静电纺丝技术制备PVP空心纳米纤维与表征
静电纺丝技术制备纳米纤维的基本原理与应用
静电纺丝技术制备纳米纤维的基本原理与应用静电纺丝技术是近年来较为成熟的纳米纤维制备技术之一,具有高效、简便、易操作等特点。
本文将介绍静电纺丝技术的基本原理,探讨其应用领域,并简单举例说明。
一、静电纺丝技术的基本原理静电纺丝技术是指将高分子溶液通过高压电场作用,形成纳米级的纤维。
其工作原理基于三个主要因素:高分子的表面张力、电荷密度和电场强度。
在电场的作用下,载有电荷的高分子溶液会形成电荷分布,随后在电场的作用下,溶液中的高分子链状分子朝向电极移动而形成了纳米级的纤维。
这些纳米纤维以径向跟随电场分布,并且由于高分子链间的极性相互作用力、表面张力等因素的固化作用下逐渐形成完整的纳米纤维膜。
二、静电纺丝技术的应用领域(一) 高分子工业静电纺丝技术在高分子工业上有着广泛的应用。
由于其纳米纤维的特殊性质,可以增强高分子材料的机械性能、光学性能、电学性能等特征。
高分子纳米纤维的应用范围涉及到纺织品、防辐射针织品、过滤器、滤清器、气凝胶、船用材料等。
(二) 食品科学静电纺丝技术在食品科学中也有着广泛的应用。
利用静电纺丝技术制备的纳米纤维对于食品中的油脂、营养成分、气味等具有吸附、封存、保护的效果。
同时,纳米纤维膜具有较高的透气性能和大表面积,可以被应用于保鲜、包装、防霉、防菌等方面。
(三) 医药领域静电纺丝技术在医药领域中的应用较为广泛。
制备高分子纳米纤维材料用于医疗设备的制造,例如口罩、医用手套、敷料等。
此外,静电纺丝在药物传输、生物识别、细胞培养、组织修复等方面也有着广泛的应用。
三、例子详解——静电纺丝技术制备抗菌口罩随着新型冠状病毒的传播,口罩成为了人们必备的生存物品。
传统的口罩材料往往有着较为严重的缺陷,无法对抗空气中的病原体产生作用,再加上长时间佩戴,出现细菌和真菌的滋生。
基于静电纺丝技术的口罩材料则可以有效地解决上述问题。
利用静电纺丝技术,制备的口罩材料具有高度的表面积,并且具有极佳的抗菌和透气性能。
静电纺丝技术制备纳米纤维材料的性能优化研究
静电纺丝技术制备纳米纤维材料的性能优化研究随着科技的不断发展,纳米材料已经成为当今材料科学领域研究的热点之一。
纳米材料具有很强的物理、化学和生物学特性,这种特殊的性质使其在各个领域得到了广泛的应用,如医学、化学、材料和环境科学等。
在这些领域中,纳米纤维作为一种自组装的纳米材料已经引起了越来越多的关注。
纳米纤维具有高比表面积和可调节的孔径大小,广泛应用于分离、吸附、催化和储能等方面。
静电纺丝作为一种有效制备纳米纤维的技术,已成为纳米纤维制备的重要方法之一。
它可以通过将高分子溶液通过极化电场拉伸并完成聚合过程的方式,制备出具有纳米级细径和高比表面积的纳米纤维。
但是,纯形的静电纺丝制备出的纳米纤维材料性能并不理想。
因此,如何有效地优化静电纺丝制备纳米纤维材料的性能是一个迫切需要解决的问题。
1.静电纺丝技术静电纺丝技术作为一种制备纳米纤维材料的方法,已被证明在制备复杂目的纳米结构方面具有许多优点。
静电纺丝过程中,通过极化电场将高分子溶液拉伸,并在聚合和固化后获得具有纳米级直径的纳米纤维。
静电纺丝中高分子链的摆动和过渡状态也会影响纳米纤维的形态和组织结构。
通过调节静电场强度、溶液浓度、聚合速率和溶液的挥发性等因素,可以控制纳米纤维的形态及其物理、化学性质。
此外,发展多功能静电纺丝、连续静电纺丝、量产静电纺丝等技术,可进一步提高静电纺丝制备纳米纤维材料的效率和成品质量。
2.静电纺丝制备纳米纤维材料的性能缺陷然而,静电纺丝制备纳米纤维材料仍存在一些缺陷。
首先,纳米纤维材料的密度通常偏低,导致纳米纤维材料在使用时易发生层析结构失稳和聚块等情况。
其次,纳米纤维材料显得脆弱和容易断裂,可能会导致其不稳定性和机械性能的退化。
此外,静电纺丝所制备的纳米纤维材料表面通常具有较弱的亲水和亲油性,降低了其在材料和生物学等领域的应用。
3.改进静电纺丝技术以提高其制备纳米纤维材料的性能为了解决这些问题,需要改进静电纺丝技术以提高其制备纳米纤维材料的性能。
静电纺丝纳米纤维制备技术及其应用研究
静电纺丝纳米纤维制备技术及其应用研究随着科学技术的快速发展和产业的不断创新,纳米材料的制备和应用逐渐成为了研究的焦点。
静电纺丝纳米纤维制备技术就是一种常见的制备纳米材料的技术。
本文将对静电纺丝纳米纤维制备技术及其应用研究进行探讨。
一、静电纺丝纳米纤维制备技术静电纺丝技术是利用电场将高分子液体喷出微米甚至纳米级别纤维的一种制备技术。
静电纺丝技术制备纳米纤维在多个领域得到了广泛应用,例如纺织、生物医学、环保等领域。
静电纺丝技术的原理是将高分子液体通过一个细小的孔洞喷射出来,这个过程中,高分子液体受到外界电场的作用,会形成纤维状的微米级别的细丝。
这些细丝经过后续的处理,就能够得到纳米级别的细丝。
静电纺丝技术制备的纳米纤维具有较大比表面积、高比强度、优异的力学性能、良好的电学性质及生物相容性等优点。
静电纺丝技术制备的纳米纤维可以根据不同的材料和应用领域调整其尺寸和形貌,液态中除了高分子溶液,还可以纯化的金属溶液、无机盐溶液、碳纳米管等物质。
二、静电纺丝纳米纤维的应用研究1、生物医学领域由于纳米纤维具有高比表面积等特性,因此在生物组织工程、体内药物释放、生物传感等领域得到广泛应用。
静电纺丝纳米纤维制备的支架具有具有高比表面积、良好的生物相容性、高度的空隙率和良好的可控性等特点。
这些特点使纳米纤维支架成为了生物组织工程领域的研究热点。
纳米纤维支架通过结构的调节、复合材料制备、表面修饰等方法,可以在生物组织中实现不同的生物学功能,如增强细胞的定向生长、促进纤维组织的生长等。
静电纺丝纳米纤维制备的载药纳米材料具有良好的生物相容性和药物的缓释性能。
这种材料可作为药物释放的载体,以实现更加精准的药物治疗。
纳米纤维在其表面修饰上引入不同的生物分子,如细胞识别和粘附分子,不仅能提高纳米纤维植入后的细胞组织相容性,还可以促进细胞的黏附和增殖等。
2、纺织领域静电纺丝技术制备的纳米纤维具有高比表面积、孔隙结构和微结构控制性能等特点,因此在纺织领域应用也得到了快速发展。
静电纺丝法PVP基介孔SiO2纳米纤维的制备及其表面修饰
理学 硕士学位 论文静电纺丝法PVP 基介孔SiO 2纳米纤维的制备及其表面修饰Fabrication and surface modification of mesoporoussilica fibers by electrospinning via PVP李成斌高分子化学与物理延 边 大 学学校代码:10184 分 类 号:O611.4理学硕士学位论文静电纺丝法P V P 基介孔Si O2纳米纤维的制备及其表面修饰李成斌2 0 1 3分类号O611.4密级U D C学号 2010010559延边大学硕士学位论文静电纺丝法PVP基介孔SiO2纳米纤维的制备及其表面修饰研究生姓名李成斌培养单位延边大学指导教师姓名、职称孟万教授学科专业高分子化学与物理研究方向纳米功能材料论文提交日期 2013年5月24日本论文已达到理学博(硕)士学位论文要求答辩委员会主席(印)答辩委员会委员(印)答辩委员会委员(印)答辩委员会委员(印)答辩委员会委员(印)延边大学2013 年5月24日学位论文独创性声明本人郑重声明:所呈交的学位论文系本人在导师指导下独立完成的研究成果。
尽我所知,除了文中特别加以标记和致谢的部分外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含本人为获得任何教育机构的学位或学历而使用过的材料。
与我一同工作的同事对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。
本人如违反上述声明,愿意承担由此引发的一切责任和后果。
研究生签名:日期:年月日学位论文使用授权声明本人在导师指导下所完成的学位论文,学校有权保存其电子和纸制文档,可以借阅或上网公布本学位论文的全部或部分内容,可以向有关部门或机构送交并授权其保存、借阅或上网公布本学位论文的全部或部分内容。
对于保密论文,按保密的有关规定和程序处理。
本学位论文属于:1. 保密 ,在2 年解密后适用于本声明;2.不保密 。
研究生签名:导师签名:日期:年月摘要自静电纺丝技术诞生以来,其作为一种可以有效获得直径从几十到几百纳米范围内超细纤维简单且有效的方法,近十几年来越来越多得到科研工作者的重视并得到了广泛的研究。
静电纺丝技术制备TiO_2空心纳米纤维与表征
硅酸盐学报· 1302 ·2007年静电纺丝技术制备TiO2空心纳米纤维与表征徐淑芝,张双虎,董相廷,王进贤(长春理工大学化学与环境工程学院,长春 130022)摘要:采用静电纺丝技术,以钛酸丁酯[Ti(OC4H9)4]、聚乙烯吡咯烷酮和无水乙醇为原料,制备了TiO2空心纳米纤维。
用热重–差热分析、X射线衍射、扫描电镜等分析手段对制得的空心纳米纤维进行了表征。
结果表明:所得产物为锐钛矿和金红石混晶型TiO2空心纳米纤维,平均外径为900nm,管壁平均厚度为100nm,长度>200µm。
对TiO2空心纳米纤维的形成机理进行了讨论。
关键词:静电纺丝;钛酸丁酯;聚乙烯吡咯烷酮;二氧化钛;空心纳米纤维中图分类号:O484 文献标识码:A 文章编号:0454–5648(2007)10–1302–04SYNTHESIS AND CHARACTERIZATION OF TiO2 HOLLOW NANOFIBERS BY ELECTROSPINNINGXU Shuzhi,ZHANG Shuanghu,DONG Xiangting,WANG Jinxian(School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China) Abstract: TiO2 hollow nanofibers have been successfully synthesized by an electrospinning technique, using Ti(OC4H9)4, polyvinyl pyrrolidone and absolute ethanol as the starting materials. The fiber structures were characterized by thermogravimetry–differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that the products are a mixed crystal phase including anatase and rutile TiO2 hollow nanofibers with an average outer diameter of 900nm, wall thickness of 100nm, and lengths greater than 200µm. The formation mechanism of TiO2 hollow nanofibers is also discussed.Key words: electrospinning; tetrabutyl titanate; polyvinyl pyrrolidone; titania; hollow nanofibers自从碳纳米管[1]发现以来,管状结构纳米材料因其独特的物理化学性能,在微电子、应用催化和光电转换等领域展现出良好的应用前景,受到研究者们的广泛关注,成为纳米材料研究的热点之一。
静电纺丝技术制备纳米纤维材料的研究
静电纺丝技术制备纳米纤维材料的研究随着科学技术的发展,纳米材料已经成为了一个重要的研究领域。
而其中,纳米纤维材料的制备技术也成为了纳米科技研究中的一个重要领域。
静电纺丝技术作为一种先进的纳米纤维材料制备技术,其制备的纳米纤维材料广泛应用在各个领域,如生物医学、环境保护和能源材料等领域。
一、静电纺丝技术的原理与过程静电纺丝技术是利用静电力和表面张力将高分子溶液或熔融物在高电场下的电荷作用下进行拉丝成纤维。
在高电场下,液体表面张力对于电场的效应会产生剥离力,而相互作用较弱的分子会在电场力的作用下被拉伸成纤维形状,产生纳米纤维材料。
静电纺丝技术的整个过程包括物料预处理、电极设计、高电压电场设置、喷丝电极喷液和纤维成形过程。
通常情况下,静电纺丝技术需要一个能够提供高电压的电源和一个线圈,以及能够喷液的电极。
液体从电极中喷出,并在电场的作用下生成纳米纤维材料。
静电纺丝技术的优点在于:可以制备高比表面积、高孔隙率和高表面活性的纳米纤维膜,可以用于材料性能的调整和优化。
二、静电纺丝技术制备纳米纤维材料在生物医学中的应用1. 纳米纤维支架静电纺丝技术制备的纳米纤维支架被广泛应用于人工血管、人造骨的制备等领域。
纳米纤维支架具有良好的生物相容性和力学性能,能够促进细胞分裂和细胞增殖,从而促进组织生长和恢复。
2. 组织构建材料静电纺丝技术能够制备出精细的纳米纤维纺织品,这些纳米纤维纺织品可以被用于构建人工组织、生物芯片等生物医学领域的应用。
三、静电纺丝技术制备纳米纤维材料在环境保护中的应用1. 空气净化材料利用静电纺丝技术制备的纳米纤维材料可以被应用于空气污染治理中。
通过建立一些纤维过滤织物,可以有效地实现对空气中挥发性有机物(VOCs)和颗粒物的过滤和除去,达到净化空气和改善空气质量的目的。
2. 水净化材料静电纺丝技术可以制备出超细的纳米纤维膜,这些膜可以被广泛应用于水净化中。
纳米纤维膜的微孔结构可以有效地过滤水中的大分子杂质和细菌等微生物,从而得到更清洁、更安全的水源。
静电纺丝法制备金纳米粒子_PVP复合纳米纤维
第27卷第2期高分子材料科学与工程Vol.27,No.2 2011年2月POLYMER MATERIALS SCIENCE AND ENGINEERINGF eb.2011静电纺丝法制备金纳米粒子/PVP 复合纳米纤维白 杰(内蒙古工业大学化工学院,内蒙古呼和浩特010051)摘要:采用水合肼还原一定浓度氯金酸溶液的方法,在聚乙烯吡咯烷酮(PVP )作保护剂的乙醇/水溶液中,成功制备出粒度较小,且高度分散的金溶胶,紫外吸收光谱证实了溶液中金纳米粒子的存在。
采用静电纺丝技术制备了A uNs/P VP 复合纳米纤维。
采用扫描电镜(SEM )和X 射线衍射(XRD)等分析手段对纤维的表面形貌等进行了表征。
由扫描电镜照片可以看出所制得的纤维的尺寸较为均匀,随着纺前溶液内金纳米粒子含量的增加,获得的复合纤维的直径随之减小;X RD 测试显示出样品内含有立方面心结构的金纳米粒子。
关键词:静电纺丝;纳米纤维;聚乙烯吡咯烷酮;金纳米粒子中图分类号:T B383 文献标识码:A 文章编号:1000 7555(2011)02 0156 03收稿日期:2009 12 29基金项目:内蒙古工业大学科学研究项目(ZD200905),内蒙古教育厅项目(NJ09070)通讯联系人:白 杰,主要从事纳米功能材料的研究,E mail:baijie@金纳米粒子的性质是非常稳定的,通过尺寸控制,单个粒子能表现出特殊的光、电和磁学效应,从而在催化、生物领域中有着广泛的应用。
把金纳米粒子添加到聚合物体系内,制备金纳米粒子/聚合物纳米复合物一直是人们研究的热点[1~5]。
聚乙烯吡咯烷酮(PVP),是一种非离子型水溶性高分子化合物,由N 乙烯基吡咯烷酮在一定条件下聚合而成。
PVP 的吡咯烷酮环上含有羰基,PVP 的羰基能与贵金属产生缔合作用,通过该缔合作用可以保护生成的贵金属纳米粒子,从而起到防止纳米粒子团聚的效果[6,7]。
本文使用聚乙烯吡咯烷酮为纺丝原料和金纳米粒子的稳定剂,通过水合肼还原氯金酸而制得相应的金纳米粒子 聚乙烯吡咯烷酮纳米复合溶液,再通过静电纺丝法直接制备金纳米粒子 聚乙烯吡咯烷酮复合纳米纤维。
静电纺丝技术制备纳米纤维的研究进展
静电纺丝技术制备纳米纤维的研究进展近年来,随着纳米科技的快速发展,纳米材料的研究在各个领域得到了广泛应用。
其中制备纳米纤维的技术,成为了研究热点之一。
静电纺丝技术便是一种制备纳米纤维的重要手段,由于其简单易行、成本低廉、操作方便等优点,已经成为应用最为广泛的方法。
本文将从静电纺丝技术的基本原理、研究进展、应用展望三个方面进行论述。
第一部分:静电纺丝技术的基本原理静电纺丝技术是一种通过电场作用将溶液中的大分子材料拉伸成纳米级别的纤维的方法。
该技术主要依靠静电相互作用力和表面张力之间的竞争关系,来控制和定向溶液中的高分子纤维进行拉伸。
静电纺丝技术的基本原理可归纳为以下三个步骤:1. 溶液制备:制备静电纺丝纤维的首要步骤是制备高分子材料的溶液。
该溶液需要具有一定的粘度和表面张力,一般可以使用有机溶剂来溶解高分子材料。
2. 高电场加薄膜涂布:在静电纺丝设备上沉积一个高电场,并用喷雾器将高分子溶液轻松喷射在一个导电性或吸附性基底上。
溶液被均匀覆盖在导电性或吸附性基底上的一个细长的液体线。
3. 拉伸和固化:在高电场的作用下,溶液会变成一条液体纤维,并开始在导电性或吸附性基底上放置。
同时,高分子纤维的拉伸也在进行中。
将纤维固化并从基底上分离出来即可。
第二部分:静电纺丝技术的研究进展在纳米科技的发展进程中,静电纺丝技术是一种应用领域十分广泛的制备纳米材料的方法。
自2006年被应用于生物材料制备以来,该技术受到了越来越多的关注和研究。
近年来,静电纺丝技术发展的主要方向是,探索新型高分子材料,提高制备效率,改善纤维纳米结构控制技术。
下面,我们分别从这三个方面进行探讨。
1. 探索新型高分子材料静电纺丝技术的应用范围很广,主要用于制备聚合物、纺织品、纳米印刷等领域的高分子材料。
近几年,研究人员广泛探索各种新型的高聚物材料,如壳聚糖、聚乳酸、DNA、蛋白质等。
这些新型材料的引入,不仅增加了高分子材料领域的研究深度,同时也拓宽了静电纺丝技术在工业上的应用范围。
静电纺丝法制备pvp纳米纤维研究进展
静电纺丝法制备pvp纳米纤维研究进展学院:材料科学与工程学院专业班级:材料化学151学生姓名:学号:指导教师:1成绩:2018年6 月29 日静电纺丝法制备pvp纳米纤维研究进展王逸凡(材料科学与工程学院材料化学151班)摘要:采用双针尖平行放置的一对细小铜针作为接收装置,聚乙烯基吡咯烷酮(PVP)无水乙醇质量分数为10%,电压25kV,在不同的旋转数下纺出了PVP纳米纤维绳在电纺丝喷丝针头和接收铜针间的静电库仑引力,以及纺丝间库仑斥力的双重作用下,电纺出PVP纳米纤维,纺丝电源中断后,一端的铜针固定,另一端作高速旋转,在接收器铜针的高速旋转下最终制得PVP纳米纤维用扫描电子显微镜(SEM)对其进行表征实验结果表明,接收器旋转速度和接收距离对多纤维结构的形貌有显著影响讨论了纳米纤维的形成机理。
关键词:聚乙烯吡咯烷酮;静电纺丝;纳米纤维1.引言静电纺丝技术是一种简便低耗的微米和亚微米纤维制备技术高压电场克服了带电聚合物溶液或熔体的表面张力,形成喷射细流,在向负极移动的过程中溶剂蒸发,最终以无纺布的形式收集在接收装置上[1-3]一般来说,从喷嘴形成的液体纤维束在向负极移动的过程中,经常会出现某些特殊的几何形状,从理论上讲,这些形状能够随着纤维的固化而被保存下来Renekerl[4-5]等相继报道了花环纤维和带状纤维的制备过程,并以PEO 为原料获得了螺旋结构的纤维在此基础上, Teppera等[6]从PEO/PA SA双组分溶液中得到了较为规则的螺旋纤维德国的PaulD.Dalton等人[7]以一对平行的金属圆环为接收器当两圆环之间布满了定向纤维的长丝之后,转动其中的一个圆环,制备出定向纳米纤维的编织绳纳米纤维绳具有很高的柔韧性和孔隙度,在微电子器件、高级光学材料和药物传输等领域有着广泛的应用杨帆等人以双针尖为接收器,在两根接地的针尖之间收集到了定向的纳米纤维双针尖接收器方法收集到的纤维更为集中,取向程度也更为理想。
基于静电纺丝技术的纳米纤维材料的制备与应用
基于静电纺丝技术的纳米纤维材料的制备与应用随着科技的不断发展,纳米材料已经成为了热门研究领域之一。
纳米技术在各个领域都有着广泛的应用,其中基于静电纺丝技术的纳米纤维材料更是备受关注。
静电纺丝技术是一种通过静电力将聚合物溶液转换成纳米级纤维的制备技术。
这种技术制备出的纳米纤维材料具有很多优异的特性,如表面积大、孔隙度高、硬度高、柔软性好等,因此在医药、环保、能源等各个领域都有着广泛的应用前景。
一、静电纺丝技术的原理静电纺丝技术的核心原理是通过静电力将聚合物溶液转换成纳米级纤维。
其具体制备过程为:将聚合物溶解在有机溶剂中,加入适量的表面活性剂,并通过高压泵将溶液液滴喷射到高压电场中,在电场的作用下,液滴被拉长成纤维状,并在收集器上形成纳米纤维膜。
此过程需要注意控制聚合物溶液的质量浓度、电场的强度和纤维收集器的旋转速度等因素。
二、纳米纤维材料的优异特性静电纺丝技术制备出的纳米纤维材料具有很多优异的特性,如表面积大、孔隙度高、硬度高、柔软性好等。
其中,表面积大是原因之一。
由于纤维的直径非常小,因此单位质量的纳米纤维材料表面积非常大,这可以使得纳米纤维材料可以更好地去吸附和固定其他物质。
另外,纳米纤维材料的孔隙度也是比较高的,可以作为高效的过滤材料,可以过滤掉一些微小的颗粒和微生物。
纳米纤维材料的硬度比较高,还有较好的柔软性,可以被用于一些需要高强度和柔软性的领域。
三、纳米纤维材料在医药领域的应用纳米纤维材料在医药领域有着广泛的应用。
例如,在伤口的治疗方面,纳米纤维材料可以用来制造敷料。
普通的敷料很难贴合到伤口处,导致注入药物的过程中药物流失,而纳米纤维敷料则可以完美地贴合伤口处,不仅能够阻止药物的流失,还可以在敷料上注入药物,促进伤口的愈合。
另外,纳米纤维材料还可以用于制备人工组织,如人工心脏瓣膜等。
四、纳米纤维材料在环保领域的应用在环保领域中,纳米纤维材料可以用来制备高效的过滤材料。
例如,在空气净化领域,纳米纤维材料可以制备成高效的空气净化器,可以过滤掉一些危险有害气体中的颗粒,如PM2.5等,从而保证室内空气的清洁。
静电纺丝技术制备纳米纤维材料的研究与应用
静电纺丝技术制备纳米纤维材料的研究与应用引言:纳米科技的快速发展带来了许多前所未有的新材料和应用。
纳米纤维材料作为一种重要的纳米材料,在各个领域展示出了广阔的应用前景。
静电纺丝技术作为一种常用的制备纳米纤维材料的方法,凭借其简单、高效、可控性强的特点,受到了广泛的关注与研究。
本文旨在介绍静电纺丝技术制备纳米纤维材料的原理与过程,并探讨其在不同领域的应用潜力。
1. 静电纺丝技术概述静电纺丝技术是一种通过高电场作用下将聚合物溶液或熔体形成纤维的技术。
其基本原理为将容器中的聚合物溶液或熔体通过尖端形成纳米尺度的液柱,然后加高电压使液柱发生弯曲,并在空气中快速固化成纤维。
通过控制溶液的流速、电压、尖端直径和距离可以调节纤维的直径和形态,实现纳米尺度下的制备。
2. 静电纺丝技术制备纳米纤维材料的优势2.1 高效而可控的纤维制备静电纺丝技术可以制备纤维直径从几纳米到几微米的范围内的纳米纤维材料。
通过调节工艺参数,能够实现对纤维直径和形态的精确控制。
这种高效而可控的纤维制备特性使得静电纺丝技术在材料科学、纺织、医疗等领域得到广泛的应用。
2.2 纳米纤维材料的独特性能由静电纺丝技术制备的纳米纤维材料具有很多独特的性能。
首先,纤维直径纳米尺度下的纳米纤维材料具有较大的比表面积,使得其在能量存储、传感器、催化剂等领域具有更好的性能。
其次,纳米纤维材料具有高强度和高可拉伸性,可用于制备高性能纺织材料、过滤器、生物医学支架等。
此外,纳米纤维材料还具有优异的透气性和防护性能,可应用于口罩、防弹材料等领域。
3. 静电纺丝技术在不同领域的应用3.1 纺织领域静电纺丝技术制备的纳米纤维材料在纺织领域具有广阔的应用前景。
其具有的高比表面积和高强度使其成为制备高性能纺织材料的理想选择。
例如,将静电纺丝纳米纤维与常规纺织纤维结合,可以制备出具有更好透气性、抗菌性和防尘性能的纺织品。
此外,纳米纤维材料还可以被用于制备高效过滤材料和防弹材料。
静电纺丝技术制备纳米纤维材料的研究
静电纺丝技术制备纳米纤维材料的研究一、前言近年来,静电纺丝技术广泛应用于纳米纤维材料的制备中。
通过该技术,可以制备出具有高比表面积、高孔隙率、高通透性等多种优异性能的纳米纤维材料,在能源、环境、医疗等领域得到了广泛的应用。
二、静电纺丝技术的原理静电纺丝技术是一种通过高电场将聚合物溶液或熔体喷射成纳米级纤维的技术。
其主要原理是:将高压电源接在喷液口附近,形成强电场,使聚合物溶液或熔体加速运动,并在射流过程中产生链段拉伸、分子排列等现象,最终形成纳米级纤维。
三、静电纺丝技术的优点静电纺丝技术具有以下几个优点:1. 制备成本低。
静电纺丝技术所需的设备简单,生产成本较低。
2. 制备的纳米纤维材料性能优异。
制备出的纳米纤维材料具有高比表面积、高孔隙率、高通透性等优异性能,适用于能源、环境、医疗等领域。
3. 制备精度高。
静电纺丝技术可以制备出直径从几十纳米到几百纳米的纳米纤维。
4. 生产效率高。
静电纺丝技术可以实现连续生产,生产效率较高。
四、静电纺丝技术在纳米纤维材料制备中的应用静电纺丝技术可以制备出各种形状、尺寸、结构的纳米纤维材料,目前已经在以下领域得到了广泛的应用。
1. 软件复合材料领域。
静电纺丝技术制备的纳米纤维材料可以用于增强软件复合材料的力学性能和导热性能。
2. 组织工程领域。
静电纺丝技术制备的纳米纤维材料可以作为组织工程载体,用于修复和再生组织。
3. 能源领域。
静电纺丝技术制备的纳米纤维材料可以用于太阳能电池、锂离子电池等能源领域。
4. 过滤材料领域。
静电纺丝技术制备的纳米纤维材料可以用于空气过滤、水处理等领域。
五、未来发展方向随着对纳米纤维材料需求的不断增加,静电纺丝技术在纳米纤维材料制备中的应用将不断扩大。
未来,静电纺丝技术还有很大的发展空间,可以通过改进材料的制备工艺和结构,提高纳米纤维材料的性能,扩大其应用领域。
六、结论静电纺丝技术是一种简单、高效的纳米纤维材料制备技术。
随着对纳米材料需求的不断增加,它在能源、环境、医疗等领域的应用将会越来越广泛。
《化学纤维》静电纺丝方法制备纳米纤维膜实验
《化学纤维》静电纺丝方法制备纳米纤维膜实验为止;②静置10分钟,得到稳定的聚乳酸氯仿溶液。
静电纺丝过程: ①用注射器抽取一定量的的电纺溶液,保证注射器针尖为锥状;②将高压正极金属夹夹在注射器金属针头上;③在收集滚轴上裹上一层锡纸;④关上电纺仪器门,打开电源;⑤调节仪器参数:负高压(电压表:- 9.99;电流表: -0.05)正高压(电压表: 10. 04;电流表: 0.00)速度设定2mm/min距离设定30mm增量控制1.00;⑥点击仪器开始按钮进行纺丝;⑦得到适量纤维后,关闭仪器,取出覆有纤维的锡纸;干燥处理:将纤维用锡纸包裹起来放入烘箱进行烘干,除去未干燥完的溶剂和水。
纤维电镜观察拍照:取部分纤维进行电镜观察并拍照分析。
数据处理放大倍数:5000倍Area Mean Min Max Angle Length1 0.53 95.873 50.595 194 52.784 10.24放大倍数:2000倍Area Mean Min Max Angle Length1 1.385 92.629 53 197 52.696 10.421 放大倍数:500倍Area Mean Min Max Angle Length1 9.204 103.57 69.979 161.26 61.928 17.4362 9.73 123.619 69 232.167 48.366 18.526放大倍数:500倍Area Mean Min Max Angle Length1 59.172 113.917 87 158 14.036 21.1442 78.895 119.5 60 175 0 28.2053 52.597 117.536 52 176 4.086 17.9944 72.321 128.545 80 192 0 25.641分析结果随着电压的升高,纤维的平均直径减小,这是因为随着纺丝电压的增加,纤维的外观形态变化不大,但是聚合物射流表面聚集了越来越多的电荷,这些电荷在射流表面相互排斥,从而使得电场力对射流有更强的拉伸,最终生成更细的纤维网。
静电纺丝方法制备纳米纤维的研究与应用
静电纺丝方法制备纳米纤维的研究与应用纳米技术是一种兴起的新兴技术,其主要应用于生物医学、纺织、环境保护等领域。
在这些领域中,纳米纤维是最基本的材料之一。
静电纺丝方法制备的纳米纤维具有极细的直径、高比表面积和较佳的材料特性,因此广泛应用于生物医学、化学、环境保护、电子器件制备等领域。
一、静电纺丝方法制备纳米纤维的基本原理静电纺丝方法可以说是一种从流体中制备高性能的纳米纤维的过程。
其基本原理为,通过电荷作用使流体中的高分子物质形成纳米级别的纤维。
静电纺丝方法制备纳米纤维的流程一般为:首先将聚合物连续加热到熔态,然后以恒定的速度使其流动,同时通过千伏级别的静电场进行辊压拉伸,使得聚合物在电场作用下形成不连续的固态纤维,最终形成具有纳米尺度的单纤维。
二、静电纺丝方法制备纳米纤维的特点1. 直径控制能力强:静电纺丝方法能得到直径在数十纳米到几微米范围内的纤维。
通过控制不同参数,如聚合物质量浓度、静电场强度、药物和掺杂物质量等,可以调节纳米纤维的直径。
2. 表面积大:由于纳米纤维表面积大,因此也有更好的化学反应能力和更好的生物相容性能。
这使得静电纺丝方法制备的纳米纤维在生物医学、化学、环境保护、电子器件制备等领域有广泛的应用。
3. 应用领域广泛:静电纺丝方法制备的纳米纤维可以应用于生物医学、化学、环境保护、电子器件制备等领域。
例如,用纳米纤维材料制备的各种生物传感器,可以应用于生物医学中的蛋白质浓度检测、细胞的迁移和治疗、食品、水中有害物质的检测等;同时,也可用来制备气体过滤、滤清、电池、涂层等应用。
三、静电纺丝方法制备纳米纤维的进展与应用随着纳米技术的不断发展,静电纺丝方法制备纳米纤维应用领域也在不断扩大。
在生物医学领域,纳米纤维被应用于人工皮肤、载药纳米纤维包含药物和生物相容性好等领域;在环境保护领域中,纳米纤维可被应用于过滤、内衬、捕获有机物和微生物的技术领域等;在电子器件制备领域中,可以将纳米纤维用于液晶屏幕的增强光、锂离子电池的电极、超级电容器、燃料电池、传感器、防伪技术和防盗技术等方面的应用。
纳米纤维材料的制备和表征技术
纳米纤维材料的制备和表征技术纳米纤维材料(nanofiber materials)具有超细纤维结构和巨大的比表面积,被广泛应用于过滤、吸附、传感、医疗、能源等领域。
制备和表征纳米纤维材料的技术是实现纳米纤维材料应用的基础,本文将介绍常见的纳米纤维材料制备技术和表征方法。
纳米纤维材料的制备技术有多种,其中最常见且成熟的方法是静电纺丝(electrospinning)技术。
静电纺丝是一种利用高压电场将聚合物溶液或熔体从尖端喷出,形成纳米级连续纤维的方法。
这种方法制备的纳米纤维具有连续性、纤维直径可调、制备工艺简单等优点。
静电纺丝制备纳米纤维的关键是选择合适的聚合物溶液、调整电场参数和纺丝条件。
此外,还有其他方法如喷雾旋转真空沉积法、力臂纺丝法等也可以用于制备纳米纤维材料。
制备纳米纤维材料后,需要进行其表征以评估其性能。
纳米纤维材料的表征通常包括形貌、微观结构、化学成分和物理性能等方面的分析。
形貌观察可以通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)来实现,这些显微镜能够提供纳米级别的分辨率。
SEM可以显示纳米纤维的表面形貌以及纤维间的空隙结构,而TEM可以提供关于纳米纤维内部结构的更详细信息。
除了形貌观察外,纳米纤维材料的微观结构和化学成分分析也是十分重要的表征内容。
X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)是常用的分析方法。
XRD可以确定纳米纤维材料的结晶性质,而FTIR可以确定纳米纤维材料中的化学成分和官能团。
此外,物理性能的表征对于纳米纤维材料的实际应用也非常重要。
纳米纤维材料的力学性能通常通过拉伸测试来评估,这需要使用纳米拉伸仪等设备。
纳米纤维材料的热性能可以通过热重分析(TGA)和差示扫描量热分析(DSC)来研究,这些方法可以测量纳米纤维材料在不同温度下的质量损失和热反应。
最后,纳米纤维材料的应用需要考虑材料的表面性质。
表面性质的表征主要包括表面形貌、表面能和表面化学组成等方面的研究。
静电纺丝纳米纤维的制备与应用研究
静电纺丝纳米纤维的制备与应用研究随着科学技术的发展,纳米材料逐渐成为生物医学、能源储存、信息技术等各个领域的重要组成部分。
其中,纳米纤维作为一种具有高比表面积、可调控性、生物相容性等优点的纳米材料,被广泛应用于组织工程、传感器、污染物去除等领域。
其中,静电纺丝技术是一种常用的制备纳米纤维的方法。
本文将介绍静电纺丝技术的原理、优缺点,并探讨其在生物医学和环境领域的应用。
一、静电纺丝技术原理静电纺丝技术是通过高压静电场作用下,将聚合物溶液中的聚合物拉伸成纳米尺度的纤维,形成纳米纤维膜。
其制备步骤如下:(1)准备聚合物溶液:将聚合物加入有机溶剂中,达到一定浓度。
(2)注入高压静电场:将聚合物溶液注入高压静电场,在静电场作用下,聚合物分子受力,流体形成了稳定的射流。
(3)干燥:在纳米纤维形成后,采用自然干燥、紫外辐射干燥等方法,去除有机溶剂。
(4)获取纳米纤维膜:经过干燥后,聚合物纳米纤维形成了一层自支撑的薄膜。
二、静电纺丝技术的优缺点静电纺丝技术具有以下几个优点:(1)简单易学:静电纺丝技术不需要复杂的设备和条件,只需要高压静电设备、聚合物溶液、收集器等较简单的设备和条件,操作简单易学。
(2)纳米纤维形成速度快:静电纺丝技术采用了高压静电场,使得聚合物分子能够快速被拉伸成纳米尺度的纤维,形成纳米纤维膜的速度快。
(3)纳米纤维精度高:静电纺丝技术基于高压静电场,能够形成纤维直径较小、长度较长的纳米纤维,其精度高、可调控性好、空隙率小。
(4)适用性广:静电纺丝技术可用于多种聚合物溶液,根据不同的需要制备出具有不同性质的纳米纤维。
但是,静电纺丝技术也存在以下几个缺点:(1)制备的纳米纤维薄膜强度较低:静电纺丝技术制备出的纳米纤维薄膜强度较低,易断裂。
(2)仅适用于溶解于有机溶剂中聚合物:静电纺丝技术只适用于聚合物在有机溶剂中的聚合物。
(3)处理有机溶剂产生环境污染:静电纺丝技术的制备需要有机溶剂,容易造成环境污染。
静电纺丝技术制备BaFe_(12)O_(19)纳米纤维与表征
i t V / B C 2 e N 3 3 o ps enn f e ee eo p sdadvl izdt a y adte n h P P [ a 1 +F ( O ) ]cm oi ao b r w r d cm oe n oa le t l, n e t i s ti ol h
p re tg s9 . % .X—a ircin ( ec naewa 0 5 ry df a t f o XRD) n o r rt n fr if rd s e t so y F I a d F u i r som nr e p cr cp ( T R) e a a o
rsl h w dta P P [ a 1 +F ( O ) ]cm oi aoi r w r a rh u ns utr , n eut so e t V / B C2 e N 3 3 o p senn f es ee mo osi t c e a d s h t b p r u p r p aeB F l l a o br w r o t ndb ac a n fh V / B C2 e N 3 3 o ps ue h s a e O9 nf es ee b ie ycl nt go eP P [ a 1 +F ( O ) ]cm o— 2 n i a i i t
率为 9 . % .x射 线衍 射分 析 ( R 与傅 里 叶转换 红 外光 谱 分 析 ( TR) 明, V / B C +F 05 X D) FI 表 P P [ a1 e
( O ) 复合 纳 米 纤 维 为 非 晶 态 , 90℃ 焙 烧 5 N ] 经 0 h后 , 得 了单 相 磁 铅 石 型 的B F 米 纤 维 。 获 a e O。 : 纳 经 扫 瞄 式 电 子 显 微 镜 ( E 分 析 表 明 , 过 9 0℃ 焙 烧 后 , 得 了直 径 约 8 m的 B F O S M) 经 0 获 0n ae 纳 米 纤
静电纺丝法制备PVP_PVDF复合微_纳米纤维
1. 3
PVP/ PVDF 微纳米纤维的制备
选用较高浓度的溶 液进行纺 丝 : 选择总 浓度 20% ( w t) 不 2, 6 4, 5 5, 3 7, 1
变的纺丝液 , PV P: PV DF 分 别为 8
9, 溶解于 DM Ac 中 , 室温搅 拌 24h 至溶 解成均 一溶 液。将制 得的溶液加到静电 纺丝 装置 中 , 调 节电 压及喷 丝头 到接 收板 之间的距离 , 可得到直 径约 为 300~ 700nm 的 PV P/ PV DF 复 合微 / 纳米纤 维。
- 1
图2
PV P
P VDF 为 6
4 时所得纤维的
红外光谱图 ( 镜面全反射 ) 曲线在 1403 9, 1190 5, 1075 4 和 882 1cm 处出现的是
[ 3]
Siddh esw aran R . , San kar R . , Babu M . R. Preparati on and charat erizat ion of ZnO n anof ibers by elect rospinnin g[ J] . Cryst . res. T echnol. , 2006, 41: 446 - 449.
- 1
。
4 时 , 所 制 得 的 PV P/ PV DF 复 合
参考文献
[ 1] Huang Z M , Zh ang Y Z. , K ot aki M . , R amak rishn a S. A R e view on polymer nanof ibers by electr os pinning and t heir applicat ions in nanocomp os it es [ J ] . Comp os it es science and t echnology, 2003, 63: 2223 -2253. [ 2] Wen -J i J in, H wang K ye Lee, Eun Hw an Jeong et al. . Preparat ion of polymer nan of ibers cont ai ning silver n anopart icles by u s ing poly ( N -V inyl pyrrolidone) [ J ] . M acromol. rapid com m un. , 2005, 26: 1903 - 1907.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(. h o hm ̄r n ni n na E gnei , h nc u n esyo 1 c o lf C e t a dE v ometl n i r g C a gh nU i ri S o y r e n v tf
S in ea dT c n lg ce c n e h ooy, C a g h n 1 0 2 ) h n c u , 0 2 3
其 形 成机 理进 行 了讨 论 。该 技 术 可 以 用 来制 备 其 它 高分 子 空 心 纳 米 纤 维 。 关键 词 : 静 电 纺丝 ;聚 乙烯 吡 咯 烷 f (VP ;空 心 纳 米 纤 维 ;纳 米 纤 维 iP )  ̄ q
中图分类号 :T 4 G17
文献标识码 :A
文章编号:17 —9 7 (0 7 4—0 1 6 2 80 2 0 )0 0 5—0 4
Sy he i nd Cha a t rz to Байду номын сангаасPVP o l w no br s nt ssa r ce ia in o H lo Na f e i
Vi e t o p n i g a El c r s i n n
Z HANG h a g u S u n h ,XU h z i S u h ,DONG a g i g Xin t ,W ANG i x a n Jn in
一
维纳米 材料 ,包 括纳米 纤维 、纳米 线 、纳米
分 为多 孔模 板法 ] 、线模 板法 " 、 自组 装法 等 ] 几 大类 。如 Ki _ 等人 首先 用 C m 9 VD 聚合法 在氧 化铝 模板 的孔 内聚合 了前驱 聚合 物 , 、一二氯 对
DT . S M , F I a dXR S M c o r p si d c tdt a e r d c vPn n t b swi 0 n i v r g u e- A E T R n D. E mi r g a h i ae t o u t s n h t p h i P a o u e t 3 0 m a e a eo tr h n da tr 2 0 m i imee 。 4 n nme ni n rda t r n . .O t i a n e- ime e a dca 3 n nwal h c n s ,t e e g ho t eP o lt i k e s h ln t f h VPh l w n n f r s s e s ol o a o b e wa t n i u u d e s c o t r. h o m t n me h n s o eP p t h n r d r me e s T ef r a i c a im f h VP n n t b swa ic s e . et c n q e c n b p l d o mi o t a o u e sd s u s d T e h iu a e a p i h e t r p e o h r o y r o l w a o u e . o p e a t e l me l r p h o n n tb s Ke r s ee t0 p n i g p lv n l y r l o e h l w a o b e ; a o b e y wo d : lcr s i n n ; o y i yp r oi n ; o l n n f r s n d o i n f rs i
Ab t a t P o l w a o b e a eb e u c s f l r p r db l cr s i n c n q eb sn o y i y y r — s r c : VP h l o n n f r sh v e n s c e s u l p e a e y ee to p r gt h i u y u i g p lv n l ro i y mi e p
l o eP ) a s l e ta o a dp r dbe ea i a s r n tr l T e a pe r h a t ie yT A i n ( VP , b ou h n l uee il s smeol s t t gma i s h d te n a i ea . s m l weec a ce z db G — s r r
维普资讯
第3卷第4 0 期 2 0 年 l 月 07 2
长 春 理 工大 学 学 报 ( 自然科 学版 )
J un l f h n c u nv ri f c n e n e h oo y Na rl ce c dt n or a o a g h nU ies yo i c dT c n lg { t a S i e i o ) C t S e a u n E i
V o. 0 NO. 13 4 D e . 00 c2 7
静 电纺 丝技 术 制 备 P P空心 纳米 纤 维 与表 征 V
张双虎 ,徐 淑芝 ,董相廷 ,王进 贤
( 长春理工大学 化 学与环境2 程学院 .长春 10 2 ) / 2 0 2 3
摘
要 : 采 用静 电纺 丝 技 术 ,以 聚 乙烯 吡 咯  ̄ NP ) (VP 、无 水 乙醇 和 纯 芝麻 油 为原 料 ,成 功 地 制 备 出 了 P P空 心纳 V
米纤维。用 T A— T G D A,S M,F I E TR,X D 等分析手段对产物进行 了表征。结果表 明,所得 产物为 P P空心纳米 R V
纤 维 .空心 纤 维的 平 均 外 径 30 m,平 均 内经 2 0 m,平 均 管壁 厚 度 3n 0r i 4n 0 m, 长度 可 达 几 十微 米 至 几 百微 米 , 并对