 个,那么可列⽅程为 A .30456x x =+ B .30456x x =- C .30456x x =- D .30456x x=+ 7.第24届冬奥会将于2022年在北京和张家⼝举⾏.冬奥会的项⽬有滑雪(如跳台滑雪、⾼⼭滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、⼤⼩、质地均相同的卡⽚,正⾯分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项⽬图案,背⾯完全相同.现将这5张卡⽚洗匀后正⾯向下放在桌⼦上,从中随机抽取⼀张,抽出的卡⽚正⾯恰好是滑雪图案的概率是12139.若根式x的取值范围是__________________.10.分解因式:24m n n-= ________________.11.若多边形的内⾓和为其外⾓和的3倍,则该多边形的边数为________________.12. 化简代数式11+122xx x+÷--,正确的结果为________________.13.含30°⾓的直⾓三⾓板与直线l 1,l 2的位置关系如图所⽰,已知l 1//l 2,∠1=60°. 以下三个结论中正确的是_____________(只填序号). ①2AC BC =; ②BCD △为正三⾓形; ③AD BD =14. 将直线y =x 的图象沿y 轴向上平移2个单位长度后,所得直线的函数表达式为____________,这两条直线间的距离为____________.15. 举重⽐赛的总成绩是选⼿的挺举与抓举两项成绩之和,若其中⼀项三次挑战失败,则该项成绩为0. 甲、⼄是同⼀重量级别的举重选⼿,他们近三年六次重要⽐赛的成绩如下(单位:公⽄):如果你是教练,要选派⼀名选⼿参加国际⽐赛,那么你会选派____________(填“甲”或“⼄”),理由是______________________________________. 16.已知正⽅形ABCD .求作:正⽅形ABCD 的外接圆. 作法:如图,(1)分别连接AC ,BD ,交于点O ;(2) 以点O 为圆⼼,OA 长为半径作O .O 即为所求作的圆.请回答:该作图的依据是_____________________________________.三、解答题(本题共68分,第17-24题,每⼩题5分,第25题6分,第26-27,每⼩题7分,第28题8分)17.计算:()212sin 60-π-2++1-3-??? ???18.解不等式组4+6,23x x x x ??+>≥,并写出它的所有整数解.19. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 交AD 于点E ,交AC于点F . 求证:AE =AF .20. 已知关于x 的⼀元⼆次⽅程()2320x m x m -+++=.(1) 求证:⽆论实数m 取何值,⽅程总有两个实数根; (2) 若⽅程有⼀个根的平⽅等于4,求m 的值.21.如图,已知四边形ABCD 是平⾏四边形,延长BA ⾄点E ,使AE = AB ,连接DE ,AC . (1)求证:四边形ACDE 为平⾏四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.22. 已知函数()30y x x=>的图象与⼀次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设⼀次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.23.如图,AB 为O 的直径,点C ,D 在O 上,且点C 是BD 的中点.过点C 作 AD 的垂线EF 交直线AD 于点E . (1)求证:EF 是O 的切线;(2)连接BC . 若AB =5,BC =3,求线段AE 的长.24.随着⾼铁的建设,春运期间动车组发送旅客量越来越⼤.相关部门为了进⼀步了解春运期间动车组发送旅客量的变化情况,针对2014年⾄2018年春运期间铁路发送旅客量情况进⾏了调查,具体过程如下. (I )收集、整理数据请将表格补充完整:(II )描述数据为了更直观地显⽰春运期间动车组发送旅客量占⽐的变化趋势,需要⽤___________(填“折线图”或“扇形图”)进⾏描述;(III )分析数据、做出推测预计2019年春运期间动车组发送旅客量占⽐约为___________,你的预估理由是_________________________________________ .25. 如图,在等腰△ABC 中,AB =AC ,点D ,E 分别为BC ,AB 的中点,连接AD .在线段AD 上任取⼀点P ,连接PB ,PE .若BC =4,AD =6,设PD =x (当点P 与点D 重合时,x 的值为0),PB +PE =y .⼩明根据学习函数的经验,对函数y 随⾃变量x 的变换⽽变化的规律进⾏了探究. 下⾯是⼩明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的⼏组值,如下表:(说明:补全表格时,相关数值保留⼀位⼩数). (参考数据:1.414≈1.732≈2.236≈)(2) 建⽴平⾯直⾓坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)函数y 的最⼩值为______________(保留⼀位⼩数),此时点P 在图1中的位置为________________________.26.在平⾯直⾓坐标系xOy 中,抛物线()02342≠-+-=a a ax axy 与x 轴交于A,B两点(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(⽤含a的代数式表⽰);(3)当AB≤4时,求实数a的取值范围.27. 已知△ABC 中,AD 是的平分线,且AD =AB ,过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若①直接写出B ∠和ACB ∠的度数;②若AB =2,求AC 和AH 的长;(2)如图2,⽤等式表⽰线段AH 与AB +AC 之间的数量关系,并证明.BAC ∠60BAC ∠=?28.给出如下定义:对于⊙O的弦MN和⊙O外⼀点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的⽰意图.在平⾯直⾓坐标系xOy中,⊙O的半径为1.(1)如图2,22M,22N-.在A(1,0),B(1,1),)C三点中, 是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N12-??,点D是线段MN关于点O的关联点.①∠MDN的⼤⼩为°;②在第⼀象限内有⼀点E),m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线2y x=+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.东城区2017-2018学年度第⼀次模拟检测初三数学试题参考答案及评分标准 2018.5⼆、填空题(本题共16分,每⼩题2分)9.1x ≥ 10. ()()22n m m +- 11. 8 12. 2x 13. ②③14. 2y x =+ 15. 答案不唯⼀,理由须⽀撑推断结论 16. 正⽅形的对⾓线相等且互相平分,圆的定义三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每⼩题7分,第28题8分)=217.解:原式分分18. 解:4+6,23x x x x ??+①②>≥,由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分19.证明:∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分∴∠AFB =∠DEB . -------------------4分∵∠DEB =∠FEA ,∴∠AFB =∠FEA .∴AE =AF . -------------------5分20. (1)证明:()()2=+3-42m m ?+()2=+1m∵()2+10m ≥,∴⽆论实数m 取何值,⽅程总有两个实根. -------------------2分(2)解:由求根公式,得()()1,231=2 m m x +±+,∴1=1x ,2=+2x m . ∵⽅程有⼀个根的平⽅等于4,∴()2+24m =.解得=-4m ,或=0m . -------------------5分 21.(1) 证明:∵平⾏四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平⾏四边形. -------------------2分 (2) ∵=AB AC ,∴=AE AC .∴平⾏四边形ACDE 为菱形. ∴AD ⊥CE . ∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC .根据勾股定理,求得BC 分22.解:(1)∵点()3,A n 在函数()30y x x=>的图象上,∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A ,∴ 321a -= .解得 1a =. ----------------------2分 (2)易求得()0,2B -.如图,12AOB A S OB x =?△,1=2ABC A S BC x ?△∵=2ABC AOB S S △△,∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分23. (1)证明:连接OC.∵CD CB=∴∠1=∠3.∵OA OC=,∴∠1=∠2.∴∠3=∠2.∴AE OC∥.∵AE EF⊥,∴OC EF⊥.∵OC是O的半径,∴EF是O的切线. ----------------------2分(2)∵AB为O的直径,∴∠ACB=90°.根据勾股定理,由AB=5,BC=3,可求得AC=4. ∵AE EF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AE AC AC AB=.∴4 45 AE=.∴165AE=. ----------------------5分24. 解:(I):56.8%;----------------------1分(II)折线图;----------------------3分(III)答案不唯⼀,预估的理由须⽀撑预估的数据,参考数据61%左右.--------5分25.解:(1)4.5 . --------------------2分(2)--------------------4分(3) 4.2,点P是AD与CE的交点. --------------------6分26.解:(1) ∵点()0,0O在抛物线上,∴320a-=,23a=.--------------------2分(2)①对称轴为直线2x=;②顶点的纵坐标为2a--.--------------------4分(3) (i)当0 a>时,依题意,-20 320. aa--<,≥解得2.3 a≥(ii)当0a<时,依题意,-20 320. aa-->,≤解得a<-2.综上,2a-<,或23a≥. --------------------7分27. (1)①75B∠=?,45ACB∠=?;--------------------2分②作DE⊥AC交AC于点E.Rt△ADE中,由30DAC∠=?,AD=2可得DE=1,AE=. Rt△CDE中,由45ACD∠=?,DE=1,可得EC=1.∴AC1.Rt△ACH中,由30DAC∠=?,可得AH=;--------------4分(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC证明:延长AB和CH交于点F,取BF中点G,连接GH.易证△ACH ≌△AFH.∴AC AF=,HC HF=.∴GH BC∥.∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. --------------7分 28. 解:(1)C ; --------------2分(2)① 60°;②△MNE 是等边三⾓形,点E 的坐标为);--------------5分③直线2y =+交 y 轴于点K (0,2),交x 轴于点()T 0.∴2OK =,OT =. ∴60OKT ∠=?.作OG ⊥KT 于点G ,连接MG .∵()M 0,1,∴OM =1.∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG ∴3.2G ,∵120MON ∠=?, ∴ 90GON ∠=?.⼜OG 1ON =,∴30OGN ∠=?. ∴60MGN ∠=?.∴G 是线段MN 关于点O 的关联点.经验证,点)E在直线2y =+上. 结合图象可知,当点F 在线段GE 上时,符合题意. ∵G F E x x x ≤≤,∴F x 分.。
北京市各区2017年中考数学二模试卷分类汇编:代数几何综合(含答案)(完整资料).doc
此文档下载后即可编辑北京市各区2017年中考数学二模试卷分类汇编---代数几何综合1昌平29.在平面直角坐标系xOy 中,给出如下定义:对于⊙C 及⊙C 外一点P ,M ,N 是⊙C 上两点,当∠MPN 最大时,称∠MPN 为点P 关于⊙C 的“视角”. (1)如图,⊙O 的半径为1,○1已知点A (0,2),画出点A 关于⊙O 的“视角”; 若点P 在直线x = 2上,则点P 关于⊙O 的最大“视角”的度数 ;○2在第一象限内有一点B (m ,m ),点B 关于⊙O 的“视角”为60°,求点B 的坐标; ○3若点P在直线23y x =-+上,且点P 关于⊙O 的“视角”大于60°,求点P 的横坐标P x 的取值范围.(2)⊙C 的圆心在x 轴上,半径为1,点E 的坐标为(0,1),点F的坐标为(0,-1),若线段EF 上所有的点关于⊙C 的“视角”都小于120°,直接写出点C 的横坐标C x 的取值范围.xx2朝阳29. 在平面直角坐标系xOy 中,对于半径为r (r >0)的⊙O 和点P ,给出如下定义: 若r ≤PO ≤32r ,则称P 为⊙O 的“近外点”.(1)当⊙O 的半径为2时,点A (4,0), B (52,0),C (0, 3),D (1,-1)中,⊙O 的“近外点”是 ;y –1–2123–1–2123O y –1–2123–1–2123O(2)若点E(3,4)是⊙O的“近外点”,求⊙O的半径r的取值范围;(3)当⊙O的半径为2时,直线3=+(b≠0)与x轴交于y x b点M,与y轴交于点N,若线段MN上存在⊙O的“近外点”,直接写出b的取值范围.3东城29.在平面直角坐标系xOy 中,点P 与点Q 不重合.以点P 为圆心作经过点Q 的圆,则称该圆为点P ,Q 的“相关圆”. (1)已知点P 的坐标为(2,0),①若点Q 的坐标为(0,1),求点P ,Q 的“相关圆”的面积; ②若点Q 的坐标为(3,n ),且点P ,Q,求n 的值.()(2)已知△ABC 为等边三角形,点A 和点0),点C 在y 轴正半轴上.若点P ,Q 的“相关圆”恰好是△ABC的内切圆且点Q 在直线y =2x 上,求点Q 的坐标.()(3)已知△ABC 三个顶点的坐标为:A (3-,0),B (92,0),C (0,4),点P 的坐标为(0,32),点Q 的坐标为(m ,32).若点P ,Q 的“相关圆”与△ABC 的三边中至少一边存在公共点,直接写出m 的取值范围.。
北京市东城区2018年中考数学二模卷
东城区2017-2018学年度第二学期初三年级统一测试(二)数 学 试 卷 2018.5一、选择题(本题共16分.每小题2分)1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市.面积约2 050 000平方公里.约占全国面积的21% .将2 050 000用科学记数法表示应为 A. 205万 B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中.函数31y x =+的图象经过A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限 3. 在圆锥、圆柱、球、正方体这四个几何体中.主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体 4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比.乙组同学身高的方差大 5. 在平面直角坐标系xOy 中.若点()3,4P 在O 内.则O 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >56. 如果23510a a +-=.那么代数式()()()5323+232a a a a +--的值是 A. 6 B. 2 C. - 2 D. - 6 7. 在以下三个图形中.根据尺规作图的痕迹.能判断射线AD 平分∠BAC 的是A. 图2B. 图1与图2C. 图1与图3D. 图2与图38. 有一圆形苗圃如图1所示.中间有两条交叉过道AB .CD .它们为苗圃的直径.且AB ⊥CD . 入口K 位于中点.园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x .与入口K 的距离为y .表示y 与x 的函数关系的图象大致如图2所示.则该园丁行进的路线可能是O e »AD图2A. A→O→DB. C→A→O→ BC. D→O→CD. O→D→B→C二、填空题(本题共16分.每小题2分)9.若分式22xx+的值为正.则实数x的取值范围是__________________.10.在平面直角坐标系xOy中.点P到x轴的距离为 1.到y轴的距离为 2.写出一个..符合条件的点P的坐标________________.11. 如图.在△ABC中.AB=AC.BC=8. 是△ABC的外接圆.其半径为5. 若点A在优弧BC上.则tan ABC∠的值为_____________.第11题图第15题图12. 抛物线221y mx mx=++(m为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来.截至2018年5月8日5时52分.北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米.求河北四库来水量. 设河北四库来水量为x亿立方米.依题意.可列一元一次方程为_________ .14. 每年农历五月初五为端午节.中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况.对该社区居民进行了随机抽样调查.并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息.本次抽样调查中喜爱小枣粽的人数为;若该社区有10 000人.估计爱吃鲜肉粽的人数约为 .Oe15. 如图.在平面直角坐标系xOy 中.点A .P 分别在x 轴、 y 轴上.30APO ∠=︒ . 先将线段PA 沿y 轴翻折得到线段PB .再将线段PA 绕点P 顺时针旋转30°得到线段PC .连接BC . 若点A 的坐标为()1,0- .则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .三、解答题(本题共68分.第17-24题.每小题5分.第25题6分.第26-27.每小题7分.第28题8分)17.计算:()332sin 60+2--︒-18. 解不等式()()41223x x --->.并把它的解集表示在数轴上.19. 如图.在Rt ABC △中.90C ∠=︒.AB 的垂直平分线交AC 于点D .交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =.6BC =时.求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围; (2)写出满足条件的k 的最大整数值.并求此时方程的根.21.如图.在菱形ABCD 中.BAD α∠=.点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α.得到CF .连接DF . (1)求证:BE =DF ; (2)连接AC . 若EB =EC .求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =.求k 的值和点P 的坐标;(2)当m n ≤时.结合函数图象.直接写出实数k 的取值范围.23. 如图.AB 为O 的直径.直线BM AB ⊥于点B .点C 在O 上.分别连接BC .AC .且AC 的延长线交BM 于点D .CF 为O 的切线交BM 于点F .(1)求证:CF DF =;(2)连接OF . 若10AB =.6BC =.求线段OF 的长.24.十八大报告首次提出建设生态文明.建设美丽中国. 十九大报告再次明确.到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障.提高森林的数量和质量对生态文明建设非常关键 .截止到2013年.我国已经进行了八次森林资源清查.其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始.北京的森林覆盖率超过全国的森林覆盖率; (2) 补全以下北京森林覆盖率折线统计图.并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a .全国森林覆盖率21.63%记为b .到2018年第九次森林资源清查时.如果全国森林覆盖率达到27.15%.那么全国森林面积可以达到________万公顷(用含a 和b 的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园.妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程.请补充完整: 建立函数模型:设矩形小花园的一边长为x 米.篱笆长为y 米.则y 关于x 的函数表达式为 ; 列表(相关数据保留一位小数):根据函数的表达式.得到了x 与y 的几组值.如下表:描点、画函数图象:如图.在平面直角坐标系中.描出了以上表中各对对应值为坐标的点.根据描出的点画出该函数的图象; 观察分析、得出结论:根据以上信息可得.当x = 时.y 有最小值. 由此.小强确定篱笆长至少为 米.26.在平面直角坐标系中.抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式; (2)求直线AB 关于x 轴的对称直线的表达式; 线.直线与(3)点是轴上的动点.过点作垂直于轴的直该抛物线交于点M .与直线AB 交于点N .当PM PN <时.求点的横坐标P x 的取值范围.xOy xOy P x P x l l P27. 如图所示.点P 位于等边ABC △的内部.且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D .使得PD =PC .连接AD .CD .①依题意.补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下.若BD 的长为2.求四边形ABCD 的面积.28. 研究发现.抛物线214y x =上的点到点F (0.1)的距离与到直线l :1y =-的距离相等.如图1所示.若点P 是抛物线214y x =上任意一点.PH ⊥l 于点H .则. 基于上述发现.对于平面直角坐标系x O y 中的点M .记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d.称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时.称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,.2(12)M ,.3(45)M ,.4(04)M -,中.抛物线214y x =的关联点是______ ; (2)如图2.在矩形ABCD 中.点(1)A t ,.点(13)A t +,C ( t .①若t =4.点M 在矩形ABCD 上.求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点.则t 的取值范围是__________. PH PF=东城区2017-2018学年度第二学期初三年级统一测试(二)数学试题卷参考答案及评分标准 2018.5一、选择题(本题共16分.每小题2分)二、填空题(本题共16分.每小题 2分)9. x >0 10. ()()()()21212121--,,,-,,,,-(写出一个即可) 11. 212. ()1,1m -- 13. ()2 1.8250x x ++= 14. 120 ;3 000 15. 16. 三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68分.17-24题.每题5分.第25题6分.26-27题.每小题7分.第28题8分)=3-22⨯17.解:原式分-------------------------------------------------------------------------------------------------- 5分 18. 解:移项.得()1213x -<. 去分母.得 23x -<. 移项.得x <5.∴不等式组的解集为x <5. --------------------------------------------------------------------3分--------------------------------5分19. 证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠.∴ADE ABC △∽△.--------------------------------------------------------------------2分 (2) ABC Rt △中.8AC =.6BC =. ∴10AB =. ∵DE 平分AB . ∴5AE =. ∵ADE ABC △∽△.∴DE AEBC AC=.∴568DE = . ∴154DE = . ---------------------------------------------------------------------5分20. 解:(1) 依题意.得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>,解得k k ≠<9且0. ----------------------------------------------------------------------2分(2) ∵k 是小于9的最大整数.∴=8k .此时的方程为28610x x -+=. 解得11=2x .21=4x . ---------------------------------------------------------------------5分21 . (1) 证明:∵四边形ABCD 是菱形.∴=BC DC .BAD BCD α==∠∠. ∵ECF α=∠.∴ BCD ECF ∠=∠. ∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到. ∴=CE CF .在BEC △和DFC △中.BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴BEC △≌()SAS DFC △.∴=.BE DF ----------------------------------------------------------------------2分 (2) 解:∵四边形ABCD 是菱形.∴ACB ACD ∠=∠.AC BD ⊥. ∴+90ACB EBC ∠=︒∠. ∵=EB EC .∴=EBC BCE ∠∠. 由(1)可知.∵=EBC DCF ∠∠.∴+90DCF ACD EBC ACB ∠=∠+∠=︒∠. ∴90ACF =︒∠.∴AC CF ⊥. ---------------------------------------------------------------------5分 22. 解:(1)12k =.P ⎭.或P ⎛ ⎝⎭;---------------------------3分 (2) 1k ≥. ---------------------------------------------------------------------5分23. (1)证明:∵AB 是O 的直径.∴90ACB ∠=︒. ∴90DCB ∠=︒.∴90CDB FBC ∠+∠=︒. ∵ AB 是O 的直径.MB AB ⊥.∴MB 是O 的切线. ∵CF 是O 的切线.∴FC FB =. ∴=FCB FBC ∠∠. ∵90FCB DCF ∠+∠=︒ , ∴=CDB DCF ∠∠.∴=CF DF . ---------------------------------------------------------------------3分(2)由(1)可知.ABC △是直角三角形.在Rt ABC △中.=10AB .=6BC .根据勾股定理求得=8AC . 在Rt ABC △和Rt ADB △中.A A ACB ABD ∠=∠⎧⎨∠=∠⎩,, ∴Rt ABC △∽Rt ADB △. ∴AB ACAD AB=. ∴10810AD = . ∴252AD =. 由(1)知.∵=CF DF .=CF BF . ∴=DF BF . ∵=AO BO .∴ OF 是ADB △的中位线. ∴125.24OF AD ==---------------------------------------------------------------------5分 24. 解:(1)四;---------------------------------------------------------------------1分(2)如图: ---------------------------------------------------------------------3分(3)5432000a b.------------------------------------------------------5分 25. 解:42y x x ⎛⎫=+ ⎪⎝⎭;----------------------------------------------1分 810,; --------------------------------------------------------3分如图; ----------------------------------------------------------4分28,. -----------------------------------------------------------5分26. 解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠.得 0--35164-3a b a b =⎧⎨=+⎩,, 解得12a b ==-,. ∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B '.则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '.设直线AB '的表达式为y mx n =+.把点(10)-,和(45)-,分别代入y mx n =+.得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--. --------------------------------------4分(3)如图.直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N '.则 'PN PN =.∵PM PN <.∴'PM PN <.∴点M 在线段'NN 上(不含端点).∴点M 在抛物线223y x x =--夹在点C 与点B 之间的部分上.联立223y x x =--与1y x =--.可求得点C 的横坐标为2.又点B 的横坐标为4.∴点P 的横坐标P x 的取值范围为24P x <<. --------------------------------------------------7分27. 解:(1)120°.---------------------------------------------------2分(2)①∵如图1所示.②在等边ABC △中.60ACB ∠=︒.∴60.ACP BCP ∠+∠=︒∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒∴()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴18060.CPD BPC ∠=︒-∠=︒∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒,∴.ACD BCP ∠=∠在ACD △和BCP △中.AC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,, ∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------------------------------4分(3)如图2.作BM AD ⊥于点M .BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=︒,∴=60.ADB CDB ∠∠=︒∴=60.ADB CDB ∠∠=︒∴=BM BN == 又由(2)得.=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BMCD BN =+)2ADCD =+2==----------------------------------------------------------7分28. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时.()41A ,.()51B ,.()53C ,.()43D ,. 此时矩形ABCD 上的所有点都在抛物线214y x =的下方. ∴.d MF =∴.AF dCF ≤≤∵=4AF CF,∴d 4≤---------------------------------------------------------------------------------- 5分② 1.t ≤ ------------------------------------------------------------------------8分。
北京市东城区中考二模数学试题(word版含答案)(最新编写)
5
∴ BE= 3,AE= 4. ∴ EC=BC-BE =8-3=5 .
∵平行四边形 ABCD, ∴ CD=AB=5. ∴ △CED 为等腰三角形 .……2 分 ∴∠ CDE =∠ CED .
xOy 中,已知二次函数
y
2
ax +2 ax
c 的图像与 y 轴交于
点 C (0,3) ,与 x 轴交于 A、 B 两点,点 B 的坐标为 (-3,0)
( 1) 求二次函数的解析式及顶点 D 的坐标; ( 2) 点 M 是第二象限内抛物线上的一动点,若直线
1:2 的两部分,求出此时点 M 的坐标;
( 3) 点 P 是第二象限内抛物线上的一动点,问:点 最大面积是多少?并求出 此时点 P 的坐标 .
( 2) ∵ 正整数 m 满足 8 2m 2 ,
∴ m 可取的值为 1 和 2 .
又∵ 二次函数 y (1 m) x2 (4 m)x 3 ,
∴ m =2 .…… 4 分 ∴ 二次函数为 y -x2 2x 3 .
∴ A 点、 B 点的坐标分别为( -1,0)、( 3,0). 依题意翻折后的图象如图所示. 由图象可知符合题意的直线 y kx 3 经过点 A、B.
在 Rt CDE 中,CE 设⊙ O的半径为 r, CO 2 CE 2 EO 2
3. 4分 则在 Rt CE O中,
即 ( 6-r) 2 r 2 3, 解得 r
6 .
4
22.解: (1) i 4 1, i 2011 -i i 2012
5分
1…… 3 分
(2)方程 x2 2 x 2 0 的两根为
东城区2017—2018学年度第二学期期末试卷习题含解析与包括答案
北京市东城区 2017--2018 学年第二学期期末考试初一数学试卷一、选择题(此题共30 分,每题 3 分)下边各题均有四个选项,此中只有一个是切合题意的..1.9 的平方根为A.±3B.﹣ 3C.3D.2.以下实数中的无理数是A.B.0C.1.3D23.如图,为预计池塘岸边A, B 的距离,小明在池塘的一侧选用一点 O,测得 OA=15 米, OB=10 米, A, B 间的距离可能是A. 30米B. 25 米. 20米D.5米C4.以下检查方式,你以为最适合的是A.认识北京市每日的流感人口数,采纳抽样检查方式B.游客上飞机前的安检,采纳抽样检查方式C.认识北京市居民”一带一路”期间的出行方式,采纳全面检查方式D.日光灯管厂要检测一批灯管的使用寿命,采纳全面检查方式5.如图,已知直线 a//b,∠ 1=100°,则∠ 2 等于A. 60°B.80°C.100°D.70°6.象棋在中国有着三千多年的历史,因为器具简单,兴趣性强,成为流行极为宽泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为 (4 ,3) , ( - 2, 1) ,则表示棋子“炮”的点的坐标为A.( -3,3)B.(0 ,3)C.(3 , 2)D.(1 ,3)7.若一个多边形的内角和等于外角和的 2 倍,则这个多边形的边数是..C.6D.8A 4B 58.若 m>n,则以下不等式中必定建立的是A.m+2< n+3B. 2m<3n C.a﹣m<a﹣n D. ma2>na29.在大课间活动中,同学们踊跃参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制以下图的部分频数散布直方图(从左到右挨次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于 130 次的成绩为优异,全校共有 1200 名学生,依据图中供给的信息,以下说法不.A.第四小组有 10 人B.第五小组对应圆心角的度数为45°C.本次抽样检查的样本容量为50D.该校“一分钟跳绳”成绩优异的人数约为480人10.以下图,以下各三角形中的三个数之间均拥有同样的规律,依据此规律,最后一个三角形中 y 与 n 之间的关系是 ()A.y=2n+1B.y=2n+n C.y=2n+1+n D. y=2n+n+1二、填空题:(此题共16 分,每题 2 分,将答案填在题中横线上)11.如图,盖房屋时,在窗框未安装好以前,木匠师傅经常先在窗框上斜钉一根木条,这类做法的依照是12.用不等式表示:a与 2 的差大于 -113.把无理数17 ,11 , 5 , 3 表示在数轴上,在这四个无理数中,被墨迹(以下图)覆遮住的无理数是.20,则 a b=14.若(a -3) b 215. 如图,将一副三角板叠放在一同,使直角的极点重合于点O,AB//OC,DC与 OB交于点E , 则∠ DEO的度数为.16.在平面直角坐标系中,若 x 轴上的点P到 y 轴的距离为3,17.如图,ABC中,点 D 在 BC 上且 BD=2DC ,点 E 是 AC 中点,已知CDE面积为 1,那么ABC的面积为18.在数学课上,老师提出以下问题:A, B两地和公路 l B如图,需要在之间修地下管道,A请你设计一种最节俭资料的修筑方案.l小军同学的作法以下:①连结AB;l于点;②过点 A 作 AC⊥直线C则折线段 B-A-C 为所求 .B D B BA A AC l C l C l老师说:小军同学的方案是正确的 .请回答:该方案最节俭资料的依照是.三、解答题 ( 此题共 10 个小题,共54 分,解答应写出文字说明,证明过程或演算步骤 ) 19.( 5 分)计算:3-8+ 3-2 + (3)2( 3)20.( 5 分)解不等式组3x x8,并把它的解集在数轴上表示出来。
2018年北京市东城区中考二模数学试卷附答案.docx
东城区 2017-2018 学年度第二学期初三年级统一测试(二)数学试卷2018.5学校 ______________班级 ______________姓名 _____________ 考号 ____________1.本试卷共8 页,共三道大题,28 道小题,满分100 分 .考试时间120 分钟 .考2.在试卷和答题卡上准确填写学校、班级、姓名和考号.生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.须4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.知5.考试结束,将本试卷、答题卡一并交回.一、选择题 ( 本题共 16 分,每小题 2 分 )下面各题均有四个选项,其中只有一个..是符合题意的1.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11 省市,面积约 2 050 000 平方公里,约占全国面积的21% .将 2 050 000 用科学记数法表示应为A. 205 万B. 205 104C. 2.05 106D. 2.05 1072.在平面直角坐标系xOy 中,函数 y 3x 1 的图象经过A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限3.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是A. 圆锥B. 圆柱C.球D. 正方体4.七年级 1 班甲、乙两个小组的 14 名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是..A. 甲组同学身高的众数是160B.乙组同学身高的中位数是 161C. 甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大5. 在平面直角坐标系xOy中,若点P 3,4 在O内,则O的半径 r 的取值范围是A. 0< r < 3B. r>4C. 0< r < 5D. r>56. 如果3a25a 10,那么代数式5a 3a 23a+2 3a 2 的值是A. 6B. 2C. - 2D. - 617. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠ BAC 的是A. 图 2B. 图 1 与图 2C. 图 1与图 3D. 图 2 与图 38. 有一圆形苗圃如图 1 所示,中间有两条交叉过道AB,CD,它们为苗圃e O的直径,且 AB⊥ CD. 入口 K 位?.设该园丁行进的时间为x,与入口 K 的距离为 y,于 AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进表示 y 与 x 的函数关系的图象大致如图 2 所示,则该园丁行进的路线可能是图 2A. A→O→DB. C→ A→O→ BC. D→ O→CD. O→ D→ B→C二、填空题( 本题共 16 分,每小题 2 分 )9.若分式x的值为正,则实数x 的取值范围是__________________.x2210.在平面直角坐标系xOy中,点P到 x 轴的距离为,到y轴的距离为写出一个符合条件的点P的坐标1 2...________________.11. 如图,在△ ABC 中, AB=AC,BC=8.e O是△ABC的外接圆,其半径为 5.若点A在优弧BC上,则tan∠ABC 的值为_____________.2第 11 题图第15题图12. 抛物线y mx22mx 1 ( m 为非零实数)的顶点坐标为_____________.13.自 2008 年 9 月南水北调中线京石段应急供水工程通水以来,截至2018 年 5 月 8 日 5时 52 分,北京市累计接收河北四库来水和丹江口水库来水达50 亿立方米 . 已知丹江口水库来水量比河北四库来水量的 2 倍多 1.82 亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为;若该社区有10 000 人,估计爱吃鲜肉粽的人数约为.15. 如图,在平面直角坐标系xOy 中,点A,P分别在 x 轴、y 轴上,APO 30.先将线段 PA 沿 y 轴翻折得到线段PB ,再将线段 PA 绕点 P 顺时针旋转30°得到线段 PC ,连接 BC .若点 A 的坐标为1,0,则线段BC的长为.16.阅读下列材料:数学课上老师布置一道作图题:3小东的作法如下:老师说:“小东的作法是正确的 .”请回答:小东的作图依据是.三、解答题 ( 本题共 68 分,第17-24 题,每小题5 分,第 25 题 6 分,第 26-27,每小题7 分,第 28 题 8 分 )17.计算: 32sin 60 +2312 . +18.解不等式 1 2 x >4x2,并把它的解集表示在数轴上 . 319.如图,在 Rt△ABC 中, C 90 , AB 的垂直平分线交AC 于点 D ,交 AB 于点 E .(1)求证:△ ADE≌△ ABC ;(2)当 AC 8 , BC 6 时,求 DE 的长.20.已知关于 x 的一元二次方程 kx 2 6x 1 0 有两个不相等的实数根.(1)求实数 k 的取值范围;(2)写出满足条件的 k 的最大整数值,并求此时方程的根.21.如图,在菱形 ABCD 中,BAD,点E在对角线BD上.将线段CE绕点C顺时针旋转,得到CF,4连接 DF .(1)求证: BE=DF ;( 2)连接 AC,若 EB=EC ,求证:AC CF .1 的图象与函数y kx k 0的图象交于点P m, n .22. 已知函数yx( 1)若m2n ,求 k 的值和点P的坐标;( 2)当 m ≤ n 时,结合函数图象,直接写出实数k 的取值范围.23.如图, AB 为O 的直径,直线BM AB 于点 B .点C在O 上,分别连接BC , AC ,且 AC 的延长线交 BM 于点 D . CF 为O 的切线交 BM 于点F .(1)求证:CF DF;(2)连接OF . 若AB 10,BC 6,求线段 OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035 年美丽中国目标基本实现 .森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到 2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表 1全国森林面积和森林覆盖率5表 2北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第 ________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为 a,全国森林覆盖率 21.63% 记为 b,到 2018 年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含 a 和 b 的式子表示) .25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为 4 平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x 米,篱笆长为y 米.则 y 关于x的函数表达式为;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当 x =时, y 有最小值.由此,小强确定篱笆长至少为米 .26.在平面直角坐标系xOy中,抛物线2经过点 A1,0 和点 B 4,5.y ax bx 3 a 0( 1)求该抛物线的表达式;( 2)求直线 AB 关于x轴的对称直线的表达式;( 3)点 P 是x轴上的动点,过点 P 作垂直于x轴的直线l,直线l与该抛物线交于点M ,与直线 AB 交于点 N .当 PM <PN 时,求点 P 的横坐标x P的取值范围.27.如图所示,点 P 位于等边△ABC的内部,且∠ ACP=∠ CBP.(1)∠ BPC 的度数为 ________ °;(2)延长 BP 至点 D ,使得 PD=PC,连接 AD, CD.①依题意,补全图形;②证明: AD +CD =BD ;7(3) 在 (2)的条件下,若 BD 的长为 2,求四边形 ABCD 的面积.28. 研究发现, 抛物线 y1 x2 上的点到点 F(0,1)的距离与到直线 l : y 1的距离相等 .如图 1 所示, 若点 P14是抛物线 yx 2 上任意一点, PH ⊥l 于点 H ,则 PF PH .4基于上述发现,对于平面直角坐标系 x O y 中的点 M ,记点 M 到点 P 的距离与点 P 到点 F 的距离之和的最小值为 d ,称 d 为点 M 关于抛物线 y1 x2 的关联距离;当 2≤d ≤4 时,称点 M 为抛物线 y1 x2 的关联4 4点 .( 1)在点 M 1(2,0) , M 2 (1,2) , M 3 (4,5) , M 4 (0, 4) 中,抛物线 y1x 2 的关联点是 ______ ;4( 2)如图 2,在矩形 ABCD 中,点 A(t ,1) ,点 A(t 1,3) C( t.①若 t=4 ,点 M 在矩形 ABCD 上,求点 M 关于抛物线 y1 x2 的关联距离 d 的取值范围;14②若矩形 ABCD 上的所有点都是抛物线 yx 2 的关联点,则 t 的取值范围是 __________.4东城区 2017-2018 学年度第二学期初三年级统一测试(二)数学试题卷 参考答案及评分标准2018.5一、选择题(本题共 16 分,每小题 2 分)题号 1 2 3 4 5 6 7 8 答案CACDDACB二、填空题(本题共 16 分,每小题 2 分)9. x > 0 10.21,,2, -1 , 21,, 2, -1 (写出一个即可)11. 212.1,1 m 13. x 2x1.825014. 120 ; 3 000 15. 2 2816.三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68 分, 17-24 题,每题 5 分,第 25 题 6 分, 26-27 题,每小题7 分,第 28 题 8 分)17. 解:原式 =3-23-8+2 3 --------------------------------------------------------------------4分2= 3 - 5--------------------------------------------------------------------------------------------------5分18. 解:移项,得1x 2 <1,3去分母,得x2<3 ,移项,得 x<5 .∴不等式组的解集为x<5 .--------------------------------------------------------------------3分--------------------------------5分19.证明:( 1)∵DE垂直平分AB ,∴AED 90 .∴AED C .∵A A ,∴△ ADE ∽△ ABC . --------------------------------------------------------------------2分(2) Rt△ABC中,AC8 , BC6,∴ AB 10 .∵ DE 平分 AB ,∴ AE 5.∵△ ADE∽△ ABC ,DE AE.∴ACBC∴ DE5.68∴ DE 15. ---------------------------------------------------------------------5分4k0,20. 解:(1)依题意,得264k>0,解得 k<9且k 0 . ----------------------------------------------------------------------2分(2)∵ k 是小于9的最大整数,∴ k =8 .9此时的方程为 8x 26x 1 0 .解得 x = 1 , x = 1.---------------------------------------------------------------------5分122421 . (1) 证明:∵四边形ABCD 是菱形,∴ BC =DC , ∠BAD∠BCD .∵ ∠ECF ,∴BCD ∠ECF .∴ BCE= DCF .∵线段 CF 由线段 CE 绕点 C 顺时针旋转得到, ∴ CE =CF .在 △BEC 和 △ DFC 中,BC DC , BCEDCF ,CE CF ,∴ △BEC ≌ △ DFC SAS .∴ BE=DF . ----------------------------------------------------------------------2 分(2) 解:∵四边形 ABCD 是菱形,∴ACB ∠ACD , AC BD .∴ ACB+∠ EBC 90 . ∵ EB=EC ,∴ EBC= BCE .由( 1)可知, ∵EBC= DCF ,∴ DCF +∠ACD EBCACB90 .∴ ∠ACF 90.∴ AC CF . ---------------------------------------------------------------------5 分1 , P ,2,或 P, 2 ;--------------------------- 3 分22. 解:(1) k222 22(2) k ≥1.---------------------------------------------------------------------5 分23. ( 1)证明:∵ AB 是 O 的直径,∴ ACB 90 .∴ DCB 90 .∴CDB FBC 90 .∵AB 是 O 的直径, MB ⊥AB ,10∴ MB 是O 的切线.∵ CF 是O 的切线,∴FC FB .∴FCB = FBC .∵FCB DCF 90,∴CDB = DCF .∴ CF =DF . ---------------------------------------------------------------------3分( 2)由( 1)可知,△ABC是直角三角形,在Rt△ABC 中, AB=10 , BC =6 ,根据勾股定理求得AC=8 .在 Rt△ ABC 和 Rt△ADB 中,,AA ACB,ABD∴Rt△ ABC ∽ Rt△ADB .∴AB AC .AD AB∴108 .AD 1025∴ AD.2由( 1)知,∵CF =DF ,CF =BF ,∴ DF =BF .∵AO=BO ,∴OF 是△ADB 的中位线.∴ OF1 AD 25.---------------------------------------------------------------------5分2424. 解: (1)四;---------------------------------------------------------------------1分( 2)如图:---------------------------------------------------------------------3分11(3) 543a.------------------------------------------------------5分2000b25. 解:y 2 x 4;----------------------------------------------1分x8 ,10 ;--------------------------------------------------------3分如图;----------------------------------------------------------4分2,8 .-----------------------------------------------------------5分26. 解:( 1)把点 ( 1,0) 和 (4,5)分别代入 y ax2bx 3(a 0) ,,0 a - b - 3得,5 16a 4b - 3解得 a 1, b 2.∴抛物线的表达式为y x22x 3 .-------------------------------------------------------------2分( 2)设点B 4,5关于x轴的对称点为 B ,则点 B 的坐标为 4, - 5 .∴直线 AB 关于x轴的对称直线为直线AB .设直线 AB 的表达式为y mx n ,把点 ( 1,0) 和 (4, 5) 分别代入y mx n,120m n,得5 4m n,解得 m1,n1.∴直线 AB 的表达式为y x 1.即直线 AB 关于x轴的对称直线的表达式为y x 1 . --------------------------------------4分( 3)如图,直线AB 与抛物线y x22x 3 交于点C.设直线 l 与直线AB 的交点为 N ,则PN ' PN .∵ PM PN ,∴PM PN ' .∴点 M 在线段NN '上(不含端点).∴点 M 在抛物线y x22x 3 夹在点C与点B之间的部分上.联立 y x22x 3 与y x 1 ,可求得点 C 的横坐标为2.又点 B 的横坐标为4,∴点 P 的横坐标x P的取值范围为 2 x P4.--------------------------------------------------7分27.解:(1)120°.--------------------------------------------------- 2 分(2)①∵如图 1 所示 .②在等边△ ABC 中,ACB60 ,∴ACPBCP 60 .∵ACP= CBP,∴CBPBCP 60 .∴BPC 180CBPBCP 120 .∴CPD 180BPC 60 .13∵ PD =PC ,∴ △CDP 为等边三角形 .∵ACD ACP ACPBCP 60 ,∴ ACD BCP.在 △ACD 和 △ BCP 中,AC BC , ACDBCP ,CD CP ,∴ △ACD ≌△ BCP SAS .∴ AD BP.∴ AD CDBP PD BD. ----------------------------------------------------------------- 4分( 3)如图 2,作 BM ⊥ AD 于点 M , BN ⊥DC 延长线于点 N .∵ ADB =ADC PDC 60 ,∴ ADB = CDB 60 .∴ ADB = CDB 60 .∴ BM =BN3BD3.2又由( 2)得, AD CD BD=2,S四边形 ABCD=S△ABD+S△BCD1AD BM1CD BN3AD CD2223 2 3.7 分228. (1) M 1, M 2 ;-----------------------------------------------------------------2 分( 2)①当 t 4 时, A 41, , B 51, , C 5,3 , D 4,3 , 此时矩形 ABCD 上的所有点都在抛物线 y1x 2 的下方,4∴ dMF .∴ AF ≤ d ≤ CF .14∵ AF =4, CF =29 ,∴ 4≤ d≤ 29.----------------------------------------------------------------------------------5分② -2 3≤ t ≤ 2 3 1. ------------------------------------------------------------------------8分15。
市东城区中考数学二模卷
市东城区中考数学二模卷 It was last revised on January 2, 2021东城区2017-2018学年度第二学期初三年级统一测试(二) 数 学 试 卷一、选择题(本题共16分,每小题2分)1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为A. 205万B. 420510⨯C. 62.0510⨯D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过 A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限3. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:以下叙述错误的是A. 甲组同学身高的众数是160B. 乙组同学身高的中位数是161C. 甲组同学身高的平均数是161D. 两组相比,乙组同学身高的方差大 5. 在平面直角坐标系xOy 中,若点()3,4P 在O 内,则O 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >56. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是 A. 6 B. 2 C. - 2 D. - 67. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是 A. 图2 B. 图1与图2 C. 图1与图3 D. 图2与图38. 有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O 的直径,且AB ⊥CD . 入口K 位于AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是图2A. A →O →DB. C→A→O → BC. D →O →CD. O→D→B→C 二、填空题(本题共16分,每小题2分) 9.若分式22xx +的值为正,则实数x 的取值范围是__________________. 10.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.11. 如图,在△ABC 中,AB =AC ,BC =8. O 是△ABC 的外接圆,其半径为5. 若点A在优弧BC 上,则tan ABC ∠的值为_____________.第11题图 第15题图 12. 抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14. 每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 .15. 如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、 y 轴上,30APO ∠=︒ . 先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到线段PC ,连接BC . 若点A 的坐标为()1,0- ,则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题: 小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:()332sin 60+2+12--︒-18. 解不等式()()41223x x --->,并把它的解集表示在数轴上. 19. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围; (2)写出满足条件的k 的最大整数值,并求此时方程的根.21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF .(1)求证:BE =DF ; (2)连接AC , 若EB =EC ,求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.23. 如图,AB 为O 的直径,直线BM AB ⊥于点B .点C 在O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D .CF 为O 的切线交BM 于点F . (1)求证:CF DF =;(2)连接OF . 若10AB =,6BC =,求线段OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率 表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率; (2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积(万公顷)记为a ,全国森林覆盖率%记为b ,到2018年第九次森林资源清查时,如果全国森林覆盖率达到%,那么全国森林面积可以达到________万公顷(用含a 和b 的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整: 建立函数模型:设矩形小花园的一边长为x 米,篱笆长为y 米.则y 关于x 的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x 与y 的几组值,如下表: 描点、画函数图象:如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为米.26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式; (2)求直线AB 关于x 轴的对称直线的表达式; (3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积. 28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点. (1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t .①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.东城区2017-2018学年度第二学期初三年级统一测试(二)数学试题卷参考答案及评分标准一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题 2分)9. x >0 10. ()()()()21212121--,,,-,,,,-(写出一个即可) 11. 212. ()1,1m -- 13. ()2 1.8250x x ++= 14. 120 ;3 000 15. 2216. 三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)3=3-2-8+23⨯17.解:原式 --------------------------------------------------------------------4分 =3-5-------------------------------------------------------------------------------------------------- 5分18. 解:移项,得()1213x -<, 去分母,得 23x -<, 移项,得x <5.∴不等式组的解集为x <5. --------------------------------------------------------------------3分--------------------------------5分19. 证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠,∴ADE ABC △∽△.--------------------------------------------------------------------2分 (2) ABC Rt △中,8AC =,6BC =, ∴10AB =. ∵DE 平分AB , ∴5AE =.∵ADE ABC △∽△,∴DE AEBC AC =. ∴568DE = .∴154DE = . ---------------------------------------------------------------------5分20. 解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>, 解得k k ≠<9且0. ----------------------------------------------------------------------2分 (2) ∵k 是小于9的最大整数, ∴=8k .此时的方程为28610x x -+=.解得11=2x ,21=4x . ---------------------------------------------------------------------5分21 . (1) 证明:∵四边形ABCD 是菱形,∴=BC DC ,BAD BCD α==∠∠. ∵ECF α=∠, ∴ BCD ECF ∠=∠. ∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到, ∴=CE CF .在BEC △和DFC △中, ∴BEC △≌()SAS DFC △.∴=.BE DF ----------------------------------------------------------------------2分 (2) 解:∵四边形ABCD 是菱形, ∴ACB ACD ∠=∠,AC BD ⊥.∴+90ACB EBC∠=︒∠.∵=EB EC,∴=EBC BCE∠∠.由(1)可知,∵=EBC DCF∠∠,∴+90DCF ACD EBC ACB∠=∠+∠=︒∠.∴90ACF=︒∠.∴AC CF⊥. ---------------------------------------------------------------------5分22. 解:(1)12k=,22P⎭,,或22P⎛-⎝⎭,;---------------------------3分(2) 1k≥. ---------------------------------------------------------------------5分23. (1)证明:∵AB是O的直径,∴90ACB∠=︒.∴90DCB∠=︒.∴90CDB FBC∠+∠=︒.∵AB是O的直径,MB AB⊥,∴MB是O的切线.∵CF是O的切线,∴FC FB=.∴=FCB FBC∠∠.∵90FCB DCF∠+∠=︒ ,∴=CDB DCF∠∠.∴=CF DF. ---------------------------------------------------------------------3分(2)由(1)可知,ABC△是直角三角形,在Rt ABC△中,=10AB,=6BC,根据勾股定理求得=8AC.在Rt ABC △和Rt ADB △中,∴Rt ABC △∽Rt ADB △. ∴AB AC AD AB =. ∴10810AD = . ∴252AD =. 由(1)知,∵=CF DF ,=CF BF ,∴=DF BF .∵=AO BO ,∴ OF 是ADB △的中位线. ∴125.24OF AD ==---------------------------------------------------------------------5分 24. 解:(1)四; ---------------------------------------------------------------------1分(2)如图: ---------------------------------------------------------------------3分(3)5432000a b .--------------------------------------------5分 ----------解:42y x x ⎛⎫=+ ⎪⎝⎭;---------------25.---------------------1分----------810,; --------------------------------------------------------3分如图; ----------------------------------------------------------4分28,. -----------------------------------------------------------5分26. 解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠,得 0--35164-3a b a b =⎧⎨=+⎩,, 解得12a b ==-,.∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B ',则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '.设直线AB '的表达式为y mx n =+,把点(10)-,和(45)-,分别代入y mx n =+,得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--. --------------------------------------4分(3)如图,直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N ',则 'PN PN =.∵PM PN <,∴'PM PN <.∴点M 在线段'NN 上(不含端点).∴点M 在抛物线223y x x =--夹在点C 与点B 之间 的部分上.联立223y x x =--与1y x =--,可求得点C 的横坐标为2.又点B 的横坐标为4,∴点P 的横坐标P x 的取值范围为24P x <<. --------------------------------------------------7分27. 解:(1)120°. ---------------------------------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒,∴60.ACP BCP ∠+∠=︒∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒∴()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴18060.CPD BPC ∠=︒-∠=︒∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒,∴.ACD BCP ∠=∠在ACD △和BCP △中,∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=︒, ∴=60.ADB CDB ∠∠=︒ ∴=60.ADB CDB ∠∠=︒ ∴3= 3.2BM BN BD == 又由(2)得,=2AD CD BD +=,32= 3.=----------------------------------------------------------7分28. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF =∴.AF d CF ≤≤∵=429AF CF , ∴29.d 4≤≤ ---------------------------------------------------------------------------------- 5分②33 1.t -2≤≤2 ------------------------------------------------------------------------8分。
2018北京东城区初三(二模)数学
2018北京东城区初三(二模)数 学 2018.5学校______________班级______________姓名_____________考号____________考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的 1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为 A. 205万 B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组 158 159 160 160 160 161 169 乙组158159160161161163165以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 5. 在平面直角坐标系xOy 中,若点()3,4P 在O e 内,则O e 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >56. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 67. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是A. 图2B. 图1与图2C. 图1与图3D. 图2与图38. 有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O e 的直径,且AB ⊥CD . 入口K 位于»AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是A. A →O →DB. C→A→O→ BC. D →O →CD. O→D→B→C 二、填空题(本题共16分,每小题2分) 9.若分式22xx +的值为正,则实数x 的取值范围是__________________. 10.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为 2.写出一个..符合条件的点P 的坐标________________.11. 如图,在△ABC 中,AB =AC ,BC =8. O e 是△ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC∠的值为_____________.第11题图 第15题图 12. 抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14. 每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 .15. 如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、 y 轴上,30APO ∠=︒ .先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到 线段PC ,连接BC . 若点A 的坐标为()1,0- ,则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分) 17.计算:()332sin 60+2+12--︒-. 18. 解不等式()()41223x x --->,并把它的解集表示在数轴上.19. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF .(1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.23. 如图,AB 为O e 的直径,直线BM AB ⊥于点B .点C 在O e 上,分别连接BC ,AC ,且AC 的延长线交BM于点D .CF 为O e 的切线交BM 于点F . (1)求证:CF DF =;(2)连接OF . 若10AB =,6BC =,求线段OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率; (2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a ,全国森林覆盖率21.63%记为b ,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a 和b 的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整: 建立函数模型:设矩形小花园的一边长为x 米,篱笆长为y 米.则y 关于x 的函数表达式为 ; 列表(相关数据保留一位小数):根据函数的表达式,得到了x 与y 的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点, 根据描出的点画出该函数的图象; 观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP . (1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =. 基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t .①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.数学试题答案一、选择题(本题共16分,每小题2分) 题号 1 2 3 4 5 6 7 8 答案CACDDACB二、填空题(本题共16分,每小题 2分)9. x >0 10. ()()()()21212121--,,,-,,,,-(写出一个即可) 11. 2 12. ()1,1m -- 13. ()2 1.8250x x ++= 14. 120 ;3 000 15. 22 16. 三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)3=3-2-8+232⨯17.解:原式 --------------------------------------------------------------------4分=3-5-------------------------------------------------------------------------------------------------- 5分18. 解:移项,得()1213x -<, 去分母,得 23x -<, 移项,得x <5.∴不等式组的解集为x <5. --------------------------------------------------------------------3分--------------------------------5分19. 证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠,∴ADE ABC △∽△.--------------------------------------------------------------------2分 (2) ABC Rt △中,8AC =,6BC =, ∴10AB =.∵DE 平分AB , ∴5AE =. ∵ADE ABC △∽△,∴DE AEBC AC = . ∴568DE = .∴154DE =. ---------------------------------------------------------------------5分 20. 解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>, 解得k k ≠<9且0. ----------------------------------------------------------------------2分(2) ∵k 是小于9的最大整数,∴=8k .此时的方程为28610x x -+=. 解得11=2x ,21=4x . ---------------------------------------------------------------------5分21 . (1) 证明:∵四边形ABCD 是菱形,∴=BC DC ,BAD BCD α==∠∠. ∵ECF α=∠,∴ BCD ECF ∠=∠. ∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到, ∴=CE CF .在BEC △和DFC △中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴BEC △≌()SAS DFC △.∴=.BE DF ----------------------------------------------------------------------2分 (2) 解:∵四边形ABCD 是菱形, ∴ACB ACD ∠=∠,AC BD ⊥. ∴+90ACB EBC ∠=︒∠. ∵=EB EC ,∴=EBC BCE ∠∠. 由(1)可知,∵=EBC DCF ∠∠,∴+90DCF ACD EBC ACB ∠=∠+∠=︒∠. ∴90ACF =︒∠.∴AC CF ⊥. ---------------------------------------------------------------------5分 22. 解:(1)12k =,222P ⎛⎫ ⎪ ⎪⎝⎭,,或222P ⎛⎫-- ⎪ ⎪⎝⎭,;---------------------------3分 (2) 1k ≥. ---------------------------------------------------------------------5分23. (1)证明:∵AB 是O e 的直径,∴90ACB ∠=︒.∴90DCB ∠=︒.∴90CDB FBC ∠+∠=︒.∵ AB 是O e 的直径,MB AB ⊥,∴MB 是O e 的切线.∵CF 是O e 的切线,∴FC FB =.∴=FCB FBC ∠∠.∵90FCB DCF ∠+∠=︒ ,∴=CDB DCF ∠∠.∴=CF DF . ---------------------------------------------------------------------3分(2)由(1)可知,ABC △是直角三角形,在Rt ABC △中,=10AB ,=6BC ,根据勾股定理求得=8AC .在Rt ABC △和Rt ADB △中,A A ACB ABD ∠=∠⎧⎨∠=∠⎩,, ∴Rt ABC △∽Rt ADB △. ∴AB AC AD AB=. ∴10810AD = . ∴252AD =. 由(1)知,∵=CF DF ,=CF BF ,∴=DF BF .∵=AO BO ,∴ OF 是ADB △的中位线. ∴125.24OF AD ==---------------------------------------------------------------------5分24. 解:(1)四; ---------------------------------------------------------------------1分(2)如图: ---------------------------------------------------------------------3分(3)5432000a b.------------------------------------------------------5分 25. 解:42y x x ⎛⎫=+⎪⎝⎭;----------------------------------------------1分 810,; --------------------------------------------------------3分如图; ----------------------------------------------------------4分28,. -----------------------------------------------------------5分26. 解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠,得 0--35164-3a b a b =⎧⎨=+⎩,, 解得12a b ==-,. ∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B ',则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '.设直线AB '的表达式为y mx n =+,把点(10)-,和(45)-,分别代入y mx n =+,得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--. --------------------------------------4分(3)如图,直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N ',则 'PN PN =.∵PM PN <,∴'PM PN <.∴点M 在线段'NN 上(不含端点).∴点M 在抛物线223y x x =--夹在点C 与点B 之间的部分上.联立223y x x =--与1y x =--,可求得点C 的横坐标为2.又点B 的横坐标为4,∴点P 的横坐标P x 的取值范围为24P x <<. --------------------------------------------------7分27. 解:(1)120°.---------------------------------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒,∴60.ACP BCP ∠+∠=︒∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒∴()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴18060.CPD BPC ∠=︒-∠=︒∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,, ∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=︒,∴=60.ADB CDB ∠∠=︒∴=60.ADB CDB ∠∠=︒ ∴3= 3.2BM BN BD == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =+g g ()32AD CD =+ 322=⨯ 3.=----------------------------------------------------------7分28. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF =∴.AF d CF ≤≤∵=4=29AF CF ,,∴29.d 4≤≤---------------------------------------------------------------------------------- 5分②33 1.t --2≤≤2 ------------------------------------------------------------------------8分。
北京市东城区2017-2018学年度第二学期初三年级统一测试(二模)数学试卷及答案
数学试卷 第1页(共17页)东城区2017-2018学年度第二学期初三年级统一测试(二) 数 学 试 卷 2018.5学校______________班级______________姓名_____________考号____________考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的 1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为A. 205万B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组 158 159 160 160 160 161 169 乙组 158159160161161163165以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 5. 在平面直角坐标系xOy 中,若点()3,4P 在O 内,则O 的半径r 的取值范围是数学试卷 第2页(共17页)A. 0r <<3B. r >4C. 0r <<5D. r >56. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 67. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是A. 图2B. 图1与图2C. 图1与图3D. 图2与图3 8. 有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃的直径,且AB ⊥CD . 入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是A. A →O →DB. C→A→O → BC. D →O →CD. O→D→B→C 二、填空题(本题共16分,每小题2分) 9.若分式22xx +的值为正,则实数x 的取值范围是__________________. 10.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符OAD数学试卷 第3页(共17页)合条件的点P 的坐标________________.11. 如图,在△ABC 中,AB =AC ,BC =8.是△ABC 的外接圆,其半径为5. 若点A在优弧BC 上,则tan ABC ∠的值为_____________.第11题图 第15题图 12. 抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5 时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14. 每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 .O数学试卷 第4页(共17页)15. 如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、 y 轴上,30APO ∠=︒ .先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到 线段PC ,连接BC . 若点A 的坐标为()1,0- ,则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:()332sin 60+2--︒-数学试卷 第5页(共17页)18. 解不等式()()41223x x --->,并把它的解集表示在数轴上.19. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF . (1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;数学试卷 第6页(共17页)(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围. 23. 如图,AB 为O 的直径,直线BM AB ⊥于点B .点C 在O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D .CF 为O 的切线交BM 于点F .(1)求证:CF DF =;(2)连接OF . 若10AB =,6BC =,求线段OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:数学试卷第7页(共17页)数学试卷 第8页(共17页)描点、画函数图象:如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.26.在平面直角坐标系中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.(1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点是轴上的动点,过点作垂直于轴的直线,直线与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点的横坐标P x 的取值范围.27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形;xOy xOy P x P x l l P数学试卷 第9页(共17页)②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则. 基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t . ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;PH PF=数学试卷 第10页(共17页)②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.东城区2017-2018学年度第二学期初三年级统一测试(二)数学试题卷参考答案及评分标准 2018.5一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题 2分)9. x >0 10. ()()()()21212121--,,,-,,,,-(写出一个即可) 11. 2 12. ()1,1m -- 13. ()2 1.8250x x ++= 14. 120 ;3 000 15. 16. 三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)=3-217.解:原式 --------------------------------------------------------------------4分-------------------------------------------------------------------------------------------------- 5分18. 解:移项,得()1213x -<, 去分母,得 23x -<, 移项,得x <5.∴不等式组的解集为x <5. --------------------------------------------------------------------3分--------------------------------5分数学试卷 第11页(共17页)19. 证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠,∴ADE ABC △∽△.--------------------------------------------------------------------2分 (2) ABC Rt △中,8AC =,6BC =, ∴10AB =.∵DE 平分AB , ∴5AE =. ∵ADE ABC △∽△,∴DE AEBC AC = . ∴568DE = . ∴154DE =. ---------------------------------------------------------------------5分 20. 解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>, 解得k k ≠<9且0. ----------------------------------------------------------------------2分(2) ∵k 是小于9的最大整数,∴=8k .此时的方程为28610x x -+=. 解得11=2x ,21=4x . ---------------------------------------------------------------------5分21 . (1) 证明:∵四边形ABCD 是菱形,∴=BC DC ,BAD BCD α==∠∠. ∵ECF α=∠,数学试卷 第12页(共17页)∴ BCD ECF ∠=∠. ∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到, ∴=CE CF .在BEC △和DFC △中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴BEC △≌()SAS DFC △.∴=.BE DF ----------------------------------------------------------------------2分 (2) 解:∵四边形ABCD 是菱形, ∴ACB ACD ∠=∠,AC BD ⊥. ∴+90ACB EBC ∠=︒∠. ∵=EB EC ,∴=EBC BCE ∠∠. 由(1)可知,∵=EBC DCF ∠∠,∴+90DCF ACD EBC ACB ∠=∠+∠=︒∠. ∴90ACF =︒∠.∴AC CF ⊥. ---------------------------------------------------------------------5分 22. 解:(1)12k =,22P ⎭,,或22P ⎛- ⎝⎭,;---------------------------3分 (2) 1k ≥. ---------------------------------------------------------------------5分23. (1)证明:∵AB 是O 的直径,∴90ACB ∠=︒.∴90DCB ∠=︒.∴90CDB FBC ∠+∠=︒. ∵ AB 是O 的直径,MB AB ⊥, ∴MB 是O 的切线. ∵CF 是O 的切线,数学试卷 第13页(共17页)∴FC FB =. ∴=FCB FBC ∠∠.∵90FCB DCF ∠+∠=︒ , ∴=CDB DCF ∠∠.∴=CF DF . ---------------------------------------------------------------------3分(2)由(1)可知,ABC △是直角三角形,在Rt ABC △中,=10AB ,=6BC ,根据勾股定理求得=8AC . 在Rt ABC △和Rt ADB △中, A A ACB ABD ∠=∠⎧⎨∠=∠⎩,,∴Rt ABC △∽Rt ADB △. ∴AB AC AD AB =. ∴10810AD = . ∴252AD =. 由(1)知,∵=CF DF ,=CF BF , ∴=DF BF . ∵=AO BO ,∴ OF 是ADB △的中位线.∴125.24OF AD ==---------------------------------------------------------------------5分24. 解:(1)四; ---------------------------------------------------------------------1分数学试卷 第14页(共17页)(2)如图: ---------------------------------------------------------------------3分(3)5432000ab.------------------------------------------------------5分25. 解:42y x x ⎛⎫=+⎪⎝⎭;----------------------------------------------1分 810,; --------------------------------------------------------3分 如图; ----------------------------------------------------------4分 28,. -----------------------------------------------------------5分26. 解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠,得 0--35164-3a b a b =⎧⎨=+⎩,,解得12a b ==-,. ∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B ',数学试卷 第15页(共17页)则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '. 设直线AB '的表达式为y mx n =+, 把点(10)-,和(45)-,分别代入y mx n =+, 得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--. --------------------------------------4分(3)如图,直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N ', 则 'PN PN =. ∵PM PN <, ∴'PM PN <.∴点M 在线段'NN 上(不含端点).∴点M 在抛物线223y x x =--夹在点C 与点B 之间的部分上.联立223y x x =--与1y x =--,可求得点C 的横坐标为2. 又点B 的横坐标为4, ∴点P 的横坐标Px 的取值范围为24P x <<. --------------------------------------------------7分数学试卷 第16页(共17页)27. 解:(1)120°. ---------------------------------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒, ∴60.ACP BCP ∠+∠=︒ ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒∴()180120.BPC CBP BCP ∠=︒-∠+∠=︒ ∴18060.CPD BPC ∠=︒-∠=︒ ∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒, ∴.ACD BCP ∠=∠ 在ACD △和BCP △中,AC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,, ∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------------------------------4分 (3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N . ∵=60ADB ADC PDC ∠∠-∠=︒, ∴=60.ADB CDB ∠∠=︒ ∴=60.ADB CDB ∠∠=︒数学试卷 第17页(共17页)∴=2BM BN BD == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CDBN =+)2AD CD =+22==----------------------------------------------------------7分28. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF = ∴.AF d CF≤≤ ∵=4AF CF,∴d 4≤---------------------------------------------------------------------------------- 5分② 1.t ≤ ------------------------------------------------------------------------8分。
7.东城2017二模答案.docx
2016-2017学年北京市东城区初三年级综合能力测试(二〉数学试卷参考答案及评分标准2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题8分,第29题7分)17・计算:-2 +(7T - 2017)° - 4 cos 60° + V27解:原式=2 + 1-2 + 3的 ....... 4分= 3^3 4-1・................ 5分18.解:解①得戏1,解②得x> -3. .............. 2分・•・不等式组的解集是:-3<x^l ................................. 4分将不等式组的解集表示在数轴上,_I_5_|_!_I_A_!_I_I_-5 -4 -3 -2 -1 0 1 2 3 4 5............... 5分19.解:错误的步骤是①和②........ 2分正确的化简过程:原式=4x2 -1-x(%+5)二4无2 — 1 —兀2 — 5x20•解:由题意得4P是ABAC的平分线,过点D作DE丄AB于E .................... 2分又V ZC=90°,・・.DE=CD・ .............. 3分・•・ /\ABD的面积15x4=30............... 5分21・解:(1)由题意可求反比例函数的解析式为由点A(V3,l), AB丄A•轴可知,Z・・・04丄08,・・・ZBOC=60°・・•・可求出BC=3・・••点〃的坐标为(能,一3) ............ 2分(2)点E的坐标为(-能1),在反比例函数y二逅的图象上.X理由:当x = _品时,代入y主,得到)=一1 ..................................... 5分22. 解:设乙工程队每天能完成绿化的面积是兀in?,甲工程队每天能完成绿化的面积是加!!?.根据题意得:--— = 4.x 2x解得:兀=50・经检验兀=50是原方程的解.则甲工程队每天能完成绿化的面积是50x2=100 (m2)・答:甲、乙两工程队每天能完成绿化的面积分别是100m2, 50m2.......................... 5分23. 解:(1)四边形EBGD是菱形.理由:TEG垂直平分BD,:・EB=ED, GB=GD.:.ZEBD=ZEDB・I ZEBD=ZDBC f・•・ ZEDF=ZGBF.又•:DF=BF, ZEFD=ZGFB f:・/\EFD 竺4GFB,:・ED=BG,:・BE=ED=DG=GB,・・・四边形EBGD是菱形. ...... 3分(2)过点D作DH丄BC于点H・・・・DG〃AB,A ZDGC=ZABC=30°・在Rt/\DGH中,可求D G =迟,GH = \.在RtADGH中,可求CH=乜.:.GC = 1 + V3 ・........... 5分24. 解:(1) 10010%二100・ .......... 1 分(2) 100-10-38-24-8=20;补充图如下:用户用水量频数分布直方團.......... 3分(3) 6X峠严二4. 08 (万)・答:该地区6万用户中约有4. 08万用户的用水全部享受基本价格...... 5分25. (1)证明:连接ODTCD是OO切线,・•・ ZODC=90°.即ZODB+ZBDC=90°.VAB为(DO的直径,・•・ ZADB=90°.即ZODB+ZADO=90°.:.ZBDC=ZADO.•・・OA=OD,・・・ZADO=ZA・・・・ZBDC=ZA・(2) TCE丄AE,:.ZE=ZADB=90°.:.DB//EC.:.ZDCE=ZBDC.VZBDC=ZA,・•・ ZA=ZDCE.I ZE=ZE,・•・ /\AEC^/\CED.:.Eg=DE・AE・:.16=2 (2+AD)・:.AD=6.26.解:(1)m = 0,画出函数的图象如下:.......... 2分.......... 4分.......... 5分(2)可求抛物线的顶点坐标为(加,■加+1)・不妨令加二0或1,得到两点坐标为(0,1)和(1,0)设直线解析式为y = kx + b,可求阡-1,[h = \.直线的解析式为j=-x+l. .......... 5分(3)m的取值范围是-3W加W1・ .......... 7分28. (1) APBC是等边三角形.证明:在正方形ABCD中,BC=CD, 又CD=CP,.・・ BC=CP,TP在MN上,・•・ PB=PC.・・・PB=BC=PC.:.APBC是等边三角形........... 2分(2)①补全图形如图所示.由B4=BP, ZCBP=60° ,可求得ZAPB=15°,又ZBPC=60° ,可得ZAPC=135°・根据对称性,ZAPC=ZAPC=135°・②证法一:连AC, CC・由①可得ZCPC=90°・由对称性可知PC=PC,从而可求得AC=AC=CC=42AB.从而△ACC为等边三角形;由AC=CC, DA=DC, CD=CD, 可证△ ACD 竺/\CCD,可得ZACD=ZCCD=30°・根据对称性 ZACC=ZACC 9 ZPCC=ZPCC f 从而 ZACP =ZACP 9 由△ABC 为等腰直角三角形,可得ZACB=45° , 由APBC 为等边三角形,可得ZBCP=60° , 从而ZACP=ZACP=15° ・ 所以ZPCD=ZACD- ZACP=i5° ・ .......... 8 分 证法二: 连AC, CC ・ 由 BA=BP 9 ZCBP=60° ,可求得ZAPB=75° , 又ZBAC=45° ,可得ZCAP=30° ・ 根据对称性,ZCAP=ZCAP=30°,从而ZCAC=60° ; 由对称性可知 AC=AC 9从而△ACC 为等边三角形; 以下同证法一. 29•解:(1)①PQ=逅点P, Q 的“相关圆”的面积5兀; ②依题可得12+«2=(A /5)2,解得〃 =±2・ 即点P 的坐标为(0, 1),且PQ=l. 因为点。
2018年北京东城初三二模数学试题与答案word版
东城区2017-2018学年度第二学期初三年级统一测试(二) 数 学 试 卷 2018.5学校______________班级______________姓名_____________考号____________考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为 A. 205万 B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组 158 159 160 160 160 161 169 乙组158159160161161163165以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 5. 在平面直角坐标系xOy 中,若点()3,4P 在O 内,则O 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >56. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 67. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是A. 图2B. 图1与图2C. 图1与图3D. 图2与图38. 有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O e 的直径,且AB ⊥CD . 入口K位于»AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是图2A. A →O →DB. C→A→O→ BC. D →O →CD. O→D→B→C 二、填空题(本题共16分,每小题2分) 9.若分式22xx +的值为正,则实数x 的取值范围是__________________. 10.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.11. 如图,在△ABC 中,AB =AC ,BC =8. O e 是△ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC ∠的值为_____________.第11题图 第15题图 12. 抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14. 每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 .15. 如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、 y 轴上,30APO ∠=︒ .先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到 线段PC ,连接BC . 若点A 的坐标为()1,0- ,则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:()332sin 60+2+12--︒-. 18. 解不等式()()41223x x --->,并把它的解集表示在数轴上.19. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF .(1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.23. 如图,AB 为O 的直径,直线BM AB ⊥于点B .点C 在O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D .CF 为O 的切线交BM 于点F .(1)求证:CF DF =;(2)连接OF . 若10AB =,6BC =,求线段OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率; (2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a ,全国森林覆盖率21.63%记为b ,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a 和b 的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整: 建立函数模型:设矩形小花园的一边长为x 米,篱笆长为y 米.则y 关于x 的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x 与y 的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =. 基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ; (2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t .①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.东城区2017-2018学年度第二学期初三年级统一测试(二)数学试题卷参考答案及评分标准 2018.5一、选择题(本题共16分,每小题2分) 题号 1 2 3 4 5 6 7 8 答案CACDDACB二、填空题(本题共16分,每小题 2分)9. x >0 10. ()()()()21212121--,,,-,,,,-(写出一个即可) 11. 2 12. ()1,1m -- 13. ()2 1.8250x x ++= 14. 120 ;3 000 15. 22 16. 三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)3=3-2-8+232⨯17.解:原式--------------------------------------------------------------------4分=3-5-------------------------------------------------------------------------------------------------- 5分 18. 解:移项,得()1213x -<, 去分母,得 23x -<, 移项,得x <5.∴不等式组的解集为x <5.--------------------------------------------------------------------3分--------------------------------5分19. 证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠,∴ADE ABC △∽△.--------------------------------------------------------------------2分(2) ABC Rt △中,8AC =,6BC =, ∴10AB =.∵DE 平分AB , ∴5AE =. ∵ADE ABC △∽△,∴DE AEBC AC =. ∴568DE = .∴154DE = . ---------------------------------------------------------------------5分20. 解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>,解得k k ≠<9且0. ----------------------------------------------------------------------2分(2) ∵k 是小于9的最大整数,∴=8k .此时的方程为28610x x -+=.解得11=2x ,21=4x . ---------------------------------------------------------------------5分21 . (1) 证明:∵四边形ABCD 是菱形,∴=BC DC ,BAD BCD α==∠∠. ∵ECF α=∠,∴ BCD ECF ∠=∠. ∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到, ∴=CE CF .在BEC △和DFC △中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴BEC △≌()SAS DFC △.∴=.BE DF ----------------------------------------------------------------------2分 (2) 解:∵四边形ABCD 是菱形, ∴ACB ACD ∠=∠,AC BD ⊥. ∴+90ACB EBC ∠=︒∠. ∵=EB EC ,∴=EBC BCE ∠∠. 由(1)可知,∵=EBC DCF ∠∠,∴+90DCF ACD EBC ACB ∠=∠+∠=︒∠. ∴90ACF =︒∠.∴AC CF ⊥. ---------------------------------------------------------------------5分 22. 解:(1)12k =,222P ⎛⎫ ⎪ ⎪⎝⎭,,或222P ⎛⎫-- ⎪ ⎪⎝⎭,;---------------------------3分 (2) 1k ≥. ---------------------------------------------------------------------5分23. (1)证明:∵AB 是O 的直径,∴90ACB ∠=︒.∴90DCB ∠=︒.∴90CDB FBC ∠+∠=︒. ∵ AB 是O 的直径,MB AB ⊥,∴MB 是O 的切线. ∵CF 是O 的切线,∴FC FB =. ∴=FCB FBC ∠∠.∵90FCB DCF ∠+∠=︒ ,∴=CDB DCF ∠∠.∴=CF DF . ---------------------------------------------------------------------3分(2)由(1)可知,ABC △是直角三角形,在Rt ABC △中,=10AB ,=6BC ,根据勾股定理求得=8AC .在Rt ABC △和Rt ADB △中,A A ACB ABD ∠=∠⎧⎨∠=∠⎩,,∴Rt ABC △∽Rt ADB △. ∴AB AC AD AB=. ∴10810AD = . ∴252AD =. 由(1)知,∵=CF DF ,=CF BF ,∴=DF BF .∵=AO BO ,∴ OF 是ADB △的中位线. ∴125.24OF AD ==---------------------------------------------------------------------5分 24. 解:(1)四; ---------------------------------------------------------------------1分(2)如图: ---------------------------------------------------------------------3分(3)5432000a b.------------------------------------------------------5分 25. 解:42y x x ⎛⎫=+ ⎪⎝⎭;----------------------------------------------1分 810,; --------------------------------------------------------3分如图; ----------------------------------------------------------4分28,. -----------------------------------------------------------5分26. 解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠,得 0--35164-3a b a b =⎧⎨=+⎩,, 解得12a b ==-,. ∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B ',则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '.设直线AB '的表达式为y mx n =+,把点(10)-,和(45)-,分别代入y mx n =+,得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--. --------------------------------------4分(3)如图,直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N ',则 'PN PN =.∵PM PN <,∴'PM PN <.∴点M 在线段'NN 上(不含端点).∴点M 在抛物线223y x x =--夹在点C 与点B 之间的部分上.联立223y x x =--与1y x =--,可求得点C 的横坐标为2.又点B 的横坐标为4,∴点P 的横坐标P x 的取值范围为24P x <<. --------------------------------------------------7分27. 解:(1)120°.---------------------------------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒,∴60.ACP BCP ∠+∠=︒∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒∴()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴18060.CPD BPC ∠=︒-∠=︒∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,, ∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------------------------------4分 (3)如图2,作B M A D ⊥于点M ,BN DC ⊥延长线于点N . ∵=60ADB ADC PDC ∠∠-∠=︒,∴=60.ADB CDB ∠∠=︒∴=60.ADB CDB ∠∠=︒ ∴3= 3.2BM BN BD == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =+()32AD CD =+ 322=⨯ 3.=----------------------------------------------------------7分28. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF =∴.AF d CF ≤≤∵=4=29AF CF ,,∴29.d 4≤≤ ---------------------------------------------------------------------------------- 5分②33 1.t --2≤≤2 ------------------------------------------------------------------------8分。
2017年北京市东城区中考二模数学试卷
2017年北京市东城区中考二模数学试卷一、选择题(共10小题;共50分)1. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为万人,将用科学记数法表示为A. B. C. D.2. 下列运算正确的是A. B.C. D.3. 有张看上去无差别的卡片,上面分别写着,,,,.背面朝上放在不透明的桌子上,若随机抽取张,则取出的卡片上的数是无理数的概率是A. B. C. D.4. 下列关于二次函数的最值的描述正确的是A. 有最小值是B. 有最小值是C. 有最大值是D. 有最大值是5. 学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差如表所示:甲乙丙丁平均数方差如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是A. 甲B. 乙C. 丙D. 丁6. 如图,正五边形放入某平面直角坐标系后,若顶点,,,的坐标分别是,,,,则点的坐标是A. B. C. D.7. 将一副直角三角板如图放置,使含角的三角板的直角边和含角的三角板一条直角边在同一条直线上,则的度数为A. B. C. D.8. 关于的一元二次方程的根的情况是A. 没有实数根B. 只有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根9. 图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是A. ①B. ②C. ③D. ④10. 如图,点为菱形的边的中点,动点在对角线上运动,连接,.设,的周长为,那么能表示与的函数关系的大致图象是A. B.C. D.二、填空题(共6小题;共30分)11. 若分式在实数范围内有意义,则实数的取值范围是.12. 请你写出一个多项式,含有字母,并能够在有理数范围内用平方差公式进行因式分解.此多项式可以是.13. 已知一次函数和,若且,则这两个一次函数的图象的交点在第象限.14. 如图,的半径为,是的内接三角形,连接,.若与互补,则弦的长为.15. 如图,一扇形纸扇完全打开后,外侧两竹条和的夹角为,竹条的长为,贴纸部分的宽为,若纸扇两面贴纸,则一面贴纸的面积为.(结果保留)16. 小明在他家里的时钟上安装了一个电脑软件,他设定当钟声在点钟响起后,下一次则在小时后响起,例如钟声第一次在点钟响起,那么第次在小时后,也就是点响起;第次在小时后,即点响起,以此类推;现在第次钟声响起时为点钟,那么第次响起时为点,第次响起时为点.(如图钟表,时间为小时制)三、解答题(共13小题;共169分)17. 计算:.18. 解不等式组并把解集在数轴上表示出来.19. 小明化简的过程如下.请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程.解:原式20. 如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交边于点,若,,求的面积.21. 如图,在平面直角坐标系中,,轴于点,点在反比例函数的图象上.(1)求反比例函数的解析式和点的坐标;(2)若将绕点按逆时针方向旋转得到(点与点是对应点),补全图形,直接写出点的坐标,并判断点是否在该反比例函数的图象上,说明理由.22. 某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的倍,并且两队在独立完成面积为区域的绿化时,甲队比乙队少用天.求甲、乙两工程队每天能完成绿化的面积分别是多少? 23. 如图,是的角平分线,它的垂直平分线分别交,,于点,,,连接,.(1)请判断四边形的形状,并说明理由;(2)若,,,求的长.24. 某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图两幅不完整的统计图(每组数据包括右端点但不包括左端点).请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图;(3)如果自来水公司将基本用水量定为每户吨,那么该地区万用户中约有多少用户的用水全部享受基本价格?25. 如图,是的直径,点在的延长线上,与相切于点,,交的延长线于点.(1)求证:;(2)若,,求的长.26. 佳佳想探究一元三次方程的解的情况.根据以往的学习经验,他想到了方程与函数的关系:一次函数的图象与轴交点的横坐标即为一次方程的解;二次函数的图象与轴交点的横坐标即为一元二次方程的解.如:二次函数的图象与轴的交点为和,交点的横坐标和即为方程的解.根据以上方程与函数的关系,如果我们知道函数的图象与轴交点的横坐标,即可知道方程的解.佳佳为了解函数的图象,通过描点法画出函数的图象:(1)直接写出的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为.(3)借助函数的图象,直接写出不等式的解集.27. 在平面直角坐标系中,抛物线.(1)当抛物线的顶点在轴上时,求该抛物线的解析式;(2)不论取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点,,且该抛物线与线段始终有交点,请直接写出的取值范围.28. 取一张正方形的纸片进行折叠,具体操作过程如下:第一步:如图,先把正方形对折,折痕为;第二步:点在线段上,将沿翻折,点恰好落在上,记为点,连接.(1)判断的形状,并说明理由;(2)作点关于直线的对称点,连,,①在图中补全图形,并求出的度数;②猜想的度数,并加以证明.(温馨提示:当你遇到困难时,不妨连接,,研究图形中特殊的三角形)29. 在平面直角坐标系中,点与点不重合.以点为圆心作经过点的圆,则称该圆为点,的“相关圆”.(1)已知点的坐标为,①若点的坐标为,求点,的“相关圆”的面积;②若点的坐标为,且点,的“相关圆”的半径为,求的值.(2)已知为等边三角形,点和点的坐标分别为,,点在轴正半轴上.若点,的“相关圆”恰好是的内切圆且点在直线上,求点的坐标.(3)已知三个顶点的坐标为:,,,点的坐标为,点的坐标为.若点,的“相关圆”与的三边中至少一边存在公共点,直接写出的取值范围.答案第一部分1. B2. C3. B4. A5. C6. C7. A8. D9. A 10. B第二部分11.12. 答案不唯一如:13. 一14.15.16. ;第三部分原式17.18. 解得解得不等式组的解集是:将不等式组的解集表示在数轴上.19. 错误的步骤是和.正确的化简过程:原式20. 由题意得是的平分线,过点作于.,..21. (1)由题意可求反比例函数的解析式为.由点,轴可知,,,..点的坐标为.(2)点的坐标为,在反比例函数的图象上.理由:当时,代入,得到.22. 设乙工程队每天能完成绿化的面积是,甲工程队每天能完成绿化的面积是,根据题意得:解得:经检验是原方程的解,且符合题意.则甲工程队每天能完成绿化的面积是.答:甲、乙两工程队每天能完成绿化的面积分别是,.23. (1)四边形是菱形.理由:垂直平分,,..平分,.在和中,,,,四边形是菱形.(2)过点作于点.,,在中,可求,,,在中,可求,.24. (1).(2)(户);补充图如下:(3)(万).答:该地区万用户中约有万用户的用水全部享受基本价格.25. (1)连接.因为是切线,所以.即.因为为的直径,所以.即.所以.因为,所以.所以.(2)因为,所以.所以.所以.因为,所以.因为,所以.所以.所以.所以.26. (1),画出函数的图象如下:(2)三;,,(3)或27. (1)由题意可知,方程的判别式等于...抛物线的解析式为.(2)可求抛物线的顶点坐标为.不妨令或,得到两点坐标为和,设直线的解析式为,可求直线的解析式为.(3)的取值范围是.28. (1)是等边三角形.证明:在正方形中,,,,在上,..是等边三角形.(2)①补全图形如图所示.,,,,.根据对称性,.②连接,,如图.由①可得,由对称性可知,.为等边三角形;在和中,,.根据对称性,,,由为等腰直角三角形,可得,由为等边三角形,可得,,.29. (1)①,点,的“相关圆”的面积;②依题可得,解得.(2)内切圆的圆心的坐标为,半径为.即点的坐标为,且.因为点在直线上,所以令.可得.解得或.所以的坐标为或.(3)和.【解析】点,的“相关圆”与相切时,半径最小为;点,的“相关圆”过点时,半径最大为;所以的取值范围:和.。
2018北京市东城数学初三二模-考试试题
1 / 9数学试卷 第1页(共9页)东城区2017-2018学年度第二学期初三年级统一测试(二) 数 学 试 卷 2018.5学校______________班级______________姓名_____________考号____________考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的 1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为A. 205万B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组 158 159 160 160 160 161 169 乙组 158159160161161163165以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大2 / 9数学试卷 第2页(共9页)5. 在平面直角坐标系xOy 中,若点()3,4P 在O e 内,则O e 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >56. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 67. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是A. 图2B. 图1与图2C. 图1与图3D. 图2与图38. 有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O e 的直径,且AB ⊥CD . 入口K 位于»AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是A. A →O →DB. C→A→O → BC. D →O →CD. O→D→B→C二、填空题(本题共16分,每小题2分) 9.若分式22xx +的值为正,则实数x 的取值范围是__________________.3 / 9数学试卷 第3页(共9页)10.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.11. 如图,在△ABC 中,AB =AC ,BC =8. O e 是△ABC 的外接圆,其半径为5. 若点A在优弧BC 上,则tan ABC ∠的值为_____________.第11题图 第15题图 12. 抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5 时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14. 每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).4 / 9数学试卷第4页(共9页)分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 .15. 如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、 y 轴上,30APO ∠=︒ .先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到 线段PC ,连接BC . 若点A 的坐标为()1,0- ,则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .5 / 9数学试卷 第5页(共9页)三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:()332sin 60+2+12--︒-. 18. 解不等式()()41223x x --->,并把它的解集表示在数轴上.19. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE △∽ABC △;(2)当8AC =,6BC =时,求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF . (1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n .(1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.6 / 9数学试卷 第6页(共9页)23. 如图,AB 为O e 的直径,直线BM AB ⊥于点B .点C 在O e 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D .CF 为O e 的切线交BM 于点F .(1)求证:CF DF =;(2)连接OF . 若10AB =,6BC =,求线段OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:描点、画函数图象:7 / 9数学试卷第7页(共9页)8 / 9数学试卷 第8页(共9页)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.(1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.9 / 9数学试卷 第9页(共9页)28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t .①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.。
2018年北京市东城区中考数学二模试卷(解析版)
20. (5 分)已知关于 x 的一元二次方程 kx2﹣6x+1=0 有两个不相等的实数根. (1)求实数 k 的取值范围; (2)写出满足条件的 k 的最大整数值,并求此时方程的根. 21. (5 分)如图,在菱形 ABCD 中,∠BAD=α,点 E 在对角线 BD 上.将线段 CE 绕点 C 顺时针旋转 α,得到 CF,连接 DF.
第 2 页(共 29 页)
亿立方米. 已知丹江口水库来水量比河北四库来水量的 2 倍多 1.82 亿立方米, 求河北四库来水量.设河北四库来水量为 x 亿立方米,依题意,可列一元一 次方程为 .
14. (2 分)每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙 舟的习俗. 某班同学为了更好地了解某社区居民对鲜肉粽 (A) 、 豆沙粽 (B) 、 小枣粽(C) 、蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查, 并将调查情况绘制成如下两幅统计图(尚不完整) .
8. (2 分)有一圆形苗圃如图 1 所示,中间有两条交叉过道 AB,CD,它们为苗 圃⊙O 的直径,且 AB⊥CD.入口 K 位于 中点,园丁在苗圃圆周或两条交
叉过道上匀速行进.设该园丁行进的时间为 x,与入口 K 的距离为 y,表示 y 与 x 的函数关系的图象大致如图 2 所示, 则该园丁行进的路线可能是 ( )
16. (2 分)阅读下列材料: 数学课上老师布置一道作图题: 已知:直线 l 和 l 外一点 P. 求作:过点 P 的直线 m,使得 m∥l. 小东的作法如下: 作法:如图 2,
第 3 页(共 29 页)
(1)在直线 l 上任取点 A,连接 PA; (2) 以点 A 为圓心, 适当长为半径作弧, 分别交线段 PA 于点 B, 直线 l 于点 C; (3)以点 P 为圆心,AB 长为半径作弧 DQ,交线段 PA 于点 D; (4)以点 D 为圆心,BC 长为半径作弧,交弧 DQ 于点 E,作直线 PE.所以直 线 PE 就是所求作的直线 m. 老师说: “小东的作法是正确的. ” 请回答:小东的作图依据是 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市东城区2017—2018学年第二学期统一练习(二)初三数学 学校班级姓名考号考生须知1.本试卷共8页,共三道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷上准确填写学校名称、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A .63.510⨯B .73.510⨯C .53510⨯D . 80.3510⨯2.如图,已知数轴上的点A ,O ,B ,C ,D 分别表示数﹣2,0,1,2,3,则表示数22-的点P 应落在线段A . A O 上B . O B 上C . B C 上D . C D 上3.一个不透明的盒子中装有6个除颜色外完全相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是A .13B .25C .12 D .234. 下列图案中 ,既是中心对称又是轴对称图形的是A B C D5.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A B C D6 如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于A.18°B.36°C.54°D.64°7.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.88.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是A.4 B.3 C.2D.19. 如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省A.1元B.2元C.3元D.4元10. 某班有20位同学参加乒乓球、羽毛球比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5人.”对于甲、乙两人的说法,有下列四个命题,其中真命题的是A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲错,则乙对 二、填空题(本题共18分,每小题3分) 11.分解因式:2242ax ax a -+=.12.关于x 的一元二次方程0122=-+x kx 有两个不相等的实数根,则k 的取值范围是.13. 如图,点P 在△ABC 的边AC 上,请你添加一个条件,使得△ABP ∽△ACB ,这个条件可以是.14.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是 .15.定义运算“*”,规定x*y=a (x+y )+xy ,其中a 为常数,且1*2=5,则2*3= .16.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是;当走完第2016步时,棋子所处位置的坐标是.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:0112sin 6012(3π)()4-︒---+.18.已知023a b =≠,求代数式22422a b a b a ab-++的值.19.如图,已知∠ABC=90°,分别以AB 和BC 为边向外作等边△ABD 和等边△BCE ,连接AE ,CD. 求证:AE=CD .20.列方程或方程组解应用题:为迎接“五一劳动节”,某超市开展促销活动,决定对A ,B 两种商品进行打折出售.打折前,买6件A 商品和3件B 商品需要108元,买3件A 商品和4件B 商品需要94元.问:打折后,若买5件A 商品和4件B 商品仅需86元,比打折前节省了多少元钱?21.如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的等腰三角形.(要求:画出三个..大小不同,符合题意的等腰三角形,只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)DCBADCBADCBA22.如图,矩形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 于点E .(1)求证:∠BAM=∠AEF ;(2)若AB=4,AD=6,4cos 5BAM ∠=,求DE 的长.23.如图,四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,.反比例函数(0)my x x=>的图象经过点D . (1)求反比例函数的解析式;(2)经过点C 的一次函数(0)y kx b k =+≠的图象与反比例函数的图象交于P 点,当k >0时,确定点P 横坐标的取值范围(不必写出过程). 24.阅读下列材料:2013年是北京市正式执行新《环境空气质量标准》的第一年.这一年,北京建立起35个覆盖全市的监测站点,正式对PM2.5、二氧化硫、二氧化氮等六项污染物开展监测.2013年全年,本市空气质量一级优的天数有41天;二级良天数135天.本市主要大气污染物PM2.5年均浓度为89.5微克/立方米,单就PM2.5的浓度而言,全年共有204天达到一级优或二级良水平.2014年全年, PM2.5年均浓度为85.9微克/立方米.,PM2.5优良天数总计204天,其中PM2.5一级优天数达到93天,比2013年的71天增加了22天.2015年全年,本市空气质量达标天数为186天,即空气质量优良的好天儿占了一半,比2014年增加了14天. 本市主要大气污染物PM2.5年均浓度为80.6微克/立方米,单就PM2.5的浓度而言,2015年PM2.5优良天数累计达到223天,其中一级优天数首次突破100达到105天,二级良天数累计为118天. 根据以上材料解答下列问题:(1)北京市2014年空气质量达到优良的天数为天;单就PM2.5的浓度而言,北京市2013年全年达到二级良的天数为天;(2)选择统计表或统计图,将2013—2015年北京市PM2.5的年均浓度和PM2.5的优良天数表示出来.25. 如图,在△ABC 中,BA=BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,BC 的延长线与⊙O 的切线AF 交于点F .(1)求证:∠ABC=2∠CAF ; (2)若AC=210,10sin 10CAF ∠=,求BE 的长.26. 阅读下列材料:在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在Rt △ABC 中,∠ACB=90°,AB =1,∠A=α,求sin2α(用含sin α,cos α的式子表示).聪明的小雯同学是这样考虑的:如图2,取AB 的中点O ,连接OC ,过点C 作CD ⊥AB 于点D ,则∠COB= 2α,然后利用锐角三角函数在Rt △ABC 中表示出AC ,BC ,在Rt △ACD 中表示出CD ,则可以求出sin 2α=CD OC=21sin AC ⋅α=21cos sin αα⋅=ααcos sin 2⋅.图1 图2阅读以上内容,回答下列问题:在Rt △ABC 中,∠C =90°,AB =1. (1)如图3,若BC=13,则 sin α=,sin2α=; 图3(2)请你参考阅读材料中的推导思路,求出tan2α的表达式(用含sin α,cos α的式子表示).27.二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7). (1)求二次函数1C 的解析式;(2)若二次函数2C 与1C 的图象关于x 轴对称,试判断二次函数2C 的顶点是否在直线AB上;(3)若将1C 的图象位于A ,B 两点间的部分(含A ,B 两点)记为G ,则当二次函数221y x x m =-+++与G 有且只有一个交点时,直接写出m 满足的条件.28. 【问题】在△ABC 中,AC=BC ,∠ACB=90°,点E 在直线BC 上(B,C 除外),分别经过点E 和点B 做AE 和AB 的垂线,两条垂线交于点F ,研究AE 和EF 的数量关系. 【探究发现】某数学兴趣小组在探究AE ,EF 的关系时,运用“从特殊到一般”的数学思想,他们发现当点E 是BC 的中点时,只需要取AC 边的中点G (如图1),通过推理证明就可以得到AE 和EF 的数量关系,请你按照这种思路直接写出AE 和EF 的数量关系;图1【数学思考】那么当点E 是直线BC 上(B ,C 除外)(其它条件不变),上面得到的结论是否仍然成立呢?请你从“点E 在线段BC 上”;“点E 在线段BC 的延长线”;“点E 在线段BC 的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论;图2【拓展应用】当点E 在线段CB 的延长线上时,若BE=nBC (01n <<),直接写出ABC S △:AEF S △的值.请备用图29. 定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个最小值函数图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是;②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;③以②中的点M 为圆心,以2为半径作圆. 在此圆上找一点P ,使22P A P B +的值最小,直接写出此最小值.初三数学参考答案及评分标准 2016.6一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案 A BD AAC CCBB 二、填空题(本题共18分,每小题3分)题号111213141516答案22(1)a x -1k >-且0k ≠ABD C∠=∠答案不唯一92%11(9,2);(2016,672)三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:0112sin 6012(3π)()4-︒---+. 解:原式=32314--+…………4分=33-. …………5分18. 解:22422a b a b a ab-++=224(2)(2)a b a a b a a b -++=2a ba -…………3分 023a b=≠ , ∴设2,3.a k b k ==…………4分∴ 原式=-2.…………5分19. 证明: △ABD 和△BCE 为等边三角形,∴∠ABD=∠CBE=60°,BA=BD ,BC=BE (2)分∴∠ABD+∠ABC =∠CBE+∠ABC ,即∠CBD=∠ABE.…………3分∴△CBD ≌△EBA.(SAS ) …………4分∴AE=CD. …………5分20.解:设打折前一件商品A 的价格为x 元,一件商品B 的价格为y 元.…………1分依据题意,得631083494x y x y +=⎧⎨+=⎩.…………3分 解得:1016x y =⎧⎨=⎩.…………4分所以5×10+4×16-86=28(元)答:比打折前节省了28元. …………5分 21.满足条件的所有图形如图所示:…………5分注意:画出一个给2分,二个给4分,三个给5分. 22.解:(1)∵矩形ABCD ,∴∠B=∠BAC=90°. ∵EF ⊥AM ,∴∠AFE=∠B=∠BAD=90°.∴∠BAM+∠EAF=∠AEF+∠EAF=90°. ∴∠BAM=∠AEF.…………2分(2)在Rt △ABM 中,∠B=90°,AB=4,cos ∠BAM=45, ∴AM=5.∵F 为AM 中点, ∴AF=52. ∵∠BAM=∠AEF ,∴cos ∠BAM= cos ∠AEF=45. ∴sin ∠AEF=35. 在Rt △AEF 中, ∠AFE=90°,AF=52,sin ∠AEF=35, ∴AE=256. ∴DE=AC-AE=6-256=116. …………5分 23.解:(1)∵四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,, ∴BC=2.∴D (1,2). ∵反比例函数my x=的图象经过点D , ∴21m =. ∴2m =.∴2y x=. …………3分(2)233p x <<. …………5分 24.解:(1)172;133.…………2分 (2)PM2.5的年均浓度(单位:微克/立方米)PM2.5的优良天数2013年 89.5 204 2014年 85.9 204 2015年80.6223…………5分25.(1)证明:连结BD .∵AB 是O 的直径, ∴90ADB ∠=︒.∴90DAB DBA ∠+∠=︒. ∵AB AC =,∴2ABD ABC ∠=∠,12AD AC =. ∵AF 为⊙O 的切线, ∴∠FAB=90°.∴90FAC CAB ∠+∠=︒. ∴FAC ABD ∠=∠.∴2.ABC CAF ∠=∠…………2分⑵解:连接AE.∴∠AEB=∠AEC=90°. ∵10sin 10CAF ABD CAF CBD CAE ∠=∠=∠=∠=∠,, ∴10sin sin 10ABD CAF ∠=∠=. ∵90210ABD AC ∠=︒=,, ∴10AD =,10sin AD AB ABD==∠=BC. ∵90210AEC AC ∠=︒=,,∴sin 2CE AC CAE =⋅∠=.∴1028BE BC CE =-=-=.…………5分26.解:(1)sin α=13,sin2α=429. …………2分 (2)∵AC=cos α,BC=sin α,∴CD=AC BC AB⨯=sin cos αα⋅. ∵∠DCB=∠A ,∴在Rt △BCD 中,BD=sin 2α.∴OD=12- sin 2α. ∴tan2α=CD OD =22sin cos 2sin cos 112sin sin 2αααααα⋅⋅=--. …………5分 27.解:(1)∵21:C y x bx c =++的图象过点A (-1,2),B (4,7),∴217164.b c b c =-+⎧⎨=++⎩, ∴21.b c =-⎧⎨=-⎩, ∴221y x x =--. …………2分(2)∵二次函数2C 与1C 的图象关于x 轴对称,∴22:21C y x x =-++.∴2C 的顶点为(1,2).∵A (-1,2),B (4,7),∴过A 、B 两点的直线的解析式:3y x =+.令x=1,则y=4.∴2C 的顶点不在直线AB 上. …………4分(3)414m <≤或4m =-. …………7分28.解:【探究发现】:相等.…………1分【数学思考】证明:在AC 上截取CG=CE ,连接GE.∵∠ACB=90°,∴∠CGE=∠CEG=45°.∵AE ⊥EF ,AB ⊥BF ,∴∠AEF=∠ABF=∠ACB=90°,∴∠FEB+∠AEF=∠AEB=∠EAC+∠ACB.∴∠FEB=∠EAC.∵CA=CB ,∴AG=BE ,∠CBA=∠CAB=45°.∴∠AGE=∠EBF=135°.∴△AGE ≌△EBF.∴AE=EF.…………5分【拓展应用】ABC S △:AEF S △=1:(222n n ++) …………7分29.解:(1)图象略;是.…………2分(2)①2.…………4分②M (3,3).…………6分 ③5. …………8分。